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In this paper, a polynomial time algorithm is presented for solving the
Eden problem for graph cellular automata. The algorithm is based on
our neighborhood elimination operation which removes local neighbor-
hood configurations which cannot be used in a pre-image of the given
configuration. This paper presents a detailed derivation of our algo-
rithm from first principles, and a detailed complexity and accuracy
analysis is also given. In the case of time complexity, it is shown that
the average case time complexity of the algorithm is Θ(n2), and the
best and worst cases are Ω(n) and O(n3) respectively. This represents
a vast improvement in the upper bound over current methods, without
compromising average case performance.

1. Introduction

Cellular automata and more generally discrete dynamical systems are
powerful tools for modeling of complex phenomena [14]. This includes
applications from physics, biology, and computer science [1]. Some
have even speculated that the study of cellular automata may lead to
a Grand Unified Theory of everything [13].

The study of the global dynamics of cellular automata (i.e., the
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study of automata configuration transition graphs) can provide unique
insight into complex systems [20]. Efficient construction of a configu-
ration transition graph typically requires a method to determine if the
given configuration is located on a leaf node of this graph [17].

This problem is known as the Eden problem, and has been shown
to be computationally intractable for d-dimensional systems when d >
1. This is reflected in the worst case computational complexity of
algorithms that solve the Eden problem for higher dimensions (e.g.,
Wuensche’s general reverse algorithm [19]).

We present a new algorithm for approximately solving the Eden
problem for graph cellular automata (i.e., cellular automata on graphs [8,
7]); the most general form of deterministic cellular automata. Although
there exist rare instances in which the algorithm will fail to identify
the non-existence of a pre-image, this is made up for by it’s asymp-
totic complexity class which is O(n3) for the worst case and Θ(n2) for
the average case. This provides a method which is more computation-
ally feasible in the worst case than approaches based on Wuensche and
Lesser’s reverse algorithm [20] and Wuensche’s general reverse algo-
rithm [19] for the study of the global dynamics of higher dimensional
discrete dynamical systems with potentially a large number of cells.

2. Background

2.1 Discrete dynamical systems

A regular cellular automaton can be defined as a lattice of finite state

automata, typically referred to as cells or sites. A state transition
function defines how a cell updates its state based on it’s current state
and the state of it’s neighbors. Cells update synchronously in discrete
time intervals. The sequence of all cell states at a given time is referred
to as the automaton’s configuration.

Random boolean networks are binary cellular automata with one
critical difference; there is no requirement that cells be located on a reg-
ular lattice [19]. Instead, neighborhoods are constructed via a random
wiring. This random wiring makes random boolean networks useful for
theoretical biological models of genetic regulatory networks [5, 18].

Graph cellular automata (also referred to as Generalized automata

networks [11]) are a generalization of both cellular automata and ran-
dom boolean networks. For a graph cellular automaton, cell connec-
tivity is defined by a connected graph. The class of graph cellular
automata contains regular cellular automata and random boolean net-
works as sub-classes. Cellular automata and random boolean networks
can be considered as discrete dynamical systems. Despite their sim-
ple construction, discrete dynamical systems have been shown to be
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An Efficient Algorithm for the Detection of Eden 3

capable of very complex behavior [16, 15, 6]. Furthermore, compu-
tationally intractable, and formally undecidable problems relating to
discrete dynamical systems have been shown to exist [3, 9].

2.2 The Eden problem

A particular problem of interest in the study of the global dynam-
ics of discrete dynamical systems is the so-called Eden problem (also
called the Predecessor existence problem [10, 2]). The Eden problem,
attempts to determine, for a given automaton, if there exists a configu-
ration (i.e., pre-image) that will evolve to the given configuration in the
next time step. If the Eden problem is resolved to be false then the
configuration is called a Garden-of-Eden configuration (i.e., it has no
pre-image). Wuensche and Lesser studied the Eden problem in depth
and developed a reverse algorithm for one dimensional regular cellu-
lar automata [20]. Wuensche further generalized this approach to the
case of random boolean networks, which may also be applied to graph
cellular automata [19, 17]. While Wuensche and Lesser’s method per-
forms very well for small cellular automata, this methods upper bound
is O(2n) (as we will show in Section 5.1) which prevents exploration of
large discrete dynamical systems.

For one-dimensional finite cellular automata the Eden problem is
in P , however for multi-dimensional finite cellular automata the Eden
problem has been shown to be NP -Complete [10]. Even certain vari-
ants of the Eden problem in one-dimension (such as the Constrained

Eden problem [9]) have been shown to be NP -Complete. Assuming
that P 6= NP , then there does not exist a polynomial time algorithm
to solve the Eden problem for graph cellular automata.

If we assume P 6= NP , then a complete solution to the Eden problem
for graph cellular automata is computationally intractable. However,
this does not exclude the possibility of a good solution (i.e., one that
can identify most Garden-of-Eden configurations) being achievable in
polynomial time. In this paper, we present an algorithm which provides
a good solution to the Eden problem for graph cellular automata in
cubic time. By solving the problem for graph cellular automata we, by
extension, solve the problem for regular cellular automata and random
boolean networks. Furthermore, we can show that our algorithm solves
the Eden problem exactly when the topology of the graph cellular
automaton is equivalent to a one dimensional finite cellular automaton
with periodic boundary conditions.

2.3 Formal definition of graph cellular automata

In this section, we provide a formal definition of graph cellular au-
tomata. Our formalism is based heavily on the work of Fates [4], Marr
et al. [8, 7], and Tomassini [11].

Complex Systems, volume (year) 1–1+



4 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

We consider a graph cellular automaton to be defined as a 4-tuple
consisting of a connected graph, a set of states, a set of neighborhood
mappings and a set of state transition functions. This is given formally
in Definition 1.

Definition 1. Let A = (G,Σ, U,Γ) define a graph cellular automaton,
where G = (V,E) is a graph with vertices V ⊂ Z and edges E ⊆ V ×V ,
Σ is a finite set of symbols referred to as the alphabet, U = {hi : i ∈ V }
is the set of neighborhoods hi = {i} ∪ {j : (i, j) ∈ E ∨ (j, i) ∈ E}, and
Γ = {gi : i ∈ V } is the set of all state transition functions gi : Σ

|hi| → Σ.

In Definition 1, the vertices of the graph G represent the cells of
the automaton A. Note that the neighborhood, hi, of each cell, i, is
effectively the set of cells that are connected to cell i via the set of
edges E including i itself1.

At any time t each cell is associated with a state σ. For this we
define the mapping in Definition 2. From this we can construct the
global configuration of the automaton in Definition 3.

Definition 2. Let C : V → Σ be a mapping from a cell i ∈ V to a
state σ ∈ Σ such that Ct(i) represents the state of cell i at time t. Let
Ct(hi) ∈ Σ|hi| be the neighborhood configuration of i.

Definition 3. Let φt = {Ct(i) : i ∈ V } be the configuration of the
automaton A at time t. φt ∈ Φ where Φ is the set of all possible
configurations of A.

Finally we define the evolution of a graph cellular automaton as the
sequence of configurations generated by repeated synchronous applica-
tion of the local state transition functions. This is given as a recurrence
relation expressed in terms of the global configuration transition func-
tion. This is given in Definition 4.

Definition 4. Let the recurrence relation φt+1 = f(φt), t ≥ 0 be the
evolution of A, where f : Φ → Φ is the global configuration transi-
tion function f(φt) = {(φt, φt+1) : φt = {Ct(i) : i ∈ V } ∧ φt+1 =
{gi(C

t(hi)) : i ∈ V }}.

We can now define formally an instance of the Eden problem.

Definition 5. Problem: The Eden problem (eden).
Instance: A graph cellular automaton A and a configuration φ ∈ Σ|V |.
Question: Does there exist an initial configuration φ0 such that φ =
f(φ0) under the evolution of A?

1Note that the construction of hi in Definition 1 assumes an undirected graph,
the definition for a directed graph would be hi = {i} ∪ {j : (j, i) ∈ E}.

Complex Systems, volume (year) 1–1+



An Efficient Algorithm for the Detection of Eden 5

In Section 3, we will rely on the formalism given in this section
to derive a polynomial time algorithm which provides the solution to
eden(A,φ) in all but rare circumstances.

3. The algorithm

In this section, we present a detailed derivation of our Eden detection

algorithm, denoted by eden-det(A, φ). There is a number of steps
involved in this derivation. Firstly, some new mathematical construc-
tions are defined. Then the fundamental operation of eden-det(A, φ),
the neighborhood elimination operation, denoted by nh-elim(A, H),
is derived. After presenting nh-elim(A, H) a simple Eden detection

algorithm is provided, denoted by s-eden-det(A, φ). Using s-eden-
det(A, φ) as a starting point we then derive a two phase construction
of eden-det(A, φ).

3.1 Preliminaries

The graph cellular automata formalism given in Section 2.3 is not quite
sufficient for us to express our Eden detection algorithm clearly. In
this section, we present the definitions and notations that form the
mathematical foundations of the algorithm. All definitions, notations,
and theorems in this section assume the formalism in Section 2.3 to be
given, and hence symbols used from Section 2.3 will not be re-defined.

We will assume, without loss of generality, that ∀i ∈ V, |hi| = k.
This is done purely for notational convenience. All of the concepts
applied in the construction of our algorithm can be extended trivially
to non-uniform |hi|. Note that we do not assume a uniform update
rule across all cells ∀i, j ∈ V, gi = gj .

To describe our algorithm, we need a method of consistently refer-
ring to a specific neighborhood configuration (see Section 3.2). The
notation for this reference is given in the following definition.

Definition 6. Assume that some ordering scheme has been applied to
the set of all neighborhood configurations Σk. Subject to this ordering,
the nth neighborhood configuration is denoted by ψn ∈ Σk.

Note that the actual ordering scheme is arbitrary, all we require is
an index into the possible neighborhood configuration space. For our
implementation we simply map each configuration to its raw binary
representation.

It is necessary for us to specify a set that contains all the cells that
join adjacent neighborhoods. We refer to this set using the notation
iΞj , and it is defined in Definition 7.

Definition 7. Let iΞj = {i} ∪ {j} ∪ {x : ((x, i) ∈ E ∨ (i, x) ∈ E) ∧
((x, j) ∈ E ∨ (j, x) ∈ E)} denote the boundary set of hi and hj . The

Complex Systems, volume (year) 1–1+



6 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

Figure 1. Example of i, j-consistency where i = 3, j = 6, and iΞj = {3, 4, 5, 6}.

LEFT: ψn is not i, j-consistent with respect to ψm since they cause an incon-

sistent state in the boundary set (i.e., cell 5). RIGHT: A modification to ψm
allows consistency across the boundary set, hence ψn is now i, j-consistent

to ψm.

nth boundary cell, x ∈ V , is denoted by x = iΞjn.

The basis of our algorithm is the detection and removal of neighbor-
hood configurations which cannot exist in any pre-image of φt due to
an inconsistency across boundary sets.

Definition 8. If there exists an initial configuration φ0 such that C0(hi) =
ψn and C0(hj) = ψm, then ψn is said to be i, j-consistent with respect
to ψm.

The concept of i, j-consistency is readily visualized as shown in Fig-
ure 1. However, it would be preferable if a direct method of evaluating
the i, j-consistency of two neighborhood configurations could be found.
The function we require is given in Definition 9.

Definition 9. Let θ
iΞj

i : Σk → Σ|iΞj | be a function which maps neigh-
borhood configurations of hi to the configuration of the boundary set
iΞj . The function is defined as θ

iΞj

i = {(ψn, ψ
′
n) : ψ′

n,s = ψn,q ∧ y =

hi,q ∧ y =i Ξjs ∧ s ∈ [0, iΞj)}.

The definition of θ given in Definition 9 may seem strange, but it
leads us into Theorem 1 which is a vital component of our algorithm.

Complex Systems, volume (year) 1–1+
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Theorem 1. If θ
iΞj

i (ψn) = θ
iΞj

j (ψm) then ψn is i, j-consistent with re-
spect to ψm.

A formal proof is given in Appendix A.

3.2 Neighborhood elimination

We can now formulate the core operation of our Eden detection al-
gorithm. This core operation we call neighborhood elimination and
denote it as nh-elim(A,H). As the name may suggest, its function is
to eliminate neighborhood configurations which cannot be a component
of any pre-image of the automaton configuration in question.

To explain how we perform this operation, we first consider the

matrix H ∈ {0, 1}|Σ|k×|V | where

Hi,j =

{

0, impossible for ψi = C0(hj)

1, otherwise
. (1)

It is important to note in Equation (1), that Hi,j = 1 should not be
interpreted as ψi = C0(hj) in at least one pre-image. Instead, Hi,j = 1
means we cannot yet determine if ψi = C0(hj) or not. This is not the
case for Hi,j = 0, which indicates that we have proven that there is no
pre-image such that ψi = C0(hj).

The algorithm can be described as follows: Consider the case in
which we have already determined that Hi,j = 0 for specific i, j by
techniques described in Section 3.3. If we start with an arbitrary cell
neighborhood hi then the column vector H∗,i provides us with the
neighborhood configurations still under consideration. If Hn,i = 1, but
the neighborhood configuration ψn is not i, j-consistent with respect to
any candidate configurations in one or more connected neighborhoods
hj , then ψn can be excluded from the realm of possible configurations
for hi as at least one boundary cell state cannot be satisfied consistently.
By updating H∗,i this will affect the validity of other configurations, so
we repeat the process for every neighborhood.

Theorem 1 provides us with a comparison operation for testing the
i, j-consistency of two neighborhood configurations. With the func-
tion θ

iΞj

i as defined in Section 3.1, we arrive at nh-elim(A, H) (i.e.,
Algorithm 1).

One step of nh-elim(A, H) is shown in Figure 2 displaying contents
of the data structures Θi,Θj , and ζi along with the effect on the state
of H. It should be noted that although the example in Figure 2 is for
a small 1-d cellular automaton with k = 3, nh-elim(A, H) is general
enough to operate on graph cellular automata.

One particularly useful property of nh-elim(A, H) is that the num-
ber of zero elements in H can never decrease. Therefore, repeating
nh-elim(A, H) on H in an iterative fashion will eventually result in

Complex Systems, volume (year) 1–1+



8 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

Algorithm 1 nh-elim(A,H): Neighborhood elimination.

for all i ∈ V do

for all j ∈ hi − {i} do

Θi ←
{

x : x ∈ θ
i
Ξ
j

i (ψp) ∧Hp,i = 1
}

Θj ←
{

x : x ∈ θ
i
Ξ
j

i (ψq) ∧Hq,j = 1
}

ζi ← {x : x ∈ Θi ∧ x 6∈ Θj}

∀p,Hp,i ← 0 if θ
i
Ξ
j

i (ψp) ∈ ζi
end for

end for

Figure 2. One Step of nh-elim(A, H). The upper left matrix is H at the start

of the iteration, after the iteration is completed H4,k is set to 0, resulting in

the lower left matrix H ′.

an array H in which only configurations i, j-consistent with respect to
all neighbors are candidates for pre-image construction. This property
also enables us to put an upper bound on the number of iterations
required, which aids us in our complexity analysis (see Section 4).

3.3 Garden of Eden detection

In this section, we will describe our Eden detection algorithm (eden-
det(A,φ)) in full. Throughout this description we rely heavily on the
formalism in Section 2.3 and Section 3.1.

So far we have assumed that H is not all ones or all zeros, but we

Complex Systems, volume (year) 1–1+



An Efficient Algorithm for the Detection of Eden 9

have not mentioned how H is initialized. If we are given an instance
of eden(A,φ), we can prove the impossibility of some neighborhood
configurations explicitly by using φ and the state transition functions
gi ∈ Γ, that is,

Hi,j =

{

0, gj(ψi) 6= φj

1, gj(ψi) = φj
. (2)

In Section 3.2, it was stated for nh-elim(A, H) (Algorithm 1) that
the number of zeros in H can never decrease. Therefore, repeated
invoking of nh-elim(A, H) is guaranteed to converge to a steady state.

Once H is initialized, we can repeatedly operate the neighborhood
elimination algorithm on H. Clearly, if for any column ∀i,Hi,j = 0
during a iteration, then there is no possible ψi that can be selected for
hj in any pre-image. Furthermore, the steady state that H will con-
verge to in this case will be ∀i, j,Hi,j = 0. Therefore we can conclude
that φ is a Garden of Eden configuration.

We might also assume that all Garden of Eden configurations will
cause the condition, ∀i,Hi,j = 0. Therefore, we could simply iterate
until a steady state is reached and then look at the elements in H for
any non-zero elements. This leads us to derive our initial algorithm
for Eden detection, which we call simple eden detection and denote as
s-eden-det(A, φ) (Algorithm 2).

Algorithm 2 s-eden-det(A,φ): Simple Eden detection.

∀i, j, Hi,j ← 0 if i, j, (gj(ψi) 6= φj)
∀i, j, Hi,j ← 1 if i, j, (gj(ψi) = φj)
while H 6= H ′ do

H ′ ← H
H ← nh-elim(A, H ′)

end while

if ∀i, j,Hi,j = 0 then

GoE ← true
else

GoE ← false
end if

return GoE

Unfortunately, s-eden-det(A, φ) is not quite complete2. It can be
shown that ∀i,Hi,j = 0 is a sufficient but not necessary condition of
Eden. It is possible for cells within a cycle of G to have i, j-consistent
neighbors, but there does not exist a combination of possible neighbor-
hood configurations that can form a consistent chain. Figure 3 gives
an example of such a case, note that for a 1-d cellular automaton the
topology graph G contains one cycle which includes all cells. Clearly,
more processing is required once s-eden-det(A, φ) has converged and

Complex Systems, volume (year) 1–1+



10 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

Figure 3. Counter example for s-eden-det(A, φ) (Algorithm 2). LEFT: The

resulting non-zero steady state of H where A30 is the elementary cellular

automaton rule 30 (according to Wolfram’s numbering scheme [16]) with

periodic boundary conditions and |V | = 4. RIGHT: The main configuration

transition graph for A30, clearly φ = {0, 0, 1, 1} has no pre-image.

there does not exist a j ∈ V such that ∀i,Hi,j = 0.
If for any possible neighborhood configuration (i.e., Hi,j = 1) we

can construct at least one pre-image, then we can conclude that φ is
not a Garden of Eden configuration. However, if it is found that a
valid pre-image cannot be constructed with C0(hj) = ψi then we can
set Hi,j = 0 and repeat s-eden-det(A, φ) until a new steady state
is reached. This leads us to a second and more complete approach
eden-det(A, H).

In practice, we locate each instance of Hi,j = 1, and temporarily set
∀k 6= i,Hk,j = 0. This has the effect of assuming that C0(hj) = ψi. We
then apply one iteration of nh-elim(A, H) ensuring that cell j ∈ V is
visited last, then we examine the state of Hi,j . If Hi,j = 1, then we
have no reason to reject our assumption. Otherwise, our assumption is
disproved via contradiction, so we set Hi,j = 0 and repeat the loop in
s-eden-det(A, φ). If none of the Hi,j = 1 can be disproved, then it is
reasonable to conclude that φ has at least one pre-image (We show in
Section 6 that there are rare cases when this is an invalid conclusion).

We now have a two phase procedure. Phase 1, denoted by ph1(A, H)

2Hence the name simple Eden detection.
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(Algorithm 3), is effectively the loop from s-eden-det(A, φ). Phase
2, denoted by ph2(A, H) (Algorithm 4), is the assumption testing pro-
cess described in the preceding paragraph. These two phases are then
combined to form our full Eden detection algorithm eden-det(A,φ)
(Algorithm 5). A implementation of eden-det(A, φ) is provided as
part of analysis software developed by Warne [12]3.

Algorithm 3 ph1(A,H): Eden detection phase 1.

while H 6= H ′ do

H ′ ← H
H ← nh-elim(A, H ′)

end while

Algorithm 4 ph2(A,H): Eden detection phase 2.

for all i ∈ V do

for all j ∈ Σ|k| do

if Hi,j = 1 then

H tmp ← H
∀s, (s 6= j), H tmp

i,s ← 0

H tmp ← nh-elim(A, H tmp)
if H tmp

i,j = 0 then

Hi,j ← 0
return

end if

end if

end for

end for

Leaving the details to Section 4, we simply claim that eden-det(A, φ)
is guaranteed to complete in polynomial time. More specifically, it can
be shown to have a cubic worst case time efficiency. Furthermore, when
eden-det(A, φ) returns GoE = false, then H encodes the complete
set of pre-images to φt (except for rare cases when GoE = false is a
false negative as shown in Section 6).

4. Time complexity analysis

In this section, we present the time complexity analysis for eden-
det(A,φ) (Algorithm 5). We show that the number of operations for
the best case is a linear function of the number of cells, the worst case
is shown to be cubic, and the average case is shown to be quadratic.

3This software, called GCALab, is an command line analysis tool designed for
parallel computation of graph cellular automata properties.

Complex Systems, volume (year) 1–1+



12 D. J. Warne, R. F. Hayward, N. A. Kelson, D. G. Mallet

Algorithm 5 eden-det(A,φ): Eden detection.

∀i, j, Hi,j ← 0 if i, j, (gj(ψi) 6= φj)
∀i, j, Hi,j ← 1 if i, j, (gj(ψi) = φj)
repeat

call ph1(A,H)
if ∀i, j,Hi,j = 0 then

GoE ← true
return GoE

else

call ph2(A,H)
GoE ← false

end if

until H ′ = H
return GoE

Experimental results are also presented to reinforce theory with prac-
tice.

4.1 Time complexity of NH-ELIM(A, H)

The fundamental operation of eden-det(A,φ) is cleary nh-elim(A,H).
From the pseudo code for nh-elim(A, H) (Algorithm 1), it is also clear
that the number of operations executed by nh-elim(A,H) is a func-
tion of the number of cells n = |V |. We will show that this operation
is in Θ(n).

The four lines within the innermost loop of nh-elim(A, H) are only
dependent on the number of neighborhood configurations. Without
loss of generality, we assume ∀i, |hi| = k, thus the construction of Θi

and Θj require searching only a single column of H. That is, CΘ =

c0|Σ
k| where c0 ≈ k is the number of operations to evaluate θ

|iΞj |
i .

The construction of ζi is dependent only on the size of the Θ’s, hence
Cζ ≤ CΘ. Furthermore, the number of elements in H is equal the
number of elements in ζi ≤ |Σk|. Thus the total operation count within
the inner loop is given by,

Cinner = 2CΘ + Cζ + |ζ| ≈ 3|Σk|. (3)

Given Equation (3) we can derive the total operation count for nh-
elim(A, H).

CNH(n) =

n∑

i=1

k∑

j=1

Cinner (4)

= kCinnern

≈ 3k|Σk|n.

Complex Systems, volume (year) 1–1+
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Therefore CNH(n) ∈ Θ(n).

4.2 Best case

We now consider the best case time complexity of eden-det(A,φ).
The best case occurs when there exist few possible i, j-consistent pairs
for some sub-sequence in φ. This is very common in cellular automata
in which Langton’s λ [6] is small. An example of this is when A is the
elementary cellular automaton rule 2, and φ has a contiguous sequence
of 1’s.

In this special case, only ph1(A, H) (Algorithm 3) will be required.
Furthermore a column of zeros will developed very quickly as each
iteration will eliminate at least one possible configuration from the
unnatural area (due to few or no i, j-consistent neighborhood pairs),
that is I < |Σk| where I is the number of iterations of the while loop.
Using the results from Equation (4) we have,

Cbest(n) =

|Σk|
∑

i=1

CNH(n) (5)

= |Σk|CNH(n)

≈ 3k|Σk|2n

Therefore Cbest ∈ Ω(n).

4.3 Worst case

For the worst case we must consider the full expression for the number
of operations executed by eden-det(A,φ). This is given by,

Cops(n) =
J∑

t=1










I∑

i=1

CNH(n)

︸ ︷︷ ︸

ph1(A,H)

+

|V |
∑

j=1

|Σk|
∑

i=1

CNH(n)

︸ ︷︷ ︸

ph2(A,H)










(6)

where J and I simply denote the number of iterations taken by the
conditional loops. We require an upper bound on these loops.

In Section 3.3 we noted that the number of 0’s in H can never de-
crease. Now we also note that if the number of 0’s in H does not
increase after an execution of ph2(A, H) (Algorithm 4) then eden-
det(A,φ) terminates with GoE = false. Hence for the worst case we
must assume that the number of 0’s decreases by exactly one. Further-
more, every iteration of ph1(A, H) will either increase the number of
0’s, terminate eden-det(A,φ) with GoE = true, or continue to an

iteration of ph2(A, H). Since H ∈ {0, 1}|Σ
k|×n, it must hold that

J (I + 1) ≤ |Σk|n. (7)
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We want to maximize the value of J as it has the greater effect
on the total number calls to nh-elim(A,H). If we assume the upper

bound is reachable, then as I → 1 we have J → |Σk|
2 n. We can apply

this result to Equation (6) to obtain an upper bound on Cops(n),

Cops(n) ≤

|Σk|
2

n
∑

t=1



CNH(n) +

|V |
∑

j=1

|Σk|
∑

i=1

CNH(n)





=
|Σk|

2
n
(
CNH(n) + |V ||Σk|CNH(n)

)

=
|Σk|

2

(
|Σk|n2 + n

)
CNH(n).

Furthermore, we have already shown that CNH ∈ Θ(n). Therefore
Cworst ∈ O(n3).

4.4 Average case

Best and worst case bounds are important but of limited practical
use without an indication of the likelihood of eden(A,φ) instances
which cause these bounds to occur. In this section we will show, using
empirical data, that the average case is quadratic in time.

Consider Equation (6), the values affecting the computational com-
plexity are the number of iterations taken by the guard loops and
whether ph2(A, H) needs to be executed. As in Section 4.3, we will
denote the number of outer loops as J and the number of ph1(A, H)
loops as I. Furthermore, we denote the number of iterations in which
ph2(A, H) is executed as K.

We took random eden(A,φ) instances for |V | = n = 2i, 2 ≤ i ≤ 13,
where G is a single circuit. For each value of n over 1000 samples were
taken. The values of I,J , and K were counted for each sample. The
expected values computed from these samples are shown in Figure 4

From Figure 4 we can derive the overall expected values E(I) = 2.88,
E(J) = 1.06, and E(K) = 0.25. So it is reasonable to approximate the
average case as follows,

Caverage(n) ≈

(
3∑

i=1

CNH(n)

)

× Pr(¬K)

+





3∑

i=1

CNH(n) +

|V |
∑

j=1

|Σk|
∑

i=1

CNH(n)



× Pr(K)

= (3CNH(n))×
3

4
+
(
3CNH(n) + |Σk|nCNH(n)

)
×

1

4

=
|Σk|

4
nCNH(n) + 3CNH(n).
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Figure 4. Expected Iteration Values. Based on 1000 random samples for each

number of cells.

Since CNH(n) ∈ Θ(n), the approximate overall expected time complex-
ity is Caverage(n) ∈ Θ(n2). Section 4.5 provides further experimentation
to validate this approximation.

4.5 Experimental results

For validation of the average case we took a new random sample of
1000 instances of eden(A,φ) for |V | = n = 2i, 2 ≤ i ≤ 13. For each
sample the average runtime of 5 separate runs was taken. Results were
separated into two groups based on whether eden-det(A,φ) returned
with GoE = true or GoE = false. The resulting average run times
are shown in Figure 5.

Note that on average the runtime when GoE = false is approxi-
mately 16 times the runtime when GoE = true. This is because only a
Garden-of-Eden configuration φe can cause eden-det(A,φe) to return
before Phase 2 is executed, which will complete in O(n) operations.

To confirm that the curves in Figure 5 are in fact quadratic, we

can take the ratio R = C(2i+1)
C(2i) where C(n) is the average runtime as

a function of the number of cells n. We would expect R ≈ 4 for a
quadratic (i.e., doubling the input takes 4 times longer). Figure 6
shows the R for there samples taken for Figure 5.

From Figure 6 it is clear that R ≈ 4 (Considering that R ≈ 2 for
linear and R ≈ 8 for cubic). This provides support for our approxi-
mate average time complexity for eden-det(A,φ) that we provided in
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Figure 5. Run times for eden-det (Algorithm 5).

Figure 6. Ratio of run times C(2n)/C(n)).
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Section 4.4.

5. Comparison with Wuensche and Lesser’s reverse algorithm

In this section, we will compare the performance of eden-det against
the reverse algorithm developed by Wuensche and Lesser [20]. For the
sake of simplicity, we will restrict the comparison to the simplest form
of cellular automata; that of finite elementary cellular automata with
periodic boundary condition. As a result we must emphasize that the
following discussion and analysis relates specifically to Wuensche and
Lesser’s one dimensional reverse algorithm [20] and not Wuensche’s
more general reverse algorithm which applies to random boolean net-
works and graph cellular automata [19, 17]. The results of this analysis,
however, can certainly be generalized to the graph cellular automata
case.

For a finite elementary cellular automata with periodic boundary
conditions A, a configuration φt and a partial pre-image φt−1 in which
the first i cell states are known, Wuensche and Lesser’s method is
described as follows [20]:

1. If g(φt−1

i−1, φ
t−1

i , 0) = g(φti−1 − 1, φti, 1) 6= φti, then abandon the partial
pre-image. Resume derivation of next partial pre-image (go to step 5).

2. If g(φt−1

i−1, φ
t−1

i , 0) 6= g(φti−1−1, φti, 1), then φ
t−1

i+1 can be uniquely deter-
mined. Proceed with next cell (go to step 1).

3. If g(φt−1

i−1, φ
t−1

i , 0) = g(φti−1 − 1, φti, 1) = φti, then φ
t−1

i+1 could be 0 or 1.

Push the partial pre-image (φt−1

0 , φt−1

1 , ..., φt−1

i , 1) onto the pre-image
queue to be processed later and continue with φt−1

i+1 = 0.

4. When i = n − 1 check that g(φt−1

n−2, φ
t−1

n−1, φ
t−1

0 ) 6= g(φt−1

n−1, φ
t−1

0 , φt−1

1 )
then abandon this pre-image, otherwise add to the valid pre-image list.

5. Take a new partial pre-image from the queue and continue processing
(step 1).

6. When the partial pre-image queue is empty, all possible pre-images
starting with the start values of φt−1

0 , φt−1

1 are derived. Repeat for all
possible φt−1

0 , φt−1

1 .

Note that the primary purpose of Wuensche and Lesser’s method is
the construction of all valid pre-images, but it can be utilised directly
to compute the solution to the Eden problem. Clearly, we can assert
GoE = false as soon as a valid pre-image is found. We need not
compute all of them. GoE = true will be asserted when not pre-images
are found.
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5.1 Worst case complexity analysis

With a brief description of Wuensche and Lesser’s one dimensional
reverse algorithm, we can now show that the worst case computation
time is not bounded by a polynomial in the number of cells n. Consider
Algorithm 6 which depicts Wuensche and Lesser’s method modified for
solving the Eden problem without computing all pre-images.

Algorithm 6 reverse(A,φ): Wuensche and Lesser’s Reverse Algo-
rithm.
GoE ← true
for all (p1, p2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} do
φt−1 ← (p1, p2)
Q← {φt−1}
while Q 6= {} do
φt−1 ← pop(Q)
x = |φt−1| − 1
for all i ∈ [x, n] do
T0 ← g(φt−1

i−1, φ
t−1

i , 0)

T1 ← g(φt−1

i−1, φ
t−1

i , 1)
if T0 = T1 6= φti then

break for loop
else

if T0 6= T1 then

if T0 = φt−1

i then

φt−1 ← φt−1 ∪ {0}
else

φt−1 ← φt−1 ∪ {1}
end if

else

push(Q, φt−1 ∪ {1})
φt−1 ← φt−1 ∪ {0}

end if

end if

end for

Tn ← g(φt−1

n−1, φ
t−1
n , φt−1

1 )
T1 ← g(φt−1

n , φt−1

1 , φt−1

2 )
if Tn = T1 then

GoE ← false
return GoE

end if

end while

end for

return GoE

Let Cinner denote the number of operations performed on a single
iteration of the innermost loop in reverse(A,φ). Without loss of
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generality, we will assume Cinner is a constant4.
Now, let Cx(n) denote the number of operations required to com-

plete ignoring partial pre-images already in Q before reaching the x-th
cell in the current pre-image. We can express Cx(n) as the following
recurrence relation,

Cx(n) =
n∑

i=x

Cinner + e(x)
n∑

i=x+1

a(i)Ci(n)

where e(x) = 0 if T0 = T1 6= φt−ix otherwise e(x) = 1, and a(x) = 1 if
T0 = T1 = φt−1

x otherwise a(x) = 0.
The worst case for Cx(n) occurs when the number of partial pre-

images being pushed onto the queue is every iteration. In this case, we
have ∀i > x, (a(i) = 1∧ e(i) = 1) and the recurrence relation becomes,

Cx(n) =

n∑

i=x

Cinner +

n∑

i=x+1

Ci(n).

We can now solve this recurrence relation. First consider expanding
the Cx+1(n) term in the summation,

Cx(n) =

n∑

i=x

Cinner +

n∑

i=x+1

Ci(n)

=

n∑

i=x

Cinner + Cx+1(n) +

n∑

i=x+2

Ci(n)

=Cinner +

n∑

i=x+1

Cinner +

(
n∑

i=x+1

Cinner +

n∑

i=x+2

Ci(n)

)

+

n∑

i=x+2

Ci(n)

=
n∑

i=x

Cinner +

(
n∑

i=x+1

Cinner +
n∑

i=x+2

Ci(n)

)

+
n∑

i=x+2

Ci(n)

=Cinner + 2
n∑

i=x+1

Cinner + 2
n∑

i=x+2

Ci(n).

4Clearly this is not true in reality, but instead 3 ≤ Cinner ≤ 6
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Now, expending the Cx+2(n) term,

Cx(n) =Cinner + 2

n∑

i=x+1

Cinner + 2

n∑

i=x+2

Ci(n)

=Cinner + 2

n∑

i=x+1

Cinner + 2Cx+2(n) + 2

n∑

i=x+3

Ci(n)

=Cinner + 2Cinner + 2

n∑

i=x+2

Cinner

+ 2

(
n∑

i=x+2

Cinner +
m∑

x+3

Ci(n)

)

+ 2
n∑

i=x+3

Ci(n)

=Cinner + 2Cinner + 4
n∑

i=x+2

Cinner + 4
n∑

i=x+3

Ci(n).

Repeating this process yields,

Cx(n) = Cinner + 2Cinner + 4Cinner + ...+ 2n−xCinner

= Cinner

n∑

i=x

2i−x.

The worst case for reverse(A,φ) requires that C2(n) operations be
executed four times,

Cworst =4C2(n)

=4Cinner

n∑

i=2

2i−2

=Cinner

n∑

i=2

2i

hence reverse(A,φ) is in O(2n). It is worth noting that this worst
case can only be achieved if the φ is a Garden-of-Eden configuration,
and the cell which determines this is the n-th cell. For example, φ =
(0, 0, ..., 0, 1, 1) for the elementary cellular automaton rule 2. However,
according to Wuensche and Lesser [20] the average case is orders of
magnitude better. We confirm this experimentally in Section 5.2.

5.2 Experimental comparison

We benchmarked eden-det(A,φ) against reverse(A,φ). Each exper-
iment consisted of solving the Eden problem for 1000 random config-
urations. Experiments were performed for both eden-det(A,φ) and
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Figure 7. Comparison of eden-det(A,φ) against reverse(A,φ) using a ran-

dom sampling of configurations.

reverse(A,φ) using all the elementary cellular automata with cell
counts ranging from 4 to 32. As shown in Figure 7, the benchmark av-
erage case is effectively the same order of magnitude for both methods.

The worst case for reverse(A,φ) is only approached for Garden-of-
Eden configurations which is nearly identical to a non Garden-of-Eden
configuration only differing in the last few cells. This is more likely to
be possible with sparse configurations (i.e., very few 1 states compared
with 0 states). If we restrict the random sample of test configurations
to that of sparse configurations, then the probability of selecting a
configuration which degrades the performance of reverse(A,φ).

Figure 8 indicates that the benchmark results are very different when
we restrict the configuration sample this way. Such cases place a lim-
itation on the usability of reverse(A,φ) for large cell counts5. The
performance of eden-det(A,φ), however, is hardly affected by such
sparse configurations.

The main difference in our approach which provides such a large
improvement in the worst case performance is the neighborhood elim-
ination step. This operation performance is not affected by shifts (or
rotations in higher dimension) in the same configuration, because it
treats each cell neighborhood independently of each other. As a re-
sult, eden-det(A,φ) provides a solution to the Eden problem which
is scalable to very large cellular automata. eden-det(A,φ) could be
considered as a more stable alternative to Wuesnche and Lesser’s re-
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Figure 8. Comparison of eden-det(A,φ) against reverse(A,φ) using a ran-

dom sampling of sparse configurations.

verse(A,φ) as the worst case is vastly improved without degrading
the average case.

6. Algorithm correctness

In this section, we discuss the correctness of the eden-det(A,φ) in
solving the Eden problem for graph cellular automata. We are able
to show that eden-det(A,φ) is completely correct for graphs with
a single cycle. For graphs with more than one cycle it is possible for
incorrect results to be returned6(i.e., false negatives), however we show
that these cases are rare.

It is first worth discussing the correctness of the solution when eden-
det(A,φ) returns with GoE = true. This result will never occur if φ
has a pre-image (i.e., false positives cannot occur). This is because
elements in H are only ever set to 0 when there is no i, j-consistent
pair in a neighbor cell. If GoE = true is returned then at some point
there must have existed an i such that ∀j,Hj,i = 0 (i.e., a cell has no
possible i, j-consistent neighborhood configurations). For φ to have a
pre-image each cell must have at least one i, j-consistent neighborhood

5As the cell count increases any configuration with a relatively small sparse
sub-sequence could render the Eden problem computationally intractable for re-
verse(A,φ)

6If this were not so the title of this paper would be “P = NP”!
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configuration. Therefore only a true Garden-of-Eden configuration can
cause GoE = true to be returned.

When eden-det(A,φ) returns with GoE = false there are possible
false identifications. That is, it is possible for a Garden-of-Eden con-
figuration to cause GoE = false to be returned. However, this rare
case is only a possibility when the graph G has more than one cycle.

We will now show that eden-det(A,φ) returning GoE = false is
always correct if G contains only one cycle. Consider H which has
reached a non-zero steady state after executing ph1(A,H). If we as-
sume a neighborhood configuration Hj,i = 1 (see Section 3.3), and
carry out an iteration of nh-elim(A,H) we are essentially propagating
the assumption around the cycle of G. When this propagation returns
to i then there are only two possibilities: 1) The assumed Hj,i is not
eliminated meaning a chain of i, j-consistent pairs can be constructed
(i.e., a pre-image can exist under this assumption), and 2) The assumed
Hj,i is eliminated, hence ψj cannot contribute to any pre-image. Since
eden-det(A,φ) only returns GoE = false when every element in H
has passed assumption testing, we can conclude this can only occur if
φ does in fact have a possible pre-image. Therefore eden-det(A,φ) is
completely correct for G with a single cycle.

These correctness results for the single cycle (i.e., 1-d) case have also
been supported by experimental results. We executed eden-det(A, φ)
on the entire configuration space for all elementary cellular automata
where n = [4, 8, 16]. Each return value was validated via a brute force
search for a pre-image. This resulted in a 100% success rate.

Unfortunately, things are not so easy for G with multiple cycles.
The assumption testing method we apply in ph2(A, H) is really only
powerful enough to test consistency within a single cycle. It may be
possible for every Hj,i to pass the assumption test but any choice made
from one cycle breaks consistency in another. Hence a complete solu-
tion would require looking at pairs of cycles, triples of cycles etc.7. This
is likely the result of the NP -complete nature of the Eden problem in
more than one dimension.

Again, we look to empirical data to show that in the majority of
cases the single cycle accuracy is all we need. This time over 170, 000
random instances of eden(A, φ) (for a fixed choice of rules representing
Wolfram Classes i,ii, and iii [15]) were taken as inputs8. Every result
was compared to a brute force approach.

We found that for Class i cellular automata (i.e., point attractors)
no false negatives ever seem to occur. Rules that fall under Class ii

7Of course we do not have a rigorous proof of this. If we did, the title of this
paper would be “P 6= NP”!

8The topology of the graph G was equivalent to a dodecahedron. Since |V | = 20,
the complete configuration space is 220.
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(i.e., simple structures, maybe periodic) had a low number of false
negatives; around 0.01%. Class iii cellular automata (i.e., chaotic) are
a different story, with around 16% of cases in which eden-det(A,φ)
returned GoE = false were incorrect9. Over all samples, the false
negative rate was around 10%.

False negatives can be detected without resorting to a brute force
sweep. As previously stated in Section 3.3, the final state of H com-
pletely encodes all possible pre-images. Neighborhoods in H can be
stitched together using a method similar to Wuensche’s general re-
verse algorithm [19], if no pre-image can be constructed then we have
detected a false negative. In light of this, our algorithm could also
be considered as a search reduction step to be used prior to invoking
Wuensche’s general method. Combined, this would provide a com-
pletely correct and more efficient method for constructing configuration
transition graphs.

7. Conclusion

In this paper we have presented an efficient algorithm (i.e., average
case in Θ(n2)), eden-det(A,H), for solving the Eden problem for
graph cellular automata. By changing the topology of the graph G,
the Eden problem can be solved for all classes of deterministic dis-
crete dynamical systems (e.g., regular cellular automata, and random
boolean networks). This analysis provides a firm foundation for further
study of the global dynamics of discrete dynamical systems.

Appendix

A. Proof of Theorem 1

Proof. First consider the equality,

θ
iΞj

i (ψn) = θ
iΞj

j (ψm).

Given Definition 9, we can expand the above expression. This yields,

≡∀s, (ψ′
n,s = ψ′

m,s ∧ ∃p, (ψn,p = ψ′
n,s ∧ y = hi,p ∧ y = iΞjs)

∧ ∃q, (ψm,q = ψ′
m, s ∧ z = hj,q ∧ z =

iΞjs)).

9It is interesting to note that it is only Class iii cellular automata that seem to
cause ph2(A, H) to be executed in the 1-d case.
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This can be reduced using predicate calculus,

≡∀s, (ψ′
n,s = ψ′

m,s ∧ ∃p, (ψn,p = ψ′
n,s ∧ hi,p =

iΞjs)

∧ ∃q, (ψm,q = ψ′
m, s ∧ hj,q =

iΞjs))

≡∀s, (ψ′
n,s = ψ′

m,s∧

∃p, q(ψn,p = ψ′
n,s ∧ hi,p =

iΞjs ∧ ψm,q = ψ′
m, s ∧ hj,q =

iΞjs))

≡∀s, (∃p, q(ψ′
n,s = ψ′

m,s ∧ ψn,p = ψ′
n,s ∧ hi,p =

iΞjs

∧ ψm,q = ψ′
m, s ∧ hj,q =

iΞjs))

≡∀s, (∃p, q(ψn,p = ψm,q ∧ hi,p =
iΞjs ∧ hj,q =

iΞjs))

Now let C0(hi) = ψn and C0(hj) = ψm, hence C
0(hi,p) = ψn,p and

C0(hj,q) = ψm,q

|=∀s, (∃p, q(ψn,p = ψm,q ∧ hi,p =
iΞjs ∧ hj,q =

iΞjs) ∧ C
0(hi,p) = ψn,p

∧ C0(hj,q) = ψm,q)

≡∀s, (∃p, q(hi,p =
iΞjs ∧ hj,q =

iΞjs) ∧ C
0(hi,p) = C0(hj,q))

This satisfies our definition of i, j-consistency (i.e., Definition 8). There-
fore ψn and ψm are i, j-consistent.
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