An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice

, , & (2018) An osmotin from the resurrection plant Tripogon loliiformis (TlOsm) confers tolerance to multiple abiotic stresses in transgenic rice. Physiologia Plantarum, 162(1), pp. 13-34.

[img] Accepted Version (PDF 2MB)
109844.pdf.
Administrators only | Request a copy from author

View at publisher

Description

Osmotin is a key protein associated with abiotic and biotic stress response in plants. In this study, an osmotin from the resurrection plant Tripogon loliiformis (TlOsm) was characterized and functionally analyzed under abiotic stress conditions in T. loliiformis as well as in transgenic Nicotiana tabacum (tobacco) and Oryza sativa (rice) plants. Real-time PCR analysis on mixed elicitor cDNA libraries from T. loliiformis showed that TlOsm was upregulated a thousand-fold during the early stages of osmotic stresses (cold, drought, and salinity) in both shoots and roots but down-regulated in shoots during heat stress. There was no change in TlOsm gene expression in roots of heat-stressed plants and during plant development. The plasma membrane localization of TlOsm was demonstrated in fluorescent-tagged TlOsm tobacco plants by confocal laser scanning microscopic analysis. Transgenic rice plants expressing TlOsm were assessed for enhanced tolerance to salinity, drought and cold stresses. Constitutively expressed TlOsm in transgenic rice plants showed increased tolerance to cold, drought, and salinity stresses when compared to the wild type and vector control counterparts. This was evidenced by maintained growth, retained higher water content and membrane integrity, and improved survival rate of TlOsm-expressing plants. The results thus indicate the involvement of TlOsm in plant response to multiple abiotic stresses, possibly through the signaling pathway, and highlight its potential applications for engineering crops with improved tolerance to cold, drought and salinity stress.

Impact and interest:

24 citations in Scopus
20 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 222990
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Williams, Brettorcid.org/0000-0002-6510-8843
Measurements or Duration: 22 pages
Keywords: Abiotic Stress, Osmotin, Resurrection plant, Salinity
DOI: 10.1111/ppl.12585
ISSN: 1399-3054
Pure ID: 33320432
Divisions: Past > Institutes > Institute for Future Environments
Past > QUT Faculties & Divisions > Science & Engineering Faculty
Current > Research Centres > Centre for Tropical Crops and Biocommodities
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 17:32
Last Modified: 30 Jul 2024 00:40