Resource use and greenhouse gas emissions from three wool production regions in Australia

Wiedemann, Stephen, Yan, Ming-Jia, , & Murphy, Caoilinn (2016) Resource use and greenhouse gas emissions from three wool production regions in Australia. Journal of Cleaner Production, 122, pp. 121-132.

Open access copy at publisher website

Description

ustralia is the largest supplier of fine apparel wool in the world, produced from diverse sheep production systems. To date, broad scale analyses of the environmental credentials of Australian wool have not used detailed farm-scale data, resulting in a knowledge gap regarding the performance of this product. This study is the first multiple impact life cycle assessment (LCA) investigation of three wool types, produced in three geographically defined regions of Australia: the high rainfall zone located in New South Wales (NSW HRZ) producing super-fine Merino wool, the Western Australian wheat-sheep zone (WA WSZ) producing fine Merino wool, and the southern pastoral zone (SA SPZ) of central South Australia, producing medium Merino wool. Inventory data were collected from both case study farms and regional datasets. Life cycle inventory and impact assessment methods were applied to determine resource use (energy and water use, and land occupation) and GHG emissions, including emissions and removal associated with land use (LU) and direct land use change (dLUC). Land occupation was divided into use of arable and non-arable land resources. A comparison of biophysical allocation and system expansion methods for handling co-production of greasy wool and live weight (for meat) was included. Based on the regional analysis results, GHG emissions (excluding LU and dLUC) were 20.1 ± 3.1 (WA WSZ, mean ± 2 S.D) to 21.3 ± 3.4 kg CO2-e/kg wool in the NSW HRZ, with no significant difference between regions or wool type. Accounting for LU and dLUC emissions and removals resulted in either very modest increases in emissions (0.3%) or reduced net emissions by 0–11% depending on pasture management and revegetation activities, though a higher degree of uncertainty was observed in these results. Fossil fuel energy demand ranged from 12.5 ± 4.1 in the SA SPZ to 22.5 ± 6.2 MJ/kg wool (WA WSZ) in response to differences in grazing intensity. Fresh water consumption ranged from 204.3 ± 59.1 in the NSW HRZ to 393.7 ± 123.8 L/kg wool in the WA WSZ, with differences primarily relating to climate. Stress-weighted water use ranged from 11.0 ± 3.0 (SA SPZ) to 74.6 ± 119.5 L H2O-e/kg wool (NSW HRZ) and followed an opposite trend to water consumption in response to the different levels of water stress across the regions. Non-arable grazing land was found to range from 55% to almost 100% of total land occupation. Different methods for handling co-production of greasy wool and live weight changed estimated total GHG emissions by a factor of three, highlighting the sensitivity to this methodological choice and the significance of meat production in the wool supply chain. The results presented improve the understanding of environmental impacts and resource use in these wool production regions as a basis for more detailed full supply chain analysis. Keywords Sheep; Carbon; Water; Land; Energy; Footprint

Impact and interest:

37 citations in Scopus
27 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

131 since deposited on 06 Nov 2021
60 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 221487
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Henry, Beverleyorcid.org/0000-0001-6578-465X
Measurements or Duration: 12 pages
DOI: 10.1016/j.jclepro.2016.02.025
ISSN: 0959-6526
Pure ID: 33051911
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 15:18
Last Modified: 01 Aug 2024 20:35