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Abstract 

Background: Cerebral microcirculation after severe head injury is heterogeneously 

distributed and temporally variable. Microcirculation changes have been found in association 

to the degree of tissue injury although there are currently no studies demonstrating how 

histological damage relates to cerebral regional blood flow at specific anatomical regions.  

Objective: To test the hypothesis that cerebral microcirculation after severe head injury, is 

compromised specifically at the anatomical regions of highest tissue disruption and that these 

changes are time dependant even from the first hours after injury.  

Methods: A sample of eight merino sheep exposed to a contusion and acceleration-

deceleration brain injury. Cerebral microcirculation was directly quantified using ultrasound 

guided injection of colour coded microspheres into the left cardiac atrium to ensure systemic 

and homogeneous distribution. Histological analysis used amyloid precursor protein staining 

to identify early areas of axonal injury in predefined anatomical regions. A mixed effects 

regression model assessed the hourly blood flow results during four hours after injury. 

Results: Regional microcirculation blood flow values for each subject and tissue region over 

the entire study time, including baseline, ranged between 20ml/100g/min and 

80ml/100g/min. RMBF values for each subject and tissue region over the four hours from 

baseline were reduced in all subjects and all regions at all times, but the mean confidence 

intervals crossed the horizontal ratio of 1 indicating that such reduction was not statistically 

significant.  

Conclusion: After severe head injury, cerebral microcirculation at the ipsilateral and 

contralateral site of a contusion in addition to the ipsilateral thalamus and medulla shows a 

consistent decline over the first four hours after injury, when compared with baseline. 

Although not statistically significant, a reduction in cerebral microcirculation and an 
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expression of APP staining as indicator for axonal damage was found to be related to the 

severity of head injury.  
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Introduction 

Severe head injury is commonly the result of a combination of contusion with acceleration-

deceleration forces leading to cellular breakdown, cytogenic and vasogenic edema, impaired 

cerebral autoregulation and perfusion mismatch [1]. Irreversible cellular damage has been 

described specifically in areas where microcirculation is critically reduced [2, 3] and in areas 

where critically low levels of Partial Pressure of Tissue Oxygenation (PTi02) have been 

maintained (REF) despite the controversies on the impact of anaemia upon cellular 

oxygenation and tissue injury [4, 5]. Whilst the assessment of cerebral regional 

microcirculation is still largely experimental, its role in comprehending the pathophysiology 

of severe head injury to provide insights into clinical management is essential. However, 

management of head injury patients is commonly based on systemic measures that ensure 

global perfusion and oxygenation parameters, without specifically targeting cerebral 

metabolic demands, cerebral tissue oximetry or regional distribution of blood flow. So, 

whilst multi-monitoring modalities are considered to be the benchmark practice within 

neuro-critical units [6] and several studies advocate for the use of PTi02 as a surrogate for 

neuronal recovery (REFS from anaemia review), the significance of clinical strategies aiming 

to increase the PTi02 levels is still unclear. Despite the previously demonstrated relationship 

between regional microcirculatory blood flow (RMBF), tissue metabolic demands [7] and 

cerebral hypoperfusion leading to irreversible cellular damage,  there are no studies 

quantifying the temporal variability of RMBF in different cerebral anatomical regions after 

severe head injury or its close relation to the degree of axonal damage and the state of 

cerebral tissue oxygenation.  

We hypothesised that after severe head injury cerebral microcirculation heterogeneity may 

correlate with the severity of the injury with maximal RMBF reduction seen within the areas 

of severe tissue disruption.  
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This study aims to directly quantify the temporal changes in ovine RMBF at specific cerebral 

regions, particularly within the areas of maximal axonal damage and the area corresponding 

to the ischemic penumbrae when compared to contralateral and non-injured regions. 

 

Materials and methods 

Animal care and preparation 

Experimental procedures were approved by the Animal Ethics Committee of the Queensland 

University of Technology. Sheep were used because of their cerebral anatomical similarities 

with humans, specifically the cerebral gyrencephalic surface allowing better examination of 

the grey-white matter; a well-defined physiology of the ovine haemoglobin dissociation 

curve [8] and extensive experimental neuroscience experience using this animal model [9-

11]. A convenience sample of eight Merino weathers weighing 40 ± 5 kg were instrumented 

with a triple lumen central line (Cook Medical. Queensland, Australia) and two 16Fr 

introducer sheaths in the right internal jugular (RIJ) vein. Via the central line, general 

anaesthesia was given using ketamine with an initial bolus of 5 mg/kg and maintenance 

infusion between 0.5-1 mg/kg/h.  Sedation was achieved with a combined infusion of 

midazolam (0.5 mg/kg/h), fentanyl (10 mcg/kg/h) and alfaxalon (6 mg/kg/h). This 

anaesthetic combination previously used in a mild head injury study (REF 2 of 5) 

demonstrated cardiovascular stability without alteration in cerebral microcirculation in sheep 

[12]. Hydration was maintained with an infusion of Hartmann’s solution up to a rate of 2  

mL/kg/h, titrated to maintain a central venous pressure (CVP) of 6-10 mmHg. Cardiovascular 

monitoring included cardiac output and vascular resistances via a Swan-Ganz catheter as 

previously described [13] (and 2 of 5 study) and a 5F umbilical vessel catheter (Argyle, Tyco 

HealthCare, Mansfield, MA, US), placed in the right femoral artery to allow a withdrawal of 

blood at a rate of 10 ml/min. Orotracheal intubation used a size 10 mm endotracheal tube 
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(SIMS Portex, UK). Sheep were ventilated at 12 breaths per minute with tidal volumes of 8 

mL/kg and 5 cm H2O of PEEP with an initial FiO2 of 1.0 with the FiO2 and respiratory rate 

titrated to maintain a partial pressure of oxygen (PaO2) of > 95 mmHg and normocapnia. 

PEEP levels were maintained at 5 cm H2O to minimise de-recruitment consistent with 

common clinical practice and known to have no effect on cerebral blood flow [14] (and ref 2 of 5). 

Neuro-monitoring included a Lycox PTi02 probe and an intracranial Pressure (ICP) monitor, 

(Oxford Optronics, Ltd, Oxford, United Kingdom). Craniectomies were performed prior to 

injury but dura was left intact to avoid any effect on intracranial pressure.  Craniotomies for 

the insertion of both probes were performed exactly 15mm lateral to the sagittal suture and 

anterior to the coronal suture [11, 15].  Probes were introduced at 35mm and 15mm from the 

skull respectively after piercing the dura with the end of the tip located at the white matter as 

previously performed [16]. 

In order to avoid red blood cell storage into the sheep’s spleen and maintain stable 

haemoglobin throughout the study [17, 18], ligation of the splenic artery was performed as in 

previous studies [16] (Refs 1 of 5 and 2 of 5).  

The monitoring and preparation phase was completed with an intracardiac echocardiography 

(ICE) guided insertion of a transeptal catheter into the left cardiac atrium (LA). 

Echocardiography images were obtained using an Acuson Sequoia C512 scanner (Siemens, 

California). Transeptal puncture and insertion of a pigtail catheter into the LA followed 

previously described methods [19]. 

 

Trauma model  

Under anaesthesia, a blunt injury was applied over the left temporal bone using a non-

penetrating stunner (model MKL, Karl Schermer, Ettlingen Germany) with the intention to 
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generate a severe head injury but without leading to brain death,  causing both contusional 

and acceleration injury [20]. After injury, burr holes were formalised and the dura pierced for 

the insertion of pressure and tissue-oximetry probes as previously described (Ref 2 of 5). The 

main difference from previous study (Ref 2 of 5), was that in this study the goal was to achieve a 

severe head injury. This was achieved by recruiting animals of significantly lower weight, 

(40-45 kg compared to 65-70 kg). The impact force used remained unchanged expecting a 

greater injury in a smaller brain.  

 

Protocol for microspheres injection 

At each time point (T0 corresponding to baseline, T1-to-T4 corresponding to first to fourth 

hours after trauma respectively) an injection of colour-coded microspheres (E-Z TRAC; 

Interactive Medical Technology, Los Angeles, CA) was done through the LA pigtail catheter 

as performed previously [16, 21] (2 of 5). Randomly assigned colours at each time-point and 

subject minimised selection biases and allowed the tracking of RMBF at specific anatomical 

regions for each time point and subject. Five different colours (purple low, purple high, pink 

high, yellow high and coral low) were recommended by the manufacturer 

www.microspheres.net to facilitate cytometric counts. Each injection included a 

homogeneous mixture of one colour-microsphere with a density of 5 million spheres in 0.8 

ml. This microsphere density has been used [22] without causing microvascular occlusion.  

Microspheres were injected thirty seconds after the initiation of the withdrawal pump. The 

withdrawal pump was connected to the arterial catheter with the intention to withdraw blood 

at a rate of 10 ml/min to obtain the reference blood sample required for the calculation of 

tissue RMBF. Two minutes after commencement of the withdrawal pump the reference 

blood sample collection was completed and the inline catheter was flushed with Tween 80 

reagent to recover microspheres entrapped in the line [23]. 

http://www.microspheres.net/
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This protocol otherwise reproduced that of previously published studies [16] (2 of 5). 

 

Euthanasia and post-mortem tissue manipulation 

After five hours of continuous monitoring and microsphere injection, sheep were euthanized 

under non-recovered anaesthesia with a bolus injection of 0.5 mL/kg of sodium 

pentobarbitone. After confirmation of death (asystole arrest), the brain was extracted, 

weighed and fixed with 10% formalin for three weeks.  

 

Brain harvesting technique  

Brain harvesting was facilitated with the use of a round reciprocating saw sectioning 

approximately 5 cm bone sections from the temporal region to the frontal sinuses. These 

bone sections were removed with simultaneous dissection of the dura to avoid parenchymal 

tearing.  Once the brain was fully exposed, the olfactory bulbs, optic chiasm, tentorium and 

cranial nerves were progressively sectioned as the brain was lifted from the base of the skull. 

This approach achieved a controlled dissection avoiding injury to the brain tissue [12]. Brains 

were weighted prior to 10% formalin fixation for a minimum of three weeks. 

 

Tissue sampling model 

After the period of immersion fixation, brains were macroscopically inspected to assess for 

cortical impacts, haemorrhages or the presence of a contra-coup injury. Following external 

inspection, each brain was sectioned creating 5mm antero-posterior slices. Each slice was 

macroscopically inspected to identify regions of maximal contusion. Cone samples were 

extracted from pre-defined anatomical regions these labelled as follows: AL corresponding to 

the core of contusion at the side of the injury; BL, the peri-contusional region at the side of 

the injury; AR, the mirror region to the core of contusion on the contralateral side; BR, the 
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mirror region to the peri-contusional region on the contralateral side; C, the thalamus at the 

ipsilateral side to the contusion and D corresponded to the medulla, this method was 

reproduced from a previous study (Ref 1 and 2 of 5). Adjacent tissue blocks were assigned 

for both cytometric and histological analysis, to superimpose histology with cerebral blood 

flow data. 

Samples from skin, kidney, heart and spleen were extracted from each sheep to demonstrate 

systemic distribution of microspheres as well as to confirm the presence of splenic infarcts 

representing successful spleen ligation respectively. 

 

Quantification of microvascular blood flow 

The total amount of each colour microsphere imbedded in each particular region of interest 

used a previously validated cytometric analysis (Ref 24). RMBF was calculated from the 

known microsphere concentration injected into the arterial supply and the amount of each 

colour microspheres found in each reference blood sample. [24]. RMBF represents the 

proportion of microspheres trapped in the targeted tissue in relation to the total quantity of 

spheres per mL of blood per minute of the reference sample using the equation: 

       RMBF (mL/min/g) = (Total tissue spheres) / [(Tissue weight, g) x (Reference Spheres/mL/min)] [25]  

Cytometric analysis was performed at the Interactive Medical Technology (IMT), Los 

Angeles, California, US www.microspheres.net. 

 

Immunohistochemestry processing 

Immunohistochemistry analysis was performed at the neuro-pathology laboratory, Royal 

Brisbane and Women’s Hospital, QLD, Australia. Immunohistochemistry used a Leica 

Novolink Polymer Detection Systems Kit (Leica Microsystems Pty Ltd, North Ryde, 2113 

Australia) as per manufacturer’s instructions www.leica-microsystems.com. Sections had 

paraffin removed through a series of xylene immersions and re–hydrations. Antigen retrieval 

http://www.microspheres.net/
http://www.leica-microsystems.com/
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was carried out using Leica BOND ER1 solution. Sections were incubated with a protein 

block. The primary antiserum made up in Leica BOND Antibody Diluent was applied to the 

sections.  

 

Immunohistochemestry and Hematoxillin –Eosin scoring and Interpretation 

Immunohistochemistry analysis using APP antibodies staining was applied to all targeted 

areas of interest. APP antibody staining was used to identify areas of tissue with high density 

of APP staining, specifically at regions of interest. APP expression is considered to be a very 

early marker of neuronal damage [26] and therefore suitable as an early histopathological 

marker for a 4 hour study. A pre-existing grading system measuring the presence of APP and 

structured into 3 qualitative categories dependent upon the severity of injury was applied. 

This qualitative score defined the APP staining as: Mild: a focal contusion with APP 

labelling limited to the site of injury,  Moderate-: a pattern of APP staining greater than one 

hemisphere, greater than half a hemisphere or less than half a hemisphere and Severe: 

characterised for the presence of diffuse staining and sub-classified as either diffuse vascular 

injury, diffuse axonal injury with macroscopic haemorrhage, diffuse axonal injury with 

microscopic haemorrhage/tissue tears or diffuse axonal injury [12]. Each animal had samples 

for both cytometric count of RMBF and immunohistochemistry at each anatomical region of 

interest with the intention to superimpose flow data with histopathology data at each area of 

interest and at each time point before and after severe head injury. 

 

Statistical Analysis 

RMBF raw data for each sheep was plotted over time and time averaged for the study cohort. 

The ratio of RMBF from 1 to 4 hours after injury (T1 – to – T4) compared to baseline (time 
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zero – T0) was also plotted, with a ratio below one representing a decrease in RMBF over 

time and a ratio over one representing an increase in RMBF over time. 

To test for statistical differences we used a mixed effects regression model of the ratios from 

times T1 to T4 with a random intercept for each sheep to control for correlated data from the 

same sheep. We fitted an independent effect at each time (T1 to T4) as we were uncertain of 

how the change in RMBF over time would look. All the plots and regression models were 

run separately for each area studied (AR, BR, AL, BL, C and D). We used the R software 

version 3.1.2 for all analyses (www.r-project.org). 

 

Results 

A convenience sample of eight sheep weighting 40 – to – 45 kg was used. Subjects remained 

cardio-vascularly stable throughout the entire study time even after a severe head injury 

(Table I), except for one subject (subject number 5) who became profoundly vasoplegic after 

injury in association with bilateral fixed mydriasis and a comminuted skull fracture. These 

signs suggested high intracranial pressures and a cerebral herniation.  Insertion of intracranial 

pressure probes was not feasible; therefore ICP could not be quantified due to the fractures. 

Systemic variables known to influence cerebral perfusion and reflecting peripheral oxygen 

extraction, such as cardiac output (CO) and Central Venous Oxygen Saturation (SVc02) were 

stable throughout the study (Table II). PaO2 and partial pressure of arterial CO2 (PaCO2) 

affecting oxygen delivery to tissues and cerebral blood volume, were unchanged during the 

study period (Table III). Blood hemoglobin concentration was maintained through the study 

via a spleen ligation, to limit effects on oxygen delivery to tissues and microcirculation 

rheology (Table IV). Cerebral Partial Tissue Oxygenation (PTi02) was recorded in every 

subject from hour one after trauma as PTi02 probes were inserted after formalising the 

craniectomies (Table V). PTi02 amongst subjects showed compromised levels of tissue 

http://www.r-project.org/
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oxygenation through all times except for subject number three which maintain normal and 

hyperaemic values. PTi02 was reflecting only tissue oxygenation at the ipsilateral side to the 

injury. 

 

RMBF Analysis 

RMBF values for each subject and tissue region over the entire study time for each subject 

and tissue region are shown in Figure 1 with their means in Figure 2. RMBF ratios for each 

subject and tissue region over the four hours from baseline are shown in Figure 3. The 

horizontal line at a ratio of 1 indicates no changes on RMBF from baseline.  RMBF mean 

ratios from all subjects per anatomical region and time are in Figure 4. RMBF means and 

95% confidence intervals represented by the vertical lines are shown in Figure 5, with 

statistical significance indicated by those confidence intervals that do not cross the horizontal 

reference line of 1 (no change from baseline). RMBF for all anatomical regions and at all 

times were reduced from baseline (pre-injury) but were not significantly different from 

baseline. 

Regional flow in the y-axis is represented as per 1mg tissue weight, showing that in our 

study, physiological RMBF values were found, when normalised to a 100 mg tissue weight.  

 

APP Scoring 

Results for APP scoring are summarised in Table VI. Minimal APP staining pattern was seen 

predominantly in all anatomical regions with moderate and severe APP staining pattern also 

present and distributed homogeneously over all anatomical regions.  
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Extra-cranial tissues 

Direct quantification of RMBF was also performed at extra-cranial regions, in particular, at 

the skin, heart, kidney and spleen (Figure 6). The aim was to demonstrate systemic 

distribution of colour coded microspheres as a proof of concept during all times. In addition, 

minimal presence of RMBF at the spleen aimed to demonstrate that spleen artery ligation had 

been performed efficiently. 

 

Discussion  

This study extends our understanding of the effect of increased traumatic brain injury on the 

micro-circulation. Severe head injury as opposed as mild (REF 2 of 5) was induced with the 

use of smaller animals, the appliance of the same stunner force and the maintenance of all 

other methodological aspects of the study, generating two populations of subjects, 

statistically comparable. 

The most important finding on this severe head injury study is the presence of a reduction of 

RMBF from baseline (RMBF pre-injury) in all subjects, at all anatomical regions of interest 

and at all times through the study length, as seen in figure 4. This finding is consistent with 

the a priori expectations regarding cerebral microcirculation after severe head injury; hence, 

contrasts with the presence of heterogeneity and temporal variability found in a mild head 

injury study (REF 2 of 5), as a consistent reduction on cerebral flow is found in all targeted 

regions during the four hours of study, although this reduction in RMBF is not statistically 

significant (Figure 5), likely to having used a reduced animal cohort; however these 

experimental studies focus their relevance in their design and plausibility of findings. 

When cerebral RMBF values were normalised to a global unit of measure (ml /100 g tissue 

/min), physiological range of RMBF values were found through all anatomical regions.  
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Furthermore, mean cerebral RMBF values at baseline were above the ischemic threshold of 

15-20ml/100g/min [27] despite the presence of severe head injury. This is suggesting that in 

this severe head injury model, RMBF although consistently reduced from baseline, was 

maintained within normal ranges. This finding was not expected as the induced trauma was 

sufficient to generate clinical complications such as compound skull fractures, traumatic 

mydriasis and significant acceleration deceleration drift of the head seen in some of our 

subjects. However, it is compatible with the APP staining results which demonstrated a 

predominant mild scoring, suggesting the presence of mild axonal injury, instead of severe. 

RMBF data in this severe head injury study was compared with the previous study 

corresponding to mild head injury. No statistical significance was found within RMBF 

distribution and quantification throughout all the anatomical regions of interest and during 

the four hours of study within these two cohorts. 

 

The cerebral RMBF decline from baseline in this study was not related to an increase in ICP 

nor a reduction in CPP as these parameters were stable and in normal ranges for all subjects 

except for subjects numbered six to eight (Table I). This suggests that reductions in cerebral 

RMBF post injury may be also related to early inflammatory changes and tissue disruption 

after trauma even prior to the establishment of high intracranial pressure. This finding raises 

concerns related to cerebral vulnerability to ischemia even in the absence of poor intracranial 

compliance. This study’s implications and translation into clinical practice is limited by the 

timeframe of the study, as it focuses on cerebral microcirculation within four hours after 

injury. However, as previously emphasized, the novelty of this study design relies on the 

microcirculatory quantification using cytometric methods when targeting specific anatomical 

regions, confirming the reduction of RMBF from the very first hour after trauma. Clinical 

implications are related to the risk of developing cerebral infarcts even with the co-existence 
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of a preserved ICP suggesting that efforts should be oriented to optimise cerebral perfusion, 

even within the first four hours after head injury, regardless the level of ICP. 

 

Histopathological analysis using APP staining on the adjacent anatomical regions where flow 

cytometric count had been performed showed predominantly minimal APP staining 

corroborating the presence of minor degree of axonal injury. Axonal disruption can be 

histologically graded by quantification of APP staining with a good correlation between the 

amount of staining and the intensity of axonal damage [28-31]. However, even in the setting 

of mild axonal injury, a time-dependent reduction in cerebral RMBF close to ischemic 

thresholds was found in all regions, from baseline. This is an important finding as it may 

indicate that even in situations where axonal damage is not derived from the primary injury; 

there is still the potential for the development of cerebral infarcts. Whilst this theoretical 

principle is widely accepted in neurocritical care, this study compares and contrasts for first 

time the interrelation between tissue damage and microcirculation in experimental models at 

specific anatomical regions, using histopathology and quantification of microcirculation 

analysed concurrently. 

From the APP validated scoring we can imply that even in this severe head injury model, 

APP staining suggests that the cerebral injury can be mild or moderate (Table VI). However, 

whilst mild staining was distributed in the totality of the supratentorial regions, with only 

moderate to severe axonal injury at the medulla regions in the setting of mild injury; after a 

more severe injury, an heterogeneous distribution of axonal injury including mild to severe 

APP staining pattern, was found at both supratentorial and medullar regions. APP staining 

still remains an experimental marker in the field of neurotrauma, but it is reproducible and its 

applicability has been validated, used to define the distribution of axonal damage, as 

demonstrated in this study.  
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Cytometric analysis in other organs, in particular the skin and spleen are shown in figure 6. 

RMBF in spleen showed negligible perfusion as consistent with spleen ligation. Spleen 

ligation allowed the maintenance of a steady-state level of haemoglobin, particularly during a 

stress response phase when splenic red blood cell storage is well described in ovine models 

[18]. Splenic RMBF in spleen was expressed in ml/ g/ min, varying between 0.0030 – 0.0036 

ml/g / min, a thousand fold less than normal controls [13]. This finding confirms that our 

splenic artery ligation was successful as well proven by the necrotic aspect of the spleen after 

harvesting. The main effect derived from the arterial spleen ligation is found on the stability 

of haemoglobin in all subjects and over all times after injury (Table IV); suggesting that the 

temporal changes on cerebral RMBF and PTiO2 seen in our subjects were not related to 

anaemia. This is an important finding as this reflects the state of cerebral microcirculation 

after trauma in conditions of baseline haemoglobin, a significant confounder in 

microcirculation. Although clinical extrapolations are not possible considering the 

experimental nature of this study, it is important to highlight that the haemoglobin levels in 

this cohort of subjects are to a degree higher to those currently accepted within clinical 

practice, especially amongst physicians tolerating a restrictive transfusion threshold. 

 

In this study, PTi02 values in five of the eight subjects studied, maintained normal levels of 

tissue oxygenation, despite the presence of a decay in RMBF through time from baseline. 

One patient (subject five) had no recordable PTi02 as probes could not be safely introduced 

due to the presence of compound cranial fracture. These findings indicate that despite the 

global reduction in RMBF from baseline, the maintenance of above-ischemic perfusion 

thresholds may be sufficient to preserve tissue oxygenation, emphasizing the relevance of 

preserving cerebral perfusion even from early hours post trauma. Of note, RMBF was not 

related to the state of CPP but rather the preservation of cerebral microcirculation. 
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It is difficult to derive clinical correlates in humans from experimental models. The study 

was of much shorter length then the clinical course of a human head injury. Although longer 

times of monitoring could have demonstrated a wider view of physiopathology processes 

affecting microcirculation after trauma, the focus of this study was the early changes in 

RMBF in specific regions of interest and in combination with the early expression of APP as 

a reliable marker of axonal damage.  

 

Conclusion 

After severe head injury, cerebral microcirculation at the ipsilateral and contralateral site of a 

contusion in addition to the ipsilateral thalamus and medulla shows a consistent decline over 

the first four hours after injury. Although non statistically significant, a reduction in cerebral 

microcirculation and an over-expression of APP staining as indicator for axonal damage are 

related to the degree of head injury.  
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Table I: Mean arterial blood pressure (MAP), Intracranial Pressure (ICP) and cerebral 

perfusion pressure (CPP) values in all subjects at each time point 

 

Table II: SV02 and CO for all subjects 

 

Table III: PH / PC02 and P02 values per subject at each time points 

 

Table IV: Haemoglobin levels (g/dL) for all subjects over time 
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Figure legends 

 

Figure 1:  

RMBF for all subjects at all regions of interest over time 

 

Figure 2:   

Mean RMBF at all regions of interest over time 

 

Figure 3: 

Line plots of Ratio from baseline for all subjects and all regions of interest 

The horizontal line at a ratio of 1 indicates no change from baseline 

 

Figure 4: 

Mean line plots of Ratio from baseline for all subjects and all regions of interest 

The horizontal line at a ratio of 1 indicates no change from baseline 

 

Figure 5:  

Means and 95% confidence intervals (vertical lines) from the mixed models. Times where 

the confidence intervals do not cross the horizontal reference line at 1 indicate a statistically 

significant change from baseline. 

 

Figure 6: RMBF at extra-cranial regions: the skin, heart, kidney and spleen 


