EV, microvesicles/microRNAs and stem cells in cancer

, , & (2018) EV, microvesicles/microRNAs and stem cells in cancer. Advances in Experimental Medicine and Biology, 1056, pp. 123-135.

View at publisher

Description

The role of extracellular vesicles (EV) in carcinogenesis has become the focus of much research. These microscopic messengers have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissues, EVs are able to generate a pro-tumor environment that is essential for tumorigenesis. These small nanovesicles are an ideal candidate for a non-invasive indicator of pathogenesis and/or disease progression as they can display individualized nucleic acid, protein, and lipid expression profiles that are often reflective of disease state, and can be easily detected in bodily fluids, even after extended cryo-storage. Furthermore, the ability of EVs to securely transport signaling molecules and localize to distant tissues suggests these particles may greatly improve the delivery of therapeutic treatments, particularly in cancer. In this chapter, we discuss the role of EV in the identification of new diagnostic and prognostic cancer biomarkers, as well as the development of novel EV-based cancer therapies.

Impact and interest:

6 citations in Scopus
3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 223090
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Richard, Derekorcid.org/0000-0002-4839-8471
O'Byrne, Kenorcid.org/0000-0002-6754-5633
Measurements or Duration: 13 pages
Keywords: cancer, exosomes, microRNAs, microvesicles, stem cells
DOI: 10.1007/978-3-319-74470-4_8
ISSN: 0065-2598
Pure ID: 33323575
Divisions: Past > QUT Faculties & Divisions > Faculty of Health
Past > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Nov 2021 17:37
Last Modified: 01 Mar 2024 18:36