A Cooperative Intelligent Transport Systems (C-ITS)-based lane-changing advisory for weaving sections

, , & (2016) A Cooperative Intelligent Transport Systems (C-ITS)-based lane-changing advisory for weaving sections. Journal of Advanced Transportation, 50(5), pp. 752-768.

[img]
Preview
Accepted Version (PDF 1MB)
WeavingAdvisory-eprint.pdf.

View at publisher

Description

Weaving sections, a common design of motorways, require extensive lane-change manoeuvres. Numerous studies have found that drivers tend to make their lane changes as soon as they enter the weaving section, as the traffic volume increases. Congestion builds up as a result of this high lane-changing concentration. Importantly, such congestion also limits the use of existing infrastructure, the weaving section downstream. This behaviour thus affects both safety and operational aspects. The potential tool for managing motorways effectively and efficiently is cooperative intelligent transport systems (C-ITS). This research investigates a lane-change distribution advisory application based on C-ITS for weaving vehicles in weaving sections. The objective of this research is to alleviate the lane-changing concentration problem by coordinating weaving vehicles to ensure that such lane-changing activities are evenly distributed over the existing weaving length. This is achieved by sending individual messages to drivers based on their location to advise them when to start their lane change. The research applied a microscopic simulation in AIMSUN to evaluate the proposed strategy’s effectiveness in a one-sided ramp weave. The proposed strategy was evaluated using different weaving advisory proportions, traffic demands and penetration rates. The evaluation revealed that the proposed lane-changing advisory has the potential to significantly improve delay.

Impact and interest:

29 citations in Scopus
20 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

84 since deposited on 06 Nov 2021
33 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 220902
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 17 pages
Keywords: cooperative intelligent transport systems (C-ITS), lane-change advisory, lane-change distribution, weaving section
DOI: 10.1002/atr.1373
ISSN: 2042-3195
Pure ID: 33031913
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Smart Transport Research Centre
Funding:
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 14:53
Last Modified: 02 Mar 2024 01:50