
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Burdett, Robert & Kozan, Erhan
(2018)
An integrated approach for scheduling health care activities in a hospital.
European Journal of Operational Research, 264(2), pp. 756-773.

This file was downloaded from: https://eprints.qut.edu.au/222956/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.ejor.2017.06.051

https://eprints.qut.edu.au/view/person/Burdett,_Robert.html
https://eprints.qut.edu.au/view/person/Kozan,_Erhan.html
https://eprints.qut.edu.au/222956/
https://doi.org/10.1016/j.ejor.2017.06.051

Outline

Highlights

Abstract

Keywords

1. Introduction

2. Previous research

3. Hospital scheduling approach

4. Solution techniques

5. Case study and numerical investigations

6. Conclusions

Acknowledgements

Appendix A. Nomenclature

References

Show full outline

Figures (9)

Show all figures

Tables (17)

Table 1

Table 2

Table 3

Table 4

Table 5

Algorithm 1

Show all tables

Get rights and content

European Journal of Operational Research
Available online 30 June 2017

In Press, Corrected Proof

Innovative Applications of O.R.

An integrated approach for scheduling health care activities in a hospital
Robert L. Burdett , Erhan Kozan

Show more

https://doi.org/10.1016/j.ejor.2017.06.051

Outline Download PDFDownload Export Search ScienceDirect Advanced

Journals Books Register Sign in

Page 1 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

fitzpatj
Highlight

•

•

•

•

•

Highlights

A scheduling approach has been developed to optimise the usage of hospital
treatment spaces.

An entire hospital is describable and schedulable in one integrated approach.

Activities in patient's clinical pathway are assigned and sequenced on different
resources.

Constructive algorithms and hybrid meta-heuristics are developed and applied
to find solutions.

Real world problems have been solved in numerical testing.

Abstract

To effectively utilise hospital beds, operating rooms (OR) and other treatment spaces, it is necessary to
precisely plan patient admissions and treatments in advance. As patient treatment and recovery times are
unequal and uncertain, this is not easy. In response, a sophisticated flexible job-shop scheduling (FJSS)
model is introduced, whereby patients, beds, hospital wards and health care activities are respectively
treated as jobs, single machines, parallel machines and operations. Our approach is novel because an
entire hospital is describable and schedulable in one integrated approach. The scheduling model can be
used to recompute timings after deviations, delays, postponements and cancellations. It also includes
advanced conditions such as activity and machine setup times, transfer times between activities, blocking
limitations and no wait conditions, timing and occupancy restrictions, buffering for robustness, fixed activities
and sequences, release times and strict deadlines. To solve the FJSS problem, constructive algorithms and
hybrid meta-heuristics have been developed. Our numerical testing shows that the proposed solution
techniques are capable of solving problems of real world size. This outcome further highlights the value of
the scheduling model and its potential for integration into actual hospital information systems.

Keywords
Scheduling; Flexible job shop; Hospital scheduling; Disjunctive graph model; Hybrid meta-heuristics

1. Introduction

Hospitals are critical elements of health care systems and access to their services is very competitive
around the world. As demands have increased many hospitals have become larger. It is apparent that
expansion activities cannot be performed without limit, as there are many physical and financial
impediments. To achieve further improvements and to restrict cost increases, hospitals may need to operate
more efficiently with the resources they already possess. To operate better, Heiser (2013) reports that
hospital scheduling is beneficial as it increases surgeon productivity and revenue, decreases the cost per
surgical procedure, improves staff productivity and morale, and leads to a more efficient usage of facilities.
Our conversations with local health care professionals have also provided anecdotal evidence that if bed-
spaces are scheduled better, patients can be placed within the home ward of a specialty to recover and may
not need to be sent to other wards as outliers. When placed in the home ward of a specialty, patients
receive better care from nursing staff and surgeons, are happier, and generally recover more quickly.

Hospital scheduling however is challenging. There are two types of competing clients. The elective patients
are identified in advance and have specific, reasonably well known health care requirements, aka clinical

Page 2 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

pathways. Clinical pathways are standardised, evidence-based multidisciplinary management plans, which
identify an appropriate sequence of clinical interventions, timeframes, milestones and expected outcomes
for homogenous patient group (Queensland Health, 2017). Acute patients in contrast emerge irregularly and
have dynamic conditions. Planning for known demand traditionally involves (i) the assignment of patients to
resources over time, and (ii) the creation of a schedule. Planning for unknown demand is more difficult and a
static plan cannot be created. Dynamic assignment and dispatching is hence necessary when acute patients
arrive. Those activities inevitably corrupt the existing schedule and the pre-established plan of work.
Evidently the problem of jointly considering the aforementioned demand types is very difficult.

It is important for hospitals to treat patients quickly and efficiently and to use their resources wisely. By more
efficiently utilising the existing hospital resources, such as beds and other treatment spaces, it may be
possible to increase the number of patients a hospital would otherwise treat, or reduce the number of
resources that are required to meet given demands. To do this it is theorised that a kind of flexible job shop
scheduling (FJSS) model may be helpful. This article investigates the technical details behind that approach.
The intention is to embed that approach within an integrated rolling horizon hospital planning and
rescheduling framework within an intelligent hospital information and management system. To our
knowledge no other paper has explicitly addressed this problem in a comparable level of detail. This article
builds upon prior research in Burdett and Kozan (2015) and to some extent Luscombe and Kozan (2016). In
the former article, robust schedules in a similar environment were developed. That was accomplished via
the insertion of strategically placed idle time (i.e. buffering). Each job in that article consisted of a single
activity, and was processed in a single area, by a set of flexible machine resources. In contrast this article's
system is multi-staged and each job has a full set of activities. This article does not explicitly consider the
selection of buffering to handle uncertain activity times. Another article integrating buffer selection is planned
in the future which will do more justice to handling uncertain processing times. In the later article Luscombe
and Kozan (2016) developed job shop scheduling techniques to coordinate the activities and resources
present in emergency departments.

The FJSS problem (i.e. FJSP) is an extension of the classical job shop scheduling problem. In the FJSP
however each job activity can be processed by a variety of candidate machines (aka resources). The goal is
to assign each activity to a machine, and to sequence those activities, so that the schedule horizon is
minimal. The main purpose of formulating and solving the FJSP is to schedule the hospital's activities and to
reschedule when existing plans become obsolete. This is a certain event as time elapses, no matter what
plan is created. So this approach is essential. The FJSP also facilitates other functionalities which are
equally if not more immediately useful to planners within hospitals. The FJSP provides the means to
visualise what is going on in the hospital. It provides the capability to determine activity timings and the
potential occupancy of the hospital “upfront”. Furthermore it provides the means to analyse the effect of
variations in treatment times, recovery times, and other activity durations “upfront”. Used online the FJSP
can notify staff of activities that are nearing completion so patients can be made ready sooner and hence
free up resources quicker. Violated timing constraints and other infeasibilities can also be flagged. The FJSP
can analyse alternative resource assignments and sequencing decisions and facilitates optimisation
approaches that seek improved resource assignments and improved task sequencing on resources.

The FJSP approach can be used to provide a benchmark to compare current practices and to determine the
operational capacity level of the hospital (Burdett, 2016; Burdett & Kozan, 2016; Burdett, Kozan, Sinnot,
Cook, & Tian, 2017).

In the next section, prior research is discussed. The FJSP and the main technical developments are then
introduced in Section 3. Solution techniques for the FJSP are discussed in Section 4. A case study and
numerical investigations are then reported in Section 5. Concluding remarks are finally made in Section 6.
For fast access and to ease understanding, the notation, parameters and variables used throughout this
article are listed in Appendix A.

2. Previous research

Page 3 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Recent trends and features of hospital scheduling research are reviewed in this section. Machine scheduling
research relevant to the planning of activities in hospitals is also examined.

2.1. Hospital scheduling approach

Many articles can be found on hospital planning and scheduling in the literature. For a comprehensive
taxonomy of decision approaches, Hulshof, Kortbeek, Boucherie, Hans, and Bakker (2012) may be
consulted. Javid, Jalali, and Klassen (2017) may also be consulted for comprehensive details of optimisation
approaches associated with patient scheduling. In retrospect the viewpoints and solution approaches
proposed in the literature vary greatly. In Carnes, Price, Levi, Dunn, Daily, and Moss (2011), it is believed,
that a hospital does not have the luxury of specifying in advance, when every patient will be admitted and
discharged from the hospital. Braubach, Pokahr, and Lamersdorf (2014) further judge that many scheduling
approaches are unsuitable for real life application. One reason for this is that despite its general usefulness,
efficient mechanisms for patient scheduling are difficult to devise due to some inherent characteristics of
hospitals. For example there are many uncertainties that make precise planning ahead for even a few days
very difficult, if not impossible. Patient cure remains a task that cannot be pre-planned completely in
advance, even for specific clinical pathways. Hence it is necessary for patient scheduling to accommodate
these characteristics and to provide a flexible and fast mechanism that can handle uncertainties at many
levels. Consequently Braubach et al. (2014) propose a decentralised approach whereby patients and
resources are modelled as agents with individual goals.

Scheduling policies can have a great effect on hospital performance. Cappanera, Visintin, and Banditori
(2014) compared the performance of three different scheduling policies. Their scheduling objective was to
maximise the number of scheduled surgeries and to balance the beds and operating room workloads. A
discrete event simulator (DES) was used to identify the schedule's robustness. Their numerical
investigations showed no clear distinction between the different policies and no single technique was
superior in all situations.

The scheduling of elective patients has received significant attention under the alias of the surgical case
scheduling problem. As these patients are visible, their treatments can in theory be planned in advance. The
article by Pham and Klinkert (2008) is noteworthy and well cited. It motivates a more holistic approach to
scheduling inpatients and outpatients, and coordinating hospital resources. Their work provides a strong
foundation for this article's approach. Pham and Klinkert (2008) in particular proposed a resource
constrained multi-mode blocking job shop framework. In their decision making problem, resources are first
assigned to each activity of a job and then activities are scheduled on their assigned resources. The
execution of an activity requires a set of resources and each set of resources is called a mode. Blocking
occurs because there are no buffers. A mixed integer linear programing (MILP) model with makespan
objective was formulated and solved using CPLEX. Their computational study however considered
hypothetical scenarios of small size (i.e. 30 surgical cases) and larger instances were not solved. Another
noteworthy article is Gartner and Kolisch (2014). In their approach the main decision is to decide on which
day each procedure of each patient's clinical pathway should be done, taking into account the sequence of
procedures as well as scarce clinical resources. A fixed admission date was assumed in their first model but
this was relaxed in the second model. Both models were however embedded into a rolling horizon approach
in order to cope with stochastic data. Each afternoon a decision is made as to which patients will be
considered for surgery on the next day. An instance of the decision problem is then solved with the most
recent data. Our approach is a more fine-grained operational approach in contrast to Gartner and Kolisch's
strategic approach. It includes more technical constraints and peculiarities of hospitals. Our unit of time for
scheduling is smaller and this allows more accurate and timely scheduling of activities.

Operating rooms, and theatres including multiple rooms, are an expensive resource and drive many
activities within hospitals. Master surgery scheduling otherwise known as surgical block scheduling is
consequently an important way to coordinate and plan hospital's activities. This decision problem has been
considered numerously in the literature and recent trends are to integrate it with other decision problems.
Chow, Puterman, Salehirad, Huang, and Atkins (2011) for instance combined a surgical schedule optimiser

Page 4 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

(SSO) (i.e. an MIP model) with a bed utilisation simulator (BUS). The approach is used to level surgical bed
occupancy and to reduce ward congestion and reduce peak bed occupancies. Fugener, Hans, Kolisch,
Kortbeek, and Vanberkel (2014) recently developed a stochastic analytical model for master surgery
scheduling (MSS). The purpose of the MSS problem is to assign block operating room time to different
surgical specialities. The downstream resources are included as additional costs. Different measures were
proposed to quantify these costs. Their approach includes downstream resources, such as intensive care
units (ICU) and wards. That article provides a step towards the development of an integrated approach for a
whole hospital. Their feedback and experience is another source of motivation for this article's approach.
Spratt and Kozan (2016) addressed the master surgical scheduling problem and the surgical case
assignment problem that occurs in Australian public hospitals. They developed an integrated solution
approach and formulated a mixed integer nonlinear programming model. This integrated decision problem
was solved using a variety of hybrid meta-heuristics.

2.2. Machine scheduling research

As indicated in Pham and Klinkert (2008) hospital scheduling is analogous to solving flexible job shop
(FJSP) and flexible flow shop (FFSP) scheduling problems. They are notoriously difficult combinatorial
optimisation problem and are NP-hard. We briefly discuss recent approaches and their impact on this
research. Pezella, Morganti, and Ciaschetti (2008) and Chen, Wu, Chen, and Chen (2012) solve FJSP using
Genetic Algorithm (GA). In the later article sequence dependant setup times are included. Yazdani, Amiri,
and Zandieh (2010) developed a parallel variable neighbourhood search (PVNS) algorithm for the FJSP with
makespan objective. Changes to both the assignment and sequencing are made. Groflin, Pham, and Burgy
(2011) considered a flexible blocking job shop (FBJSP) with sequence dependant transfers and setup times.
A Tabu Search (TS) approach was primarily advocated and tested. Job insertion and feasibility issues were
discussed in depth and incorporated. The authors report the need to reduce their computation times for
large practical problems. Sauvey and Trabelsi (2015) considered identical machines and included mixed
blocking constraints. Their approach has two parts—machine selection and operations scheduling. This
style of approach is evidently superior to others. Xia and Wu (2005) and Zhang, Shao, and Gao (2009) solve
multi-objective versions. In the former article, a hybrid Simulated Annealing (SA) and Particle Swarm (PSO)
algorithm is implemented. PSO and TS are combined in the later. In both articles three objectives were
included. These are aggregated into one objective using a weighted sum approach. Jungwattanakit,
Reodecha, Chaovalitwongse, and Werner (2009) have considered flexible flow shop problems with setup
times, dual criteria and unrelated parallel machines. Their objective is a convex sum of makespan and the
number of tardy jobs. They implemented SA, GA and TS meta-heuristics to solve problem instances with up
to 50 jobs and 20 stages. They also implemented and tested a variety of heuristics, and constructive
algorithms.

The incorporation of blocking and no-wait conditions is a necessity in this research. These conditions are
important additions to flow and job shop scheduling problems (Burdett & Kozan, 2001a, 2001b, 2003). The
following are particularly noteworthy articles: Burdett and Kozan (2009, 2010a, 2010b), Liu and Kozan
(2011, 2012, 2016) and Kozan and Liu (2012). They apply various constructive and meta-heuristic
techniques to solve train sequencing and scheduling problems as JSSP with blocking, no-wait conditions
and capacitated buffers. Hayasaka and Hino (2012) proposed a solution correction approach to correct
infeasibilities caused by exchanging two consecutive activities on the same machine of a blocking job shop
schedule. Their approach involves the introduction of reverse conjunctive arcs. In their view swaps are not
counted as a factor that causes infeasible schedules. Zeng et al. (2014) considered the creation of
schedules for a difficult industrial application. In their approach the problem is represented as a job shop
problem with blocking constraints and transfer times between machines. Jobs are transferred between
machines using a limited number of automatic guided vehicles (AGV) and blocking with swapping is also
permissible. The problem was first formulated as a MINLP problem. Due to the computational intractability of
that model, a two stage heuristic algorithm was proposed instead. As blocking constraints are difficult to
represent in a disjunctive graph model some custom algorithms are devised to schedule activities. These
are based upon adjustments to the standard disjunctive graph model.

Page 5 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Our analysis of past research suggests that more work is still required on this topic. Previous test instances
are relatively small compared to real life applications. Most reported test cases have about 15 jobs and 10
machines but real hospitals have hundreds on any given day or week. Additional complexities and advanced
features unique to health care seem not to have been included in one holistic approach, although they have
been considered individually in the scheduling literature (as shown above) for some time. The incorporation
and integration of multiple scheduling objectives is also limited. Hospitals evidently have many competing
entities and criteria.

3. Hospital scheduling approach

This section describes a generic integrated hospital planning and rescheduling framework. An overview of
the main details is summarised in Table 1.

Table 1. Details of the integrated hospital planning and rescheduling framework.

Surgical patient's pre-operative care (POC), surgery (SUR), post-operative care (PAC), recovery (REC)

Medical patients treatment and consultation (MED), diagnostic tasks (DIAG), rehabilitation (REH)

The occupancy of each bed space, treatment space and operating room

Assign patients to bed spaces and to treatment spaces from the set of candidates

Dynamically schedule acute surgical patients as they eventuate

Required when parameters change or the system is disrupted. For example:

Required when acute patients arrive and urgently need surgery

Required when patient's length of stay or other treatment is finished early or late

Achieved by adding strategic buffering between different activities

Maximise throughput of patients; Maximise schedule robustness

This holistic approach includes the recovery wards, operating rooms, intensive care units and the surgical
care areas within a hospital. The emergency department is not included at this stage but patients originating
there may be included and then scheduled when they become inpatients. This approach can be used to
schedule any medical or surgical activity in the hospital. From a practical perspective that level of detail may
be superfluous and excessive. Consequently, higher level activities should be concentrated upon and lower
level activities should be aggregated. Their effect on the system is more critical. Anecdotal evidence
suggests that nurses and other hospital personnel within the different hospital areas are adept at
coordinating low level activities themselves.

A key ingredient is the FJSS model and the solution of the FJSP. The FJSP involves the assignment of
forthcoming patients to different beds and operating rooms and the timing of health care treatments and
other activities. The aforementioned assignments are selectable and greatly affect how the system performs.
To our knowledge, most hospitals do not schedule the occupancy of beds in advance. Beds are acquired at
“close call” and staff within bed management units “wheel and deal” with different specialty units as need be.
Our approach is therefore a new consideration for hospitals. In contrast the operating rooms have always
been scheduled. They are the engine that drives the hospital and are significantly more expensive and
scarce.

Hospital schedules may be evaluated by many different criterion. The selection of a scheduling criterion
does not affect the proposed scheduling model. The optimisation techniques are also unaffected unless
multiple criteria are defined and Pareto optimal solutions are sought. Which single objective or collection of
objectives is best for hospitals is somewhat debatable. Evidently it is important to construct schedules that

What to schedule

What to sequence

What to assign

What to dispatch

When to reschedule

Robustness

Multiple objectives

Page 6 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

utilise hospital resources efficiently. Resources should be highly utilised but not to the point where small
deviations cause many delays and postponements, poor schedule performance, and schedule infeasibility.
In this article, a schedule with a minimum makespan is sought. That criterion is a well-known scheduling
measure. In the parallel machine environment that is considered, it balances resource usage and maximises
utilisation and throughput. Making the schedule robust is equally important as minimising schedule horizon
is potentially questionable in an environment with uncertain processing times. That is the topic of future work
however and involves the selection of appropriate buffering. Other objectives that measure access block,
patient delays, number of postponed or cancelled activities, may also be used.

Rescheduling is needed in this environment as no level of planning can be exact when so many things can
change or vary. Rescheduling is also a means to handle the implementation of less robust schedules with
high utilisation. The rescheduling of activities is necessary when beds, treatment spaces and other
resources are not available when planned or when patients are not ready. Rescheduling provides new
activity timings and may result in the reassignment of beds and other treatment spaces. It may also result in
the postponement or cancelation of previously scheduled activities if they cannot be accommodated.

3.1. Flexible job shop scheduling (FJSS)

The FJSP problem is formally defined as follows. A given set of jobs must be performed
on a set of machines . The processing of job J consists of several activities

 to be performed in the given order, where K is the number of activities in job J . The
complete set of activities is . The activity processing times denoted by ρ depend on the
machine assigned. This is denoted by m . The set of candidate machines that may be used to process o
is given by . The assignment of o to a particular machine is denoted by the binary
variable a . For instance, if then . A three field notation (i.e. machines / constraints /
objective) is used to explain different variants of the FJSP. For example “FJ/blocking/Cmax” is a description
of a FJSP with makespan objective and general blocking conditions.

To apply a FJSS approach it is necessary to treat patients as jobs, health care activities within the patient's
clinical pathway as job operations, beds and treatment spaces as machines and hospital areas consisting of
multiple treatment spaces as parallel machines. As the term “operation” may also be used to describe
surgical activities, we do not use it to describe activities in the remainder of this article. This FJSS approach
facilitates the scheduling of treatment and care activities within the many different areas of the hospital.
There is no limit to the number of activities in a job, nor is there a limit to the number of times a job can visit
the same machine. In other words re-entrant paths are possible. Each treatment area w∈W has a collection
of treatment spaces π∈Π that may be used. In practice there is little difference between alternate wards,
alternate treatment areas and alternate treatment spaces. Hence identical machines can be assumed. The
possibility of non-identical machines is theoretically possible and must be incorporated.

The FJSS approach is adopted because patients (p∈P) can be assigned to a variety of wards and
treatment areas within their clinical pathway. A basic clinical pathway for each patient is as follows:

 . Each tuple (ϕ, u, ρ, W , Π) contains the activity type (ϕ∈Φ), the unit
performing the activity (u∈U), the activities expected processing time ρ, a set of permissible wards
(W ⊆W), and a set of permissible treatment spaces (Π ⊆Π). The tuple may also include a complete list of all
other resources such as doctors and nurses. An example of a patient's flexible pathway is shown in Fig. 1.

i

i i

i, k

i, k i, k

i, k

i, k, j

w

p p

p p

Page 7 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921





Download high-res image (205KB) Download full-size image

Fig. 1. Example of flexible pathway for a surgical patient.

If the patient starts their stay in the ward this surgical patient's visit includes an extra stage. The patient's
surgery can be performed in three different operating theatres and the patient's recovery can occur in one of
three different wards. A specific path is shown, including the beds assigned (i.e. filled circles). Requirements
for a stay in the intensive care unit may also be added to this diagram. This type of basic pathway is
predominantly the same for all surgical patients. Advanced pathways however can occur when patients
need to stay in the ICU and when patients require multiple surgeries.

To apply this FJSS approach, a translation process such as the one summarised in Table 2 is required to
perform the following mapping: (W, Π, P) → (J, M, O). This translation process does not completely describe
all the technical conditions required. A number of “constructs” have therefore been created to correctly
specify the necessary technical conditions. They are listed in Table 3 and will be discussed in more detail in
later sections.

Table 2. Translation process.

∀w∈W: ∀π∈Π :  Convert spaceπ → machine j Convert each space to a machine

∀p∈P: Convert patient p → job i Convert each patient to a job

Convert each task to an activity

Table 3. Specification constructs.

Define a start-start synchronisation between specific activities of a job

Define a finish-start synchronisation between the last and first activity of a job

Define a list of start time restrictions for activity o

Define a list of depart time restrictions for activity o

Define a list of time intervals where a machine is off limits, i.e. closed

Define a machine setup time

Define a setup time before processing activity o

Define a setup time after processing activity o

Define finish-start delay between activity o and its successor in job i

Define a fixed start and end time for activity o

Define a fixed machine for activity o

Define a fixed sequence of activities on machine j

Set the buffering after activity o

Define a limit to the buffering after activity o

Set same machine requirement for activities of a job

Step Conversion Description

i. w

ii.

iii.

Format Description

RESTRICT , o , {itp} START i, k i, k

i, k

RESTRICT, j, {itp}

SETUP, j, val

i, k

i, k

OVERLAP, o , vali, k i, k

i, k

i, k

BUFFER, o , vali, k i, k

i, k

Page 8 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Set a machine acquisition requirement for o that starts when begins

The following constructs, “ ”, “ ”, and
“BUSINESS, j, wk” have also been defined. These constructs specify, for both activities and machines, that
business hours are available only for the defined number of weeks. These constructs automatically generate
a full list of invalid time periods (ITP).

3.2. An alternative disjunctive graph model

Disjunctive graphs (DJG) are the basis of many successful strategies for solving job shop scheduling
problems (JSSP). In a disjunctive graph each node v∈ V|v∉{so, si} represents an activity that
must be sequenced, and each arc a∈A represents a precedence requirement. The graph has fixed
conjunctive arcs (CJA) and a set of selectable disjunctive arcs (DJA). When evaluated, for instance, via a
longest path algorithm, the DJG provides activity timings.

An alternative disjunctive graph model (ADGM) is now introduced for hospital applications. It includes a
multitude of advanced technical conditions such as activity and machine setup times, transfer times between
activities, blocking limitations and no wait conditions, timing and occupancy restrictions, buffering for
robustness, fixed activities and sequences, release times and strict deadlines. The exact details of the
ADGM are shown below:

In this description, each activity of a job is “blocking” except the last; it is “ideal”. This means that job
activities cannot terminate until the location of the next activity is free/acquired. The last activity is different.
Once complete the job can terminate, and leave the system.

Function G provides the mapping . Many different functions may be used and will be
discussed in the next section. The sequence of activities performed on machine j is denoted as

 where σ ∈O. The disjunctive arcs in (5) are created between all pairs of adjacent
activities in the machine sequences. If the activity is from the same job, then a disjunctive arc is still
warranted. For instance, it ensures that a job activity does not occur in a machine sequence before
predecessor activities of the same job (i.e. on that machine). This disjunctive arc may be equivalent to an
existing conjunctive arc, but may not have the same arc weight. Consequently, multiple arcs are permitted
between the same nodes. When removing disjunctive arcs, care must therefore be taken to remove the
correct arc (i.e. an arc with a particular weight), and other occurrences of the arc must be left “in-place”. An

Format Description

i, k

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

j, k

Page 9 of 37An integrated approach for scheduling health care activities in a hospital - ScienceDirect

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

alternative approach is to pre-identify the predecessor and successor activities of the job on the same
machine, and to use this information when making sequencing decisions.

3.2.1. Transfer, setups and buffering

Hospitals are large places. Transfer times occur when patients are moved between different areas in the
hospital. A variety of setup activities may need to be imposed before patients can be treated. Setup times
are commonly incurred in a variety of places, for instance in ward beds and operating rooms. In this article
transfers and setups are denoted by ω and s respectively. Different transfers and setups are shown in
Table 4.

Table 4. Transfer time and setup time alternatives.

Between specific job activities. Independent of machine assignments.

Between specific machines. Independent of job activity.

Combination of the former.

Setup description Mapping

For a machine. Between all activities processed there. j → s

For an activity. Independent of machine. o  → s

For an activity performed on a specific machine. (o , m) → s

The transfer time ω must be included in alternate disjunctive arcs as shown in Fig. 2a to ensure the
starting time of the next job activity is correct. The transfer time should be included in the disjunctive arc and
not in the node weight as lost time will occur. This is shown in Fig. 2c with relation to the former scenario in
Fig. 2b. The transfer time also affects the departure time and ultimately the amount of blocking that an
activity incurs. In Fig. 3, J2 leaves earlier than would otherwise have occurred in the case of zero transfer
time. Hence M1 is free sooner for other jobs. If the transfer cannot strictly occur until the successor machine
(i.e. M2) is ready, then the full amount of blocking will occur.

Download high-res image (190KB) Download full-size image

Fig. 2. Transfer time incorporation and effect.

Transfer description Mapping

i.

ii.

iii.

iv. j

v. i, k i, k

vi. i, k i, k i, k

i, k

Page 10 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Download high-res image (87KB) Download full-size image

Fig. 3. An example of reduced blocking caused by the presence of transfer times.

The buffering denoted by β may be placed after every activity to provide schedule robustness when
activity processing times are longer than anticipated in practice. For the purposes of this article the buffering
is assumed given. The selection of buffering has been considered in Burdett and Kozan (2015).

The constructs “SETUP”, “PRE_SETUP”, “POST_SETUP” and “BUFFER” have been provided to facilitate
the aforementioned setup and buffering requirements. The construct “OVERLAP” can be used to facilitate
transfers of various kinds.

3.2.2. Blocking limitations and no wait conditions

Different finish-start timing conditions (i.e. lags) need to be enforced when scheduling in hospitals as
medical and surgical activities must occur promptly without much delay. Different possibilities are facilitated
by altering two user input parameters, namely lag and type . The lag   parameter describes the
permissible interval of time between two successive activities of a patient job. Under normal circumstances,
lag ∈ [0, ∞]. Scenarios where lag is less than zero will be discussed in due course. The parameter type
 describes what happens after an activity is completed. The options are as follows:

 . The first option allows the job to move into an intermediate “storage”
area straight away. The second option forces the job to wait until released (i.e. blocking) as there is no
intermediate storage. The last option implies that the job cannot be delayed.

In hospitals the possibility of blocking is always present. Once patients are admitted there is no stage in the
clinical pathway where blocking cannot occur as patients must be held in actual hospital spaces that are
limited and constrained. Blocking is evidently something that should be minimised because of the
repercussions to patient's health and to overall system performance. Standard blocking conditions are
activated when . The creation of alternate disjunctive arc is needed, that originate from an
activity's successor, within the current job. In actuality patients must be promptly moved to a different
location to further their care/treatment. If needed, successor activities may be commenced at the patient's
current location; but this is not standard practice. Hence the amount of blocking is restricted. This is
facilitated by setting lag  < ∞.There are a number of ways to enforce the restriction on the amount of
blocking at any stage in a patient's clinical pathway. A simple approach involving the penalisation of
excessive blocking (i.e. as a soft constraint) is viable but that approach offers no guarantee of feasibility. A
more elegant approach involving the addition of “backwards” synchronisation arcs may be used to explicitly
enforce the aforementioned time lag constraints. These backward arcs were introduced in Mascis and
Pacciarelli (2002). These particular modifications ensure that activities are scheduled within lag time units
of their predecessor's completion. This backward scheduling approach ensures that there is no waiting time
before processing. In other words, an activity starts as soon as it arrives. This approach also makes the
disjunctive graph cyclic, which adds significant extra overhead to graph evaluations. This issue will be
discussed later.

A demonstration of backward arcs is shown in Fig. 4a. In that diagram two jobs J1 and J2 need to be
scheduled. J2 has two activities but J1 has only a single activity. Both jobs are processed on machine M2 in
the order (J1, J2). The disjunctive arc required to enforce that precedence requirement is dotted. A blocking
limitation is defined for J2 of three time units (i.e.). Hence a backward arc linking node 3 to node 2
is required. The Gantt chart associated with that disjunctive graph is shown in Fig. 4b.

i, k

i, k i, k i, k

i, k i, k i,

k

i, k

i, k

Page 11 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Download high-res image (96KB) Download full-size image

Fig. 4. Demonstration of backward arc to enforce blocking limitation.

To fully eliminate blocking, job activities may be defined as no wait. The no wait condition is achieved by
setting . Defining activities as no wait may cause an inferior schedule to be produced in
comparison to other scenarios. The time lag parameter is clearly irrelevant when the activity is “ideal”.

3.2.3. Ward bed acquisition (WBA)

Ward beds need to be acquired and then set aside for specific patients to occupy. The acquisition should
occur when the patient begins their treatment, either at the start of POC or at the start of surgery. The
acquisition time however depends on various factors but should occur before the patient arrives at the ward.
This requirement is a non-standard feature and to our knowledge is not present in many scheduling
applications. To facilitate this condition, the strategies shown in Table 5 are considered for a standard
surgical patient job whose pathway is (POC, SUR, PAC, REC). Each strategy has different strengths and
weaknesses. In essence they involve the definition of the acquisition (ACQ) as a separate job activity or as a
sub component of another activity (see Fig. 5). The start of the ACQ activity must also align with the start of
a predecessor activity such as the POC or SUR. Fig. 5 demonstrates the net effect of the different
strategies.

Table 5. Different approaches for modelling the ward bed acquisition requirement.

5 Same machine: (ACQ, REC).

PAC∧ACQ≺REC

5 [ACQ,  POC,  SUR,  PAC,  REC] Same machine: (ACQ, REC). ρ  = 0

5 [ACQ,  POC,  SUR,  PAC,  REC] Overlap between ACQ and POC. Same machine: (ACQ, REC).

5 [POC,  SUR,  PAC,  ACQ, REC] Overlap between PAC and ACQ. Same machine: (ACQ, REC).

4 Overlap between PAC and ACQ_REC

Download high-res image (121KB) Download full-size image

Option #Activity Pathway Conditions

A

B1 ACQ

B2

B3

C

Page 12 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Fig. 5. Alternative approach: a) a five activity job, b) a four activity job.

In the aforementioned strategies the overlap is computed as .
The construct “ACQUIRE” is used to define seizure activities and to compute their processing time. Except
for B1, the ACQ component includes the processing times and transfers of predecessor activities. In
strategy A and B the ACQ activity is separate. This is problematic as the ACQ activity must always be
performed on the same machine as the recovery task. This technical condition is forthwith called a “same
machine assignment” (SMA) requirement. It should be noted that in each SMA there is essentially only one
assignment decision. Methods for enforcing SMA in job shop scheduling are not standard. Hence some
innovations will be introduced and demonstrated later. The aforementioned construct “SAME_MACHINE” is
used to define SMA requirements.

In this article B3 and C have been adopted. Option C is believed best as the “acquire” and recovery are
merged into one and the SMA is not needed. In addition the disjunctive graph is smaller as there is one less
activity per job. In each of these strategies the conjunctive arcs required, for a typical job are shown in Fig.
6. The reverse “synchronisation” arc ensures a start-start lag of zero between POC and ACQ or between
POC and ACQ_REC. The introduction of the synchronisation arc creates a no wait job where every activity
except the last is no-wait. The aforementioned construct “SYNCH_2" has been created to facilitate the
synchronisation arc in strategy C. The construct “SYNCH_1" can be used to facilitate the synchronisation
arc in strategy B3. These synchronisation constructs are generic. They can be integrated automatically with
the acquisition construct.

Download high-res image (89KB) Download full-size image

Fig. 6. Conjunctive arcs respectively for option B3 and C.

The aforementioned approaches are effective; yet some care should be taken during implementations.
When performing an analysis of processing time deviations, the overlap and ACQ processing time changes.
This is because they are functions of the other activities. A basic implementation takes these values as static
data. It is better that they be computed using specific functions. A revised approach is therefore suggested
where the acquisition times are added on arcs and nodes where and when needed. Acquisition times in
addition are not explicitly included within transfer times. The synchronisation arc weight is a function as is
the overlap.

3.2.4. Deadlocks, cycles and blocking swaps

In classical JSSP's the disjunctive graph is acyclic if the solution is feasible, and the presence of cycles
indicates precedence impossibilities, caused by the violation of certain conjunctive arcs. These cycles have
positive length and must be restricted from occurring. In the FJSP problem however, the disjunctive graph is
always cyclic because of the incorporation of backward synchronisation arcs. These cycles have a negative
length in contrast to the aforementioned one whose length is positive. This distinction is important as the
presence of a cycle of negative length can be handled with an appropriate scheduling algorithm; for
instance, the Bellman Ford algorithm. The traditional longest path algorithm cannot be used if cycles of any
type are present. The Bellman Ford algorithm in contrast is able to identify when there are cycles of positive
length. It is also able to schedule correctly when there are cycles of negative length.

The Bellman Ford algorithm is primarily used to determine the shortest paths to each node from a single
source in a directed graph. It is easily adapted for longest path problems. The distances are updated each
iteration and become more accurate as the algorithm progresses. Every arc is considered during the

Page 13 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

iteration. This algorithm terminates if no changes are made during any iteration. Otherwise the number of
iterations is the number of nodes minus one. The worst case time bound is O(|V||E|) but improvements can
be applied to reduce calculations. Yen (1970) introduced several approaches. His first improvement reduces
the number of relaxations required by only relaxing nodes if their distance has changed in the last iteration.
This modification is particularly advantageous on disjunctive graph as they are quite dense.

In this FJSP some other cycles are also created, and these are valid too if their length is negative. They
relate to the presence of blocking swaps. Blocking swaps are needed when two jobs need to swap places.
Both jobs need to move simultaneously to resolve this type of deadlock, i.e. simultaneous swaps are
needed. Deadlocks consisting of more than two jobs can also occur. In this hospital application deadlocks of
this nature are unlikely because in most circumstances the flow is one way and there are many candidate
treatment spaces.

3.2.5. Timing and occupancy restrictions

In hospitals there are restrictions on when activities can be performed during the day and when resources
such as operating rooms can be used. These restrictions need to be included in scheduling activities and
may be treated as either hard or soft constraints. Start time, completion time and occupancy restrictions (i.e.
denoted STR, CTR, OTR) will now be discussed. For reference purposes they will be referred to in the
following way: FJ/STR/Cmax, FJ/CTR/Cmax, FJ/OTR/Cmax. Those constraints are deemed to be strict and
consequently are treated as hard constraints. Several approaches have been developed and these will be
discussed in due course. Timing restrictions could alternatively be treated as soft constraints and timing
violations could be introduced as a secondary objective that should be minimised. A variety of multi criteria
scheduling approaches could then be utilised; a weighted sum approach being the simplest to implement.
The application of multi-criteria scheduling techniques however is outside the scope of this article and a
source of further research.

Correct start and end times can be achieved by applying a Right Shift Corrective Scheduling Policy
(RSCSP). A RSCSP is straightforward to encode when invalid time periods (ITP) occur at the same time
each week. For example:

Step 1: Determine which day the activity currently begins and ends. If the activity starts on Saturday or
Sunday then postpone start time till Monday 8 am.

Step 2: Determine start time during the day. If start time occurs before 8 am, postpone till 8 am. If start time
occurs after 5 pm, postpone till 8 am on the next workday (i.e. not Saturday or Sunday).

The aforementioned approach however is not generic, and not well suited to situations where ITP occur at
any time and differ on each day of every week. A generic approach consequently needs to analyse a set of
chronologically ordered ITP, where at worst, every activity may have a different list of ITP. In our proposed
approach the aforementioned constructs “RESTRICT_START” and “RESTRICT_END” are used to specify
the list of ITP. To implement these constructs, two strategies have been considered. The first utilises
functions on nodes. In the disjunctive graph, the start and end time at each node, may need to be corrected.
The function shown in (9) is used to perform those corrections. This function is written generically and t is
any uncorrected value of time that may be input. The start time is first corrected and then the end time. The
function's output is then recorded in place of the original aforementioned values.

Eq. (9) implies that the input time value is not altered if no ITP intervals can be found that bound it.
Otherwise, the time is altered to that interval's upper value. Evaluating this function may be computationally
expensive if the number of ITP is large, as many intervals must be checked. The aforementioned approach
does not handle situations where machine occupancy is instead restricted in a given ITP. This is because an
activity may overlap the ITP yet both the start and end times may occur correctly outside the ITP. Operating

(9)

Page 14 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

rooms are a typical example where occupancy restrictions occur. In many hospitals operating rooms only
operate during business hours (i.e. Monday–Friday, 8 am–5 pm). In terms of elapsed time the set of ITP for
a typical week is as follows: ITP = {[0,8], [17,24], [24,32], [41,48], [48,56], [65,72], [72,80], [89,96], [96,104],
[113,120], [120, 144], [144,168]}. The last two intervals are for the whole of Saturday and Sunday. Upon
closer scrutiny, the set of ITP can be reduced by merging the evening ITP with the morning ITP, and
merging Saturday and Sunday. Hence: ITP = {[0,8], [17,32], [41,56], [65,80], [89,104], [113,168]}.

To incorporate occupancy restrictions the aforementioned construct “RESTRICT” is used. Several strategies
are available to enforce occupancy restrictions. The choice of which method to use relies to some extent on
whether ITPs are regular or not. If they are then the first strategy is more apt. The first strategy involves the
application of correction algorithms. If an activity overlaps an ITP that occurs in [t , t], the activity must be
scheduled earlier or else its start time must be postponed to the end of the ITP, i.e. . An overlap
occurs when t ∈ (b , c) ∨b ∈ (t , t). In other words, an ITP starts within (b , c) or else the activity
begins within the ITP (t , t). Two algorithms are introduced. Their exact details are shown below:

The first algorithm determines if an activity is scheduled within an ITP. After the first “if” statement, we know
that b  < t . Hence if the activity occurs before t then we know that no overlap occurs. Otherwise an
overlap does occur. The search terminates when the first if statement is not met, as the current ITP occurs
before all later ITP. Algorithm 2 is necessary to correct an activity. This iterative algorithm utilises Algorithm
1. It corrects an activity if necessary. It then checks future ITPs too. It continues to correct an activity until an
appropriate “valid time interval” is found. If an activity takes longer than all available time periods, then the
activity cannot be feasibly scheduled.

Algorithm 1. Check_ITP(z, b , e , ITP).

Algorithm 2. CorrectActivity (ρ , b , c , ITP).

b e

b i, k i, k i, k b e i, k i, k

b e

i, k e b

i, k i, k

{

  while (z < |ITP|) {

 ;

   if (b  ≥ t) // Start time occurs after the current ITP ends. Go to next ITP.i, k e

   else if (c  ≤ t) return NULL; // Status: feasible. The end time occurs before the ITP.i, k b

   else return ITP ; // Status: infeasible. Return the ITP that overlaps with this activity.z

 }

}

i, k i, k i, k

{

 ;

  do {

 (z, b , e , ITP);i, k i, k

   if (/∃[t , t]) ; // Stop no correction requiredb e

   else { } // Perform correction

 } while(z < |ITP|);

}

Page 15 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

An alternative approach is to utilise dummy activities. For each unavailable period a dummy activity can be
created with a release time (rlt), deadline (dln) and processing time equal to the difference, i.e.
. Each ITP activity must be assigned a fixed machine status. Hence it may not be assigned to other
machines, and its candidate list must be of size one. On a particular machine several ITP can be grouped as
an entire job. Each ITP activity is defined as ideal, and not blocking. Hence the source of disjunctive arcs
involving ITP activity is from the activities node and not the successor. In other words, traditional disjunctive
arcs are necessary. In the disjunctive graph the release time is facilitated by an arc from the source node to
the activity with weight rlt. This timing constraint is strict and cannot be violated. The deadline is facilitated by
an arc from the activity to the source, of weight “ ”. This causes a cycle of length zero. Violation of the
deadline results in a positive length cycle. Hence provided that positive cycles are restricted, a feasible
schedule is obtainable. This approach is transparent, classical and theoretically elegant. It is relatively easy
to implement. To schedule activities the Bellman Ford algorithm is again required. The main downside of this
approach is that many additional dummy activities could be created. The exact number of dummy jobs is
difficult to determine, because the duration of the schedule may not be known with certainty. Hence an
appropriate upper bound is needed.

3.2.6. Fixed activities and sequences

A number of decisions may already be fixed when planning and scheduling activities are activated. These
fixed decisions affect all other decision making activities. The aforementioned constructs “FIXED_TIME”,
“FIXED_MACHINE” and “FIXED_SEQ” have been provided for those scenarios. The first construct fixes the
start and end time of an activity. This construct causes a release time and a deadline to be added. In the
disjunctive graph the release time is enforced by a conjunctive arc from the source to activity o of weight
rlt . The deadline is enforced by an arc from the activity to the source of weight . These arcs allow
other activities to be correctly sequenced before and after this fixed activity.

The second construct fixes the machine assignment for activity o . A Boolean flag is altered by this
construct. That flag is used in a variety of solution techniques to differentiate between those activities that
can or cannot be re-assigned to alternative machines. This construct can be used to remove machines from

 the machine candidate list for o . Hence machine re-assignments will not be possible for that activity.
The third construct is used to specify fixed sequences. Each activity in the fixed sequence is given a fixed
position and is defined as having a fixed machine. In other words this construct also calls the second
construct.

In practice the scheduling of surgeries in operating rooms is predominantly restricted by the MSS.
Consequently patients of particular types can only be operated upon in specific rooms within specific
intervals of time (i.e. blocks). If this assumption is relaxed then patient's surgeries can be scheduled anytime
during business hours, Monday–Friday. In theory the situations shown in Table 6 could occur. This table
describes what actions are required.

Table 6. Operating room possibilities and actions.

Given Given Apply construct FIXED_SEQ and FIXED_TIME

Given Selectable Apply construct FIXED_SEQ

Selectable Selectable none

If the patient is assigned to a specific block, but the order of the patients within the block is free, then the
FIXED_TIME construct can be called with the block start and end time. In other words a release time and a

i, k

i, k

i, k

i, k

Scenario OR sequence Surgery timings Action

i.

ii.

iii.

Page 16 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

deadline are introduced. Fixed sequences pose some unique difficulties for solution creation. These will be
discussed in a later section.

4. Solution techniques

Solution techniques to solve the FJSP are proposed in this section. In Section 4.1 the assignment of
machines to activities is separately considered. The joint sequencing and scheduling problem is then
addressed in Section 4.2.

4.1. Static machine assignment problem (MAP)

As this FJSP problem is so difficult to solve, it is anticipated that a separate approach that predetermines
where activities are to be performed, may be more beneficial and effective. This approach would be applied
prior to sequencing and scheduling activities and would provide a better starting point for those activities.
The following mixed integer programming (MIP) mathematical model is proposed:

Subject to:

The notation used in this model has been defined earlier. This model balances the workload of machines
within different groups and creates a starting solution whereby the horizon of each group, namely H , is
minimal. This is accomplished via constraint (11). Each group generally refers to a type of activity, i.e. g ≡ ϕ
and G ≡ Φ. Constraint (12) ensures that each activity is assigned a single machine from the list of
candidates. Some assignments are known to be invalid upfront and are “zeroed” in constraint (13). In this
approach machines are grouped in order to identify a better balance. If groupings are not created, then
some machines will unduly influence the solution. For example, patient length of stay in ward beds greatly
overshadows the processing requirements elsewhere in the hospital. This model can be divided into |G| sub-
problems as the assignment to machines within groups is separate.

This model does not take into account a patients severity of illness and other stochastic factors that may
affect this assignment in practice. Sequence dependent setups that occur between activities are also
disregarded. This is because a sequence is not provided or even considered by this approach. The model
can however be modified if a static sequence independent setup s is given. In that case the total time lost to
setups is as follows:

The summation term is the number of assigned activities, and the number of setups is one less than that
number. If the first job activity also needs a setup then the minus one should be removed.

Although simple this assignment model has been found to be computationally intractable. Numerical
investigations, for instance using OPL Studio, have shown that only small instances can be solved quickly.

(10)

(11)

(12)

(13)

(14)

g

j

(15)

Page 17 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Consequently a hybrid Simulated Annealing (HSA) approach is developed. Before the HSA is applied a fast
heuristic is applied to provide a starting solution of high quality. Our fast heuristic iteratively assigns activities
to machines. At each step, the list of candidates for the current activity is inspected and the machine that is
least utilised is assigned. That machine's workload is then updated accordingly. This greedy heuristic
provides high quality solutions with little if any computational overhead. That solution is then refined within
HSA using two operators.

For the MAP a random swap perturbation has been found to be effective. In each step of the HSA, and for
each group, the application of the swap operator is necessary. The swap mechanism changes the workload
of two machines within a group. This is accomplished by randomly selecting two activities that are performed
on those machines and reassigning them to the other machine. The workload of those machines is altered
for benefit or detriment. The HSA cooling strategy dictates what level of detriment is permitted. An
alternative strategy is to shift single activities. Numerical testing has shown that approach to be inferior.

After the swap perturbation operator has been applied, an improvement step should be applied to improve
the convergence and solution quality. Our numerical testing indicates that an improvement operator is very
effective and should be applied to each group. This novel feature separates our HSA from traditional
versions of SA. The machines that are most and least utilised are selected. Their workloads are then
decreased and increased respectively. There are many possible ways to rebalance the workload of those
machines. Our approach is straight forward yet effective. A single activity is selected randomly from the
machine with the greatest workload. That activity is transferred to the other machine if the target workload is
not exceeded. The target workload is defined as the average workload of the two machines, i.e.

 . If the transfer is permitted, then the horizon of the group is decreased. This
improvement operator is well suited to making small improvements, particularly after random perturbations
have been made elsewhere. This algorithm is less effective when the difference between the most and least
utilised machines is small and the activity processing times are larger than that difference.

4.2. Scheduling activities

This section describes our approach to scheduling the individual activities of each job. Constructive
algorithms and meta-heuristics are utilised for that activity.

4.2.1. Constructing a solution

An iterative constructive insertion algorithm (INSALG) was first developed and provides a starting solution
for our meta-heuristics. This algorithm inserts jobs iteratively. The activities within a job are inserted with
respect to the magnitude of their processing time, i.e. from the largest to the smallest. This means that more
influential activities are inserted and positioned first. Each activity is arbitrarily assigned to a machine (i.e.
INSALG_RAND) or else assigned a machine via the solution of the MAP (i.e. INSALG_MAP). Each activity
is trialled in each position of the current partial sequence for the assigned machine. This approach provides
good quality “robust” solutions because many partial sequences of activities are evaluated (see Burdett &
Kozan, 2010b). This approach is made effective by adding nodes and conjunctive arcs iteratively. Hence at
early stages, the disjunctive graph is empty and graph evaluations take minimal computational effort.

A second type of insertion algorithm (INSAPP) was also implemented. In that approach an arbitrary
sequence of jobs is again given. Although jobs and their activities are iteratively inserted, an analysis of
alternative insertion positions is not performed. Consequently job activities are just appended. For each job
activity, a list of the candidate machines that are free is collated. The first free candidate machine is selected
and the activity is appended to that machines sequence. The INSAPP has attributes of a dispatching
algorithm, as scheduling activities are performed over time. This approach is very fast, and is well suited to
real life application and to problem instances of excessive size. This approach however is not a search
algorithm per se. The INSAPP algorithm is also a greedy approach and will provide locally optimal solutions
at best and may not provide a solution as robust as the one provided by the INSALG.

4.2.2. Meta-heuristics

Page 18 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921





To improve an existing solution different meta-heuristics were considered. As there is a need to repetitively
evaluate the disjunctive graph using the Bellman Ford algorithm and that algorithm has high computational
overheads, population based strategies such as Evolutionary Algorithms (EA) and Particle Swarm
Optimisation (PSO) were avoided. Population based strategies inevitably incur higher CPU times as a
population of solutions must typically be manipulated and evaluated (Burdett & Kozan, 2003). In contrast
Simulated Annealing (SA), Tabu Search (TS) and other related methods do not. Preliminary numerical
testing demonstrated that traditional SA is not effective on a problem like this, which has a more complex
decision space. Insufficient progress was made and convergence was poor. A superior hybrid SA (HSA)
was therefore created. It addresses some of the weaknesses that were observed. The perturbation
operators summarised in Table 7 are an important and noteworthy feature of our HSA algorithm. They are
needed to effectively search the decision space. The control parameters used in the HSA are otherwise the
same as traditional SA. A traditional cooling policy was also adopted in the HSA.

Table 7. Perturbation strategies implemented and tested.

OPRINS Re-sequence an arbitrarily selected activity within the current machine.

Variants: random or greedy.

OPRASS Reassign an activity to another machine and re-sequence it within that machine if possible.

Variant: look at all candidate machines.

JRINS Re-sequence each activity of an arbitrarily selected job, within the currently assigned

machines.

Variant: assign each activity to a different machine.

The idea behind these strategies is the re-insertion of a selected activity and the evaluation of feasible
insertion positions, to judge where the re-insertion should occur. In this application, moving activities within
sequences is difficult due to the very strict timing conditions that exist. Hence only small changes are often
feasible. If an activity is to be moved too far left or right, then other mechanisms like the job re-insertion are
needed. The OPRASS involves the application of the OPRINS algorithm. The OPRINS can be sped up by
reducing the range of the evaluated insertion positions, i.e. the neighbourhood size. The disjunctive graph is
not evaluated as many times using this policy.

Numerical testing to date indicates the best strategy is a combination of OPRASS and JRINS. The JRINS is
performed less often (i.e. say 30% of the time) as it is more “disruptive” and computationally arduous. Job
re-insertions however are a form of compound move and are quite necessary for making larger changes in
the solution. The perturbation operation is applied every iteration of the HSA approach and at some steps,
both OPRASS and JRINS are applied.

A number of procedures are used within the OPRINS, OPRASS and JRINS algorithms. The most
noteworthy are summarised in Table 8.

Table 8. Key procedures that facilitate OPRINS, OPRASS, JRINS.

This procedure inserts an un-inserted activity if it can. Evaluations are performed to compare different

insertion possibilities. This procedure utilises “find_valid_position”.

This procedure determines valid insertion positions for an activity.

Name Abrev. Description

Operation Re-insertion

Operation Re-

assignment

Job Re-insertion

Procedure Description

make_insertion

find_valid_position

Page 19 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

•

•

•

Output: a list of valid positions.

When re-inserting an activity on a different machine, this procedure finds the nearest position where

insertion is most likely to feasibly occur.

This procedure determines valid insertion positions and evaluates their merit. Output: a sorted list of

insertion positions.

This procedure tests the insertion of an activity in a given position of a given sequence. Output: feasibility

status.

These procedures determine which disjunctive arcs should be added and removed when an activity is

inserted or removed from a sequence. Output: a list of added arcs and a list of removed arcs.

These procedure insert and un-insert activities from a given position in a sequence. Output: the altered

disjunctive graph and sequences.

This procedure evaluates the current solution. The disjunctive graph is first evaluated using Bellman Ford.

If valid, activities are then scheduled. The schedule is then evaluated and key performance indicators (kpi)

are computed. Output: a schedule and the kpi's of the schedule.

4.3. Non standard features

Some features of this problem pose added difficulties for scheduling. A number of changes to core
algorithms are required:

Fixed activities: A reduced set of activities are available for selection in the OPRASS and OPRINS.
Activities that have fixed machines must be excluded from the OPRASS and activities with fixed
positions must be excluded from the OPRINS. When applying the JRINS algorithm, activities that
have fixed positions must be bypassed.

Same machine assignments: The presence of SMA means that some activity cannot be re-assigned
independently. Multiple activities must be re-sequenced together. In actuality, this amounts to an
iterative re-insertion according to an arbitrary ordering of those activities.

INSALG: The INSALG is used to build sequences that have not been predefined. If some sequences
are per chance given (i.e. there are fixed sequences), a modified INSALG is needed. The precedence
relations implied by those fixed sequences must be initialised at some point in the construction
process. To evaluate fixed sequences, the associated activity nodes must be present in the
disjunctive graph. Inevitably this may involve other activities of the job, and these are not performed
on the machine with the fixed sequence. If those activities are not present, many of the disjunctive
arcs required to enforce the fixed sequence cannot be added. One solution is to insert un-sequenced
activities iteratively. An alternative is to add all nodes and conjunctive arcs upfront. The computational
overhead is significantly increased as the full graph must always be evaluated. Another approach is
to add pre-sequenced components iteratively as well. Pre-sequenced activities must be inserted
according to the fixed sequences. In theory this is easy to do, i.e. by iterating through the fixed
sequence, only taking into account those activities that have been inserted thus far.

5. Case study and numerical investigations

This section evaluates the effectiveness of our approaches on a large suite of realistic sized test problems.
All numerical experiments have been run on a quad core Dell personal computer (PC) with a 2.6 gigahertz
processor and 16 gigabyte memory under Windows 7. The FJSS approach has been coded in C++ for

Procedure Description

find_nearest_position

evaluate_positions

test_insertion

get_changes_insert

get_changes_remove

insert_operation

uninsert_operation

evaluate

Page 20 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

added speed and robustness. The main procedures constitute about 5000 lines of code. All of the constructs
defined in Table 3, except the buffering, have been used in our test problems. Our test problems can be
found at QUT Eprints and QUT Data Finder.

5.1. Arbitrary benchmarks

The first set of problem instances has been randomly generated. In total there are 24 test problems (Ex 1
–24). The number of patient jobs was selected as 50, 100, 150 or 200. Each patient job is given four
activities, namely (POC, SUR, PAC, REC). The following scenarios were selected and describe the number
of candidate machines available to each job activity: {[5,2,5,10], [5,3,5,10], [5,4,5,20], [5,5,5,20], [5,10,5,20],
[5,10,5,30]}. The number of machines in each test problem is 22, 23, 34, 35, 40, and 50. The number of
machines is dictated by the number of candidate machines available to each job activity. For instance, the
sum of the candidates gives the total number of machines.

In these test problems, start time restrictions are placed on the first two activities of each job, namely a
business time requirement. The processing times of each activity are in minutes. They have been arbitrarily
selected for POC, SUR, PAC and REC activities from the following ranges respectively: {[15,60], [60,300],
[30,300], [1440,7200]}. These ranges are indicative of typical POC, SUR, PAC and REC activities in
hospitals. We assume that processing times do not depend on the bed-space and operating room assigned.
Post setups and transfers of 15 minutes have been imposed.

The optimal makespan is not known for these instances. The following lower bounds are hence derived to
provide an idea:

A lower bound is computed for each of the four activities (i.e.). It is computed as
the sum of the processing times divided by the number of machines available to perform the activity. That
value is then divided by T the number of hours that task ϕ may be performed per day. Recovery tasks
typically occur 24 hours per day but surgery and pre and post-operative care can only occur for 8 hours per
day. The lower bound provides the number of days of processing required. The activity with the greatest
processing requirement is then used as an approximation of the makespan. As the recovery tasks far
outweigh the other activities the lower bound can be approximated by lb .

The application of the constructive algorithms is shown in Tables 9–11. Each test problem is solved 30 times
to understand the expected behaviour of the constructive algorithms. The CPU column refers to the average
time. The timing restrictions were handled using the RSCSP.

Table 9. Solutions produced by the constructive algorithms for FJ|No STR|Cmax.

14.82 19.12,

[17.86,19.8]

0.51 28.94,

[24.3,34.61]

3.14 0 20.1,

[18.82,22.14]

0.93 0.07

32.24 37.82,

[36.43,39.04]

0.66 55.56,

[44.7,72.11]

5.92 14.03 40.41,

[38.48,43.02]

1.14 14.23

44.29 51.52,

[50.49,52.88]

0.59 75.53,

[63.03,92.83]

6.72 81.2 56.11,

[53.38,62.6]

1.89 82.3

60.81 0.68 7.54 268.03 1.43 270.83

(16)

ϕ

rec

#,|J|,|M| LB INSAPP [No STR] INSALG_RAND [No STR] INSALG_MAP [No STR]

avg, [min,max]

(days)

Stdev

(days)

avg, [min,max]

(days)

Stdev

(days)

CPU

(seconds)

avg, [min,max]

(days)

Stdev

(days)

CPU

(seconds)

1,50,22

2100,22

3150,22

4200,22

Page 21 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

69.69,

[68.34,70.75]

95.22,

[83.81,116.11]

74.37,

[71.91,78.2]

15.37 19.07,

[18.08,20.2]

0.54 31.36,

[23.68,45.58]

4.82 0 20.08,

[18.85,21.93]

0.85 0

29.89 35.33,

[34.49,36.5]

0.5 51.29,

[44.33,69.63]

5.62 11.47 38.3,

[36.46,40.66]

1.29 11.3

44.18 51.14,

[50.08,52.2]

0.57 75.69,

[64.39,103.35]

9.25 65.5 54.51,

[51.97,56.55]

1.14 65.5

61.27 70.03,

[68.73,71.37]

0.56 95.23,

[82.53,129.25]

8.52 223.2 74.81,

[72.5,78.52]

1.15 216.73

6.79 10.18,

[9.38,10.93]

0.48 20.41,

[15.43,33.58]

4.2 0 10.17,

[8.71,11.84]

0.79 0

14.99 19.11,

[18.18,20]

0.44 35.27,[28.89,50] 4.67 9.43 21.58,

[19.76,24.2]

1.21 9.17

22.09 27.11,

[25.98,28.19]

0.55 46.47,

[36.69,60.13]

5.51 56.47 29.85,

[28.06,32.24]

1.1 56.53

30.57 36.37,

[35.4,37.16]

0.47 59.63,

[50.68,69.82]

5.15 196.27 41.2,

[38.69,43.93]

1.29 188

7.34 10.67,

[9.91,11.54]

0.42 20.23,

[15.87,25.65]

2.73 0 10.93,

[9.23,13.32]

1.19 0

15.41 19.78,

[19.05,20.85]

0.46 36.14,

[27.25,51.09]

5.11 8.83 22.35,

[20.13,26.73]

1.5 8.47

23.31 28.28,

[27.44,29.17]

0.44 48.67,

[41.39,57.94]

4.42 52.03 32.25,

[29.97,35.81]

1.36 51.1

32.23 38,

[37.22,38.79]

0.37 62.81,

[51.36,76.43]

6.32 175.47 43.44,

[39.13,47.68]

1.66 174.43

8.23 11.87,

[11.04,12.87]

0.46 22.48,

[17.94,30.41]

3.11 0 11.91,

[9.87,14.53]

1.13 0

15.46 19.88,

[19.05,20.96]

0.55 35.27,

[26.06,41.72]

4.05 6.73 22.31,

[19.79,25.93]

1.5 6.47

23.91 28.88,

[28.08,29.48]

0.43 50.64,

[39.26,63.43]

5.86 42.17 32.97,

[30.86,38]

1.49 40.53

30.48 36.14,

[35.32,36.98]

0.51 57.97,

[47.09,72.78]

5.38 144.13 40.26,

[38.71,43.25]

1.27 144.63

5.04 8.79,[7.9,9.44] 0.44 19.45,

[12.4,26.29]

3.73 0 7.49,[6.76,9.85] 0.76 0

10.02 13.93,

[13.14,14.55]

0.38 28.74,

[24.35,35.99]

3.05 6.57 15.42,

[13.71,17.9]

1.14 5.93

14.18 18.71,

[17.77,19.51]

0.42 36,[27.75,52.19] 5.37 42 21.46,

[19.48,25.28]

1.61 39.73

#,|J|,|M| LB INSAPP [No STR] INSALG_RAND [No STR] INSALG_MAP [No STR]

avg, [min,max]

(days)

Stdev

(days)

avg, [min,max]

(days)

Stdev

(days)

CPU

(seconds)

avg, [min,max]

(days)

Stdev

(days)

CPU

(seconds)

5,50,23

6100,23

7150,23

8200,23

9,50,34

10,100,34

11,15,34

12,200,34

13,50,35

14,100,35

15,150,35

16,200,35

17,50,40

18,100,40

19,150,40

20,200,40

21,50,50

22,100,50

23,150,50

Page 22 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

19.27 24.14,

[23.34,25.15]

0.43 43.78,

[36.35,54.47]

4.58 144.77 27.3,

[25.14,29.47]

1.2 141.5

Table 10. Solutions produced by the constructive algorithms for FJ|STR|Cmax.

23.91,[20.64,26.49] 1.64 27.61,[23.83,33.97] 3.32 0.048

47.57,[46.01,48.94] 0.61 58.42,[47.09,71.22] 5.87 1.368

64.87,[61.75,68.44] 2.11 88.23,[68.38,102.45] 8.02 9.848

88.69,[85.12,91.18] 1.59 119.26,[109.67,134.4] 6 39.497

23.25,[20.66,26.26] 1.36 26.26,[23.05,32.66] 2.09 0.033

42.39,[40.58,45.35] 1.14 50.84,[45.11,59.51] 4.06 0.93

62.04,[59.64,64.6] 1.24 80.11,[68.37,89.33] 6.44 6.871

69.74,[68.54,70.93] 0.65 74.99,[70.95,79.35] 1.78 3.573

12.68,[11.82,13.44] 0.42 14.64,[11.99,19.59] 2.15 0.017

23.57,[21.41,26.65] 1.35 36.16,[28.08,45.7] 4.83 0.752

33.87,[32.6,34.75] 0.54 60.38,[46.16,75.5] 6.57 5.731

46.55,[43.34,47.74] 1.3 78,[65.73,91.09] 7.38 25.971

12.76,[12.37,13.57] 0.27 15.49,[11.8,19.85] 2.22 0.016

23.99,[22.25,26.58] 1.41 36.12,[28.48,52.66] 4.78 0.671

34.02,[32.96,35.57] 0.61 53.48,[40.13,67.36] 6.88 4.686

47.51,[46.78,49.3] 0.49 78.39,[60.84,99.69] 7.87 23.151

13.14,[12.49,13.8] 0.42 14.79,[12.55,19.45] 2.12 0

24.11,[21.33,26.75] 1.41 33.22,[26.08,41.87] 4.49 0.469

35.04,[33.56,37.34] 0.83 52.37,[40.22,67.27] 6.27 3.947

44.69,[43.05,47.57] 1.46 70.79,[53.59,87.48] 7.11 18.911

10.35,[8.81,12.58] 1.23 13.16,[10.8,17.8] 2.01 0

18.33,[15.82,19.58] 1.05 26.27,[19.24,32.94] 3.68 0.378

23.26,[22.45,25.71] 0.82 41.88,[35.59,54.13] 4.76 3.202

30.12,[28.31,33.42] 0.94 58.46,[47.53,68.25] 5.38 17.193

Table 11. Solutions produced by the constructive algorithms for FJ|OR FXSEQ|Cmax.

#,|J|,|M| LB INSAPP [No STR] INSALG_RAND [No STR] INSALG_MAP [No STR]

avg, [min,max]

(days)

Stdev

(days)

avg, [min,max]

(days)

Stdev

(days)

CPU

(seconds)

avg, [min,max]

(days)

Stdev

(days)

CPU

(seconds)

24,200,50

#,|J|,|M| INSAPP [STR] INSALG_MAP [STR]

avg, [min,max] (days) Stdev (days) avg, [min,max] (days) Stdev (days) CPU (minutes)

1,50,22

2100,22

3150,22

4200,22

5,50,23

6100,23

7150,23

8200,23

9,50,34

10,100,34

11,15,34

12,200,34

13,50,35

14,100,35

15,150,35

16,200,35

17,50,40

18,100,40

19,150,40

20,200,40

21,50,50

22,100,50

23,150,50

24,200,50

Page 23 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

38.235,[31.71,45.244] 4.344 0 48.61,[41.04,59.3] 5.28 0.15

88.373,[73.419,99.363] 8.44 0.215 105.79,[88.3123.14] 7.98 4.442

128.365,[114.326,142.894] 8.158 1.192 151.55,[132.28,168.86] 9 25.932

170.955,[159.704,187.468] 8.361 4.053 212.1,[188.32,235.05] 14.53 92.395

33.895,[25.959,44.012] 5.609 0 42.02,[32.08,58.97] 5.54 0.128

75.956,[68.116,81.061] 4.38 0.192 90,[76.23,106.23] 6.75 3.748

114.576,[104.379,125.299] 6.378 1.165 131.93,[120.62,151.62] 9.04 25.01

158.19,[143.172,180.09] 10.983 3.898 154.13,[146.56,165.01] 6.18 3.738

20.383,[18.342,23.837] 1.646 0 24.92,[21.32,28.32] 1.97 0.096

44.683,[40.471,54.283] 3.848 0.157 56.83,[41.61,69.61] 6.17 2.91

66.906,[59.453,71.779] 3.506 1.043 81.78,[69.83,95.35] 7.47 19.535

94.161,[80.324,117.402] 10.29 3.152 114.95,[106.86,124.86] 6.06 70.74

16.975,[14.649,20.611] 1.91 0 22.93,[18.73,28.1] 2.71 0.075

43.222,[39.697,46.549] 2.037 0.152 54.51,[46.56,68.85] 5.26 2.718

67.686,[58.088,79.495] 6.61 0.98 81.41,[75.76,89.05] 4.05 18.073

93.445,[82.722,101.81] 6.714 3.292 112.24,[97.66,124.22] 7.66 67.408

16.508,[13.797,19.405] 1.822 0 19.48,[15.45,24.5] 1.91 0.046

39.889,[35.546,45.315] 3.151 0.135 44,[37.38,54.73] 4.33 2.242

54.375,[49.013,57.761] 2.332 0.927 67.81,[60.46,75.68] 5.23 15.495

73.546,[68.512,77.174] 3.075 3.118 86.76,[81.56,90.08] 2.7 59.072

11.309,[8.968,15.039] 1.678 0 13.88,[10.4,16.47] 1.77 0.037

26.379,[24.041,28.186] 1.263 0.128 32.45,[26.79,39.29] 3.02 1.958

39.862,[33.573,45.449] 3.552 0.857 48.17,[42.2,52.69] 3.68 14.687

53.184,[49.063,60.443] 3.442 2.928 65.65,[55.2,74.86] 5.12 55.208

In summary the INSAPP was clearly the faster of the two constructive algorithms. It completed almost
immediately on these test problems. As expected the INSALG time requirements were much larger but still
acceptable. For instance, on the time unrestricted cases (i.e. FJ/No STR/Cmax), the CPU time did not
exceed 5 minutes. On the time restricted cases (i.e. FJ/STR/Cmax) the time required on problems with less
than 200 jobs, was 10 minutes or less. Only on the larger 200 job problems did the CPU times increase
greatly. They varied from 20 to 40 minutes. It is anticipated that the time requirements of the INSALG do not
cause any great issues for practical application, but improvements that reduce those times are possible and
desirable.

Good quality solutions were obtained by both algorithms on the whole. On the time restricted case that is
difficult to prove, however on the time unrestricted cases, the solutions are evidently quite close to the lower
bound approximations. The INSAPP was clearly superior to the INSALG; at best the INSALG is competitive.
Its performance however deteriorates as the number of jobs increases. This is particularly noticeable on the

#,|J|,|M| INSALG_MAP [No STR] INSALG_MAP [STR]

avg, [min,max] (days) Stdev (days) CPU (minutes) avg, [min,max] (days) Stdev (days) CPU (minutes)

1,50,22

2100,22

3150,22

4200,22

5,50,23

6100,23

7150,23

8200,23

9,50,34

10,100,34

11,15,34

12,200,34

13,50,35

14,100,35

15,150,35

16,200,35

17,50,40

18,100,40

19,150,40

20,200,40

21,50,50

22,100,50

23,150,50

24,200,50

Page 24 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

time restricted cases. The INSALG was less able to create good solutions when there are 150 or 200 jobs.
For cases with fewer jobs, it performed better.

The random assignment of machines to activities resulted in particularly poor INSALG solutions. The
creation of a balanced assignment first greatly improved the solution quality. The solutions obtained then
were quite comparable to the INSAPP. Hence the application of the INSALG_RAND was disregarded in
later numerical experiments. In contrast the INSAPP automatically balances the machine utilisation,
because the first free machine is always selected. That approach mimics real life practices. The order in
which jobs are inserted is arbitrary and greatly affects the solution quality. The performance of the INSAPP
and INSALG can therefore be quite variable. The INSAPP however has less variation of the two
approaches.

As the processing time of the recovery activity is so much larger, the scheduling of the other job activities will
have minimal impact on the solution where there are no timing restrictions. Hence those activities could in
theory be ignored and scheduled later.

The HSA was applied next. The best of the INSAPP and INSALG solutions were used as starting solutions.
The results are summarised in Tables 12 and 13. The HSA was applied with an initial temperature of 1, final
temperature of 0.01, temperature reduction 0.9, and 200 evaluations per temperature. The lower bound in
(16) is shown and used to judge the quality of No STR solutions. The No STR solutions are used as a lower
bond to judge the quality of the STR solutions.

Table 12. Solutions produced by HSA for FJ|No STR|Cmax and FJ|STR|Cmax.

14.82 17.378 0.478 0.048 *16.795 2.02 0.048 19.629 1.008 0.252 19.89 3.936 0.25

32.24 36.042 0.384 0.506 36.302 2.178 0.5 42.501 3.509 2.609 *42.188 4.906 2.62

44.29 50.204 0.289 1.745 *50.095 3.287 1.909 59.331 2.417 9.949 60.939 7.442 9.11

60.81 68.134 0.206 4.475 69.155 2.758 4.473 79.46 5.655 32.968 82.388 27.279 30.6

15.37 18.084 0 0.042 *17.407 1.442 0.038 20.008 0.655 0.23 20.219 2.831 0.23

29.89 34.49 0 0.446 34.588 1.872 0.426 38.594 1.983 2.094 39.919 5.194 2.25

44.18 50.081 0 1.689 *49.452 2.515 1.591 56.852 2.783 8.188 60.278 8.089 9.07

61.27 68.73 0 3.333 69.589 2.912 3.768 68.405 0.133 3.883 69.388 1.562 3.77

6.79 8.542 0.835 0.034 *8.169 0.544 0.037 10.928 0.89 0.157 *10.055 1.937 0.16

14.99 17.535 0.649 0.388 18.428 1.33 0.402 20.521 0.888 1.633 21.985 6.092 1.7

22.09 25.953 0.025 1.453 26.188 1.872 1.477 32.078 0.522 7.521 33.082 13.083 6.8

30.57 35.126 0.276 3.565 37.117 1.574 3.866 42.344 1.0 21.726 45.938 19.793 21.24

7.34 9.297 0.612 0.033 *9.076 0.151 0.034 11.797 0.574 0.144 *11.651 0.146 0.14

15.41 18.834 0.221 0.366 *18.716 1.417 0.378 21.41 0.842 1.661 21.807 6.671 1.6

23.31 27.111 0.33 1.33 27.527 2.442 1.378 32.741 0.215 5.757 33.13 7 6.67

32.23 37.016 0.205 3.443 37.488 1.646 3.559 44.425 2.359 18.347 46.683 14.16 19.34

#,|J|,|M| LB START: INSAPP [No

STR]

START: INSALG_MAP [No

STR]

START: INSAPP [STR] START: INSALG_MAP

[STR]

CMAX IMPR CPU CMAX IMPR CPU CMAX IMPR CPU CMAX IMPR CPU

days) (days) (hours) (days) (days) (hours) (days) (days) (hours) (days) (days) (hours)

1,50,22

2100,22

3150,22

4200,22

5,50,23

6100,23

7150,23

8200,23

9,50,34

10,100,34

11,15,34

12,200,34

13,50,35

14,100,35

15,150,35

16,200,35

Page 25 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

8.23 10.061 0.981 0.027 *9.789 0.085 0.03 12.289 0.2 0.118 *11.732 0.815 0.12

15.46 18.222 0.828 0.334 18.515 1.278 0.336 20.469 0.86 1.292 21.117 4.966 1.31

23.91 27.666 0.412 1.236 29.449 1.407 1.207 33.406 0.156 5.567 33.651 6.568 5.75

30.48 35.292 0.024 3.093 35.619 3.086 3.063 41.867 1.183 16.805 46.492 7.098 16.64

5.04 6.758 1.138 0.033 *6.539 0.218 0.029 7.883 0.931 0.101 8.488 2.311 0.1

10.02 12.91 0.229 0.339 *12.313 1.399 0.323 15.147 0.672 1.264 15.692 3.55 1.25

14.18 17.306 0.462 1.21 17.72 1.765 1.215 22.116 0.338 5.049 23.403 12.187 4.98

19.27 23.015 0.324 3.021 23.259 1.88 3.048 27.363 0.951 16.161 32.453 15.076 15.59

Table 13. Solutions produced by HSA for FJ|OR FXSEQ|Cmax.

31.71 19.33 12.38 0.04 41.04 24.24 16.8 0.62

73.419 41.37 32.05 0.34 88.3 68.14 20.16 7.81

114.326 58.68 55.64 1.16 132.28 104.98 27.3 16.69

159.704 79.96 79.75 2.73 200.32 141.32 59 63.49

25.959 18.75 7.21 0.04 32.08 24.27 7.81 0.58

68.116 39.17 28.95 0.34 76.23 57.23 19 6.3

104.379 57.05 47.33 1.21 120.62 97.62 23 23.91

143.172 77.83 65.35 2.84 146.56 83.26 63.3 2.16

18.342 10.27 8.07 0.04 21.32 12.51 8.81 0.42

40.471 20.52 19.95 0.37 41.61 33.4 8.21 5.15

59.453 30.65 28.8 1.23 69.83 56.41 13.42 22.13

80.324 48.29 32.04 1.27 113.2 103.2 106.86 31.93

14.649 10.16 4.49 0.03 18.73 12.57 6.16 0.43

39.697 20.5 19.2 0.39 46.56 34.68 11.88 4.77

58.088 32.86 25.23 0.53 75.76 56.76 19 21.05

82.722 49.27 33.46 1.27 97.66 82.31 15.35 51.05

13.797 10.45 3.35 0.03 15.45 12.62 2.84 0.29

35.546 19.23 16.31 0.33 37.38 28.45 8.93 4.04

49.013 32.42 16.59 0.58 60.46 46.14 14.32 19.12

#,|J|,|M| LB START: INSAPP [No

STR]

START: INSALG_MAP [No

STR]

START: INSAPP [STR] START: INSALG_MAP

[STR]

CMAX IMPR CPU CMAX IMPR CPU CMAX IMPR CPU CMAX IMPR CPU

days) (days) (hours) (days) (days) (hours) (days) (days) (hours) (days) (days) (hours)

17,50,40

18,100,40

19,150,40

20,200,40

21,50,50

22,100,50

23,150,50

24,200,50

#,|J|,|M| START: INSALG_MAP [No STR] START: INSALG_MAP [STR]

INSALG

(days)

CMAX

(days)

IMPR

(days)

CPU

(hours)

INSALG

(days)

CMAX

(days)

IMPR

(days)

CPU

(hours)

1,50,22

2100,22

3150,22

4200,22

5,50,23

6100,23

7150,23

8200,23

9,50,34

10,100,34

11,15,34

12,200,34

13,50,35

14,100,35

15,150,35

16,200,35

17,50,40

18,100,40

19,150,40

Page 26 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

68.512 43.1 25.41 1.28 81.56 61.08 20.48 52.1

8.968 7.12 1.85 0.03 10.4 8.32 2.08 0.24

24.041 13.48 10.56 0.35 26.79 19.64 7.15 3.57

33.573 21.68 11.89 0.58 42.2 34.09 8.1 17.92

49.063 29.42 19.65 1.46 55.2 47.2 8 46.04

On average the HSA can improve the INSAPP starting solutions by 0.37 days, yet it can improve the
INSALG solutions by 1.71 days. It is interesting that the HSA was able to find better solutions on many
occasions if the starting solution was provided by the INSALG and not the INSAPP. These are indicated by
a * in Table 12. A number of starting solutions provided by the INSAPP could also not be improved upon at
all by the HSA. It was known that these INSAPP solutions were not optimal. We believe that this occurs
because the INSAPP provides solutions that are more highly compressed. They are quite sensitive to
change and evidently become less refinable. A robust but less efficient schedule however can often be
improved more easily. Also, the INSAPP solutions are in some sense locally optimal. To backtrack out of
that part of the decision space to another is more difficult. In contrast the INSALG produces solution with
more robust underlying features. In all likelihood they are closer to the region of the global optimum.

In summary the CPU time requirements for the HSA ranged from several minutes to 2 days. The CPU
requirements are much larger when the number of jobs is 150 and 200. The addition of the time restrictions,
again inflate the CPU time and take significantly more time to solve. The HSA CPU time was quite
prohibitive because the evaluation procedure requires potentially as many iterations as there are nodes.

The conversion of unrestricted solutions to restricted solutions was investigated as a means of reducing the
computational overhead. The idea is that a simpler and faster solution approach can be used in practice, if a
good solution of the FJ|No STR|Cmax problem is also a good solution of the FJ|STR|Cmax problem. The
results are summarised in Fig. 7. They indicate that FJ|No STR|Cmax solutions when converted to
FJ|STR|Cmax solutions are of reasonable quality. However dedicated FJ|STR|Cmax solutions are still
significantly better. The FJ|STR|Cmax solutions are on average 26.6% better than the converted FJ|No
STR|Cmax solutions. The min and max relative differences are [0.089, 0.47] with a standard deviation of
0.104.

Download high-res image (258KB) Download full-size image

Fig. 7. A comparison of converted FJ/No STR solutions to existing FJ/STR solutions.

#,|J|,|M| START: INSALG_MAP [No STR] START: INSALG_MAP [STR]

INSALG

(days)

CMAX

(days)

IMPR

(days)

CPU

(hours)

INSALG

(days)

CMAX

(days)

IMPR

(days)

CPU

(hours)

20,200,40

21,50,50

22,100,50

23,150,50

24,200,50

Page 27 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

In the aforementioned numerical investigations timing restrictions were enforced by the RSCSP. The
handling of occupancy restrictions via the definition of dummy jobs and dummy activities with strict release
times and deadlines was however also investigated. In that scenario the INSAPP cannot be used because it
just appends activities and cannot evaluate alternative insertion positions. Hence solutions must be
constructed using the INSALG. For Ex 1 the application of the INSALG resulted in a solution with a
makespan of 51.416 days. To obtain a feasible starting solution it was necessary to append some jobs to
the back of the schedule. We found that to insert them directly within the existing schedule, when there are
fixed activities, is too intricate for the INSALG. Consequently it may be better to add those types of dummy
jobs, after an initial feasible schedule has been determined in other ways. The HSA was also applied. On Ex
1 it took 693 seconds (0.1925 hours) in comparison to the 900 seconds (i.e. 0.25 hours) previously taken by
the HSA with initial solution produced INSALG and occupancy restrictions not modelled by dummy jobs and
dummy operations. This improvement (i.e. a reduction of 300 seconds) is quite considerable. Evidently the
computational overhead of using node functions to correct timing violations is greater than the addition of
dummy jobs. Unfortunately the solution quality was not as good. For instance the makespan was 23.4 days
in comparison to 19.89 days obtained previously. The reason for this is twofold. As the starting solution was
so much larger than previous starting solutions, it was unlikely that the final solution would be as good, and
more computational effort would need to be expended to reach the same quality of solution. The second
reason is that when there is fixed activities, it is very difficult to perturb the schedule without making it
infeasible. A simple perturbation for instance easily causes excessive blocking. This is not allowed in
hospital applications. In essence the HSA performs badly because multiple changes are needed to improve
the solution. A single alteration only makes the solution worse. In conclusion the development of strategies
that perform compound moves seems to be necessary. In retrospection it is also evident that the right shift
correction is effective because perturbations that cause multiple timing violations can still be made. The
node functions in the disjunctive graph automatically correct these violations and return the schedule to
feasibility. In contrast, this does not occur when there are fixed activities for invalid time periods. The non-
fixed activities have to be intricately moved around the fixed activities to maintain schedule feasibility. This
restricts the effectiveness of the HSA or any other meta-heuristic scheme.

When patient admissions and surgeries are pre-planned, then there are many fixed activities in the problem.
It is beneficial to simplify the problem in this situation. For instance the fixed surgery activities should be
removed and only the post-op and recovery activity should be included in the problem. The post-op activity
can then be given a release time equal to the designated (i.e. predicted) end of surgery time.

A visual inspection of the Gantt charts of the associated schedules shows some inherent properties of good
and bad schedules. For instance, any scheduling decisions that result in the discharge of patients on
weekends, also results in an unoccupied bed for the remainder of the weekend. As operating rooms are
closed (except for some emergency surgeries), those aforementioned bed-spaces cannot be refilled until at
least Monday lunchtime, and remain un-utilised. The best solutions to the FJSP make sure patients are
discharged after the weekend period or if necessary late in the weekend. Evidently how patients are
scheduled around the weekend period is very important if patient throughput is to be maximised. From an
economic perspective an unutilised bed is not necessarily bad. The bed-space can be formally closed, in
which case it does not require nursing staff to be in attendance. Hence ward operating costs could be
reduced.

5.2. Hospital case study

The case study presented here is based upon a large metropolitan, tertiary referral and university and
college affiliated teaching hospital in Brisbane, Qld, Australia. It provides acute and elective adult medical
and surgical care and emergency department services. This hospital has 600–800 beds distributed over
more than 30 wards. It has 20 operating rooms, the majority running only during business hours (i.e. 8 am–5
pm). There are 18 surgical specialities (i.e. surgical units). The average treatment times for different surgical
specialties are shown in Table 14. These values were obtained from ORMIS and HBCIS records.

Page 28 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Table 14. Average treatment times (in hours). Note: Standard deviations are in brackets.

3.12 1.65 [1.1] 4.81 [3.287] 34.57 [72.075]

2.6 1.92 [0.929] 4.45 [2.553] 19.19 [40.819]

2.02 3.44 [2.805] 4.97 [3.079] 44.18 [93.272]

1.02 4.1 [1.478] 5.07 [1.992] 33.92 [54.441]

2.66 2.94 [3.499] 4.94 [3.397] 22.51 [313.503]

2.55 1.7 [1.375] 5.01 [2.796] 15.19 [31.872]

0.27 1.1 [0.72] 3.98 [1.927] 26.69 [100.133]

2.69 3.12 [1.972] 4.93 [2.906] 44.96 [98.199]

2.32 1.04 [0.709] 5.93 [3.274] 46.16 [97.517]

2.02 2.87 [1.816] 4.86 [2.893] 45.47 [87.398]

2.66 0.74 [0.537] 4.86 [1.596] 14.79 [140.785]

2.63 2.21 [1.494] 5.58 [3.402] 41.6 [100.85]

2.73 1.38 [1.34] 5.11 [2.345] 32.98 [101.352]

2.26 1.74 [1.1] 4.4 [2.752] 29.46 [62.003]

0.12 4.19 [1.93] 6.83 [5.314] 33.12 [68.624]

2.47 2.1 [1.817] 4.73 [2.475] 30.16 [64.598]

2.38 1.48 [1.357] 4.43 [2.487] 21.01 [51.926]

2.29 2.61 [1.337] 4.58 [2.512] 48.04 [103.611]

To demonstrate our approach a scenario with 129 resources and 180 patients was chosen. The 180 patients
are divided equally across the 18 surgical units. In other words there are ten patients per surgical specialty:
J1–J10 are specialty 1, J11–J20 are specialty 2,…., J171–J180 are specialty 18. The standard deviations in
Table 14 have been used to generate the different activity processing times for each job. In our test instance
there are two surgical care areas for pre and post-operative care; each has 20 beds. There are 14 recovery
wards (i.e. W1–W14). As each ward has 20 plus beds, it is evident that there is excessive capacity for our
test instance. Hence it is appropriate to reduce the number of beds in each ward. We have chosen five beds
per ward. We have considered 19 of the 20 OR's. One OR is set aside for emergencies. The surgical units
that use each of the recovery wards is as follows:

W1 (18), W2 (5, 6, 13), W3 (12, 15), W4 (12), W5 (10), W6 (4), W7 (4), W8 (17), W9 (9, 14), W10 (1, 8),
W11 (1, 2, 13, 16), W12 (3), W13 (11), W14 (7).

For the OR FXSEQ scenario, patients from each surgical specialty are processed on a single OR in the
order that they are defined. Hence: J1–J10 on OR1, J11–J20 on OR2,…, J171–J180 on OR18. Patient
activities on other machines can be selected from the candidate list and are not fixed.

Our numerical investigation here is similar to that performed in Section 5.1. The results are summarised in
Table 15. The INSAPP is not appropriate when there are fixed sequences. Hence “not applied” is shown in
Table 15 in some of the cells.

Table 15. Solutions of FJ/No OR FXSEQ/Cmax and FJ|OR FXSEQ|Cmax.

Unit POC OP PAC REC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Page 29 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

avg,[min,max], stdev, cpu Cmax

(days)

CPU

(min)

avg,[min,max], stdev, cpu Cmax

(days)

CPU

(min)

No 30.7,[25.91,35.12],2.18,0 25.77 45.9 25.56,[24.33,34.5],1.825,12.2 24.13 43.87

No 33.88,

[28.91,38.91],2.75,0

27.47 90.57 40.59,

[32,95,51.86],5.08,40.23

30.47 103.57

Yes Not applied 45.42,[33.39,58.05],7.88,15.7 33.02 44.27

Yes Not applied 52.62,

[40.17,74.27],8.02,43.53

34.47 122.22

Table 15 demonstrates that the HSA results are far superior to the starting solutions and timing restrictions
inflate CPU times considerably. The fixed OR sequences can be facilitated easily and do not cause CPU
times to increase. It is evident that the schedule makespan is larger for the OR FXSEQ scenarios. This
result provides further evidence of how OR activities have a large effect on hospital occupancy, the schedule
horizon, and patient throughput. Freedom to jointly manipulate the OR sequences and the bed assignments
is necessary if any improvement is to be realised.

The solution to the FJ|STR, No FXSEQ|Cmax is shown in Fig. 8. The FJ|STR, OR FXSEQ|Cmax solution is
shown in Fig. 9. From these Gantt charts it is evident that beds in W2, W3 and W11 are more heavily utilised
because more than one surgical speciality uses them. These wards dictate the makespan of the schedule.
Our numerical testing shows that careful planning of the OR's greatly affects ward occupancies and the
hospital's performance. Visual inspection of the solutions shows that further improvements are possible.
These improvements may be achieved by the reapplication of HSA. The use of a compound perturbation
operator however seems necessary to achieve further improvements with surety and finesse.

Download high-res image (1MB) Download full-size image

Fig. 8. Solution of FJ|STR, No FXSEQ |Cmax.

STR OR

FXSEQ

INSAPP HSA INSALG_MAP HSA

No

Yes

No

Yes

Page 30 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Download high-res image (1MB) Download full-size image

Fig. 9. Solution of FJ|STR, OR FXSEQ|Cmax.

6. Conclusions

This article considers how health care activities can be scheduled in hospitals and how beds and operating
rooms can be utilised. In response a flexible job shop scheduling (FJSS) approach has been developed.
This approach assigns patients to beds and other treatment spaces and sequences and schedules those
patient's activities in the assigned locations. An approach such as this is greatly needed because most
hospitals do not plan in advance how beds and other treatment spaces are going to be used. They also do
not have a scheduling model that can immediately recompute activity timings and identify the hospital's state
of occupancy into the near future. Without a scheduling model such as the one proposed, they cannot
perform capacity checking and can easily overbook critical hospital resources such as treatment spaces. By
far the most important benefit of the FJSP is knowing when activities should finish. The scheduling model
can notify staff when to prepare patients to depart and hence free up resources quicker.

This article's approach is a new consideration for hospitals and will require them to invest in the
development of new IT systems. In our opinion the FJSP approach has the potential to increase the overall
efficiency and productivity of an entire hospital but only if it is integrated into an appropriate hospital
information and management system (HIMS). It will be necessary to inform the HIMS when every activity
begins and ends, and when every patient arrives and departs from the different locations within the hospital.
This would enable the scheduling model to identify problems in advance and suggest better ways to
operate.

The application of a FJSS approach to hospital scheduling is a relatively new avenue. Our approach is
significant because it can be used to solve a vast array of scheduling problems. It constitutes a generic
scheduling platform. It incorporates a wide range of advanced scheduling constraints. To our knowledge
many different non-standard technical conditions have for the first time been incorporated within one
approach. Different scheduling problems can easily be specified using our introduced specification
constructs.

The proposed FJSP was applied to a variety of test cases. We have used it to schedule a real life scenario
involving the surgical activities in a large public hospital. The numerical investigations have shown that the

Page 31 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

proposed methods are able to handle the scheduling requirements of an entire hospital. The emergency
department is the only area yet to be integrated. Our numerical testing indicates that to maximise throughput
in some hospitals, planned discharges should not occur on weekends as new patients cannot be admitted
and operated upon till Monday of the new working week. In future research it would be beneficial to compare
our approach with current practice to see just how applicable our approach is. It is important to remember
however that the health care system is very conservative and is not open to change without vast amounts of
evidence. It is not possible to apply approaches in real life settings without ethics approval. Hospitals are
vast spaces with hundreds of beds, treatments areas and patients. A small area could in theory be
scheduled, but that would not prove the validity for a “holistic” integrated approach.

As the FJSP is non-deterministic polynomial time hard (NP-hard), optimal solutions cannot be obtained with
any surety or confidence. A hybrid Simulated Annealing (HSA) approach and constructive algorithms were
hence implemented. The solutions that were obtained by our solution approaches were of high quality as
evidenced by their proximity to lower bound approximations. Upon inspection, the number of idle time
periods on each ward bed is reasonably small. There are more idle periods in the time restricted test cases
because of the requirement to operate OR's in business hours. Our constructive algorithms are fairly
intelligent and comparable to many other approaches in the scheduling literature, where success has been
reported. Those types of algorithms always provide good solutions. The HSA results are far better than the
constructive algorithm solutions and that is an indication of the ability of the HSA. The HSA is an effective
search algorithm as evidently poor and mediocre starting solutions can be drastically improved.

The optimality of the HSA solutions is primarily but not exclusively of academic interest. It is debatable
whether their determination is of interest to hospital managers and planning staff. In our observations the
bottom line to them is “Will a scheduling model or process result in improved patient care”. Some might be
interested in increasing the number of patients treated. Most would be happy if a new scheduling process is
more effective than current processes.

As mentioned earlier, the implementation of the scheduling model “online” is perhaps more important. Given
the current computing platform, it is debatable whether near optimal solutions can be determined in real
time. In our opinion the HSA needs a “boost”, but that boost comes at significant additional computational
overhead. Given the excessive computational requirements of scheduling so many jobs in real life, it is
anticipated that recovery activities should be concentrated upon and other activities (i.e. POC and PAC)
should be dealt with later.

This article demonstrates that timing restrictions are the most difficult element of this problem. A right shift
correction policy consumes more CPU time, however superior solutions can be obtained. The alternative is
to define dummy activities with tight release times and deadlines. This practice is more generic but causes
additional practical complexities that restrict the effectiveness of traditional meta-heuristics. This article
however does demonstrate that it is possible to schedule non fixed activities around fixed activities. Further
research is required to overcome the aforementioned difficulties. Our future research will also consider
uncertain length of stays and will focus upon the creation of robust schedules. The insertion and handling of
acute patients will also be focussed upon. The solutions obtained by our search algorithms are already quite
robust. They contain a limited number of idle time periods. These can be used to absorb variations in
patient's length of stay. From a practical point of view it is futile to try and obtain solutions that are nearer to
optimal, as they will not be as robust.

Acknowledgements

This research was funded by the Australian Research Council (ARC) Linkage grant LP 140100394 and
supported by the Princess Alexandra Hospital, Brisbane, Australia. We would like to thank Dr. Michael
Sinnot, Dr. David Cook, Sean Birgan and other staff at the PAH for their considerable feedback and
guidance.

Page 32 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Appendix A. Nomenclature

The following is a list of the notation used.

Index:

i, j, k, g: Index for jobs, machines, the stage within a job, and groups.

p, u, w, π, ϕ: Index for patient, unit, ward and treatment area, treatment space, activity type

t: Index for time. Also used as a value of time.

Sets:

 : Set of jobs, machines, parallel machines, groups and activities.

 : Set of activities for job J .

 : Set of activity that may be processed on machine j. .

V, A: Set of nodes and arcs in the disjunctive graph. .

W, Π, P: Set of wards, spaces and patients

Π : Set of spaces in ward w.

Φ: Set of activity types.

M : Set of machines that can perform activities of type ϕ.

 : Set of candidate machines for operation o .

Parameters:

o : A reference to the k th activity of job i.

b , c , d : Start, end and departure time of activity o .

type : The activities type, i.e. ideal, blocking, no_wait

m : The machine to which activity o is assigned.

ρ , ρ : The processing time of activity o and the value when performed on machine j.

fn : The purpose of activity o . fn ∈Φ

Γ : Set of machines that may be used to process o .

ω : The transfer time between o and its successor.

lag : Time lag between the completion of o and the start of its successor.

β : Buffering placed after activity o .

τ : Ready time for machine j.

so, si: The source and sink node of the disjunctive graph.

 : Individual setup time and total setup time incurred by machine j.

rlt , dedln : Release time and deadline for activity o .

 : Start and end of invalid time period z.

PCP : Clinical pathway for patient p.

G : The group that machine j belongs to.

fn : The primary purpose and function of machine j. fn ∈Φ

Decision variables:

i

w

ϕ

i, k

i, k

i, k i, k i, k i, k

i, k

i, k i, k

i, k i, k, j i, k

i, k i, k i, k

i, k i, k

i, k i, k

i, k i, k

i, k i, k

j

i, k i, k i, k

p

j

j j

Page 33 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Braubach et al., 2014

Burdett, 2016

Burdett and Kozan, 2001a

Burdett and Kozan, 2001b

Burdett and Kozan, 2003

Burdett and Kozan, 2009

Burdett and Kozan, 2010a

Burdett and Kozan, 2010b

Burdett and Kozan, 2015

Burdett and Kozan, 2016

Burdett et al., 2017

a : Binary decision for the assignment of activity o to machine j.

σ , σ : Sequence for machine j and the kth element respectively.

β : Buffering after activity o to absorb variation and to provide robustness.

H: Schedule duration, i.e. makespan.

Recommended articles Citing articles (0)

References

L. Braubach, A. Pokahr, W. Lamersdorf

Negotiation-based patient scheduling in hospitals. Technologies and decision support systems
Studies in Computational Intelligence, 486 (2014), pp. 107-121

R.L. Burdett

Optimization models for expanding a railways theoretical capacity
European Journal of Operational Research, 251 (3) (2016), pp. 783-797

Article PDF (839KB)

R.L. Burdett, E. Kozan

Sequencing and scheduling for non-serial permutation flow shops
E. Kozan, A. Ohuchi (Eds.), Operations research/management science at work: Applying theory in the Asia Pacific region" in

the international series in operations research & management science, Kluwer Academic Publishers (2001)

R.L. Burdett, E. Kozan

Sequencing and scheduling in flow shops with task redistribution
Journal of the Operational Research Society, 52 (2001), pp. 1379-1389

R.L. Burdett, E. Kozan

Evolutionary algorithms for resource constrained non-serial mixed flow shops
International Journal of Computational Intelligence and Application, 3 (4) (2003), pp. 411-435

R.L. Burdett, E. Kozan

Techniques for inserting additional trains into existing timetables
Transportation Research B, 43 (8) (2009), pp. 821-836

Article PDF (427KB)

R.L. Burdett, E. Kozan

A sequencing approach for train timetabling
OR Spectrum, 32 (1) (2010), pp. 163-193

R.L. Burdett, E. Kozan

Development of a disjunctive graph model and framework for constructing new train schedules
European Journal of Operational Research, 200 (1) (2010), pp. 85-98

Article PDF (514KB)

R.L. Burdett, E. Kozan

Techniques to effectively buffer schedules in the face of uncertainties
Computers and Industrial Engineering, 87 (2015), pp. 16-29

Article PDF (528KB)

R.L. Burdett, E. Kozan

A multi-criteria approach for hospital capacity analysis
European Journal of Operational Research, 255 (2) (2016), pp. 505-521

Article PDF (3MB)

R.L. Burdett, E. Kozan, M. Sinnot, D. Cook, Y.C. Tian

A mixed integer linear programing approach to perform hospital capacity assessments

i, k, j i, k

j j, k

i, k i, k

Page 34 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Cappanera et al., 2014

Carnes et al., 2011

Chen et al., 2012

Chow et al., 2011

Fugener et al., 2014

Gartner and Kolisch, 2014

Groflin et al., 2011

Hayasaka and Hino, 2012

Heiser, 2013

Hulshof et al., 2012

Javid et al., 2017

Jungwattanakit et al., 2009

Kozan and Liu, 2012

Expert Systems and Applications, 77 (2017), pp. 170-188

Article PDF (2MB)

P. Cappanera, F. Visintin, C. Banditori

Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach
International Journal of Production Economics, 158 (2014), pp. 179-196

Article PDF (679KB)

T. Carnes, D. Price, R. Levi, P.F. Dunn, B.J. Daily, S. Moss

An optimization framework for smoothing surgical bed census via strategic block scheduling
Manufacturing Service Operation Management (2011), pp. 488-494

J.C. Chen, C.C. Wu, C.W. Chen., K.H. Chen

Flexible job shop scheduling with parallel machines using genetic algorithm and grouping genetic algorithm
Expert Systems with Applications, 39 (2012), pp. 10016-10021

Article PDF (673KB)

V.S. Chow, M.L. Puterman, N. Salehirad, W. Huang, D. Atkins

Reducing surgical ward congestion through surgical scheduling and uncapacitated simulation
Production and Operations Management, 20 (3) (2011), pp. 418-430

A. Fugener, E.W. Hans, R. Kolisch, N. Kortbeek, P.T. Vanberkel

Master surgery scheduling with consideration of multiple downstream units
European Journal of Operational Research, 239 (2014), pp. 227-236

Article PDF (888KB)

D. Gartner, R. Kolisch

Scheduling the hospital-wide flow of elective patients
European Journal of Operational Research, 233 (2014), pp. 689-699

Article PDF (672KB)

H. Groflin, D.N. Pham, R. Burgy

The flexible blocking job shop with transfer and set-up times
Journal of Combinatorial Optimization, 22 (2011), pp. 121-144

T. Hayasaka, R. Hino

Multiple exchanges of job orders for no-buffer job shop scheduling problem
Journal of Advanced Mechanical Design, Systems, and Manufacturing, 6 (5) (2012), pp. 661-671

R. Heiser

Using a best practice perioperative governance structure to implement better block scheduling
AORN Journal, 97 (1) (2013), pp. 125-131

Article PDF (268KB)

P.J.H. Hulshof, N. Kortbeek, R.J. Boucherie, E.W. Hans, P.J.M. Bakker

Taxonomic classification of planning decisions in health care: A structured review of the state of the art in OR/MS
Health Systems, 1 (2012), pp. 129-175

A.A. Javid, Z. Jalali, K.J. Klassen

Outpatient appointment systems in healthcare: A review of optimization studies
European Journal of Operational Research, 258 (1) (2017), pp. 3-34

J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, F. Werner

A comparison of scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup
times, and dual criteria
Computers and Operations Research, 36 (2009), pp. 358-378

Article PDF (247KB)

E. Kozan, S.Q. Liu

A demand-responsive decision support system for coal transportation

Page 35 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Liu and Kozan, 2011

Liu and Kozan, 2012

Liu and Kozan, 2016

Luscombe and Kozan, 2016

Mascis and Pacciarelli, 2002

Pezella et al., 2008

Pham and Klinkert, 2008

Queensland Health 2017

QUT Data Finder

QUT Eprints

Sauvey and Trabelsi, 2015

Spratt and Kozan, 2016

Xia and Wu, 2005

Yazdani et al., 2010

Decision Support Systems, 54 (2012), pp. 665-680

Article PDF (2MB)

S.Q. Liu, E. Kozan

Optimising a coal rail network under capacity constraints
Flexible Service and Manufacturing Journal, 23 (2011), pp. 90-110

S.Q. Liu, E. Kozan

A hybrid shifting bottleneck procedure algorithm for the parallel-machine job-shop scheduling problem
Journal of the Operational Research Society, 63 (2) (2012), pp. 168-182

S.Q. Liu, E. Kozan

Parallel-identical-machine job-shop scheduling with different stage-dependent buffering requirements
Computers and Operations Research (2016), 10.1016/j.cor.2016.04.023

R. Luscombe, E. Kozan

Dynamic resource allocation to improve emergency department efficiency in real time
European Journal of Operational Research, 255 (1) (2016), pp. 593-603

Article PDF (1MB)

A. Mascis, D. Pacciarelli

Job-shop scheduling with blocking and no-wait constraints
European Journal of Operational Research, 143 (2002), pp. 498-517

Article PDF (424KB)

F. Pezella, G. Morganti, G. Ciaschetti

A genetic algorithm for the flexible job-shop scheduling problem
Computers and Operations Research, 35 (2008), pp. 3202-3212

D.N. Pham, A. Klinkert

Surgical case scheduling as a generalised job shop scheduling problem
European Journal of Operational Research, 185 (2008), pp. 1011-1025

Article PDF (494KB)

Queensland Health (2017). https://www.health.qld.gov.au/improvement/pathways.

QUT Data Finder: https://researchdatafinder.qut.edu.au/display/n11006.

QUT Eprints: https://eprints.qut.edu.au/107724/.

C. Sauvey, W. Trabelsi

Hybrid job shop scheduling with mixed blocking constraints between operations
Emerging Technologies & Factory Automation (ETFA), 2015 IEEE 20th conference. Date 8–11 September 2015 (2015), pp.

1-8, 10.1109/ETFA.2015.7301538

B. Spratt, E. Kozan

Waiting list management through master surgical schedules: A case study
Operations Research for Health Care, 10 (2016), pp. 49-64

Article PDF (1MB)

W. Xia, Z. Wu

An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems
Computers and Industrial Engineering, 48 (2005), pp. 409-425

Article PDF (264KB)

M. Yazdani, M. Amiri, M. Zandieh

Flexible job-shop scheduling with parallel variable neighbourhood search algorithm
Expert Systems with Applications, 37 (2010), pp. 678-687

Article PDF (674KB)

Page 36 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

Yen, 1970

Zeng et al., 2014

Zhang et al., 2009

J.Y. Yen

An algorithm for finding shortest routes from all source nodes to a given destination in general networks
Quarterly of Applied Mathematics, 27 (1970), pp. 526-530

C. Zeng, J. Tang, C. Yan

Scheduling of no buffer job shop cells with blocking constraints and automated guided vehicles
Applied Soft Computing, 24 (2014), pp. 1033-1046

Article PDF (3MB)

G. Zhang, X. Shao, P.L.L. Gao

An effective hybrid particle swarm optimization algorithm for multi-objective flexible job shop scheduling problem
Computers and Industrial Engineering, 56 (2009), pp. 1309-1318

Article PDF (645KB)

© 2017 Elsevier B.V. All rights reserved.

Combining variants of iterative flattening search
Engineering Applications of Artificial Intelligence, Volume 21, Issue 5, 2008, pp. 683-690

Download PDF View details

An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time
Expert Systems with Applications, Volume 65, 2016, pp. 52-67

Download PDF View details

Reduction of task migrations and preemptions in optimal real-time scheduling for multiprocessors by using dynamic T-L plane
Journal of Systems Architecture, Volume 79, 2017, pp. 19-30

Download PDF View details

View more articles

Recommended articles

Citing articles (0)

About ScienceDirect Remote access Shopping cart Contact and

support Terms and conditions Privacy policy

Cookies are used by this site. For more information, visit the cookies page.

Copyright © 2017 Elsevier B.V. or its licensors or contributors. ScienceDirect ®

is a registered trademark of Elsevier B.V.

Page 37 of 37An integrated approach for scheduling health care activities in a hospital - ScienceD...

10/08/2017http://www.sciencedirect.com/science/article/pii/S0377221717305921

