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Abstract 15 

 16 

The potential for elevated N2O losses is high in subtropical cereal cropping systems in northeast 17 

Australia, where the fertiliser N input is supplied in one single application at or prior to planting due to 18 

the unpredictability of in-season rainfall patterns. The use of urea coated with the nitrification inhibitor 19 

3,4-dimethylpyrazole phosphate (DMPP) has been reported by several studies to substantially decrease 20 

N2O emissions and increase crop yields in humid, high-intensity rainfall environments. However, it is 21 

still uncertain whether this product can be used with the same effectiveness in Vertisols and Oxisols, 22 

two of the main soil types in the cropping region of northeast Australia. In this study the grain yield 23 

response of sorghum (Sorghum bicolor L. Moench) to rates of fertiliser N applied as urea or urea coated 24 

with DMPP were compared in crops grown on a Vertisol and an Oxisol in southern Queensland. 25 

Seasonal N2O emissions were monitored on selected treatments for the duration of the cropping season 26 

and the early stages of a subsequent fallow period using a fully automated high frequency greenhouse 27 

gas measuring system. On each soil the tested treatments included an unfertilised control (0N kg N ha-28 

1) and two fertilised treatments chosen on the basis of delivering at least 90% of seasonal potential grain 29 

yield (160 kg N ha-1 and 120 kg N ha-1 on the Vertisol and Oxisol, respectively) or at a common 30 

(suboptimal) rate at each site (80 kg N ha-1). During this study DMPP had a similar impact at both sites, 31 

clearly inhibiting nitrification for up to 8 weeks after fertiliser application, while differences in seasonal 32 

moisture conditions and irrigation frequency had much smaller impacts on soil mineral N dynamics. 33 

Despite the relatively dry seasonal conditions experienced during most of the monitoring period, DMPP 34 

was effective in abating N2O emissions on both soils and on average reduced seasonal N2O emissions 35 

by 60% compared to conventional urea at fertiliser N rates equivalent to those producing 90% of site 36 

maximum grain yield.. The significant abatement of N2O emissions observed with DMPP however did 37 

not translate into significant yield gains or improvements in agronomic efficiencies of fertiliser N use.  38 

These results may be due to the relatively dry growing season conditions prior to the bulk of crop N 39 

acquisition, which limited the exposure of fertiliser N to large losses due to leaching and denitrification. 40 
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DMPP might be expected to increase the agronomic efficiency of urea in summer seasons with high 41 

rainfall rates, such as during la Niña phases of the El Niño Southern Oscillation (ENSO) cycle.  42 

 43 

 44 

 45 

Keywords: nitrogen response, grain yield, Vertosol, Oxisol, automated greenhouse gas measuring 46 

system 47 

48 
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Introduction 49 

Vertisols and Oxisols are amongst the main soil types in subtropical regions (Buol and Eswaran 50 

1999; Syers et al. 2001) and contribute significant amounts of global cereal production (Sant'Anna 51 

1993; Webb et al. 1997; Fageria and Baligar 2008). Although characterised by high clay contents 52 

(Eswaran and Cook 1988; von Uexküll and Mutert 1995), decreases in soil organic matter and 53 

mineralisable nitrogen (N) stocks have often been observed in both soil types due to intensive cropping 54 

(Dalal et al. 1997). This reduction in native soil fertility has led farmers to increase synthetic fertiliser 55 

rates to achieve maximum yield potential. For example, fertiliser N rates in Australian cereal cropping 56 

systems on Vertisols and Oxisols have been observed to increase from negligible to over 100 kg N ha-57 

1 over the last few decades (Bell et al. 1995; Lester et al. 2009). 58 

The application of high fertiliser N rates can, however, lead to low plant N use efficiency and 59 

increased risk of high N losses if the timing of those applications results in less synchrony between  60 

plant N demand and fertiliser supply (Crews and Peoples 2005). The potential for N losses is further 61 

exacerbated in subtropical cereal cropping systems in northeast Australia, where fertiliser N  is typically 62 

supplied in one single application at or prior to planting, due to the unpredictability of in-season rainfall 63 

patterns (Bell et al. 2015).  64 

N losses can pose severe threats to the environment, amongst which the emission of significant 65 

amounts of nitrous oxide (N2O) is arguably one of the most important. The environmental relevance of 66 

N2O emissions resides both in terms of its elevated global warming potential (298 times that of carbon 67 

dioxide over a 100 year time horizon (Myhre et al. 2013)) and its contribution to the depletion of the 68 

ozone layer in the stratosphere (Ravishankara et al. 2009). Importantly, numerous studies on 69 

agricultural soils have proven a clear correlation between N2O emissions and N fertilisation. Increasing 70 

N2O fluxes have been shown to correspond to increasing N fertilisation rates, with emissions typically 71 

increasing exponentially where N rates exceed crop N requirements (McSwiney and Robertson 2005; 72 

Hoben et al. 2011; Kim et al. 2013; Shcherbak et al. 2014; Scheer et al. 2016).  73 
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One of the most promising methods to reduce N2O emissions and decrease overall N losses is the 74 

addition of nitrification inhibitors to NH4
+-based fertilisers (Linzmeier et al. 2001b; Pasda et al. 2001; 75 

Kawakami et al. 2012). Nitrification inhibitors are antibiotics that slow the activity of the Nitrosomonas 76 

sp. bacteria, the genus responsible for the oxidation of NH4
+ to NO2

-. Maintaining fertiliser N in the 77 

NH4
+ form reduces the chances of N being lost via leaching or denitrification when soil moisture 78 

conditions are elevated. Nitrification inhibitor-coated urea has been reported by several studies to 79 

substantially decrease N2O emissions and increase crop yields in humid, high rainfall environments 80 

(Prasad and Power 1995; Linzmeier et al. 2001a; Pasda et al. 2001; Hatch et al. 2005), which are the 81 

environmental conditions that are prevalent during subtropical summers. Among nitrification inhibitors, 82 

3,4-dimethylpyrazole phosphate (DMPP) has been reported by many authors as the most efficient in 83 

slowing nitrification and reducing N2O losses (Weiske et al. 2001b; Liu et al. 2013; Lester et al. 2016 84 

in press). 85 

While DMPP was shown to efficiently reduce N2O emissions on Oxisol soils in subtropical 86 

cropping systems in northeast Australia (De Antoni Migliorati et al. 2014), it is still uncertain whether 87 

DMPP can be used with the same effectiveness in Vertisols – the dominant cropping soils in the region. 88 

The overall aims of this study were therefore to determine whether: i) the different soil properties of 89 

Vertisols and Oxisols can affect the potential of DMPP to reduce N2O losses from urea applications and 90 

ii) DMPP can increase grain yields through limiting fertiliser N losses or improving synchronisation 91 

between fertiliser N supply and plant demand.  92 

In this study, grain yields and N2O emissions from a cereal crop (sorghum) grown on a Vertisol 93 

and an Oxisol were monitored for the duration of the cropping season and for a portion of the subsequent 94 

fallow period using a fully automated high frequency greenhouse gas measuring system. The results of 95 

this study will help define fertilisation strategies that maximise the efficient use of fertiliser N while 96 

minimizing environmental impacts in subtropical summer cereal cropping systems. 97 

  98 
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Materials and Methods 99 

STUDY SITES 100 

The study was conducted at two sites with contrasting soil types. One field trial was located at the 101 

Kingsthorpe research station, situated in the Darling Downs region about 140 km west of Brisbane 102 

(27o31’S, 151o47’E, 431 m above mean sea level). The soil at the site is classified as a self-mulching, 103 

torrert Vertisol (USDA Soil Taxonomy, USDA (1998)) or as a haplic, black Vertisol (Australian Soil 104 

Classification (Isbell 2002)). It has a heavy clay texture (67% clay) in the 1.5 m root zone profile, with 105 

a distinct change in soil colour from brownish black (10YR22) in the top 90 cm to dark brown 106 

(7.5YR33) deeper in the profile. The soil was formed in an alluvial fan of basalt rock origin with a 107 

surface slope of about 0.5%, is slowly permeable and has a plant available water holding capacity 108 

(PAWC) of 210-230 mm for wheat. Physical and chemical characteristics of the soil profile are shown 109 

in Table 1. 110 

The other field trial was located at the J. Bjelke Petersen Research Station at Taabinga (26°34’54,3’’ 111 

S, 151°49’43.3’’ E, altitude 441 m above mean sea level), near Kingaroy, in the southern inland Burnett 112 

region of southeast Queensland, Australia. The soil is classified as Tropeptic Eutrustox Oxisol (USDA 113 

Soil Taxonomy, USDA (1998)) or as a Brown Ferrosol (Australian Soil Classification, (Isbell 2002)), 114 

is moderately permeable, with a high clay content (50-65% clay) in 1.2 m of effective rooting zone and 115 

a PAWC of 100-110 mm in maize-peanut rotations. Physical and chemical soil properties are listed in 116 

Table 1. 117 

At both sites the climate is classified as subtropical, with warm, humid summers and mild winters. 118 

Monthly mean minimum and maximum temperatures at the Vertisol site (Kingsthorpe) are 16.3 °C and 119 

27.2 °C in summer, and 5.9 °C and 17.0 °C in winter, respectively. Mean annual precipitation is 630 120 

mm (1990-2010), where most of the rainfall occurs between October and March, during the summer 121 

crop growing season. At the Oxisol site (Kingaroy), monthly mean minimum and maximum 122 

temperatures are 16.5 °C and 29.6 °C in summer, and 4.0°C and 18.9°C in winter, respectively. Mean 123 

annual precipitation is 776.2 mm, with most also occurring in the spring-summer period, and varies 124 
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from a minimum of 28.6 mm in August to a maximum of 114.1 mm in January (Australian Bureau of 125 

Meteorology).  126 

 127 

EXPERIMENTAL DESIGN 128 

Experiments were sown to sorghum (Sorghum bicolor L.) during the 2013/14 summer season, with 129 

cv. Pacific MR43 planted 10 December 2013 and machine-harvested 5 May 2014 at the Vertisol site, 130 

while at the Oxisol site cv. Pioneer G22 was planted on 27 November 2013 and machine-harvested on 131 

10 April 2014. The Vertisol site had been cropped to sorghum in 2012/13 with green manure winter 132 

cereals (barley and wheat) grown during the 2012 and 2013 winter seasons and removed as a forage 133 

crop to maintain low soil mineral N status. The Oxisol site had grown sorghum in 2011/12 season, with 134 

a winter fallow, 2012/13 summer peanut (Arachis hypogaea L.) and 2013 winter forage barley crops, 135 

respectively. 136 

Briefly, treatments were organised in a randomized complete block design with four replicates at the 137 

Vertisol site and in a split plot design (fertilizer products as main plots and N rates as sub plots) with 138 

three replicates at the Oxisol site. The Vertisol site was direct sown into forage residue sprayed out after 139 

forage removal, while the Oxisol site was prepared using conventional tillage (chisel plough (20 cm) 140 

and two passes with offset discs (15 cm). Crop row spacing was 1 m and 0.9 m at the Vertisol and 141 

Oxisol sites, respectively, with six plant rows in each treatment. Plots at the Vertisol and Oxisol sites 142 

measured 6 m x 12 m and 5.4 m x 13 m, respectively, with buffer areas of 1-2 m between plots. Further 143 

information on the experimental details is outlined in full in Lester et al. (2016 in press) 144 

Both sites utilized supplementary irrigation using overhead sprinkler application. At the Vertisol site 145 

this consisted of a 30 mm irrigation immediately after sowing, to ensure uniform crop establishment, 146 

followed by two 25mm irrigations during the early stages of crop establishment. At the Oxisol site 147 

however, lack of profile moisture and the low PAWC of this soil type necessitated more frequent 148 

irrigations, with a total of 168 mm applied in five irrigation events from early January to mid-February 149 

2014 (Table 2). 150 
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At each site, treatments consisted of a range of N rates supplied as either urea or DMPP urea, with 151 

rates chosen to cover the full yield-N response surface at each location. In addition to an unfertilized 152 

control (0N added), N rates supplied as urea or DMPP urea ranged from 40-160 kg N ha-1 on the Vertisol 153 

and 40-240 kg N ha-1 on the Oxisol. Fertilizer was banded between 10 and 15cm away from the crop 154 

row at sowing at both sites.  155 

Crop growth and N accumulation was assessed by a total crop biomass sampling at physiological 156 

maturity (two crop rows each 1m in length and at two locations in each plot) on 8 April 2014 at the 157 

Vertisol site and 10 March 2014 in the Oxisol site, with samples oven dried (60oC for 72h) before 158 

mulching and grinding and subsequent analysis for N concentration.  Grain yields were determined by 159 

a combine harvester after a 1m buffer area was removed from either end of the plot (2 crop rows by the 160 

length of the experimental plot), with grain moisture determined and used to adjust yields and grain N 161 

concentration to a dry weight basis.  162 

Emissions were monitored from four treatments during the monitoring period, with treatments 163 

chosen to both allow a direct comparison between soil types at a common N rate, and to also allow a 164 

comparison between urea and DMPP urea at a rate estimated to deliver maximum crop yields on each 165 

soil type. These were: 166 

 Control (CNT)- no N fertiliser applied:  to quantify background N2O emissions and baseline yields 167 

in each soil type; 168 

 Urea (UREA) and DMPP urea (DMPP): the different fertilizer products were compared at N rates 169 

estimated to produce maximum grain yields at each site. These were 160 kg N ha-1 on the Vertisol 170 

and 120 kg N ha-1 on the Oxisol. These rates were ca. 30% higher than standard farmer practice 171 

(approximately 120 kg N ha-1 and 90 kg N ha-1 on the Vertisol and Oxisol, respectively), but 172 

considered appropriate due to the preceding very wet summer with large denitrification losses (see 173 

De Antoni Migliorati et al. 2015; Scheer et al this issue) and the use of winter forage crops to ensure 174 

low starting profile N.  175 
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 Urea (UREA-R): in both soils conventional urea was applied at a reduced rate (80 kg N ha-1) that 176 

was more comparable to standard farming practice in each region. The N rate was reduced to assess 177 

crop response and N2O emissions at sub-optimal N rates. 178 

 179 

CONTINUOUS N2O MEASUREMENTS 180 

At both sites N2O fluxes were measured over 198 days, from 11 December 2013 to 26 June 2014 on 181 

the Vertisol and from 6 December 2013 to 21 June 2013 on the Oxisol. N2O measurements were taken 182 

from every plot of the target treatments in the field trials using two fully automated measuring systems 183 

similar to the one described in De Antoni Migliorati et al. (2015). Each system consisted of twelve 184 

chambers, linked to a computerized sampling unit and an in situ gas chromatograph (SRI GC 8610C) 185 

equipped with a 63Ni electron capture detector (ECD) for N2O concentration analysis.  186 

Briefly, chambers were closed airtight with lids made of transparent acrylic panels operated by 187 

pneumatic actuators. Chambers measured 50 cm x 50 cm x 15 cm and were attached via a rubber seal 188 

to stainless steel frames inserted 10 cm into the ground. During a measurement cycle a set of four 189 

chambers closed for 60 min with each chamber sampled 4 times for 3 min. A certified gas standard of 190 

500 ppb N2O (BOC – Munich, Germany and Air Liquide – Dallas, TX, USA) was pumped into the gas 191 

chromatograph every 15 min. At the end of the cycle the chambers reopened and the next set of four 192 

chambers closed for sampling. Measurements in one complete cycle of twelve chambers lasted 3 hours, 193 

during which each chamber was sampling for 1 hour and then remained opened for 2 hours to restore 194 

ambient conditions. This method enabled the determination of up to 8 single fluxes per chamber per 195 

day. The detection limit of the system was approximately 1.0 µg N2O-N m-2 hour-1 for N2O; both 196 

systems were regularly checked for leaks throughout the season, making sample dilution due to leakage 197 

negligible.  198 

All chambers were positioned next to the plant rows to account for N2O emissions from a localized 199 

source (banded fertiliser) with background emissions from residual soil N derived from unfertilized 200 

plots. The measuring systems were deployed soon after fertilizer application and planting and retrieved 201 

4-6 weeks after harvesting. 202 
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 203 

ANCILLARY MEASUREMENTS 204 

Chamber air temperatures and topsoil temperatures (buried at 10 cm in the proximities of three 205 

chambers) were measured every 5 minutes using resistance temperature detectors (RTD, Temperature 206 

Controls Pty Ltd, Australia). An electronic weather station recording rainfall was installed at each 207 

research site.  208 

At the beginning of the cropping seasons, soil samples (0-20 cm) were collected from every plot 209 

with a manual open-faced bucket auger (10 cm diameter) and analysed for texture (hydrometer method 210 

as described by (Kroetsch and Wang 2008) ). Other soil analyses were conducted using standard 211 

methodology described in Rayment and Higginson (1992), including total carbon (C%) and total 212 

nitrogen (N%) by Dumas combustion  pH (1:5 soil:water), Cation Exchange Capacity and NH4-N and 213 

NO3-N. The latter were determined on extracts collected from the soil samples after adding 100 mL of 214 

1M KCl to 20g of soil and shaking the solution for 1 hour. The solution was then filtered and stored in 215 

a freezer until analysed colorimetrically for NH4-N and NO3-N using method 7c2 (Rayment and 216 

Higginson, 1992).  217 

Soil sampling was conducted at intervals of 3-4 weeks at each site by collecting topsoil samples (0-218 

20 cm) in each plot and analysing them for NH4-N and NO3-N. In each plot, soil samplings were 219 

systematically collected to represent the chamber area on which emissions monitoring was conducted 220 

in fertilised treatments, and in equivalent positions relative to the crop row in the Control treatment. 221 

This represented three replicate samples collected 5 cm, 15 cm and 20 cm from the plant row, with 222 

replicate samples thoroughly mixed and the sub-sample analysed.  223 

 224 

FLUX CALCULATIONS AND STATISTICAL ANALYSIS 225 

Hourly N2O fluxes were calculated with the method described by (Nguyen et al. 2014), determining 226 

the slope of the linear increase or decrease of the four gas concentrations measured during the 60 minute 227 

period of chamber closure. The obtained data were corrected for internal air temperature, atmospheric 228 

pressure and ratio of chamber volume and soil area. Measurements were quality-checked using the 229 
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Pearson correlation and fluxes above the detection limit discarded if the regression coefficient (r2) was 230 

< 0.80, while those below the detection limit were assumed to be zero. 231 

To account for the spatial variability between two crop rows (0.9 m - 1 m) imposed by banding the 232 

fertiliser, mean daily fluxes for each fertilised treatment were calculated with the methodology 233 

established by Kusa et al. (2006) and Parkin and Kaspar (2006). Using this approach, hourly fluxes 234 

from the three replicate chambers of each fertilised treatment (covering 50 cm on the side of the crop 235 

row where the fertiliser was banded) were averaged. The obtained mean flux was then averaged with 236 

the mean of hourly fluxes measured in the control treatment (covering 50 cm on the side of the crop 237 

row without any fertiliser) for the Vertisol site. For the Oxisol site the weighted average consisted of 238 

55% of the chamber over the fertilizer band and 45% of that with no applied fertilizer. 239 

Cumulative N2O fluxes [kg N2O-N ha-1] were determined by summing hourly fluxes to produce 240 

daily flux totals and then summing daily N2O fluxes measured during the study period. Emission factors 241 

were corrected for background emissions (Kroeze et al. 1997) using the following:  242 

 243 

𝐸𝐹 % =  
𝑁2𝑂 (𝐹𝑒𝑟𝑡) − 𝑁2𝑂 (𝑈𝑛𝑓𝑒𝑟𝑡) 

 𝑁 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
 ∙ 100 244 

 245 

where EF % is the emission factor reported as a percentage of N fertiliser input (kg N ha-1 season-1) 246 

lost as N2O-N, N2O (Fert) and N2O (Unfert) (kg N ha-1 season-1) are the cumulative N2O-N emissions 247 

measured in the fertilised and non-fertilised treatments with the same cropping history, respectively. 248 

Agronomic efficiency (AE) was calculated as: 249 

  250 

𝐴𝐸 =  
𝐺𝑟𝑎𝑖𝑛 (𝐹𝑒𝑟𝑡) − 𝐺𝑟𝑎𝑖𝑛 (𝑈𝑛𝑓𝑒𝑟𝑡) 

 𝑁 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑠𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
  251 

 252 

where AE is the agronomic efficiency (kg grain kg N applied-1), Grain Fert and Grain Unfert (kg 253 

ha-1) are the quantities of grain harvested in the fertilised and unfertilised treatment, respectively, and 254 

N fertiliser input is the amount of fertiliser N applied (kg N ha-1). 255 
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Daily N2O fluxes missing due to occasional brief (< 4 days) failures of the measuring system were 256 

estimated by linear interpolation. Statistical analyses were undertaken in the R environment (R Core 257 

Team 2015). Benjamini and Hochberg (BH) adjustment (Benjamini and Hochberg 1995) was 258 

performed to assess significant differences on total cumulative N2O emissions within and across sites. 259 

Tukey post hoc test was performed to determine the influence of N fertilisation rate or soil type on grain 260 

yields and agronomic efficiency within and between sites. Post hoc tests were performed only when the 261 

analysis of variance (ANOVA) yielded P values <0.05. The shape of the grain yield-N fertilizer rate 262 

response surface was determined using linear (Vertisol) and mitserlich (Oxisol) regression functions in 263 

Genstat (VSN International 2014) and the fitted response functions were used to estimate the N fertilizer 264 

rate that was required to produce 90% of the site maximum yield. 265 

Results 266 

ENVIRONMENTAL AND SOIL CONDITIONS 267 

Seasonal precipitation measured during this study tended to be lower than the 30-year historic 268 

summer averages (December to June) recorded at the Vertisol (493 mm) and Oxisol (464 mm) sites. At 269 

the Vertisol site rainfall over the study amounted to 241 mm (with an additional 80 mm of early season 270 

irrigation), however ~40% (90 mm) of the total rainfall occurred in a rainfall event that took place late 271 

in the cropping season (27 and 30 March 2014) (Figure 1). Rainfall at the Oxisol site was more evenly 272 

distributed (Figure 1) but amounted to only 212 mm, equal to less than 46% of the growing season 273 

historic average. Accounting for irrigation, in-season total water supply at the Oxisol site amounted to 274 

371 mm and at the Vertisol site it was 321 mm (Table 2).  275 

Mean soil temperature (0-10 cm) at the Vertisol site was 20.7 °C and ranged between 4.8 °C (June 276 

2014) and 29.7 °C (January 2014), while at the Oxisol site soil temperature averaged 21.4 °C and varied 277 

from 10.8 °C (June 2014) to 30.3 °C (December 2013) (Figure 1). 278 

Mineral N dynamics in the fertiliser band of the high N rate treatments varied substantially between 279 

fertilizer products and, to a lesser extent, sites. At the Vertisol site soil NH4
+ concentrations in the 280 

UREA treatment followed a relatively steady decline throughout the season, decreasing from an initial 281 
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value of 100 mg N kg-1 on 23 December 2013 to a low of 15-25 mg N kg-1 during March 2014, although 282 

there was a slight increase in the sample taken on 10 April 2014 (near harvest) to 40 mg N kg-1. Soil 283 

NO3
- concentration in the top 20 cm increased until the first half of February (105-110 mg N kg-1) and 284 

then rapidly declined to a minimum of <10 mg N kg-1 in March after 90mm mm of rain fell over the 285 

trial in late March 2014. Soil NH4
+ and NO3

- contents in the UREA-R treatment showed the same 286 

temporal pattern of those in the UREA treatment, although declined to low concentrations by late 287 

February 2014. 288 

Different patterns were observed in the DMPP treatment. While NH4
+ concentrations declined 289 

steadily to reach a minimum in the sampling in mid-March 2014, they remained much higher than in 290 
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the UREA treatment (291 

 292 
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Figure 2). Conversely, NO3
- concentrations were constrained to between 25% and 50% of those 293 

recorded in the UREA treatment until the inhibitor effect degraded in early February 2014. This then 294 

resulted in a sharp increase in  NO3
- concentrations (reaching a maximum of 208 mg N kg-1 on 21 295 

February 2014, 10 weeks after planting) followed by a rapid decline to values similar to that in the 296 

UREA treatment for the rest of the season.   297 

At the Oxisol site, a similar pattern of mineral N dynamics in the UREA and DMPP treatments 298 

was observed during the period of nitrification inhibition, which was evident until early February 299 

2014. Soil NH4
+ levels peaked 6 weeks after planting (9 January 2014) in both the UREA (43 mg N 300 

kg-1) and DMPP (125 mg N kg-1) treatments, when the UREA-R treatment showed soil NH4
+ values 301 

similar to CNT treatment. Soil NO3
- concentrations followed a similar pattern, peaking 6 weeks after 302 

planting (83 mg N kg-1 in UREA, 56 mg N kg-1 in UREA-R and 44 mg N kg-1 in DMPP) before 303 
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gradually declining (304 

 305 
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Figure 2). Unlike the Vertisol site, there was no sharp increase in NO3
- concentrations once the 306 

inhibitory effect in the DMPP treatment was eroded, possibly due to more extensive crop uptake and/or 307 

leaching into deeper soil layers in response to the regular irrigation events.  308 

Soil mineral N levels in the CNT treatments did not vary substantially at either site, although there 309 

was evidence of a flush of N mineralization at each site in response to a rainfall event in mid-February 310 
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on the Vertisol and a combination of rainfall and an irrigation event in mid-January on the Oxisol (311 

 312 

Figure 2). 313 
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 314 

N2O EMISSIONS AND PLANT RESPONSE TO FERTILISATION TREATMENTS  315 

At both sites there were strong responses to applied N fertilizer (Fig. 3), with grain yield in the 316 

unfertilized treatments ranging from 20% (Oxisol) to 40% (Vertisol) of the yields achieved with the 317 

highest N rates at each site. The shape of the grain yield-N response relationship was clearly curvilinear 318 

on the Oxisol, with a calculated maximum yield (Ymax) in response to applied N of 6900 and 6650 kg 319 

ha-1 for the DMPP and UREA treatments, respectively. The response functions fitted to yield-applied 320 

N relationship showed the fertilizer N rate needed to achieve 90% of the maximum grain yield (Y90%) 321 

would have been 100 (DMPP) to 125 (UREA) kg N ha-1 - very similar to the rates chosen to compare 322 

the emissions from these two fertilisers (120 kg N ha-1).  323 

Unfortunately at the Vertisol site the response to applied N was linear across the treatment range 324 

(Fig 3), and so a derivation of Ymax or the fertilizer N rate required to achieve Y90% was not able to be 325 

undertaken. However data suggest that greater yields would have been achieved with higher fertiliser 326 

N rates, and so the 160 kg N ha-1 rate chosen to compare emissions from UREA and DMPP would also 327 

seem to be appropriate for this particular site and season. 328 

On both soil types grain yields in the DMPP treatments tended to be higher than in UREA, although 329 

differences were never statistically significant (p < 0.05) (Table 3). Similar results were obtained 330 

analysing the agronomic efficiency of the two fertilisation treatments. Both grain yields and agronomic 331 

efficiencies tended to be higher at the Oxisol site where UREA-R treatment showed the highest 332 

agronomic efficiency value across sites (Table 3). 333 

As with soil mineral N, N2O emissions differed substantially across treatments while some 334 

commonalities could be observed between sites. In both soil types, seasonal N2O losses from the UREA 335 

treatments were significantly higher than in the UREA-R, CNT and DMPP treatments (Table 3). 336 

Compared to UREA, DMPP reduced seasonal N2O emissions by 66.4% in the Vertisol and 61% in the 337 

Oxisol. At the Vertisol site N2O emissions from DMPP did not differ significantly from those in the 338 

UREA-R and CNT. Emissions factors for UREA were 0.7% and 0.6% for Vertisol and Oxisol sites, 339 

respectively, while much lower emissions factors were observed for DMPP on the Vertisol (0.1%) and 340 
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Oxisol (0.2%). Across treatments, seasonal N2O emissions on the Vertisol tended to be higher than in 341 

the Oxisol (Table 3).  342 

The majority of N2O emissions from the UREA treatments took place within three months from 343 

fertiliser application, accounting for 63% and 95% of seasonal N2O losses at the Vertisol and Oxisol 344 

sites, respectively. In all treatments on the Vertisol over 30% of N2O-N losses were due to the emission 345 

pulses that took place in late March 2014 in response to a major rain event that delivered 90mm of rain 346 

from 27 - 30 March (Error! Reference source not found.). On the Oxisol, N2O emissions from the 347 

DMPP treatments were concentrated in the first three months of the season, while in the Vertisol the 348 

majority of N2O from the DMPP plots was lost through the late-March emission pulse (Error! 349 

Reference source not found.). On both soils N2O emission pulses from the DMPP treatments lasted 350 

for much shorter periods (< 6 days) compared to the UREA treatments  351 

 352 

 353 

Discussion 354 

EFFECTS OF WEATHER EVENTS ON SEASONAL N DYNAMICS 355 

The results of this research highlight how the frequency and intensity of rainfall and irrigation events, 356 

linked with intrinsic soil characteristics such as drainable porosity and hydraulic conductivity, can exert 357 

a substantial influence on seasonal N dynamics and N2O emissions in subtropical cereal cropping 358 

systems.  359 

Changes in soil mineral N concentrations, N2O emissions and grain yields were largely influenced 360 

by the substantially different rainfall patterns observed at the two sites. Accounting for irrigation, the 361 

Oxisol site received a total of 240 mm uniformly distributed over the first three months of the cropping 362 

season. While the Vertisol site received only slightly less (125 mm of rainfall and 80 mm of irrigation) 363 

over the same three month duration, all the irrigation was applied in the first month to ensure good crop 364 

establishment and 66% (78 mm) of the rain that fell occurred in a single rainfall event over two days in 365 
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late January (Figure 1). Subsequently, there was only a single fall of 23 mm in the latter half of February 366 

to break the drying trend that persisted until the rain event in late March.  367 

 The uniform distribution of the rainfall/irrigation events, at the Oxisol site guaranteed a constant 368 

water supply to soil microorganisms, which is likely to have promoted relatively rapid nitrification 369 

rates (Bouwman 1998; Kiese and Butterbach-Bahl 2002). The rapid decline of NH4
+ concentrations 370 

and the concurrent increase of NO3
- levels observed in both the UREA and DMPP, and to a lesser 371 
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extent UREA-R, treatments support this hypothesis (372 

 373 

Figure 2).  374 
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As a result, the majority of NH4
+ derived from the urea hydrolysis was transformed into NO3

- 375 

within approximately eight weeks from fertilisation in the Oxisol (376 

 377 
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Figure 2), ensuring substantial amounts of NO3
- available in the soil during the period of maximum 378 

N uptake of sorghum (Blum 2004). The free-draining nature of this soil (Bell et al. 2005) was illustrated 379 

by the rapid drainage after rainfall and irrigation events (Fig. 1), and combined with the frequent 380 

irrigation events, was likely to have contributed to some leaching of that NO3-N into soil layers below 381 

the top 20cm monitored during the growing season. This contributed to absence of sharp peaks in NO3-382 

N accumulation at this site (Fig2a).  383 

N2O emissions pulses were triggered by rainfall or irrigation events in all N fertilised treatments 384 

and were concentrated during the first three months after fertilisation (Error! Reference source not 385 

found.4). Conditions during this period were characterised by high soil temperatures, moist soils and 386 
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elevated mineral N levels in the top soil (Figure 1 and 387 

 388 
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Figure 2). Notably, substantial rainfall events that occurred later in the cropping season (a total of 389 

178 mm fell from mid-February to mid-April 2014 at the Oxisol site) did not generate high N2O 390 

emissions, indicating that by then most of the applied N was probably taken by the plants, immobilized 391 

by microbes, lost to the environment or deeper in the soil profile. These observations of the majority of 392 

N2O emissions being recorded within 90 days from fertilisation are in good agreement with the results 393 

reported in other studies on Australian sub-tropical summer cropping systems on Vertisols and Oxisols 394 

(Scheer et al. 2013; De Antoni Migliorati et al. 2014; Scheer et al. 2016 in press).   395 

At the Vertisol site, the imbalance of the rainfall distribution over the first 3 months of the growing 396 

season and the relatively dry soil conditions that persisted until the late season event at the end of 397 

March 2014 were likely to have limited nitrification rates (Stark and Firestone 1995). This was 398 

confirmed by the NH4
+ concentrations, which remained high in all fertilised treatments in the Vertisol 399 

until late February 2014 (Fig. 2a, b), a substantially longer period compared to that observed at the 400 
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Oxisol site (401 

 402 
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Figure 2c, d). Soil NO3
- concentrations in the Vertisol increased and remained high until early March 403 

2014, indicating that plant N assimilation from the top 20cm of the profile was probably limited by the 404 

low water availability (Poorter and Nagel 2000).  405 

The heterogeneous distribution of rainfall at the Vertisol site caused short periods of high soil water 406 

availability and relatively long period of water limitation (Figs. 1, 4). Plant access to N was therefore 407 

limited to short windows of opportunity and resulted in lower agronomic efficiency and higher N2O 408 

emissions when compared to the Oxisol site (Table 3, Fig. 3). This result is particularly significant when 409 

comparing crop responses to applied N fertilizer (Fig. 3) between sites. Despite similar starting profile 410 

mineral N contents at sowing (60-62 kg N ha-1 – Table 2) the AE of fertiliser N use at suboptimal N 411 

rates was consistently higher in the Oxisol than the Vertisol. Using the same N fertilizer rate across soil 412 

types (UREA-R, or 80 kg N ha-1) as an example, the AE on the Oxisol was 50 kg additional grain 413 

produced kg of N applied-1, compared to 19 kg additional grain produced kg of N applied-1 on the 414 

Vertisol (Table 3). Further evidence includes the linearity of the N response up to 160 kg N ha-1 (the 415 

highest rate tested) on the Vertisol, compared to the asymptotic response on the Oxisol with optimum 416 

N rates to achieve Y90% at 100-120 kg N ha-1 (Fig. 3). Even though significant amounts of N2O were 417 

lost during the first months after fertilisation, the presence of substantial amounts of mineral N still left 418 

in the Vertisol in the later stages of the season was confirmed by the significant N2O emission pulse 419 

recorded after 70 mm of rain fell on the trial on 27 and 30 March 2014 (Error! Reference source not 420 

found.).  421 

In summary, the nitrification inhibition was clearly effective in both soil types, with decreased NO3
- 422 

and elevated NH4
+ concentrations in the DMPP compared to the UREA treatment for ca. 8 weeks. 423 

However at the end of this period the breakdown of the inhibitory effect was demonstrated quite clearly  424 

in the Vertisol, with NO3
- concentrations in the DMPP treatment changing from half those in the UREA 425 

treatment to more than double in the space of a two week period. The effects were not as evident at the 426 

Oxisol site, where the more frequent and effective irrigations in the freely draining soil resulted in a 427 

much shorter duration of high NO3
- concentrations in the UREA treatment – presumably due to more 428 
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rapid crop uptake and some movement into deeper profile layers than those monitored and reported 429 

here.  430 

 431 

EFFECTS OF DMPP ON N2O EMISSIONS AND GRAIN YIELDS 432 

In both soils the application of DMPP urea influenced the dynamics of mineral N in the top soil (0-433 

20 cm). DMPP was effective in inhibiting the oxidation of NH4
+ to NO3

- and extended the longevity 434 
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of N fertiliser in the NH4
+ form compared to conventional urea in both the Vertisol and Oxisol (435 

 436 
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Figure 2a and 437 

 438 
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Figure 2c). Significantly, the results of this study indicate that the different rainfall conditions 439 

measured at the two sites had little impact on the duration of the inhibitory effect, which lasted for 440 

approximately eight weeks.  441 

At both sites the NH4
+ levels in the DMPP treatments started to decline from early January. The 442 

increased nitrification rates after eight weeks from fertilisation were particularly evident on the 443 

Vertisol, where the decrease in soil NH4
+ concentrations was accompanied by a sudden spike in NO3

- 444 
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concentrations in the samples collected in late February 2014 (445 

 446 
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Figure 2b). This dynamic was less obvious at the Oxisol site, where the delayed rise of NO3
- levels 447 

was likely to have been due to a combination of plant uptake and leaching into deeper profile layers.  448 

The longevity of DMPP was reflected also in the N2O emissions patterns, with these effects 449 

particularly evident on the Vertisol (Fig. 4). At this site the dry soil conditions that characterised the 450 

beginning of the cropping season limited the potential for N losses and plant N uptake, but there was a 451 

consistent pattern of higher emissions pulses in the UREA treatment during each of the irrigation and 452 

rainfall events that occurred up until early-mid February 2014. The drier conditions resulted in relatively 453 

high amounts of NO3
- still present in the soil in early March, so that when the 90mm of rainfall event 454 

occurred in late March a further emissions pulse was recorded. However by this stage the inhibitory 455 

effect of DMPP was largely expired and the magnitude of the N2O emission pulse measured in the 456 

DMPP treatment on this occasion was comparable to that measured in the UREA treatment. 457 

Significantly, this event alone caused the majority (64%) of seasonal N2O losses in the DMPP treatment, 458 

while it contributed a much lesser proportion (36%) to overall N2O emissions in the UREA plots.  459 

On the Oxisol, significant rainfall events during the first eight weeks triggered much shorter 460 

duration, and generally lower, N2O emissions pulses in the DMPP treatment than those measured in 461 

the UREA treatment (Error! Reference source not found.4), again consistent with the lower NO3
- 462 

concentrations evident in the top 20cm of the profile at that time (Fig. 2d). In late February however, 463 

when the trial was irrigated with 20 mm, the N2O emission pulse from the DMPP treatment was 464 

comparable to those in UREA. Even though the magnitude of these last emission pulses was limited 465 
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due to the low concentrations of mineral N left in the soil (466 

 467 
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Figure 2c and 468 

 469 
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Figure 2d), the absence of substantial difference between the two N2O peaks again suggests that by 470 

this stage the inhibitory effect of DMPP had ended.  471 

Our results were consistent with those reported from other studies using DMPP on similar soil types 472 

in this region (De Antoni Migliorati et al. 2014; Scheer et al. 2014; Scheer et al. 2016 in press) and 473 

from other climates and production systems (Pasda et al. 2001; Chaves et al. 2006; Benckiser et al. 474 

2013). All have consistently reported effective nitrification inhibition periods varying between 60 and 475 

90 days. 476 

Overall, DMPP reduced the amount of N2O losses by over 60% in both the Vertisol and Oxisol, a 477 

result consistent with the 40-60% abatement rates reported in field trials and incubation studies by De 478 

Antoni Migliorati et al. (2014), Chen et al. (2010); Suter et al. (2010) and Liu et al. (2013). The 479 

efficiency of DMPP in inhibiting N2O losses was reflected at both sites by the emission factors and 480 

emission intensities, which on average were reduced by 70% compared to conventional urea (Table 3). 481 

Emission factors from the UREA treatments (0.7% and 0.4% on the Vertisol and Oxisol, respectively) 482 

were higher than values recorded in the sub-optimal UREA-R treatments (0.5% and 0.3%, respectively), 483 

but tended to be lower than the default values of 1% of applied N suggested by the International Panel 484 

on Climate Change (De Klein et al. 2006) and intermediate between the dryland (0.2%) and irrigated 485 

(0.85%) default values adopted in the Australian Greenhouse Gas Inventory submission (Anon 2015). 486 

This was consistent with the largely supplementary use of irrigation in these studies. The significant 487 

reduction in N2O emissions achieved through the use of DMPP showed that emissions factors can be 488 

reduced to well below even the dryland standard of 0.2%, albeit in a season without large rainfall events 489 

in the vulnerable early parts of the growing season. More research is advocated to investigate the 490 

benefits of DMPP when combined with high fertilizer rates under varying climatic conditions.  491 

Despite the significant abatement of N2O emissions observed with DMPP, there did not appear to 492 

have been substantial improvements in fertilizer NUE or the amount of fertilizer required to achieve a 493 

given yield target (i.e. Y90%). While there were suggestions of slight improvements in AE in the DMPP 494 

compared to UREA treatments in Table 3 (by 6% and 19% on the Oxisol and Vertisol, respectively), 495 

these differences were not statistically significant. Similarly, where the experiment was able to 496 
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adequately estimate a site yield potential in response to applied N (the Oxisol site – Fig. 3b) there was 497 

a suggestion of a lower critical N rate for the DMPP (100 kg N ha-1) compared to the urea (125 kg N 498 

ha-1) in order to achieve Y90%,. The consistency of these trends across a broader range of sites and 499 

seasons is reported in Lester et al. (2016 in press), with this study also suggesting only small agronomic 500 

benefits from use of DMPP in summer sorghum cropping.  501 

These results, similar to those reported by Díez López and Hernaiz (2008), Weiske et al. (2001a) 502 

and De Antoni Migliorati et al. (2014), are likely to be due to the absence of prolonged periods with 503 

extremely wet soils in these environments, especially early in the growing season (e.g. Fig.1).  These 504 

conditions therefore limit the number of opportunities for fertiliser N to leach or denitrify, and so limit 505 

the potential benefits from employing products like DMPP. In addition, while the fertiliser N rates at 506 

which the UREA and DMPP treatments were compared were appropriate for the seasonal conditions 507 

and soil N availability at both sites (Fig. 3), it is also worth noting the relatively low incremental AE 508 

for additional N application on this part of the yield response curve. The incremental AE of increasing 509 

N rates from 100 to 120 kg N ha-1 on the Oxisol or from 120 to 160 kg N ha-1 on the Vertisol (Fig. 3) 510 

averaged 14-16 kg grain for each kg additional N applied. This relatively low incremental AE suggests 511 

large amounts of N would need to be lost before a statistically significant yield penalty would be 512 

detected from using urea rather than the DMPP-coated product.  513 

As concluded by Lester et al. (2016 in press), DMPP might have a greater scope to increase 514 

agronomic efficiency of urea in higher rainfall or irrigated production regions, or when high rates of N 515 

fertilizer are required to meet seasonal yield potential under high-intensity cropping situations. 516 

Examples of the latter would include double cropping from a winter cereal to summer sorghum in a 517 

high rainfall year, where systems are characterised by high amounts of crop residues and low levels of 518 

soil N - conditions that require high fertiliser N rates to prevent severe crop N deficiency.  519 

 520 
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Conclusions 521 

Data gathered in this study illustrated the importance of rainfall patterns in affecting N dynamics 522 

in subtropical cereal cropping systems. Even though the lack of extreme rainfall events early in the 523 

growing season minimised the opportunities for differences in soil water holding and drainage 524 

characteristics between the two soils to be expressed in terms of potential N losses, DMPP proved to be 525 

a reliable tool to abate N2O emissions from these systems. Importantly, DMPP displayed consistent 526 

capacity to inhibit nitrification for a similar duration in different soil types, weather conditions, fertiliser 527 

N rates and ranges of soil water availability.  528 

Despite this effectiveness, the use of DMPP urea did not lead to significant yield increases 529 

compared to conventional urea. Limited moisture availability during the study constrained crop growth, 530 

especially at the Vertisol site, and at both sites conditions were not conducive to high leaching or 531 

denitrification losses for extended periods, which is likely to have contributed to masking the potential 532 

for DMPP to reduce N losses in these systems. DMPP might therefore have a greater scope to increase 533 

the agronomic efficiency of urea in summer seasons expected to have high rainfall rates, such as in la 534 

Niña phases of the El Niño Southern Oscillation (ENSO) cycle (Australian Bureau of Meteorology 535 

2016) – especially under double crop situations where surface residue amounts from the previous crop 536 

are high. Further research is required to clarify the conditions where DMPP might have a substantial 537 

scope to increase grain yields in subtropical cereal cropping systems.   538 
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List of Tables  708 

 709 

Table 1 - Main soil physical and chemical properties for the top 30 cm (means ± SE, n=3) at 710 

the Kingsthorpe and Kingaroy research stations, Queensland, Australia. Respective soil types 711 

are reported within brackets. LL15, DUL and SAT are the volumetric water contents (m3 m-3) 712 

corresponding to the lower limit of crop water extraction, the drained upper limit and at 713 

saturation, respectively, for the research sites (Mielenz et al. 2016). 714 

 715 

Soil Property (0-30 cm) Kingsthorpe (Vertisol) Kingaroy (Oxisol) 

pH (H2O) 7.1 ± 0.2 5.00 ± 0.7 

Total C (%) 1.7 ± 0.1 1.3 ± 0.1 

Total N (mg kg-1) 1150 ± 80 980 ± 63 

Bulk density 0-30 cm (g cm-3) 0.98 ± 0.1 1.18 ± 0.1 

PAWC  (mm) 210-230 100-110 

LL15 (m3 m-3) 

DUL ((m3 m-3) 

SAT (m3 m-3) 

0.33 

0.53 

0.61 

0.24 

0.37 

0.51 

Texture (USDA) Clay Clay 

Clay (%) 67 55 

Silt (%) 22 14 

Sand (%) 11 31 

 716 

  717 
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Table 2 – N fertilization rates on which N2O emissions monitoring were undertaken, profile 718 

mineral N at sowing (kg ha-1 to 120cm) and in-season rainfall and irrigation totals during the 719 

sorghum cropping seasons at the Vertisol and Oxisol sites in 2013 -2014. 720 

Site Fertilization [kg-N ha-1] Profile 

mineral N  

Rainfall Irrigation  

 

[mm]  CNT UREA-R UREA DMPP (kg ha-1) [mm] 

Vertisol 0 80 160 160 62 241 80 

Oxisol 0 80 120 120 60 203 168 

 721 

  722 
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 723 

Table 3 - Cumulative N2O fluxes, N2O emission factors, grain yields (expressed as dry matter), 724 

agronomic efficiencies and N2O intensities (mean ± SE, n=3) as a function of the six treatments. 725 

Numbers in the Treatment column indicate seasonal fertiliser N rates (kg N ha-1). Means 726 

denoted by a different lower–case letter indicate significant differences between treatments 727 

(p<0.05) within the same site. Means denoted by a different upper–case letter indicate 728 

significant differences between treatments (p<0.05) across the two sites. 729 

 730 

Site Treatment N2O emissions 

[kg N2O-N ha-1] 

Emission 

Factor 

[%] 

Grain yield 

[t ha-1] 

Agronomic Efficiency  

[kg extra grain kg N 

applied-1] 

Emissions intensity 

[kg-N
2
O-N t yield-1] 

Vertisol CNT 0.24  ± 0.17 a, A  1.91 ± 0.13a, BA   

 UREA-R (80) 0.63 ±0.05b, BC 0.5 3.20±0.36ab, CB 18.54±5.24a, A 0.19 

 UREA (160) 1.30 ± 0.13 c, D 0.7 4.19 ± 0.30b, DC 15.94 ± 4.17a, A  0.31 

 DMPP (160) 0.44 ± 0.04ab , AB  0.1 4.26 ± 0.58b, CDE  16.94  ± 4.11 a, A 0.10 

Oxisol CNT 0.11 ± 0.02 a, A  1.08 ± 0.21a, A   

 UREA-R (80) 0.33  ± 0.1a, AB 0.3 4.71 ± 0.37b, CDE 50.37 ± 2.50b, B 0.07 

 UREA (120) 0.81 ±0.19 a, C 0.4 5.27 ± 0.07b, ED 38.91 ± 3.0 a, B 0.15 

 DMPP (120) 0.31 ± 0.09 b, AB 0.1 5.83 ± 0.15b, E 46.20 ± 1.30 ab, B 0.05 

 731 

 732 
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 735 

 736 

 737 

Figure 1– Daily (rainfall + irrigation) and average daily volumetric soil water content  (m3m-738 
3) and soil temperatures (oC) in the top 10 cm  at the Vertisol (top) and Oxisol (bottom) sites 739 

during the 2013/14 sorghum cropping season. The dotted and dashed lines represent the 740 

volumetric moisture contents pertaining to the Drained Upper Limit and Saturation, 741 

respectively. Soil moisture data were not available at the Vertisol site during the month of 742 

February 2014 due to equipment malfunction. 743 
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 744 

Figure 2 – Variation in soil ammonium and nitrate concentrations (0-20 cm) and daily rainfall 745 

and irrigation for the three treatments at the Vertisol (a, b) and Oxisol (c, d) sites during the 746 

2013/14 sorghum cropping season.  747 
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 748 

Figure 3 - Relationship between applied fertilizer N (as urea or urea with DMPP) and grain yield at 749 
the Vertisol and Oxisol sites in 2013/14. The N rates to produce 90% of N-unlimited grain yields were 750 
100 (Entec) to 120 (urea) kg N/ha on the Oxisol and >160 kg N/ha for both products on the Vertisol. 751 

 752 
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 754 

 755 

  756 

Figure 4 - Daily soil N2O fluxes and water-filled pore space (WFPS, %) for the three 757 

treatments at the Vertisol (top) and Oxisol (bottom) sites during the 2013/14 sorghum 758 

cropping season. N2O emissions in the two panels are reported using different scales. 759 
 760 


