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Volatility timing: How best to forecast portfolio exposures
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Abstract

This paper investigates how best to forecast optimal portfolio weights in the context of

a volatility timing strategy. It measures the economic value of a number of methods for

forming optimal portfolios on the basis of realized volatility. These include the traditional

econometric approach of forming portfolios from forecasts of the covariance matrix, and a

novel method, where a time series of optimal portfolio weights are constructed from observed

realized volatility and directly forecast. The approach proposed here of directly forecasting

portfolio weights shows a great deal of merit. Resulting portfolios are of equivalent economic

benefit to a number of competing approaches and are more stable across time. These findings

have obvious implications for the manner in which volatility timing is undertaken in a

portfolio allocation context.
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1 Introduction

The strategy of volatility timing as a portfolio selection method, is often based on forecasts of

the volatility of, and correlation between a portfolio’s constituent assets. The modern volatility

forecasting literature stems from the seminal work of Engle (1982) and Bollerslev (1986) in a

univariate setting, and from Bollerslev (1990) and Engle (2002) among others in the multivariate

setting. For a broad overview of the major developments in this field, see Gourieroux and Jasiak

(2001) and Andersen, Bollerslev, Christoffersen, and Diebold (2006).

A voluminous literature exists dealing with modeling and forecasting volatility. Much of this

literature examines the relative performance of competing forecasts in a generic statistical set-

ting, that is, without any consideration of an economic application of the forecasts. For a wide

ranging overview of such literature see Poon and Granger (2003, 2005), or for a more compre-

hensive comparison of forecasts, see Hansen (2005) or Becker and Clements (2008). Relatively

speaking, there are fewer studies that focus on the economic value of forecasting volatility, or

volatility timing. Graham (1996) and Copeland (1999) study trading rules based on changes in

volatility. West, Edison and Cho (1993) undertake a utility based comparison of the economic

value of a range of volatility forecasts. Fleming, Kirby and Ostdiek (2001) examine the value

of volatility timing in the context of a short horizon asset allocation strategy. To do so, they

consider a mean-variance investor allocating wealth across stocks, bonds and gold based on

forecasts of the variance-covariance matrix of returns.

In recent years there has been significant development in the measurement of volatility by utiliz-

ing high frequency intraday data, a principle stemming from the earlier work of Schwert (1989).

Andersen, Bollerslev, Diebold and Labys (2001, 2003), and Barndorff-Nielsen and Shephard

(2002) among others advocate the use of realized volatility as a more precise estimate of volatil-

ity relative to those based on lower frequency data.1 Fleming et al. (2003) build upon Fleming

et al. (2001) and highlight the positive economic value of realized volatility in the context of

volatility timing, relative to estimates based on daily returns.

This paper compares the economic benefit of a range of approaches to volatility timing. Port-

folios based on forecasts of volatility from traditional econometric models will be compared to

a novel approach where observations of realized volatility are used to construct a time series of

optimal portfolio weights, from which forecasts of portfolio weights are directly generated. This

method is in contrast with the traditional approach where forecasts of volatility are generated,

upon which optimal portfolios are formed.

1Following Fleming, Kirby and Ostdiek (2003) we use the general realized volatility term to refer to the full

realized covariance matrix of asset returns. In later sections, we refer specifically to variances, covariances and

correlation.

2



The empirical analysis is based on a three asset portfolio allocation problem involving equities,

bonds, and gold. The results reveal a number of interesting findings. Forecasting methods that

give the greatest weight to the most recent observations, and avoid a great deal of smoothing

produce the best performing forecasts. While a very näıve forecast is of similar economic benefit

to those that do involve a degree of smoothing, it produces very volatile portfolio exposures.

Thus, while some degree of smoothing is beneficial, forecasts involving too much smoothing are

inferior. Most interestingly, the novel approach of using observations of realized volatility to

construct a time series of optimal portfolio weights, from which forecasts of portfolio weights are

formed, is found to be effective. In terms of economic benefit, is it comparable to a traditional

forecasting appraoch, but leads to more stable portfolio exposures in a number of instances.

The paper proceeds as follows. Section 2 outlines the general portfolio allocation framework

along with how performance will be compared. Details of the competing approaches for fore-

casting portfolio weights are given in Section 3. Section 4 describes the data employed. Sections

5 and 6 provide empirical results and concluding comments.

2 The portfolio allocation problem and forecast evaluation

We assume the vector of returns rt obey

rt ∼ F (µ,Σt) , (1)

where F is some multivariate distribution, µ is fixed vector of expected returns and Σt is the

conditional covariance matrix of returns.

Following Fleming et al. (2003) intraday return information is employed to obtain realized

covariances simply denoted here as RV. In this case, the estimate of RV is the sum of the

outer-product of intraday returns,

Σ̂RV
t =

N∑

i=1

ritr
i′

t , t = 1, . . . , T (2)

where N represents the number of intraday intervals.

The vector of optimal portfolio weights, wt, assuming a target portfolio return of µ0, and proxy

for the conditional covariance matrix Σ̂t is given by

wt =
Σ̂−1

t µ

µ ′Σ̂−1
t µ

µ0, t = 1, . . . , T. (3)

The traditional approach to portfolio allocation is to utilize historical data to generate a forecast

of the conditional covariance matrix, Σt+1. This, in turn, is used to generate a forecast of optimal
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portfolio weights wt+1 using the relation similar to that of equation (3).

wt+1 =
Σ

−1

t+1µ

µ ′Σ
−1

t+1µ
µ0 . (4)

The alternative proposed here is to generate a time series of optimal portfolio weights, {wt},

t = 1, . . . , T , based on Σ̂RV
t using intraday returns. A forecast of the optimal portfolio weights

wt+1 is then generated directly from the time series of constructed weights {wt}. Both methods

will be described in the following section. Irrespective of how the forecast wt+1 is obtained,

realized portfolio returns are given by rp,t+1 = w′

t+1rt+1.

We follow Fleming et al. (2001, 2003) in comparing the performance of the various forecasts in

terms of the relative economic benefit they produce when used to form optimal portfolios. We

find a constant, δ, that solves

T1∑

t=T0

U(r1p,t) =

T1∑

t=T0

U(r2p,t − δ) (5)

where r1p,t and r2p,t represent portfolio returns based on two competing forecasting methods, and

where T0 and T1 date the beginning and the end of the forecasting period, respectively. Here δ

reflects the incremental value of using the second approach as opposed to the first. It measures

the maximum return an investor would be willing to sacrifice, on average per day, to capture

the gains of switching to the second criteria. Following Skouras (2007) an investor with negative

exponential utility is considered:

U(rp,t) = − exp(−λ rp,t) (6)

where rp,t is the portfolio return realized by the investor during the period to time t and λ is

their coefficient of risk aversion.

The portfolio choice implied by equations (3) and (4) requires estimates of the vector of expected

returns, µ. To control for the uncertainty surrounding the expected returns, the block bootstrap

approach of Fleming et al. (2003) is used. Artificial samples of 10000 observations are generated

by randomly selecting blocks of random length, with replacement from the original sample.2

Mean returns for the assets are computed from the artificial sample and used as an estimate for

µ. Given a series of volatility forecasts, {Σt+1}, portfolio weights are computed using equation

(4), and the optimal portfolio returns are recorded. The difference in economic value between

any two competing forecasting methods is computed as δ in equation (5). This procedure is

repeated 500 times with a mean value for δ across the 500 bootstraps reported in annualized

basis points below.

2Smaller sample sizes of 2000 and 5000 were also used. There is no qualitative difference to results presented

here.
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3 Forecasting the optimal portfolio weights

The methods considered for forecasting optimal portfolio weights fall into two categories. One

that forecast the covariance matrix and then subsequently compute the portfolio weights, and

one that compute optimal portfolio weights and then directly forecast from these weights. Each

approach will now be discussed in turn.

3.1 Forecasting the covariance matrix

The simplest forecasts considered are moving averages of past RV over various horizons, which

clearly avoid the need for parameter estimation. Four versions of this simple forecast are em-

ployed, the current level of RV, one week and one month moving averages, along an average of

the three. The moving averages are defined by

Σt+1 =
h

1

h∑

i=1

Σ̂RV
t−i+1 (7)

with h taking the values of h = 1, 5, 22 for one day, week and month long moving averages.

Subsequently these approaches will be denoted as MA1, MA5 and MA22. A simple average of

MA1, MA5 and MA22 will also be considered and will be denoted as MAµ.

Following Fleming et al. (2003), the exponentially weighted moving average model employs

past RV estimates to generate forecasts, Σt+1,

Σt+1 = exp(−θ)Σt + θ exp(−θ)Σ̂RV
t (8)

where θ is a decay parameter to be estimated. This forecast will be denoted as FKO.

The MIDAS methodology produces volatility forecasts directly from a weighted average of past

observations of volatility. Following from Ghysels, Santa-Clara and Valkanov (2006) a forecast

of the conditional covariance matrix, Σt is generated by

Σt+1 =
kmax∑

k=1

b (k,θ) Σ̂RV
t−k+1 (9)

where the parameters k and θ = (θ1, θ2)
′ govern the MIDAS weighting scheme b (k,θ), and

Σ̂RV
t−k+1 are historical estimates of the realized covariance matrix based on intraday returns. In

this instance, the same scalar MIDAS weights, b (k,θ) are applied to all elements of the matrix

for each lag k. The maximum lag length kmax can be chosen rather liberally as the weights

are tightly parameterized. All subsequent analysis is based on kmax = 100. The weights are

determined by means of a beta density function, fully specified by the parameter vector θ and

normalized such that
∑

b (k,θ) = 1. To reduce computational burden, and without loss of
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generality, we restrict θ1 = 1, which leaves only θ2 to be estimated. The constraints, θ1 = 1 and

0 < θ2 < 1, ensure that the weighting function is a decreasing function of the lag k. Both the

FKO decay parameter, θ, and the elements in the MID weighting scheme, θ, are determined

by standard Quasi-Maximum Likelihood (QML) estimation.

3.2 Directly forecasting portfolio weights

In contrast with the approaches above, we propose forecasting the optimal portfolio weights

directly, without resorting to forming a forecast of the covariance matrix. To achieve this,

a time series of covariance estimates is formed, with equation (3) used to obtain a series of

optimal portfolio weights. The estimates of RV from equation (2) are used to obtain optimal

weights wt, an approach denoted as RV P . Apart from Σ̂RV
t , two further estimates of the

covariance matrix are used to form wt, in-sample fitted values, Σt from both the FKO and

MID models. Forecasts of portfolio weights determined under these schemes are denoted by

RV PF and RV PM . This approach is used to determine whether smoothing historical RV prior

to determining portfolio weights lead to superior portfolio performance.

The MIDAS scheme can now be used to generate forecasts of the optimal weights directly. Using

the MIDAS framework, the relation to be estimated is

wt+1 =

kmax∑

k=1

b (k,θ)wt−k+1. (10)

where the historical observations wt−k+1 are generated according to equation (3) with Σ̂RV
t−k+1

as the covariance proxy. Once again, the same MIDAS weight is applied to all elements in

wt−k+1.

4 Data

The portfolio allocation problem considered here relates to a mix of bond, equities and gold.

The study treats returns on S&P 500 Composite Index futures as equities exposure (SP), returns

on U.S. 10-year Treasury Note futures as bond market exposure (TY) along with returns on

Gold futures (GC).3 Data was gathered for the period covering 1 July 1997 to 29 June 2009

giving a sample of 2985 observations. The estimates of the covariance matrix based on intraday

returns were constructed by summing the cross products of 15 minute futures contract returns.

Figures 1 and 2 plot the realized volatilities and correlations of the three assets considered.

Figure 1 shows the realized volatility of equity futures (top panel), bond futures returns (middle

3Intraday data for both futures contracts were purchased from Tick Data.
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S&P 500 realized volatility

Treasury bond realized volatility

Gold realized volatility

1999 2001 2003 2005 2007
0

0.002

0

0.0003

0

0.005

Figure 1: Realized volatility estimates for S&P 500 (top panel), Treasury bond (middle panel)

and Gold (bottom panel).

panel) and gold futures returns (bottom panel). Equity volatility shows a familiar pattern, low

volatility during much of the sample period with higher volatility due to collapse of technology

stocks. It is clear that the events surrounding the credit crisis of the second half of 2008 dominate

in terms of the levels of volatility reached (the scale of the plot has been constrained otherwise

no variation is evident due to the level of recent volatility). The volatility of bond returns

is unsurprisingly much lower in magnitude than equity returns and generally more stable. It

is evident that the recent financial crisis has lead to a sustained period of somewhat higher

volatility. Volatility in gold returns increased in late 2005 and early 2006 due to central bank

activity, and rose to historically high levels at the height of the recent market turmoil.

Realized correlations between the respective pairs of assets are shown in Figure 2. The correla-

tion between equities and bonds (top panel) is quite persistent over time. It shows a downward

trend through to 2002–2003 with it subsequently being weak during 2004–2006, followed by a

period very strong negative correlation during much of the recent crisis. In contrast to the bond

and equity case, neither the correlation between either equities and gold (middle panel) nor

bonds and gold (bottom panel) show any long-term persistence or structure.
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S&P 500 - Treasury bond realized correlation

S&P 500 - Gold realized correlation

Treasury bond - Gold realized correlation

1999 2001 2003 2005 2007
-1

1

-1

1

-1

1

Figure 2: Realized correlation estimates for S&P 500 and Treasury bond (top panel), S&P 500

and Gold (middle panel) and Treasury bond and Gold (bottom panel).

5 Empirical results

Given the 2985 daily observations, the first 1000 observations were used as an initial estimation

period. One day ahead forecasts of the optimal weights are obtained from T = 1000 onwards and

a portfolio formed according to Section 2 which leads to 1985 forecasts of portfolio allocations.

All necessary parameters in FKO, MID, RV P , RV PF and RV PM are re-estimated every

200 days. As discussed in Section 2, the bootstrap procedure is used to reduce the uncertainty

around the expected returns needed in forming the optimal weights. To this end, an artificial

sample of returns is generated and the average returns computed to serve as a proxy for the

expected returns µ = (µSP , µTY , µGC)
′. We use the same constraints on the expected returns

as Fleming et al. (2003). A bootstrap is acceptable if µSP > µTY > µGC , µSP > 0 and

µTY > 0. We also require σSP > σTY , where σ denote the sample standard deviation of the

artificial returns. Under the FKO and MID approaches, the parameters are not re-estimated

for each bootstrap as µ does not enter the QML objective function during estimation. On the

other hand, θ2 in the MIDAS weighting scheme must be re-estimated under RV P , RV PF and

RV PM as the optimal weight forecast is a function of past weights which are based on the

estimate of µ.
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µ = 6%, γ = 2

MA1 MA5 MA22 MAµ MID FKO RV P RV PF RV PM

MA1 - −87.368
0.084

−114.862
0.070

−23.079
0.296

−1.504
0.426

−47.328
0.164

−2.302
0.424

−50.057
0.188

−44.260
0.218

MA5 - −31.377
0.082

39.509
0.992

76.072
1.000

36.220
0.988

71.219
1.000

37.555
0.854

43.748
0.892

MA22 - 46.809
0.978

97.075
1.000

63.926
1.000

97.257
0.998

72.662
1.000

76.903
1.000

MAµ - 35.046
1.000

−5.177
0.118

29.440
1.000

−4.187
0.268

1.256
0.442

MID - −37.372
0.000

−3.009
0.500

−29.805
0.028

−24.540
0.032

FKO - 33.644
0.980

9.268
0.830

13.804
0.900

RV P - −27.777
0.092

−22.958
0.106

RV PF - 4.212
0.972

RV PM -

Table 1: Estimates of relative economic value of moving from the forecasts in the row heading

to that in the column heading, for µ0 = 6%, λ = 2. Each entry reports the average value for δ

across the 500 bootstraps and the proportion of bootstraps where δ was found to be positive.

Tables 1 through 4 report estimates of average δ (averaged across 500 bootstraps) computed

from equation (5) for a selection of combinations of target returns µ0 and degree of risk aversion

λ. These represent the incremental economic value of using the forecast from the model in the

column heading over that in row heading. These are expressed in annual basis point terms. The

number beneath each entry corresponds to the proportion of bootstraps where δ was found to

be positive.

To begin, we will focus on Table 1 which reports results for the case of µ0 = 6% and λ = 2. Of

the moving average approaches, MA1 is the preferred approach as it dominates MA5, MA22 and

MAµ. MAµ in fact is preferred over MA5 and MA22 indicating that the information contained

in MA1 is vitally important for forecasting portfolio weights as MAµ is an average of the three

and the most recent data dominates. It is seen that MID is of equivalent value to MA1 and

outperforms the other moving average combinations. This result is consistent with the MID

approach placing by far the greatest weight on the most recent data as reflected in MA1. While

FKO outperforms MA5 and MA22, it underperforms both MA1 and MID indicating that it

smooths out too much of the information contained in recent data.

We now consider the performance of the methods that directly forecast portfolio weights. RVP,

using only Σ̂t to form portfolio weights is of equivalent value to MA1 and also dominates the

longer term moving averages. It is also equivalent to MID but dominates FKO. These results

are driven by the fact that RVP is directly based on Σ̂t but the forecast of portfolio weights

are smoothed somewhat with the greatest weight placed on the most recent observations, and

hence is similar in performance to MA1 and MID. Finally, the performance of the two methods

that utilize a smoothed version of the covariance matrix, Σt, are examined. Both RV PFKO
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µ = 6%, γ = 5

MA1 MA5 MA22 MAµ MID FKO RV P RV PF RV PM

MA1 - −56.656
0.158

−88.610
0.108

47.655
0.646

51.726
0.684

−13.574
0.294

42.216
0.674

−64.175
0.156

−52.045
0.186

MA5 - −40.248
0.064

41.964
0.976

84.638
1.000

34.889
0.976

65.585
1.000

−4.088
0.436

8.859
0.554

MA22 - 20.632
0.908

98.082
1.000

65.684
1.000

91.660
0.998

45.757
1.000

53.671
1.000

MAµ - 39.045
1.000

−11.653
0.066

17.961
0.870

−51.663
0.030

−40.577
0.034

MID - −43.285
0.000

−14.545
0.018

−66.447
0.000

−55.923
0.000

FKO - 26.833
0.940

−18.638
0.080

−9.984
0.256

RV P - −54.235
0.030

−44.831
0.038

RV PF - 7.772
0.996

RV PM -

Table 2: Estimates of relative economic value of moving from the forecasts in the row heading

to that in the column heading, for µ0 = 6%, λ = 5. Each entry reports the average value for δ

across the 500 bootstraps and the proportion of bootstraps where δ was found to be positive.

and RV PMID are inferior MA1, superior to MA5 and MA22 and similar in performance to

MAµ. They are clearly inferior to both MID and RV P , though marginally dominate FKO.

Overall RV PFKO and RV PMID are very similar in nature. As both approaches are inferior

to the dominant methods, MA1, MID and RV P , smoothing the covariance estimates prior

to forming portfolios reduces the amount of information reflected in recent covariances, and or

portfolio weights relevant for forecasting purposes.

The results in Table 3 show that increasing the target return from µ0 = 6% to µ0 = 8% has no

impact on the order of preference between the competing forecasting approaches. Overall, the

incremental economic benefit, δ does seem to strengthen in magnitude making the differences

between model performance even clearer. MA1, MID and RV P continue to perform in a

similar manner, with the proportion of times that MID or RV P dominate MA1 range from

40% to 70% of the bootstraps highlighting no significant differences. These approaches continue

to dominate the other methods. A similar conclusion can be drawn from results in Tables 2 and

4 when increasing the coefficient of risk aversion. Only in the case of µ0 = 8% and γ = 5 is there

is a significant difference in the performance where RV P slightly dominates MID. Overall, the

result that MA1, MID and RV P are dominant methods indicate that methods that place a

great deal of weight on the most recent observations (the most recent observation in the case of

MA1) lead to superior performance. By smoothing the covariance estimates first, much of the

information pertaining to the forecasts of optimal weights is lost.

In practice, an investor faces transaction costs as they alter their portfolio holdings through

time. These costs are a function of both the frequency and magnitude of portfolio changes.

Here we do not take a stance on the form of the transaction costs but compare the mean
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µ = 8%, γ = 2

MA1 MA5 MA22 MAµ MID FKO RV P RV PF RV PM

MA1 - −107.231
0.108

−144.587
0.074

−9.858
0.380

14.145
0.472

−52.432
0.194

10.710
0.474

−69.552
0.182

−60.075
0.210

MA5 - −44.052
0.078

53.268
0.986

104.078
1.000

48.206
0.990

93.525
1.000

38.531
0.796

48.687
0.832

MA22 - 54.342
0.976

129.567
1.000

85.693
1.000

127.963
0.998

89.241
1.000

95.906
1.000

MAµ - 48.145
1.000

−8.385
0.112

36.234
0.994

−18.697
0.118

−9.875
0.240

MID - −51.427
0.000

−7.295
0.388

−49.994
0.012

−41.502
0.022

FKO - 42.838
0.970

4.492
0.654

11.680
0.786

RV P - −44.432
0.064

−36.732
0.082

RV PF - 6.606
0.990

RV PM -

Table 3: Estimates of relative economic value of moving from the forecasts in the row heading

to that in the column heading, for µ0 = 8%, λ = 2. Each entry reports the average value for δ

across the 500 bootstraps and the proportion of bootstraps where δ was found to be positive.

µ = 8%, γ = 5

MA1 MA5 MA22 MAµ MID FKO RV P RV PF RV PM

MA1 - −53.396
0.202

−102.906
0.116

116.323
0.852

106.546
0.882

3.362
0.370

86.235
0.842

−103.793
0.136

−82.116
0.166

MA5 - −62.643
0.042

58.335
0.972

118.541
1.000

43.732
0.948

81.884
1.000

−41.129
0.230

−18.209
0.356

MA22 - 9.538
0.710

132.441
1.000

89.241
1.000

118.414
0.996

39.072
0.964

52.835
0.990

MAµ - 53.829
1.000

−22.720
0.050

13.378
0.786

−109.638
0.014

−90.002
0.018

MID - −62.975
0.000

−28.682
0.000

−119.375
0.000

−100.882
0.000

FKO - 30.775
0.918

−47.971
0.006

−32.873
0.038

RV P - −94.617
0.020

−78.149
0.026

RV PF - 13.406
1.000

RV PM -

Table 4: Estimates of relative economic value of moving from the forecasts in the row heading

to that in the column heading, for µ0 = 8%, λ = 5. Each entry reports the average value for δ

across the 500 bootstraps and the proportion of bootstraps where δ was found to be positive.
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MA1 MA5 MA22 MAµ MID FKO RV P RV PF RV PM

|∆wE
| 0.2886 0.0714 0.0153 0.0937 0.0271 0.0106 0.0287 0.0031 0.0049

σ∆wE
0.2983 0.0900 0.0197 0.1015 0.0332 0.0151 0.0303 0.0033 0.0061

|∆wB
| 0.4546 0.1149 0.0243 0.1507 0.0440 0.0171 0.0450 0.0049 0.0080

σ∆wB
0.4566 0.1392 0.0300 0.1580 0.0515 0.0231 0.0468 0.0052 0.0095

|∆wG
| 0.2989 0.0710 0.0152 0.0932 0.0289 0.0109 0.0292 0.0029 0.0051

σ∆wG
0.3404 0.0831 0.0183 0.0997 0.0345 0.0154 0.0350 0.0034 0.0064

Table 5: Mean absolute changes and standard deviation of changes in exposures to equities

(wE), bonds (wB) and gold (wG).

absolute changes in portfolio weights and their standard deviations, to reveal whether a link

exists between the competing forecasts and portfolio stability. The mean absolute changes in

exposures to a single asset class, equities bonds or gold, are defined as the mean absolute change

in exposure averaged across the N number of bootstraps,

|∆w| =
1

N

N∑

i=1

1

T1 − T0 − 1

T1∑

t=T0+1

|wt − wt−1| (11)

where T0 and T1 are the first and final forecast periods. The standard deviation of exposure

changes is determined in a similar manner,

σ∆w
=

1

N

N∑

i=1

1

T1 − T0 − 1
σwt−wt−1,i (12)

where σwt−wt−1,i is the standard deviation of portfolio changes for the ith bootstrap. These

statistics are reported in Table 5 for each of the three asset classes. It is clear that using the

MA1 covariance forecast leads to the most variable portfolio exposures, with MA5 and MA22

being noticeably more stable, an expected result as MA1 involves no smoothing or averaging.

Exposures resulting from MA22 are more volatile again as more weight is placed on the more

variable MA1 forecast. Variability in exposures from MID and RV P are broadly similar with

FKO producing slightly less variability. While the mean absolute changes for RV P are slightly

larger than MID, the volatility of the exposure changes from RV P are nearly 10% lower in

the equity and bond cases. Finally, by first smoothing the covariance estimates, RV PFKO and

RV PMID produce the most stable portfolio exposures.

Overall these results indicate that forecasting methods that give the greatest weight to the most

recent observations, and avoid a great deal of smoothing produce the best performing forecasts.

While the näıve forecast MA1 is of similar economic benefit to those that do involve a degree

of smoothing, MID and RV P , it leads to portfolio exposures that are much too volatile.

Thus, while some degree of smoothing is beneficial, forecasts involving too much smoothing

are inferior in terms of economic benefit. The novel approach of computing optimal portfolio

weights and directly forecasting the exposures has some merit, it is of equal economic benefit

12



to the traditional forecasting approach of MID but leads to a reduction in the volatility of

exposures. Potentially, the transformation to optimal portfolio weights may reduce estimation

error as fewer elements must be forecast moving from the full covariance matrix to the portfolio

weights.

6 Conclusion

The issue of volatility timing has attracted a great deal of research attention. Traditionally,

an econometric model of volatility is used to generate covariance forecasts upon which optimal

portfolios are based. There is little understanding of how best to estimate such models for the

purposes of volatility timing. Therefore, this paper undertakes a comparison of methods for

forecasting optimal portfolio weights in the context of volatility timing. A novel approach to

volatility timing is also proposed. It involves constructing a time series of observed optimal

portfolio weights, upon which forecasts are based. Results indicate that while a näıve fore-

cast produces forecast of similar economic benefit to competing time-series forecasts, it leads

to very volatile portfolio exposures. The proposed approach of forecasting portfolio weights

directly appears to have merit in that it leads to portfolios of equivalent economic benefit to

the traditional approach of forecasting the covariance matrix and leads to more stable portfolio

exposures. This result opens a potentially new avenue for research that offers an alternative to

the use of traditional economic models of volatility.
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