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ABSTRACT 

 

There is an increasing interest in investigating the environmental Kuznets curve (EKC) hypothesis 

because it suggests the existence of a turning point in the economy that will lead to a sustainable 

development path. Although many studies have focused on the EKC, only a few empirical studies 

have focused on analyzing the EKC with specific reference to Indonesia, and none of them have 

examined the potential of renewable energy sources within the EKC framework. This study 

attempts to estimate the EKC in the case of Indonesia for the period of 1971-2010 by considering 

the role of renewable energy in electricity production, using the autoregressive distributed lag 

(ARDL) approach to cointegration as the estimation method. We found an inverted U-shaped EKC 

relationship between economic growth and CO2 emissions in the long run. The estimated turning 

point was found to be 7,729 USD per capita, which lies outside of our sample period. The 

beneficial impacts of renewable energy on CO2 emission reduction are observable both in the short 

run and in the long run. Our work has important implications both for policymakers and for the 

future development of renewable energy in Indonesia. 
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1. Introduction 

The quest for higher economic growth cannot be detached from the issue of energy security 

and environmental deterioration. On the one hand, serves as an essential input for economic 

activity, but on the other hand, extensive use of energy exerts greater pressure on the environment, 

either due to by-product pollutants or depletion of natural resources. In the context of 

sustainability, economic development should be achieved while making efforts to preserve the 

environment so that its utility for future generations is maintained. The environmental Kuznets 

curve (EKC) hypothesizes that instead of being harmful to the environment, economic 

development is favorable for improving environmental indicators that will eventually lead to a 

sustainable development path. The EKC hypothesis posits that the relationship between economic 

growth and environmental degradation follows an inverted U-shaped curve. It suggests that after 

exceeding a certain level of gross domestic product (GDP) per capita, the increasing trend of 

environmental degradation reverses so that higher GDP per capita leads to environmental recovery 

that reverses the environmental damage incurred at the initial stages of economic development.  

The strong links between economic development, energy consumption, and environmental 

quality render the empirical evidence of the EKC hypothesis largely significant, particularly for a 

developing country such as Indonesia, which is currently striving to boost its economy. Over the 

last decade, Indonesia’s economy grew rapidly at an annual average rate of 5.4 percent per year. 

This was followed by an increasing amount of total energy supply to approximately 1,525 million 

barrel of oil equivalents (BOE) in 2013 from 1,111 million BOE in 2000, with an annual average 

growth rate of 2.5 percent. Accordingly, the total emissions of carbon dioxide (CO2) from fossil 

fuel combustion also showed an upward trend with a slightly faster average growth rate of 3.9 

percent per year, amounting to 424.6 million tons CO2-equivalent in 2013 from 258.3 million tons 



 

 

CO2-equivalent in 2000. More than 38 percent of that combustion resulted from electricity 

generation (IEA, 2015). This has created serious environmental problems, including the threat of 

climate change. A series of energy- and environment-related policies have been introduced by the 

Government of Indonesia (GoI) as countermeasures to mitigate the environmental impacts of 

greenhouse gas (GHG) emissions. Therefore, the empirical evidence of the EKC will depict the 

efficacy of those policies in promoting green growth and harnessing a sustainable development 

path. 

Numerous studies have been carried out to investigate the existence of the EKC hypothesis 

with respect to CO2, both for developed and developing countries. However, most of them rely on 

cross-country panel data analysis, portraying only general inferences of the EKC hypothesis that 

tend to disregard both the distinctive complexity of economic environments and the historical 

experience of individual countries (Ang, 2008; Lindmark, 2002; Stern et al., 1996). These studies 

underline the need for a country-specific CO2 EKC study that provides the in-depth analysis that 

is required for framing effective energy and environmental policies for each country. Therefore, 

this paper aims to find empirical evidence of the EKC hypothesis for CO2 in the context of 

Indonesia by examining the relationship between economic growth and environmental degradation 

using the Autoregressive Distributed Lag (ARDL) bounds testing approach developed by Pesaran 

et al. (2001). Additionally, the high correlation between economic development, energy 

consumption, and environmental quality encourage us to study the EKC within this framework. 

Therefore, we also seek to study the potential of renewable energy sources in improving 

environmental quality and initiating the EKC pattern.  

The rest of this paper is organized as follows. Section 2 describes Indonesia’s pattern of 

energy consumption. Section 3 briefly explains the literature related to the EKC hypothesis. 



 

 

Section 4 outlines the research methodology and data. Section 5 presents the main findings and 

analysis of the results. Section 6 presents the conclusions and its policy implications.  

 

3. Literature review  

Although technological progress has led to new discoveries that prevent the exhaustion of 

nonrenewable resources, environmental issues remain a major problem (Kaika and Zervas, 2013a). 

This has caused a marked shift in global development issues, from limit to growth, which primarily 

focused on the scarcity of natural resources, to sustainable development issues, which are 

concerned about the environmental impact of economic development (Ekins, 1993). In the early 

1990s, the concept of the EKC hypothesis has emerged as a promising theory that will lead to 

sustainability. It began with the study of Grossman and Krueger (1991) finding an inverted U-

shaped relationship between pollutants and income per capita. The fundamental idea of the EKC 

can be found later in the study of Beckerman (1992), who claims that environmental problems are 

strongly associated with poverty and that the most feasible way to address them is to become rich. 

Panayotou (1993) argues that environmental degradation occurring in the initial stage of economic 

development is, without a doubt, inevitable. However, after reaching a certain level of income, 

further economic development will ameliorate the damage and eventually lead to improved 

environmental indicators. He also introduced the term EKC for the first time to differentiate this 

hypothesis from the famous Simon Kuznets hypothesis about the inverted U-shaped relationship 

between income inequality and economic development. These studies have laid noteworthy 

foundations for the development of the EKC hypothesis, which was followed by subsequent 

influential studies such as Grossman and Krueger (1994), Selden and Song (1994), List and Gallet 

(1999) and Dinda (2004).  



 

 

The rationale of the EKC hypothesis is comprehensively explained by Grossman and 

Krueger (1991). They differentiate the impacts of economic growth on environmental quality into 

three effects: scale effect, composition effect, and technique effect. At the initial stage of 

development, the increasing level of pollution is inevitable because of the acceleration of economic 

development and the extensive extraction of natural resources that exceed those resources’ 

regeneration rates (Panayotou, 1993). This process is marked by a structural change in the 

economy from agricultural to industrial. At this stage, economic growth undergoes a scale effect 

that has negative impacts on the environment and is responsible for the upward trend of the EKC. 

However, after reaching a certain level of income, this trend might reverse. As income increase, 

the economy undergoes a structural transformation from a resource-intensive economy to a 

service- and knowledge-based, technology-intensive economy (Dinda, 2004). This stage is 

referred to as the composition effect, leading to development of cleaner industries and having 

positive impacts on the environment. Finally, economic growth also has positive impacts on the 

environment through the technique effect. A significant improvement in environmental quality is 

achieved from technological progress and the adoption of new technologies that tend to be both 

cleaner and more efficient (Dinda, 2004). However, this process requires adequate R&D 

investments, which become affordable after a certain economic stage (Kaika and Zervas, 2013a). 

The combination of these three effects, which correspond to various stages of economic 

development, might result in an inverted U-shaped relationship between economic growth and 

environmental quality. The positive impact of the composition and technique effects on the 

environment will compensate for the damages caused by scale effect, resulting in a downward 

EKC trend (Dinda, 2004).  



 

 

Panayotou (1993) argues that the EKC pattern is not solely determined by advancement in 

technology; it is also induced by the increasing degree of environmental awareness and a higher 

share of environmental protection expenditures. He believes that as income grows, people’s 

willingness to pay for environmental abatement will also increase, along with their growing 

awareness of the need to improve environmental quality. Kumar et al. (2012) and Managi and 

Okimoto (2013) find that people’s attitude toward the environment can also be influenced by 

incidental events such as a surge in oil prices. They show a positive relationship between oil prices 

and clean energy firms’ stock prices, suggesting that consumer preferences for clean energy and 

technology increase as oil prices increase. Additionally, Panayotou (1993) argues that higher 

income leads to more stringent environmental regulations, which are essential for improving 

environmental quality. Dasgupta et al. (2001) supports his argument by showing a positive 

correlation between per-capita income and the stringency of environmental regulations. Similarly, 

Yin et al. (2015) show the significant role of environmental regulation in initiating EKC patterns.  

The EKC hypothesis is an enticing view that suggests the existence of a turning point, 

subsequent to which the environmental benefits of economic growth will be achieved. Thus, based 

on this hypothesis, economic growth will improve both living standards and environmental quality, 

eventually leading to sustainability. However, this hypothesis has limitations that are worth 

mentioning. First, the estimated turning point of the EKC might occur at a very high level of 

income. As a result, for some countries, the positive effects of economic growth on environmental 

quality are impossible to achieve (List and Gallet, 1999). EKC opponents further argue that this 

turning point may go even higher because industrial societies continuously create new pollutants 

that will prevent the curve from declining (Dasgupta et al., 2002). In contrast, EKC proponents are 

optimistic that the turning point is actually shifting to the left, resulting in a more reasonable 



 

 

turning point. They suggest that the level of pollution starts to decline earlier, at a lower income 

level, along with economic growth (Dasgupta et al., 2002). Second, the EKC hypothesis does not 

apply to all types of pollutants, which have varied environmental impacts. The EKC patterns are 

more likely to be observable for pollutants that have both a local impact on the environment and a 

perceptible impact in the short term (Dinda, 2004; Kaika and Zervas, 2013b; Stern, 2004; Tsurumi 

and Managi, 2010a). For instance, air and water quality has been found to have EKC patterns with 

varying turning points for different types of pollutants (Grossman and Krueger, 1994). Similarly, 

Selden and Song (1994) find an inverted U-shaped relationship between air pollution and 

economic development. Specifically, the evidence for the EKC hypothesis can also be found for 

air pollutants, such as SO2 and NOx (Kumar and Managi, 2010; List and Gallet, 1999), and 

pesticide use (Managi, 2006). Nevertheless, in the case of global pollutants such as CO2, which is 

considered the major GHG emission that cause global climate change, the result remains 

inconclusive.  

In most cases, the EKC pattern for CO2 emissions is rarely observed (for a summary of 

previous empirical studies of the CO2 EKC, see, for instance, Kaika and Zervas (2013a)). This is 

likely attributable to the high correlation between energy consumption, economic growth and CO2 

emissions. Higher economic growth requires higher energy consumption, leading to higher CO2 

emissions (Ang, 2007; Apergis et al., 2010). Furthermore, Sun (1999) argues that the CO2 EKC 

does not reflect a turning point at which environmental quality will start to improve, but it is just 

showing the peak of energy intensity. Thus, the EKC pattern for CO2 emissions can only be found 

in countries that have reached peak energy intensity. Additionally, Tsurumi and Managi (2010b) 

show that the reduction of CO2 emissions intensity can only be achieved through a structural 

change in CO2 emissions, i.e., reducing the share of coal in energy production. This implies that 



 

 

emissions reduction requires more than just a higher income level for improving environmental 

quality and initiating the EKC pattern for CO2 emissions. 

Two well-known approaches have been widely used for investigating the EKC. The first 

relies on cross-country panel data analysis (see, for instance,(Arouri et al., 2012; Jaunky, 2011; 

Narayan and Narayan, 2010; Narayan et al., 2016; Richmond and Kaufmann, 2006; Tsurumi and 

Managi, 2010a; Yang et al., 2015), whereas the other one relies on a single region time-series 

analysis (see, for instance, (Al-Mulali et al., 2015; Bölük and Mert, 2015; Iwata et al., 2010; 

Saboori and Sulaiman, 2013; Saboori et al., 2012a; Saboori et al., 2012b; Tutulmaz, 2015). In 

addition to the aforementioned methods, Halkos and Tsionas (2001) propose a cross-sectional data 

analysis by using the Markov chain Monte Carlo (MCMC) method to empirically find the 

existence of EKC by using switching regime models. However, this analysis is less preferable 

because it does not capture the dynamics of the income – environment relationship over a period 

of time. Cross-country panel data analysis indeed offers a more robust econometrical analysis. 

However, it portrays only the general inference of the EKC hypothesis, which might not be 

applicable to a specific region or country. For instance, Jaunky (2011) finds a positive correlation 

between income and CO2 emissions both in the short and in the long run for panel of 36 high-

income countries from 1980 to 2005, but based on a country-specific analysis, he provides 

evidence of an EKC only for 5 countries, including Greece, Malta, Oman, Portugal and the United 

Kingdom. Thus, to frame an effective energy- and environmental-related policy for a specific 

country, a time-series analysis approach is preferable. Such an analysis provides an in-depth 

examination based on the complexity of the economic environments and historical experiences of 

each country (Ang, 2008; Lindmark, 2002; Stern et al., 1996). However, it requires a reliable 



 

 

dataset for a relatively long time period, which might be difficult to obtain, particularly for 

developing countries.  

From an empirical perspective, most of the EKC literature (see, for instance, (Bölük and 

Mert, 2015; Iwata et al., 2010; Kaika and Zervas, 2013a; Saboori and Sulaiman, 2013; Saboori et 

al., 2012a; Saboori et al., 2012b; Tutulmaz, 2015) tests the validity of the EKC hypothesis by 

employing squared or cubic functional forms of income—environmental quality models to 

estimate the range of possible turning points of the EKC in the economy, beyond which the 

environmental benefits of economic growth are likely to be achieved. Some of the estimated 

turning points are implausible because they lie outside the sample and cannot be achieved. Bernard 

et al. (2015) further suggest a parametric inference method that corrects for potential weak-

identification of the turning point. However, Narayan and Narayan (2010) argue that such models 

are prone to problems of collinearity or multicollinearity because the models contain both income 

and square of income as exogenous variables. To avoid these problems, they suggest an alternative 

approach to evaluate the environmental impacts of economic growth by comparing the short- and 

long-run income elasticities of a linear model of income—environmental quality. They argue that 

the benefits of economic growth for mitigating CO2 emissions will be achieved if long-run income 

elasticity is smaller than short-run income elasticity. Furthermore, Jaunky (2011) and Al-Mulali et 

al. (2015) argue that lower long-run income elasticity is not a strong indication of the EKC. 

However, an EKC-type relationship appears if the long-run income elasticity is negative, 

indicating that higher economic growth leads to improved environmental quality. 

This paper’s first objective is to find empirical evidence of the EKC hypothesis for CO2 

with specific reference to Indonesia by employing the Autoregressive Distributed Lag (ARDL) 

bounds testing approach developed by Pesaran et al. (2001). There are several compelling reasons 



 

 

for choosing Indonesia as the subject of our research. With one of the largest economies in Asia, 

Indonesia has experienced outstanding economic growth, followed by a significant increase in 

energy consumption and CO2 emissions from fossil fuel combustion over the past decade. 

Additionally, despite its huge potential for renewable energy, Indonesia’s energy mix remains 

dominated by fossil fuels. Therefore, our second objective is to study the role of renewable energy 

sources in improving environmental quality and initiating the EKC pattern. To the best of our 

knowledge, only a few empirical studies have focused on analyzing CO2 EKC specifically for 

Indonesia, and none of them have examined the potential of renewable energy sources within the 

EKC framework. One such study is conducted by Saboori et al. (2012b), who analyze the CO2 

EKC for Indonesia from 1971-2007 by incorporating foreign trade and energy consumption. They 

find a U-shaped relationship between income and environmental degradation, denying the 

existence of the EKC hypothesis. However, their findings might be misleading because they are 

using the critical values (CVs) reported in Pesaran et al. (2001), which according to Narayan 

(2005), are not applicable for small sample size. To accommodate the relatively small sample size 

in this study (40 observations), we use the CVs reported in Narayan (2005) for testing the 

cointegration between variables. 

 

2. Indonesia’s energy profile 

Energy is an essential input for economic and social development. However, Indonesia’s 

energy sector faces challenges in the context of sustainable development. First, despite its huge 

renewable-energy potential, Indonesia’s energy sector is heavily dependent on fossil fuels. In 

2014, Indonesia’s total consumption of fossil fuels amounted to 1,358 million BOE, accounting 

for approximately 96 percent of total primary energy consumption (NEC, 2015). From Figure 1, 



 

 

we can see that oil was the main contributor of Indonesia’s energy mix by 48 percent, followed by 

coal and gas. Regardless of its dominance over other energy sources, the share of oil in the national 

energy mix shows a decreasing trend. With an average growth rate of 9.9 percent per year, coal 

has managed to gradually reduce the share of oil in the national energy mix, which has grown at a 

slower average rate of 1.9 percent per year in the past decade (BPPT, 2014). Similarly, a high 

dependency on fossil fuels is found in the electricity sector. In 2014, total electricity generation 

was approximately 288 TWh, 88 percent of which was generated from fossil fuels, with coal 

accounting for approximately 52.8 percent of the total figure (Figure 2) (NEC, 2015). To increase 

the electrification rate to 100 percent by 2020 and to ensure the security of the energy supply, 

which is required for supporting economic development, the GoI has launched the Electricity Fast 

Track program to boost the electricity generation capacity. Under that program, the GoI is 

accelerating the construction of new power plants with a total capacity of 20 GW. Whereas the 

first phase of the program relies completely on coal-fired power plant, the second phase of the 

program encourages the use of renewable energy for electricity generation (BPPT, 2014; NEC, 

2015). Upon completion of the first phase of the program, the share of coal in the national energy 

mix is expected to increase further. Second, Indonesia’s energy sector is highly subsidized to 

ensure the availability and accessibility of energy for all levels of the community. In 2014, the 

government allocated more than 25 billion USD for energy subsidies, approximately 26 percent of 

which was allotted for electricity (NEC, 2015). This high subsidy level has imposed a great 

financial burden for Indonesia’s state budget (APBN). Additionally, it has caused inefficient 

consumption of energy and discouraged the development of new and renewable energy (NRE) 

(NEC, 2014). Third, Indonesia is currently experiencing a wide range of environmental problems 

including threats of climate change that are likely caused by rapid economic growth and the 



 

 

extensive use of natural resources, particularly fossil-fuel combustion. The World Bank predicted 

that the economic loss attributed to climate change in Indonesia is estimated to reach 2.5-7.0 

percent of GDP by 2100. Meanwhile, the health impact of air pollution can cost more than $400 

million per year (Leitmann, 2009). 

<Figure 1> 

<Figure 2> 

Indonesia has huge potential for renewable energy, including geothermal, hydropower, 

biomass, wind, and solar. However, it is unlikely that renewable energy alone will displace the 

major contribution of fossil fuels in the national energy mix in the near future because their 

utilization remains far beyond their maximum capacity because of either technical or economic 

constraints. With a total estimated technical potential of more than 273 GW (excluding the 

potential of ocean energy), only approximately 4 percent of renewable energy technologies have 

been utilized. Hydropower is the highest potential source of renewable energy with an estimated 

capacity of 75 GW, but it is currently underutilized because it has a total installed capacity of only 

11 percent of its total potential, amounting to some 8,111 MW (NEC, 2015). With an estimated 

potential capacity of approximately 32 GW, biomass has become the second-largest renewable 

energy resource available, only approximately 5 percent of which has been utilized for electricity 

generation (NEC, 2015). Due to its geographical position on the equator and located in the ring of 

fire, Indonesia is blessed with an enormous potential for geothermal and solar energy. The 

potential of geothermal energy is estimated to be more than 28 GW, accounting for 40 percent of 

the world’s potential geothermal resource (Hasan et al., 2012), less than 5 percent of which has 

been utilized (NEC, 2015). Additionally, notwithstanding its geographical advantages as an 

equatorial country, Indonesia’s utilization of solar energy in Indonesia is relatively small. With an 



 

 

average solar radiation of 4.8 kWh/m2/day, only approximately 71 MW of solar energy systems 

have been installed (NEC, 2015). In contrast, the potential for wind energy in Indonesia is rather 

low, with low wind speeds ranging from 3-6 m/s (NEC, 2015). 

The GoI’s commitment to mitigating climate change is stipulated in Presidential 

Regulation 61/2011 regarding the National Action Plan for GHG Emission Reduction. By 2020, 

GHG emissions are expected to be reduced by at least 26 percent, through Indonesia’s own effort, 

or by at least 41 percent, with international support. This is followed by amending the national 

energy policy, which is regulated in Government Regulation 79/2014, to endorse the 

diversification of energy sources and gradually reduce Indonesia’s high dependency on fossil fuels 

by developing NRE technologies that are economically competitive. By 2025, the share of NRE 

is expected to reach at least 23 percent of the total energy mix. This is expected to make a 

contribution of approximately 50 percent of total GHG emission reduction in 2035 (BPPT, 2014). 

Additionally, a series of feed-in tariff policies have been introduced to support the development of 

NRE, including geothermal and hydropower. The GoI has also attempted to increase efficiency in 

the energy sector by gradually reducing the amount of its energy subsidy and reallocating funds to 

make new investments in energy infrastructure. 

 

4. Methodology  

4.1. Econometric model and data 

This paper uses a reduced-form model as a baseline estimation model to test the validity of 

the EKC hypothesis. This model allows us to measure the direct and indirect relationship between 

income and environmental quality without being distracted by additional variables that would 

distort this study’s primary objective and lessen its degree of analytical freedom (see (List and 



 

 

Gallet, 1999). We also seek to study the potential of renewable energy sources in improving 

environmental quality and initiating the EKC pattern. Renewable energy sources are a foreseeable 

vehicle for reducing high dependency on fossil fuels while mitigating the environmental effects of 

GHG emissions from fossil fuel combustion. Thus, the share of renewable energy sources acts as 

a proxy for composition effect that captures the structural change in energy production toward a 

less polluting technology. Our baseline estimation model can be written as follows: 

ln 𝐶𝑡 =  𝛽0 + 𝛽1  ln 𝑌𝑡 + 𝛽2 ln 𝑌𝑡
2 +  𝛾 ln 𝐸𝑅𝑡 + 𝑢𝑡       (1) 

ln 𝐶𝑡 =  𝛽0 + 𝛽1  ln 𝑌𝑡 +  𝛾 ln 𝐸𝑅𝑡 + 𝑢𝑡        (2) 

where C is per capita CO2 emissions; Y is per capita GDP; ER is per capita electricity production 

from renewable sources; and u is the standard error term. 

Equation (1) is the conventional model for estimating the EKC, employing both income 

and square of income as exogenous variables. This model provides us with several possible 

functional forms of income – environmental quality relationships. When β1 = β2 = 0, this indicates 

a level relationship, implying no relationship between income and environmental quality. A linear 

relationship occurs if β2 = 0 and β1 > 0 for a monotonically increasing relationship or β1 < 0 for a 

monotonically decreasing relationship. A quadratic relationship exists if β2 < 0 for an inverted U 

(EKC) relationship, or β2 > 0 for a U-shaped relationship. A turning point on the EKC at which 

economic growth is harmless for the environment exists if there is an inverted U-shaped 

relationship between income and environmental quality. Equation (2), however, is the alternative 

approach to evaluate the EKC relationships, as suggested by Narayan and Narayan (2010). In this 

model, the EKC relationship is evaluated by comparing the short- and long-run income elasticities. 

The benefits of economic growth for mitigating CO2 emissions will be achieved if long-run income 



 

 

elasticity is smaller than short-run income elasticity. Additionally, the expected sign of γ is 

negative because renewable energy sources produce less CO2 emissions than fossil fuels.  

To avoid omitted variable bias, Equations (1) and (2) need to be expanded to include 

variables that capture scale effect and technique effect, and this paper uses the level of energy 

consumption and total factor productivity (TFP), respectively. Advancement in economy requires 

more energy as the main input in production. Consequently, a higher level of emissions will be 

generated as by-product of the process. Thus, energy consumption demonstrates the scale effect 

that has a negative impact on the environment. However, technical effect, which is indicated by 

technological progress and the adoption of new technologies, creates a positive impact on 

environment, either by increasing productivity and efficiency in production, or by reducing 

emissions per unit output (Stern, 2004). This paper uses TFP as a proxy for technical effect. 

Annual data covering the period 1971-2010 are used in this study. CO2 emissions (C) is 

measured in metric tons per capita. Per capita real GDP (Y) is in constant 2005 US dollars. 

Electricity production from renewable sources (ER) is measured in kWh per capita. Energy 

consumption is measured in kg of oil equivalent per capita. The abovementioned data are obtained 

from the World Bank, World Development Indicators 2015. In addition, we use the data on TFP, 

which are obtained from the Penn World Table (Feenstra et al., 2015). 

 

4.2. ARDL bounds testing of cointegration 

This paper utilizes the ARDL-bounds testing approach to cointegration developed by 

Pesaran et al. (2001) to examine the long-run relationship between income and environmental 

quality. This method has several advantages over other methods. First, the ARDL approach 

effectively corrects for the possible endogeneity of explanatory variables, thus providing unbiased 



 

 

estimates of the long-run model and valid t-statistics even when some of the regressors are 

endogenous. Second, the ARDL test is suitable even if the sample size is small, such as in our 

study, which uses 40 observations. Third, the ARDL method does not require all of the variables 

to be integrated in the same order. Therefore, it can be applied regardless of whether the underlying 

regressors are integrated in order one (I(1)), in order zero (I(0)) or fractionally. As a result, we can 

avoid the uncertainties created by unit root testing. Finally, this method can simultaneously 

estimate causal relationships both in the short-run and in the long-run.  

The ARDL approach to cointegration estimates the following unrestricted error-correction 

(UREC) model: 

Δ ln 𝐶𝑡 = 𝛽0 + ∑ 𝛽1𝑖 ∆ ln 𝐶 𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽2𝑖 ∆ ln 𝑌𝑡−𝑖

𝑞

𝑖=0

+ ∑ 𝛽3𝑖 ∆ ln(𝑌𝑡−1)2

𝑟

𝑖=0

+ ∑ 𝛼4𝑖 ∆ ln 𝐸𝑅𝑡−𝑖

𝑠

𝑖=0

 

+𝜆1 ln 𝐶𝑡−1 + 𝜆2 ln 𝑌𝑡−1  + 𝜆3∆ ln(𝑌𝑡−1)2 +  𝜆4 ln 𝐸𝑅𝑡−1 +  𝜀𝑡  

 

where β is the short-run coefficient and λ is the long-run multiplier of the underlying ARDL model. 

The tests for cointegration are carried out by computing the joint significance of the lagged levels 

of the variables using the F-test (or Wald statistic). The null hypothesis of no cointegration is 

defined by H0: λ1 = λ2 = λ3 = λ4 = λ5 = 0 against the alternative hypothesis H1: λ1≠λ2 ≠λ3≠λ4 ≠

λ5 ≠ 0. The CVs for the F-statistic are non-standard under the null and were originally derived by 

Pesaran et al. (2001) and later modified by Narayan (2005) to accommodate small sample sizes. 

There are two sets of CVs. The first set assumes that all of the variables included in the ARDL 

model are I(0), whereas the second set uses the assumption that the variables are I(1). If the 

computed F-statistic exceeds the upper-bounds CVs, then the null hypothesis of no long-run 

relationship is rejected. If the computed F-statistic falls below the lower-bounds CVs, then the null 

(3) 



 

 

hypothesis of no long-run relationship is not rejected. However, if the computed F-statistic falls 

between the lower- and upper-bound CVs, then no conclusion about long-run relationships can be 

drawn unless we know whether the series were I(0) or I(1) (Pesaran and Pesaran, 2010). In the 

presence of strong cointegration between variables, Neuhaus (2006) argues that the problems with 

multicollinearity can be disregarded. 

Choosing the optimal lag order of the underlying UREC model is of primary importance. 

The lag order should be high enough to reduce the residual serial correlation problems. At the same 

time, however, it should be low enough that the conditional error-correction model is not subject 

to over-parameterization problems (Pesaran et al., 2001). This paper uses the Akaike Information 

Criterion (AIC) and Schwarz’s Bayesian criterion (SBC) to select the optimal lag order of the 

model. The preferred model is the one that has the smallest value of AIC and SBC. However, these 

two methods might provide different lag structures for the ARDL model because AIC tends to 

select maximum relevant lag length, whereas SBC tends to select the smallest possible lag length, 

resulting in a somewhat parsimonious model. In such a case, we prefer to use the AIC information 

criteria to prevent the model from being under-fit, although there might be a risk of over-fitting 

the model. 

Having found the evidence of cointegration, the long-run relationship between variables is 

then estimated using the following equation: 

ln 𝐶𝑡 = 𝛽0 + ∑ 𝛽1𝑖 ln 𝐶 𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽2𝑖 ln 𝑌𝑡−𝑖

𝑞

𝑖=0

+ ∑ 𝛽3𝑖 ln(𝑌𝑡−1)2

𝑟

𝑖=0

+ ∑ 𝛽4𝑖 ln 𝐸𝑅𝑡−𝑖

𝑠

𝑖=0

+ 𝜀𝑡        (4) 

Next, the short-run interactions between variables are estimated by using the following error-

correction model: 

Δ ln 𝐶𝑡 = 𝛽0 + ∑ 𝛽1𝑖 ∆ ln 𝐶 𝑡−𝑖

𝑝

𝑖=1

+ ∑ 𝛽2𝑖 ∆ ln 𝑌𝑡−𝑖

𝑞

𝑖=0

+ ∑ 𝛽3𝑖 ∆ ln(𝑌𝑡−1)2

𝑟

𝑖=0

+ ∑ 𝛽4𝑖 ∆ ln 𝐸𝑅𝑡−𝑖

𝑠

𝑖=0

 

(5) 



 

 

+𝜋 𝐸𝐶𝑇𝑡−1 + 𝜀𝑡  

 

where π is the speed adjustment parameter and ECTt-1 is the error correction term with lag. The 

lagged error-correction term measures the speed of adjustment of the endogenous variable when 

there is a shock in equilibrium. The coefficient of the lagged error correction term is expected to 

be negative and statistically significant.  

Post-estimation diagnostic tests such as serial correlation, normality, heteroskedasticity 

and functional form tests are conducted to ensure the robustness of the model. In addition, we also 

conduct the stability test, i.e., cumulative sum (CUSUM) and cumulative sum of squares 

(CUSUMSQ), to confirm the model’s stability. 

 

5. Results and discussion 

Our evaluation starts with an examination of the integration properties of the variables by 

performing unit root tests. Although the bounds test approach does not require that all variables 

are I(1), it is necessary to validate that none of the variables is integrated in order 2 (I(2)). This is 

because in the presence of the I(2) variable, the results of the F-test would be spurious. We use the 

augmented Dickey-Fuller (ADF), Kwiatkowski-Phillips-Schimdt-Shin (KPSS) and breakpoint 

unit root tests to test the stationarity of the data. In the ADF and breakpoint unit root tests, the null 

hypothesis of the series has a unit root that is tested against the alternative of stationarity. 

Conversely, the KPSS test has a null hypothesis of stationarity. The lag lengths of the ADF and 

breakpoint unit root test are selected based on the Schwarz Information Criterion. The bandwidth 

selection of the KPSS test is based on the Andrews method. The results of the unit root tests that 

are provided in Table 1 show that after taking the first difference, all of the variables were 



 

 

confirmed to be stationary. Therefore, we can conclude that all the variables used in this study are 

not I(2).  

<Table 1> 

The next step is to examine the existence of a long-run relationship between variables by 

using Equation (3). We conduct the cointegration analysis for both linear and quadratic forms. In 

the first and second cases, we assume a linear form of the long-run relationship between 

environmental quality and income by controlling energy consumption and both energy 

consumption and TFP, respectively. In the third and fourth cases, we assume a quadratic 

relationship between those variables by controlling energy consumption and both energy 

consumption and TFP, respectively. Before we carry on with cointegration analysis, we need to 

determine the optimal lag length to be used in the ARDL model. For this purpose, we are using 

the AIC and SBC information criteria. Table 2 provides the top 5 models that minimize the AIC 

and SBC values by setting the maximum lag order at 4. From Table 2, we can see that the AIC and 

SBC suggest different model specifications, but we prefer to use the model that is suggested by 

AIC to avoid oversimplifying the model. Thus, we have ARDL (2,4,0,0) for Case I, ARDL 

(2,4,2,0,0) for Case II, ARDL (2,4,3,0,0) for Case III, and ARDL (2,0,4,2,0,0) for Case IV. 

<Table 2> 

 By using the aforementioned ARDL model specifications, we calculate the joint 

significance of the long-run coefficient of the ARDL model in Equation (3). The results of the F-

test are given in Table 3. From Table 3, we can see that for case I, the F-statistic exceeds the 10% 

upper bounds CVs, whereas for cases II, III and IV, the F-statistics exceed the 5% upper bounds 

CVs. Thus, we can reject the null hypothesis of no long-run relationship. After conforming that 

there is no evidence against cointegration, we estimate the long- and short-run interactions between 



 

 

variables by using Equations (4) and (5). The results of the long- and short-run estimations in the 

error correction representations are provided in Tables 4 and 5, respectively. 

<Table 3> 

<Table 4> 

<Table 5> 

For the linear model (case I and II), as seen in Tables 4 and 5, all of the variables are 

statistically significant and have the correct signs as expected, both in the long run and in the short 

run. The coefficients of ln Y and Δln Y are positive, implying that both in the long run and in the 

short run, higher income levels lead to higher CO2 emissions. However, we find that in both cases, 

income leads to less carbon dioxide emission. In the long run, income elasticity decreased from 

1.47 to 0.87 for case I and from 1.70 to 1.04 for case II. Our finding suggests that over time, 

economic growth contributes less to carbon dioxide emissions, implying that the environmental 

benefits of economic growth are likely to be achieved. Although Narayan and Narayan (2010) 

argue that the cutback in income elasticity over time, similar to the findings in our linear model, is 

consistent with the EKC hypothesis, Jaunky (2011) and Al-Mulali et al. (2015) argue that this 

argument is insufficient to support the EKC hypothesis. Our finding contradicts the earlier result 

from Narayan and Narayan (2010) showing higher long-run income elasticity for the case of 

Indonesia. This contradiction likely arose because Narayan and Narayan (2010) use a smaller 

sample size and a somewhat parsimonious model of income level and CO2 emissions, disregarding 

the possible impacts of energy consumption and renewable energy sources on CO2 emissions. 

Another important finding from our model in case I is that the impact of electricity 

production from renewables on CO2 emissions is negative both in the short run and in the long 

run, implying that the level of CO2 emissions declines as the share of renewable energy increases. 



 

 

This in line with the findings of Sulaiman et al. (2013) for the case of Malaysia and the findings 

of Bölük and Mert (2015) for the case of Turkey. The beneficial effects of renewable energy 

sources on environmental quality are likely to be achieved in the long run because its long-run 

coefficient is higher than its short-run coefficient. However, the long-run elasticity of renewable 

energy is considerably lower than that of energy consumption and economic growth. Thus, the 

beneficial effects of renewable energy sources might be obscured by the increasing level of CO2 

emissions caused by increasing economic activities and higher energy consumption. Chiu and 

Chang (2009) suggest a threshold point that must be attained for renewable energy to begin to have 

a favorable impact on environment. They argue that to make a noteworthy contribution to CO2 

emissions reduction, the share of renewable energy should be at least 8.4 percent of total energy 

supply. Currently, the share of renewable energy is only approximately 3.8 percent of Indonesia’s 

total energy mix. However, if we only consider the electricity sector, which is responsible for more 

than 38 percent of CO2 emissions, the share of renewable energy is more than 11 percent of total 

electricity generation, which is higher than the suggested threshold point of 8.4 percent. Therefore, 

the effect of electricity production from renewable energy sources on CO2 emissions reduction 

should be observed, as explained by our model. 

The positive coefficient of ln EC and Δln EC imply that energy consumption positively 

influences the level of CO2 emissions both in the long run and in the short run. This is not a 

surprising result: Indonesia’s energy sector relies heavily on fossil fuels, accounting for 

approximately 96 percent of total primary energy consumption (NEC, 2015). This finding is 

consistent with that of Ang (2007) for the case of France and Saboori et al. (2012b) for the case of 

Indonesia. We also find that the elasticity of energy consumption in the long run is greater than 

elasticity in the short run, implying inefficiency in energy consumption. For case II, however, 



 

 

taking TFP into account in our model, we find only a slight increase in the elasticity of energy 

consumption in the long run. The negative and significant coefficient of TFP indicates that 

adopting a more efficient technology has beneficial effects on the environment, either by directly 

reducing the level of emissions or by increasing the efficiency of energy consumption. This finding 

supports Stern’s (2004) argument, which proposes that a general increase in TFP has beneficial 

side effects for the environment through decreased emissions per unit of output.  

We also attempt to evaluate the EKC-type relationship by using the traditional quadratic 

model (case III and IV). From Tables 4 and 5, we can see that, in general, the quadratic model 

provides similar results, particularly for the impacts of energy consumption, electricity production 

from renewables and TFP. Nevertheless, our findings on the impact of income level on level of 

CO2 emissions show an interesting result. For case III, both in the short run and in the long run, 

the coefficients of ln Y and ln Y2 are statistically not significant. There is a possibility that these 

variables fail to attain statistical significance because of the presence of multicollinearity, as 

advised by Narayan and Narayan (2010). However, by introducing variable TFP into our model 

(case IV) we find significant impacts of income level on CO2 emissions in the long run. The 

negative and significant coefficient of ln Y2 suggests an inverted U-shaped relationship between 

income level and CO2 emissions, which is consistent with the EKC hypothesis. From the long-run 

estimates, the turning point is estimated to be 𝑒𝑥𝑝 (𝛽1/|2 𝛽2|) ≅ 7,729  USD per capita. The 

estimated turning point is relatively plausible, although it lies outside of the sample period (the 

highest value of GDP per capita in our sample is 1,570 USD). Several previous studies, such as 

Saboori and Sulaiman (2013) for the case of Malaysia and Bölük and Mert (2015) for the case of 

Turkey, have also reported EKC turning points that lie outside the observed sample period. 



 

 

Additionally, Iwata et al. (2010) argue that for developing countries, there is a higher possibility 

that the EKC turning point will be found outside of the observed sample period. 

From the short-run estimates in Table 5, we can see that the coefficients of the lagged error-

correction term (ECTt-1) in all cases are negative and statistically significant, as they should be. 

These results further establish the cointegration between variables. In addition, their absolute 

values are quite high, indicating a relatively high speed of adjustment in the presence of any shock 

to the equilibrium.  

The post-diagnostic tests of our models are reported in Table 4. We find no evidence of 

serial correlation, non-normality and heteroskedasticity in all cases. However, we cannot reject the 

null hypothesis of no miss-specification of functional form in case II. This result suggests that the 

quadratic form of the EKC-type relationship given in case IV is preferable to that of the linear 

form, although the model is likely to suffer from the problems with multicollinearity. However, 

Asteriou and Hall (2015) argue that even in the presence of imperfect multicollinearity, the 

estimated coefficients remain unbiased. In addition, to test the stability of the estimated models, 

the CUSUM and CUSUMSQ tests were employed. The plots of both CUSUM and CUSUMSQ 

tests, which are given in Figure 3, are within the 5% critical bounds, indicating that the estimated 

parameters in all cases are stable over the periods. 

<Figure 3> 

6. Conclusions and policy implications 

The objective of this paper was to estimate the EKC for the case of Indonesia by 

considering electricity production from renewable energy sources for the period of 1971-2010. To 

avoid omitted variable bias, we considered the level of energy consumption and TFP in our model 

to capture the scale and technique effect. We used both the linear and traditional quadratic model 



 

 

to test the EKC hypothesis. For this purpose, we applied the Autoregressive Distributed Lag 

(ARDL) bounds testing approach proposed by Pesaran et al. (2001). Given the relatively small 

sample size in our current study (40 observations), we adopted the critical values reported in 

Narayan (2005) for testing the cointegration between variables.  

From the estimation results, we found evidence supporting the EKC hypothesis for the case 

of Indonesia. Although our linear form of the model showed a positive relationship between CO2 

emissions and income level, we found that long-run income elasticity has decreased over time, 

implying that environmental benefits of economic growth are likely to be achieved. However, this 

finding is not considered as a significant support for the EKC hypothesis. Our quadratic form of 

the model, on the other hand, showed strong evidence of the EKC hypothesis. The estimated 

turning point was found to be 𝑒𝑥𝑝 (𝛽1/|2 𝛽2|) ≅ 7,729 USD per capita, which lies outside our 

sample period. Electricity generation from renewable energy sources was found to have a 

significant and favorable impact on CO2 emissions reduction both in the short run and in the long 

run. In contrast, energy consumption was associated with higher levels of CO2 emissions both in 

the short run and in the long run. Finally, we also found that an increase in TFP leads to a decrease 

in CO2 emissions both in the short run and in the long run. 

Although suggesting new policies is beyond the scope of this paper, our findings highlight 

some important policy implications. First, evidence of the EKC hypothesis does not necessarily 

imply that environmental benefits from economic growth can be achieved without any policy 

enactment. The huge gap between current economic level and the estimated turning point indicate 

that the GoI should evaluate the efficacy of current energy and environmental policies to obtain an 

EKC that is lower and flatter than our estimated turning point would suggest.  



 

 

Second, we found that the long-run impact of energy consumption on CO2 emissions level 

is considerably higher than its short-run effect. Our finding indicates an inefficiency in energy 

consumption that leads to further environmental deterioration. Therefore, current energy and 

environmental policies must be accompanied by other possible strategies that will encourage more 

efficient energy use. For instance, the GoI’s attempts to gradually decrease subsidies on fossil fuels 

and electricity should be maintained, though this might not be a popular policy. In exchange, the 

GoI should make new investments in energy infrastructures that will be beneficial not only for 

improving energy efficiency but also for stimulating economic development. Additionally, the GoI 

should provide incentives for encouraging the adoption of new technologies that are both cleaner 

and more efficient. Our finding showed that increasing productivity provides beneficial impacts 

for CO2 emissions reduction, which in turn leads to the initiation of the EKC pattern. 

Third, the favorable impacts of electricity production via renewable energies on CO2 

emissions reduction indicate that environmental sustainability might be achieved by increasing the 

share of renewable energies in the electricity generation mix. Our findings further emphasize the 

significant roles of NRE sources in promoting a sustainable development path, particularly in the 

context of the 2015 Paris agreement on climate change. Encouraging the development of NRE 

sources will be very beneficial not only for ensuring the security of the energy supply and reducing 

the high dependency on fossil fuels but also for supporting the GoI’s commitment to reduce CO2 

emissions. This in turn will lead to a lower and flatter EKC than our estimated turning point would 

suggest. Therefore, instead of relying heavily on coal-fired power plants to boost Indonesia’s 

current electricity generation capacity, the GoI should exert greater effort to explore the potential 

of NRE sources.  However, there are some technical barriers, such as the intermittent nature of the 

output, that make it difficult for renewable energy sources alone to replace the dominant role of 



 

 

fossil fuels. Therefore, the GoI should consider backing up its renewable energy system with a 

reliable low-carbon technology, such as nuclear power, to form a tight energy coupling system that 

can produce renewable electricity on a large scale in a sustainable manner (Soentono and Aziz, 

2008). However, the implementation of nuclear energy-related policies should be carried out 

cautiously. The decision-making process should be based on a comprehensive analysis 

highlighting not only the beneficial impacts of nuclear energy on CO2 emissions reduction and 

energy security but also the potential risks that can arise from the utilization of nuclear energy.  

 

Acknowledgements 

Shunsuke Managi was supported by the following Grant in Aid from the Ministry of Education, 

Culture, Sports, Science and Technology in Japan (MEXT): Grant in Aid for Specially Promoted 

Research 26000001, Ministry of Environment, and JSPS. Yogi Sugiawan was supported by 

Research and Innovation in Science and Technology Project (RISET-PRO), Ministry of Research, 

Technology, and Higher Education of Indonesia. Any opinions, findings, and conclusions 

expressed in this material are those of the authors and do not necessarily reflect the views of the 

funding agencies. We would like to thank anonymous reviewers for their very helpful and 

constructive comments, which improved this manuscript from the original.  

  



 

 

References 

Al-Mulali, U., Saboori, B., Ozturk, I., 2015. Investigating the environmental Kuznets curve 

hypothesis in Vietnam. Energy Policy 76, 123-131. 

Ang, J.B., 2007. CO 2 emissions, energy consumption, and output in France. Energy Policy 35, 

4772-4778. 

Ang, J.B., 2008. Economic development, pollutant emissions and energy consumption in 

Malaysia. Journal of Policy Modeling 30, 271-278. 

Apergis, N., Payne, J.E., Menyah, K., Wolde-Rufael, Y., 2010. On the causal dynamics between 

emissions, nuclear energy, renewable energy, and economic growth. Ecological Economics 

69, 2255-2260. 

Arouri, M.E.H., Youssef, A.B., M'henni, H., Rault, C., 2012. Energy consumption, economic 

growth and CO 2 emissions in Middle East and North African countries. Energy Policy 45, 

342-349. 

Asteriou, D., Hall, S.G., 2015. Applied econometrics. Palgrave Macmillan. 

Beckerman, W., 1992. Economic growth and the environment: Whose growth? Whose 

environment? World development 20, 481-496. 

Bernard, J.-T., Gavin, M., Khalaf, L., Voia, M., 2015. Environmental Kuznets curve: Tipping 

points, uncertainty and weak identification. Environmental and Resource Economics 60, 

285-315. 

Bölük, G., Mert, M., 2015. The renewable energy, growth and environmental Kuznets curve in 

Turkey: An ARDL approach. Renewable and Sustainable Energy Reviews 52, 587-595. 



 

 

BPPT, 2014. Indonesia Energy Outlook 2014: Energy Development in Supporting Fuel 

Substitution Program. Center for Energy Resources Development Technology, Agency for 

the Assessment and Application of Technology (BPPT), Jakarta. 

Chiu, C.-L., Chang, T.-H., 2009. What proportion of renewable energy supplies is needed to 

initially mitigate CO 2 emissions in OECD member countries? Renewable and Sustainable 

Energy Reviews 13, 1669-1674. 

Dasgupta, S., Laplante, B., Wang, H., Wheeler, D., 2002. Confronting the environmental Kuznets 

curve. Journal of economic perspectives, 147-168. 

Dasgupta, S., Mody, A., Roy, S., Wheeler, D., 2001. Environmental regulation and development: 

A cross-country empirical analysis. Oxford development studies 29, 173-187. 

Dinda, S., 2004. Environmental Kuznets curve hypothesis: a survey. Ecological economics 49, 

431-455. 

Ekins, P., 1993. ‘Limits to growth’and ‘sustainable development’: grappling with ecological 

realities. Ecological Economics 8, 269-288. 

Feenstra, R.C., Inklaar, R., Timmer, M.P., 2015. The next generation of the Penn World Table. 

The American Economic Review 105, 3150-3182. 

Grossman, G.M., Krueger, A.B., 1991. Environmental impacts of a North American free trade 

agreement. National Bureau of Economic Research. 

Grossman, G.M., Krueger, A.B., 1994. Economic growth and the environment. National Bureau 

of Economic Research. 

Halkos, G.E., Tsionas, E.G., 2001. Environmental Kuznets curves: Bayesian evidence from 

switching regime models. Energy Economics 23, 191-210. 



 

 

Hasan, M., Mahlia, T., Nur, H., 2012. A review on energy scenario and sustainable energy in 

Indonesia. Renewable and Sustainable Energy Reviews 16, 2316-2328. 

IEA, 2015. CO2 Emissions from Fuel Combustion 2015. International Energy Agency, Paris, 

France. 

Iwata, H., Okada, K., Samreth, S., 2010. Empirical study on the environmental Kuznets curve for 

CO 2 in France: the role of nuclear energy. Energy Policy 38, 4057-4063. 

Jaunky, V.C., 2011. The CO 2 emissions-income nexus: evidence from rich countries. Energy 

Policy 39, 1228-1240. 

Kaika, D., Zervas, E., 2013a. The Environmental Kuznets Curve (EKC) theory—Part A: Concept, 

causes and the CO 2 emissions case. Energy Policy 62, 1392-1402. 

Kaika, D., Zervas, E., 2013b. The environmental Kuznets curve (EKC) theory. Part B: Critical 

issues. Energy Policy 62, 1403-1411. 

Kumar, S., Managi, S., 2010. Environment and productivities in developed and developing 

countries: The case of carbon dioxide and sulfur dioxide. Journal of environmental 

management 91, 1580-1592. 

Kumar, S., Managi, S., Matsuda, A., 2012. Stock prices of clean energy firms, oil and carbon 

markets: A vector autoregressive analysis. Energy Economics 34, 215-226. 

Leitmann, J., 2009. Investing in a More Sustainable Indonesia: Country Environmental Analysis, 

CEA Series, East Asia and Pacific Region. The World Bank, Washington, DC. 

Lindmark, M., 2002. An EKC-pattern in historical perspective: carbon dioxide emissions, 

technology, fuel prices and growth in Sweden 1870–1997. Ecological economics 42, 333-

347. 



 

 

List, J.A., Gallet, C.A., 1999. The environmental Kuznets curve: does one size fit all? Ecological 

Economics 31, 409-423. 

Managi, S., 2006. Are there increasing returns to pollution abatement? Empirical analytics of the 

environmental Kuznets curve in pesticides. Ecological Economics 58, 617-636. 

Managi, S., Okimoto, T., 2013. Does the price of oil interact with clean energy prices in the stock 

market? Japan and the World Economy 27, 1-9. 

Narayan, P.K., 2005. The saving and investment nexus for China: evidence from cointegration 

tests. Applied economics 37, 1979-1990. 

Narayan, P.K., Narayan, S., 2010. Carbon dioxide emissions and economic growth: panel data 

evidence from developing countries. Energy policy 38, 661-666. 

Narayan, P.K., Saboori, B., Soleymani, A., 2016. Economic growth and carbon emissions. 

Economic Modelling 53, 388-397. 

NEC, 2014. Outlook Energi Indonesia 2014. National Energy Council, Jakarta. 

NEC, 2015. Executive Reference Data National Energy Management. National Energy Council 

Jakarta. 

Neuhaus, M., 2006. The impact of FDI on economic growth: an analysis for the transition countries 

of Central and Eastern Europe. Springer Science & Business Media. 

Panayotou, T., 1993. Empirical tests and policy analysis of environmental degradation at different 

stages of economic development. International Labour Organization. 

Pesaran, B., Pesaran, M.H., 2010. Time Series Econometrics Using Microfit 5.0: A User's Manual. 

Oxford University Press, Inc. 

Pesaran, M.H., Shin, Y., Smith, R.J., 2001. Bounds testing approaches to the analysis of level 

relationships. Journal of applied econometrics 16, 289-326. 



 

 

Richmond, A.K., Kaufmann, R.K., 2006. Is there a turning point in the relationship between 

income and energy use and/or carbon emissions? Ecological economics 56, 176-189. 

Saboori, B., Sulaiman, J., 2013. Environmental degradation, economic growth and energy 

consumption: Evidence of the environmental Kuznets curve in Malaysia. Energy Policy 60, 

892-905. 

Saboori, B., Sulaiman, J., Mohd, S., 2012a. Economic growth and CO 2 emissions in Malaysia: a 

cointegration analysis of the environmental Kuznets curve. Energy Policy 51, 184-191. 

Saboori, B., Sulaiman, J.B., Mohd, S., 2012b. An empirical analysis of the environmental Kuznets 

curve for CO2 emissions in Indonesia: the role of energy consumption and foreign trade. 

International Journal of Economics and Finance 4, 243. 

Selden, T.M., Song, D., 1994. Environmental quality and development: is there a Kuznets curve 

for air pollution emissions? Journal of Environmental Economics and management 27, 147-

162. 

Soentono, S., Aziz, F., 2008. Expected role of nuclear science and technology to support the 

sustainable supply of energy in Indonesia. Progress in Nuclear Energy 50, 75-81. 

Stern, D.I., 2004. The rise and fall of the environmental Kuznets curve. World development 32, 

1419-1439. 

Stern, D.I., Common, M.S., Barbier, E.B., 1996. Economic growth and environmental 

degradation: the environmental Kuznets curve and sustainable development. World 

development 24, 1151-1160. 

Sulaiman, J., Azman, A., Saboori, B., 2013. The potential of renewable energy: using the 

environmental Kuznets curve model. American Journal of Environmental Sciences 9, 103. 

Sun, J., 1999. The nature of CO 2 emission Kuznets curve. Energy policy 27, 691-694. 



 

 

Tsurumi, T., Managi, S., 2010a. Decomposition of the environmental Kuznets curve: scale, 

technique, and composition effects. Environmental Economics and Policy Studies 11, 19-

36. 

Tsurumi, T., Managi, S., 2010b. Does energy substitution affect carbon dioxide emissions–Income 

relationship? Journal of the Japanese and International Economies 24, 540-551. 

Tutulmaz, O., 2015. Environmental Kuznets Curve time series application for Turkey: Why 

controversial results exist for similar models? Renewable and Sustainable Energy Reviews 

50, 73-81. 

Yang, G., Sun, T., Wang, J., Li, X., 2015. Modeling the nexus between carbon dioxide emissions 

and economic growth. Energy Policy 86, 104-117. 

Yin, J., Zheng, M., Chen, J., 2015. The effects of environmental regulation and technical progress 

on CO 2 Kuznets curve: An evidence from China. Energy Policy 77, 97-108. 

  



 

 

Figures 

 

 

Figure 1. Indonesia’s primary energy mix 2014 

 

 
Figure 2. Indonesia’s electricity generation mix 2014 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Stability of the models based on the plot of CUSUM and CUSUMSQ of recursive 

residual 
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Tables 

 

Table 1.  Unit root test results  

Variables 
ADF  Breakpoint unit root test  KPPS  

No Trend Trend  No Trend Trend  No Trend Trend  

Levels          

ln C -1.612036 -2.906569  -2.874843 -3.760061  0.773246a 0.104321a  

ln Y  -1.583793 -2.062575  -2.049436 -7.608414  0.580830b 0.151892b  

ln Y2 -1.095478 -2.195491  -1.803745 -7.772209  0.687917b 0.146254b  

ln ER -0.821178 -2.172115  -3.471982 -6.143338a  0.519907b 0.120563c  

ln EC -0.606822 -1.694119  -5.509523a -5.442050a  0.881272a 0.111969  

ln TFP -1.737774 -2.439344  -5.409033a -8.424761a  0.263024  0.165459  

First Differences          

ln C -5.740083a -5.784033a  -7.106165a -7.040115a  0.132253 0.041451  

ln Y  -4.518360a -4.585807a  -9.945942a -9.692768a  0.192859 0.060720  

ln Y2 -4.583948a -4.570627a  -10.33277a -10.28274a  0.121298 0.060339  

ln ER -8.151052a -8.158039a  -9.406657a -9.191273a  0.099847 0.082047  

ln EC -6.146892a -6.093122a  -8.178754a -7.967713a  0.100151 0.084858  

ln TFP -4.073000a -4.187022 b  -6.833788a -6.828087a  0.274802 0.086479  

Notes: a , b and c, denotes statistical significance at 1 percent, 5 percent and 10 percent levels, respectively. 

 

Table 2. Model selection summary 

Linear Model 

Case I  Case II 

AIC SBC  AIC SBC 

Value ARDL  Value ARDL  Value ARDL  Value ARDL  

-2.939205 2,4,0,0 -2.523032 1,1,0,0  -3.014144 2,4,2,0,0 -2.526268 2,1,0,0,2 

-2.923381 2,4,2,0 -2.499339 2,4,0,0  -2.987955 2,4,3,0,0 -2.508123 2,1,0,0,0 

-2.907610 2,4,1,0 -2.487009 2,2,0,0  -2.985024 2,4,2,0,2 -2.499095 2,2,0,0,0 

-2.897030 2,4,3,0 -2.478187 2,1,0,0  -2.983663 2,4,2,0,4 -2.497702 2,0,0,0,2 

-2.895722 3,4,2,0 -2.431032 1,2,0,0  -2.980141 2,4,0,0,0 -2.496335 1,1,0,0,0 

         

Quadratic Model 

Case III  Case IV 

AIC SBC  AIC SBC 

Value ARDL  Value ARDL  Value ARDL  Value ARDL  

-3.014755 2,4,3,0,0 -2.438107 1,0,1,0,0  -3.157073 2,0,4,2,0,0 -3.150493 2,0,3,2,0,0 

-3.010064 2,3,4,0,0 -2.432490 1,1,0,0,0  -3.150493 2,0,3,2,0,0 -3.135855 2,3,0,2,0,0 

-3.004513 3,4,3,0,0 -2.418595 2,0,4,0,0  -3.143731 2,4,0,2,0,0 -3.157073 2,0,4,2,0,0 

-3.001501 3,3,4,0,0 -2.407066 2,0,2,0,0  -3.142016 2,4,3,0,0,0 -3.060562 3,0,1,2,0,0 

-2.978169 2,4,4,0,0 -2.404817 2,4,0,0,0  -3.141281 2,3,4,0,0,0 -3.058395 3,1,2,0,0,0 

 
 

 



 

 

Table 3. Bound test for cointegration 

 Linear Model  Quadratic Model 

 
Case I  Case II  Case III  Case IV 

Value k  Value k  Value k  Value k 

F-statistic 4.570496 3  5.545779 4  4.585547 4  5.332040 5 

Critical Values Bounds* I0 I1  I0 I1  I0 I1  I0 I1 

10% 2.933 4.020  2.660 3.838  2.660 3.838  2.483  3.708 

5%  3.548 4.803  3.202 4.544  3.202 4.544  2.962  4.338 

1% 5.018 6.610  4.428 6.250  4.428 6.250  4.045  5.898 

Notes: * Based on Narayan’s critical values (Narayan, 2005), for the case of unrestricted intercept and no trend. 

 

 

  



 

 

Table 4. Long-run estimates based on ARDL model 

 

Variables 
Linear Model  Quadratic Model 

Case I: ARDL (2,4,0,0) Case II: ARDL (2,4,2,0,0)  Case III: ARDL (2,4,3,0,0) Case IV: ARDL (2,0,4,2,0,0) 

ln Y  0.87243 (0.26785)a 1.03806 (0.23162)a  -0.15389 (1.53462) 4.71954 (1.44783)a 

ln Y2 - -  0.05150 (0.11063) -0.26358 (0.10351)a 

ln ER -0.20348 (0.05695)a -0.22232 (0.05170)a  -0.18612 (0.05606)a -0.27757 (0.04477)a 

ln EC 0.67124 (0.29423)b 0.49938 (0.28942)c  0.79649 (0.33321)b 0.43628 (0.21826)c 

ln TFP - -0.19052 (0.08940)b  - -0.38593 (0.09883)a 

C -9.41814 (0.65742)a -9.56622 (0.68880)a  -5.66175 (5.35130) -21.95706 (4.89835)a 

R-squared 0.98872 0.99114  0.99162 0.99273 

Adjusted R-squared 0.98482 0.98652  0.98668 0.98844 

SE of regression 0.04960 0.04674  0.04646 0.04327 

F-statistic 253.2984a 214.5052a  200.4357a 231.3499a 

AIC -2.93920 -3.01414  -3.01475 -3.15707 

D-W statistic 1.85638 1.89591  1.85166 2.04092 

Diagnostic tests      

Serial correlation   𝜒(1)
2 = 0.05777 (P = 0.81) 𝜒(1)

2 = 0.23135 (P = 0.63)  𝜒(1)
2 = 0.00150 (P = 0.97) 𝜒(1)

2 = 0.21811 (P = 0.64) 

Functional form  𝜒(1)
2  =  0.00404 (P = 0.95) 𝜒(1)

2  =   5.94874 (P = 0.02)  𝜒(1)
2  = 2.06983 (P = 0.17) 𝜒(1)

2  = 1.79716 (P = 0.19) 

Normality  𝜒(1)
2 = 0.80972 (P = 0.67) 𝜒(1)

2 = 0.52438 (P = 0.77)  𝜒(1)
2 =  0.64434 (P = 0.72) 𝜒(1)

2 =  0.10241 (P = 0.95) 

Heteroscedasticity  𝜒(1)
2  = 2.85938 (P = 0.97) 𝜒(1)

2  = 4.75136 (P = 0.97)  𝜒(1)
2  = 4.01572 (P = 0.99) 𝜒(1)

2  = 4.38389 (P = 0.99) 

Notes:  

1. a and b, denotes statistical significance at 1 percent and 5 percent levels, respectively. 

2. The numbers in parentheses are standard errors. 

 
 
 
 
 
 
 

 

  



 

 

Table 5. Short-run estimates based on ARDL model 

 

Variables 
Linear Model  Quadratic Model 

Case I: ARDL (2,4,0,0) Case II: ARDL (2,4,2,0,0)  Case III: ARDL (2,4,3,0,0) Case IV: ARDL (2,0,4,2,0,0) 

Δln Ct-1  0.39469 (0.14831)b 0.46932 (0.13566)a  0.51511 (0.15043)a 0.60922 (0.13579)a 

Δln Y 1.46985 (0.27051)a 1.70191 (0.32813)a  -11.50687 (7.70250) 4.08808 (2.75265) 

Δln Y2 - -  0.92997 (0.54977) -0.15540 (0.19863) 

Δln ER -0.13220 (0.03939)a -0.15842 (0.04558)a  -0.12191 (0.03925)b -0.19161 (0.04311)b 

Δln EC 0.43610 (0.18534)b 0.40899 (0.22109)c  0.52170 (0.20920)b 0.45462 (0.20561)b 

Δln TFP - -0.23774 (0.19390)  - -0.41390 (0.17729)b 

ECTt-1 -0.64969 (0.11766)a -0.75155 (0.12663)a  -0.65500 (0.11102)a -0.94820 (0.14237)a 

Notes:  

1. a , b and c, denotes statistical significance at 1 percent, 5 percent and 10 percent levels, respectively. 

2. The numbers in parentheses are standard errors. 

 


