

Queensland University of Technology Brisbane Australia

This may be the author's version of a work that was submitted/accepted for publication in the following source:

Trost, Stewart, Drovandi, Christopher, & Pfeiffer, Karin (2016) Developmental trends in the energy cost of physical activities performed by youth. *Journal of Physical Activity and Health*, *13*(6 (S1)), S35-S40.

This file was downloaded from: https://eprints.qut.edu.au/221964/

© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record (*i.e.* published version) of the work. Author manuscript versions (as Submitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appearance. If there is any doubt, please refer to the published source.

https://doi.org/10.1123/jpah.2015-0723

1 2	
3	Title Page
4 5	
6 7	
8	This submission is for the 2016 NCCOR supplement
9	
10 11	
12	Developmental Trends in the Energy Cost of Physical Activities Performed by Youth
13 14	
15	
16 17	Running head: Energy Cost of Youth Activity
18	
19	
20 21	
22	
23 24	
25	
26	
27 28	
29	Key words: Exercise, Absolute Intensity, Measurement, Children, Adolescents.
30 31	
32	
33 34	Word Count: 2,000 (including Abstract and References)
34 35	Date of Resubmission: 5/27/2016
36	Date of Resubmission. 3/27/2010
37 38	
39	
40 41	
42	
43	
44 45	
46	
47 48	
49	
50 51	
51 52	
53	
54 55	
56	
57 58	
58 59	
60	

Energy cost of youth activity

Abstract
Background: Published energy cost data for children and adolescents are lacking. The
purpose of this study was to measure and describe developmental trends in the energy cost
of 12 physical activities commonly performed by youth.
Methods: A mixed age cohort of 209 participants completed 12 standardized activity trials
on 4 occasions over a 3-year period (baseline, 12-months, 24-months, and 36-months) while
wearing a portable indirect calorimeter. Bayesian hierarchical regression was used to link
growth curves from each age cohort into a single curve describing developmental trends in
energy cost from age 6 to 18 years.
Results: For sedentary and light-intensity household chores, YOUTH METs (METy) remained
stable or declined with age. In contrast, METy values associated with brisk walking, running,
basketball, and dance increased with age.
Conclusions: The reported energy costs for specific activities will contribute to efforts to
update and expand the youth compendium.

15	Introduction
16	Quantifying the absolute intensity or energy cost of movement is essential for the
17	accurate prediction of daily energy requirements and an important goal in many physical
18	activity studies involving children and adolescents. ¹ Validated direct and indirect measures
19	of activity-related energy expenditure are available; ² however, because they require
20	sophisticated instrumentation and limit the type of activities that can be measured, they are
21	impractical to implement in large population-based studies and/or field-based research. ^{1,2}
22	For this reason, energy cost is commonly estimated from self-report or observational data
23	using published tables or compendia of energy cost values.
24	The Compendium of Physical Activities provides empirically-based energy cost
25	estimates (METs) for more than 600 specific activities from 21 activity categories. ³⁻⁵
26	However, because the energy cost estimates are based on studies of healthy adults, they
27	are not valid for use in children and adolescents. To address this limitation, Ridley and
28	colleagues ⁶ developed the <i>Compendium of Energy Expenditures in Youth</i> . However, due to
29	the lack of published energy cost data for children and adolescents, 65% of the values listed
30	were estimated from the adult Compendium.
31	As a contribution to ongoing efforts to update and extend the Youth Compendium,
32	the purpose of this study was to quantify the energy cost of 12 commonly performed
33	physical activities in an age-diverse cohort of children and adolescents. Implementing an
34	accelerated longitudinal study design, ⁷ we also describe sex-specific developmental trends
35	in the energy cost of each activity from age 6 to 18 years.
36	Methods
37	In total, 209 children and adolescents (51.7% Male, 86.1% White, non-Hispanic)
38	participated in the study. Descriptive characteristics for the baseline sample are presented
	2
	Human Kinotics, 1607 N Market St. Champaign, II, 61925

Journal of Physical Activity and Health

 Energy cost of youth activity

in Table 1. Prior to participation, parental written consent and child assent were obtained. The study was approved by the institutional review boards of Oregon State and Michigan State University. --Insert Table 1 near here--Study Protocol Participants performed 12 standardized activity trials on four occasions over a 3-year period (baseline, 12-month-, 24-month, and 36-month follow-up). The trials were completed over two laboratory visits scheduled within a 2-week time period. On visit 1, participants completed the following six trials: lying down, hand writing, laundry task, throw and catch, comfortable over-ground walk, and aerobic dance. On visit 2, participants completed the remaining 6 trials: computer game, floor sweeping, brisk over-ground walk, basketball, over-ground run/jog, and brisk treadmill walk. Each activity trial lasted 5 min with the exception of the lying down trial, which lasted 10 min. To ensure even pacing during the over ground walking and running trials, a research assistant walked/jogged alongside each participant. Verbal feedback was provided if the research assistant felt that the pace was inappropriate. The walking speed during the treadmill walk was set to equal the walking speed achieved during the brisk over ground walking trial. Self-selected walking and running speeds were established at baseline and replicated at 12-, 24-, and 36-months follow-up. A detailed description of the activity trials can be found elsewhere.⁸ Instrumentation Oxygen uptake (VO_2) during each activity was measured breath-by-breath and averaged every 10 sec using the Oxycon Mobile (Yorba Linda, CA), a light weight portable indirect calorimetry system. Prior to each test, the Oxycon unit was calibrated according to manufacturer's guidelines. Flow control and gas calibration was performed using Oxycon's

Journal of Physical Activity and Health

Energy cost of youth activity

63	automated calibration system, with the CO_2 and O_2 analyzers calibrated against room air as
64	well as to a reference gas of known composition (4% CO_2 and 16% O_2). The Oxycon Mobile
65	has been shown to provide valid measures of oxygen uptake over a range of exercise
66	intensities. ⁹
67	Data treatment
68	Customized software was used to calculate mean VO_2 recorded between minutes 2.5
69	and 4.5 of each activity trial. For the lying down trial, VO_2 was calculated from data collected
70	between minutes 7.0 and 9.0. For each participant, the attainment of steady state was
71	confirmed by inspection of recorded HR and VO_2 values. Tolerance levels were \pm 5 bpm and
72	\pm 10% for HR and VO ₂ , respectively. YOUTH METs (METy) were calculated by dividing mean
73	weight relative VO_2 by resting energy expenditure (REE). ¹⁰ REE was predicted from the
74	participant's sex, age, body mass, and height using Schofield's equation for children aged 3–
75	10 or 10–18 yr. ¹¹
76	Statistical analyses
77	Descriptive statistics (Mean, SD, and Range) for activity-specific VO $_2$ and MET values,
78	measured at baseline, were calculated across the entire sample and groups defined by age.
79	To describe developmental trends in energy cost between the ages of 6 and 18 years, a
80	Bayesian framework was employed to model energy cost (Youth METs), measured at
81	baseline, 12-, 24- and 36-months follow-up, as a quadratic function of age, with activity type
82	and gender included as factor variables. Interaction terms between all variables were
83	included, allowing for a different quadratic relationship for each activity and gender
84	combination. To account for the correlation between repeated observations from the same
85	individual, the model included a random intercept term in the mean for each individual.
86	Markov chain Monte Carlo procedures were then used to estimate the expected MET value

Energy cost of youth activity

87	and 95% credibility interval for each age value within the age range of the data for every
88	combination of activity type and gender. The Bayesian model was implemented using the
89	"rjags" package in the R statistical software package.
90	Results
91	Table 2 displays the energy cost estimates for the 12 activities measured at baseline.
92	Applying conventional MET-based definitions of intensity, lying down and playing computer
93	games were considered sedentary (\leq 1.5 METs); hand writing while seated, throwing and
94	catching, folding laundry, sweeping the floor, dancing, and comfortable-paced walking were
95	considered light-intensity PA (\geq 1.5 and < 4 METs.); walking briskly over ground or on a
96	treadmill were considered moderate-intensity PA (\geq 4 and < 6 METs); while playing
97	basketball or running were considered vigorous-intensity PA (\geq 6 METs). There was,
98	however, substantial individual variability in the energy cost of each activity, and many of
99	the activities were completed at an absolute intensity ranging from light to vigorous.
100	Insert Table 2 near here
101	Based on cross-sectional baseline data, weight-relative VO $_2$ for each activity declined
102	with age. For the sedentary and low-to-moderate intensity activities (lying down, computer
103	game play, seated hand writing, throwing and catching, folding laundry, floor sweeping, and
104	comfortable-paced walk) METy remained relatively stable across four age groups. However,
105	for the remaining moderate-to-vigorous activities (aerobic dance, brisk walking over ground,
106	brisk treadmill walking, playing basketball, and running), METy tended to increase with age.
107	Figure 1 displays the developmental trends in energy cost (METy and 95% credibility
108	interval) for all 12 activities estimated from the accelerated longitudinal analysis. Separate
109	curves were generated for boys and girls; however, no significant sex differences were
110	observed. For lying down, seated hand writing, computer game play, folding laundry,
	5

Journal of Physical Activity and Health

Energy cost of youth activity

2 3	111	throwing and catching, floor sweeping, and comfortable-paced walking, METy remained
4 5 6	112	stable or declined marginally between the ages 6 and 18. For aerobic dancing, brisk
7 8	113	walking, and running, METy increased with age, with running exhibiting a steep age-related
9 10 11	114	increase in absolute energy cost. The energy cost of basketball exhibited a modest
12 13	115	curvilinear relationship with age. In general, the activity-specific METy estimates derived
14 15 16	116	from the longitudinal data were commensurate with those obtained in cross-sectional
17 18	117	analyses.
19 20	118	Insert Figure 1 near here
21 22 23	119	Discussion
24 25	120	The current study reports measured energy cost values (weight relative VO_2 and
26 27	121	METy) for 12 physical activities commonly performed by children and adolescents. Activities
28 29 30	122	ranged from sedentary to vigorous, and represented a number of domains or activity
31 32	123	categories included in the original Youth Compendium, including sedentary behavior,
33 34 35	124	transport, play/sport, school work, and chores. The resultant estimates will contribute to
36 37	125	ongoing efforts to update and expand the <i>Compendium of Energy Expenditure for Youth</i> . ⁶
38 39	126	A unique aspect of this study was the use of an accelerated longitudinal study design
40 41 42	127	to model sex specific developmental trends in energy cost. Accelerated longitudinal designs
43 44	128	are designs in which adjacent segments of longitudinal data on a specific age cohort are
45 46 47	129	linked with other temporally related age cohorts to determine the existence of a common
47 48 49	130	developmental trend over much longer periods. ⁷ Through the implementation of Bayesian
50 51	131	hierarchical modelling, we combined growth curves from each overlapping age cohort into a
52 53 54	132	single curve describing developmental trends in energy cost over the entire age range. This
55 56	133	analysis yielded a number of important insights with significant implications for future
57 58 59 60	134	iterations of the Youth Compendium. First, expressed as METy, the energy cost of sedentary

		Journal of Physical Activity and Health
1		Energy cost of youth activity
2 3 13 4	35	and low-intensity physical activities remained relatively stable during childhood and
5	36	adolescence, suggesting that a single METy value could be assigned to activities of this type.
7 8 13	37	Second, METy for activities dependent on motor performance and/or motivation varied
9 10 13 11	38	systematically with age. Within our cohort, METy values for household chores tended to
12 13	39	decrease with age, while METy for sporting and fitness activities tended to increase with
14 15 14 16	40	age. Although these observations require confirmation in other samples, our results
17 14 18	41	confirm the need for age-group specific energy cost values for activities in these categories.
19 20 ¹⁴ 21	42	Third, METy values for moderate-to-vigorous ambulatory activities such as brisk walking and
22 14 23	43	running increased with age, despite the fact that self-selected walking and running speeds
24 14 25 26	44	were held constant over the four measurement waves. Because resting energy expenditure
20 27 ¹⁴ 28	45	and the energy cost of locomotion decrease with age differentially, the MET value for
30	46	walking and running tends to increase. This finding supports the current practice of
31 14 32 33	47	considering both the child's age and speed of locomotion when assigning METy values to
34 ¹⁴ 35	48	walking and running. ⁶ Fourth and finally, our study provided no consistent evidence of sex
37 38	49	differences in METy values, thus precluding the need to list sex-specific energy cost values in
39 15 40	50	future iterations of the compendium.
41 42 42		
43 44 45		
46 47		
48 49 50		
51 52		
53 54 55		
56 57		
58 59		_
60		7 Human Kinetics, 1607 N Market St, Champaign, IL 61825

1		
2 3	454	Funding Course
3 4	151 152	Funding Source
5	152	This study was supported by the NIH Grant R01 55400
6	100	
7 8		
9		
10		
11 12		
13		
14		
15 16		
17		
18		
19		
20 21		
22		
23		
24 25		
25 26		
27		
28 29		
29 30		
31		
32		
33		
34 35		
36		
36 37 38		
38 39		
40		
41		
42 43		
44		
45		
46		
47 48		
49		
50		
51 52		
53		
54		
55 56		
56 57		
58		
59		
60		8

Energy cost of youth activity

References

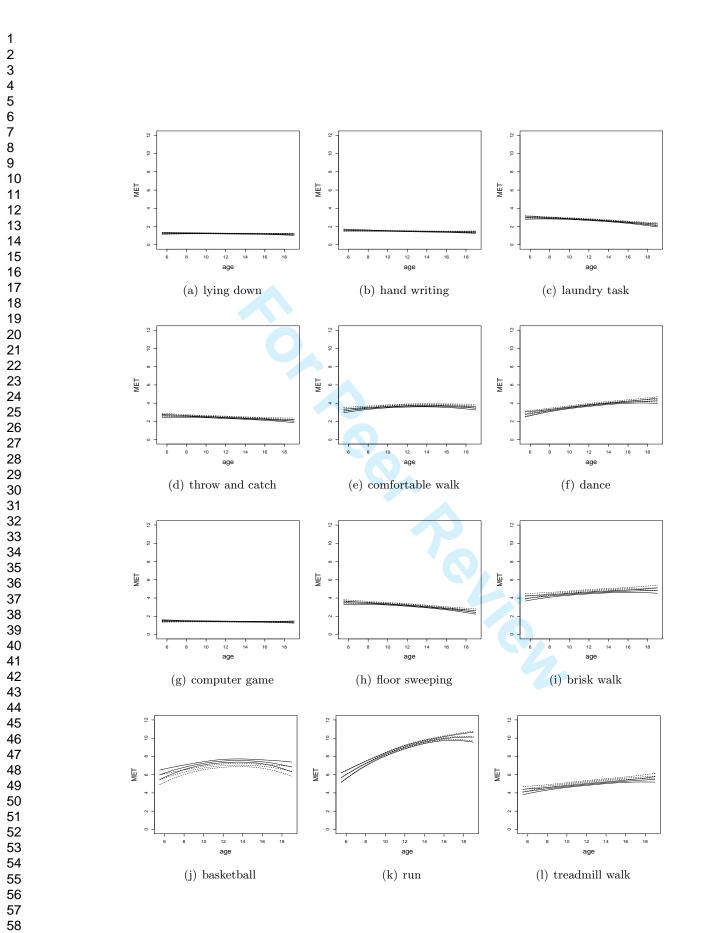
- 1. Trost SG. Measurement of physical activity in children and adolescents. *Am J Lifestyle Med* 2007;1:299-314.
- 2. LaMonte MJ, Ainsworth BE. Quantifying energy expenditure and physical activity in the context of dose response. *Med Sci Sport Exerc* 2001;33(6 suppl):S370–S378.
- 3. Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: Classification of energy costs of human physical activities. *Med Sci Sport Exerc* 1993;25:71-80.
- 4. Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: An update of activity codes and MET intensities. *Med Sci Sport Exerc* 2000;32 (Suppl):S498-S516.
- 5. Ainsworth BE, Haskell WL, Herrmann SD et al. 2011 Compendium of physical activities: a second update of codes and MET values. *Med Sci Sport Exerc* 2011;43(8):1575-1581.
- 6. Ridley K, Ainsworth BE, Olds TS. Development of a compendium of energy expenditures for youth. *Int J Behav Nutr Phys Act* 2008, 5:45
- 7. Bell RQ. Convergence: an accelerated longitudinal approach. Child Dev 1953;24:145-152
- 8. Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut-points for predicting activity intensity in youth. *Med Sci Sport Exerc* 2011;43(7):1360-1368.
- 9. Rosdahl H, Gullstrand L, Salier-Eriksson J, Johansson P, Schantz P. Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. *Eur J Appl Physiol* 2010;109: 159–71.
- 10. McMurray RG, Butte NF, Crouter SE, Trost SG, Pfeiffer KA, Bassett DR, et al. Exploring metrics to express energy expenditure of physical activity in youth. PLoS ONE 2015;10(6): e0130869. doi:10.1371/journal.pone.0130869
- 11. Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. *Hum Nutr Clin Nutr* 1985;39(1 suppl):5–41.

Table 1. Participants' characteristics at baseline (n = 209)

Characteristic	
Age (yr)	11.0 ± 2.7
Height (cm)	146.9 ± 16.6
Body mass (kg)	43.7 ± 17.3
BMI percentile	61.7 ± 28.3
Age cohort distribution (N, %)	
6 yr	8, 3.8%
7 yr	20, 9.6%
8 yr	15, 7.2%
9 yr	22, 10.5%
10 yr	24, 11.5%
11 yr	24, 11.5%
12 yr	24, 11.5%
13 yr	29, 13.9%
14 yr	26, 12.4%
15 yr	9, 4.3%
16 yr	8, 3.8%
% male	51.0%
% obese/overweight	26.2%

Table 2. Descriptive statistics for baseline VO_2 and METy. Data are reported for the entire sample and groups defined by age.

		VO ₂ (mL ⁻ kg ^{-1.} min ⁻¹)			МЕТу		
Activity	N*	Mean	SD	Range	Mean	SD	Range
Resting EE†	209						
Lying down	198	6.0	1.6	3.5 – 10.9	1.3	0.2	1.0 - 1.9
Computer game	198	7.0	1.7	4.0 - 12.6	1.5	0.2	1.0 – 2.5
Hand writing	203	7.3	2.0	3.6 - 13.4	1.6	0.3	0.9 - 3.0
Throw and catch	203	12.6	3.9	5.3 – 28.2	2.7	0.5	1.6 - 5.2
Laundry task	202	13.5	3.7	6.4 – 25.0	2.9	0.5	1.7 – 4.7
Sweeping	204	15.7	4.6	7.5 – 32.6	3.4	0.6	1.9 – 5.4
Aerobic dance	204	17.6	4.0	8.3 - 35.5	3.9	0.9	1.5 – 7.0
Comfortable walk	198	17.7	3.9	10.2 - 30.8	3.8	0.6	2.5 – 5.8
Brisk walk	203	22.0	4.5	11.0 - 34.3	4.8	0.8	2.7 – 7.7
Treadmill walk	200	23.7	4.5	12.5 – 34.5	5.2	0.9	3.4 – 8.5
Basketball	200	32.9	7.9	16.0 - 59.8	7.2	1.6	4.1 - 14.4
Run	200	39.9	7.0	21.0 - 58.1	8.9	1.7	4.5 - 15.5
	Age: 6	5 to 8 years (N = 43, N	/lean age = 7.2	± 0.8 y)		
Resting EE †	43	5.9	0.7	4.1 - 7.6	-	-	-
Lying down	40	7.3	1.7	4.4 - 10.9	1.2	0.2	1.0 - 1.8
Computer game	39	8.5	1.5	5.7 – 12.6	1.5	0.2	1.1 - 1.9
Hand writing	41	9.2	2.0	4.3 - 13.4	1.6	0.3	1.1 – 2.2
Throw and catch	42	15.8	4.4	7.0 – 28.2	2.7	0.6	1.7 – 4.3
Laundry task	40	16.6	4.0	6.9 – 25.1	2.9	0.6	1.7 – 4.5
Sweeping	42	20.5	5.0	7.5 – 32.6	3.5	0.7	1.9 – 5.4
Aerobic dance	42	18.2	4.7	8.5 – 29.2	3.3	0.7	2.2 – 5.1
Comfortable walk	41	20.7	4.0	14.4 – 29.9	3.7	0.5	2.6 - 4.6
Brisk walk	42	25.6	4.3	11.3 - 34.3	4.5	0.7	2.8 - 6.2
Treadmill walk	41	26.8	4.3	13.5 - 33.1	4.8	0.7	3.4 - 6.3
Basketball	41	35.7	7.5	21.0 - 59.8	6.2	1.2	4.1 - 9.7
Run	39	42.3	6.7	20.9 - 53.6	7.5	1.0	4.7 – 9.5
	Age: 9	to 10 years	(N = 46, N	Mean Age = 9.	4 ± 0.6 y)		
Resting EE †	46	5.1	0.6	3.4 - 6.3	-	-	-
Lying down	45	6.3	1.3	3.6 - 9.2	1.3	0.2	1.0 - 1.8


Computer game	46	7.5	1.7	4.2 - 12.4	1.5	0.3	1.1 – 2.5
Hand writing	45	7.7	1.7	4.1 - 13.1	1.6	0.3	0.9 – 2.6
Throw and catch	45	13.8	3.4	7.1 – 27.6	2.7	0.4	1.8 - 3.7
Laundry task	45	15.0	3.2	8.2 - 23.8	3.1	0.5	1.8 - 4.7
Sweeping	46	16.9	3.2	9.5 – 24.9	3.4	0.6	2.5 - 5.0
Aerobic dance	44	18.6	4.7	8.3 - 35.5	3.8	1.0	1.6 - 7.0
Comfortable walk	44	18.9	3.6	11.8 - 30.8	3.9	0.6	2.8 – 5.9
Brisk walk	45	23.6	3.5	16.5 – 30.8	4.8	0.6	3.5 – 6.2
Treadmill walk	46	24.9	3.8	17.2 – 34.5	5.1	0.7	3.9 – 6.9
Basketball	46	34.6	7.7	17.6 – 52.5	7.0	1.3	4.7 – 10.6
Run	46	40.6	6.5	26.3 – 55.6	8.3	1.3	5.2 – 10.7
	Age: 11	to 12 years	(N = 48, N	Vean Age = 11	.4 ± 0.6 y	/)	
Resting EE †	48	4.6	0.7	2.9 - 6.1	-	-	-
Lying down	46	5.8	1.5	3.5 – 9.9	1.3	0.2	1.0 - 1.9
Computer game	45	6.5	1.6	4.3 – 9.9	1.4	0.2	1.0 - 1.8
Hand writing	46	6.8	1.6	4.0 - 12.4	1.5	0.3	1.1 - 3.0
Throw and catch	46	12.1	3.0	6.4 - 19.0	2.6	0.5	1.9 - 3.7
Laundry task	46	12.8	3.3	6.4 - 23.4	2.9	0.5	1.8 - 4.4
Sweeping	46	14.9	3.4	7.5 – 22.5	3.3	0.5	2.1 - 4.9
Aerobic dance	47	18.0	3.4	10.6 – 27.7	4.1	0.7	2.7 - 6.1
Comfortable walk	46	17.2	3.1	10.7 – 22.5	3.9	0.6	2.8 – 5.5
Brisk walk	46	20.9	3.1	14.7 – 27.4	4.7	0.6	3.5 – 6.9
Treadmill walk	45	22.7	3.3	14.9 – 28.6	5.1	0.8	4.0 - 7.7
Basketball	45	32.4	6.8	17.8 – 46.7	7.2	1.1	5.1 – 9.6
Run	46	38.8	6.4	24.7 – 58.1	8.7	1.1	6.9 – 11.5
	Age: 13	to 16 years	(N = 72, I	Mean Age = 13	8.9 ± 1.0 y	()	
Resting EE †	72	4.0	0.5	2.8 - 5.8	-	-	-
Lying down	67	5.0	0.9	3.6 - 7.4	1.3	0.2	1.0 - 1.9
Computer game	68	5.9	1.1	4.0-8.6	1.5	0.2	1.1 – 1.9
Hand writing	71	6.1	1.4	3.2 – 9.4	1.6	0.3	1.0 - 2.1
Throw and catch	70	10.2	2.4	5.3 – 19.1	2.6	0.5	1.6 - 4.0
Laundry task	71	11.2	2.3	7.3 – 17.3	2.9	0.4	2.0-4.0
Sweeping	70	12.6	2.8	7.5 – 21.6	3.3	0.5	2.2 – 4.7
Aerobic dance	71	16.5	3.4	9.6 – 25.8	4.3	0.8	2.9 – 6.2

Energy cost of youth activity

Comfortable walk	67	15.4	2.8	10.2 – 21.7	4.0	0.6	2.9 - 5.4
Brisk walk	70	19.6	4.3	11.0 - 30.9	5.1	1.0	2.7 – 7.2
Treadmill walk	68	21.9	4.7	12.5 - 32.5	5.7	1.1	3.6 - 8.5
Basketball	68	30.4	8.2	16.0 - 54.1	7.8	1.7	4.4 - 11.6
Run	69	38.9	7.6	24.6 - 58.0	10.2	1.7	6.6 – 15.5

* Sample size for each activity varies due to missing data for VO2 due to equipment malfunction, failure to meet steady state criteria, or participant absent, failed to complete the entire trial, or did not follow instructions.

[†] Resting energy expenditure (EE) predicted from the participant's sex, age, body mass, and height using Schofield's equation for children aged 3–10 or 10–18 yr.⁹

