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Abstract 7 

Hyperbolic cooling towers are large thin shell reinforced concrete structures that are used to remove 8 

the heat from wastewater and transfer it to the atmosphere using the process of evaporation. During its 9 

long service life, a cooling tower can experience damage due to the large temperature variations, 10 

environmental degradation, or random actions such as impacts or earthquakes. Such a damage can 11 

develop over time and result in the sudden collapse of the cooling tower. To ensure that a cooling 12 

tower operates safely and efficiently at all times, it is important to monitor its structural health. In this 13 

context, structural health monitoring based on the vibration characteristics of the structure, has 14 

emerged as a useful method to detect and locate damage in structures. Hyperbolic cooling towers, due 15 

to their particular shape, exhibit rather complex vibration characteristics that do not suit the traditional 16 

vibration-based damage detection techniques. This paper develops and applies a damage assessment 17 

method using the absolute changes in mode shape curvature (ACMSC) in conjunction with Artificial 18 

Neural Networks (ANNs) to detect, locate, and quantify damage in hyperbolic cooling towers. ANN 19 

is a machine learning technique that can predict behavioural patterns using a set of data samples and 20 

finds use in the damage quantification process. The proposed method for detecting and locating 21 

damage is experimentally validated and demonstrated its capability to accurately detect and locate 22 

damage. A feed-forward network having one hidden layer with Bayesian algorithm is used to train the 23 

artificial neural network. Damage indices calculated from noise polluted mode shape data are used to 24 

train the network. The trained network is then used to successfully assess the unknown damage 25 

severities in the cooling tower. The outcomes of this paper will enable early warning of damages in 26 

the cooling towers and will help towards their safe operation. 27 
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Nomenclature 

The following symbols are used in this paper 

 

ACMSC Absolute change in mode shape 

curvature 

SHM Structural health monitoring 

ANN Artificial Neural Network U1 Radial component 

DIs Damage indices U3 Vertical component 

FEM Finite element model VBDD Vibration based damage detection 

h Length of the element ∅𝑗, 𝑖 Magnitude of the mode shape of ith 

vibration mode at jth location  

MSE Mean square error γx
φ

 Random number with mean of zero 

and variance of 1 

R Regression ρx
φ

 Random noise level 
 

 32 

1. Introduction 33 

Hyperbolic cooling towers are large, reinforced concrete structures which are constructed to have 34 

long service lives. Their fundamental task is to eliminate the waste heat from the water and transfer it 35 

to the atmosphere [1]. Hyperbolic cooling towers are doubly curved thin-walled shell structures that 36 

can better withstand external pressure (than straight towers) [2]. During the service life of a cooling 37 

tower, sudden damage or collapse can occur due to structural deterioration, random actions, and 38 

environmental effects. It is therefore beneficial to examine the structural health of all important and 39 

especially large structures on a regular basis to ensure that they operate safely. Since most of the 40 

hyperbolic cooling towers are very tall and large in diameter, visual inspection can be very difficult, 41 

especially in the interior of the towers. Today, most inspections and assessments are done using non-42 

destructive tests to detect the onset of damage and carry out appropriate retrofits to prevent the structure 43 

from collapse. [3], [4]. In this context, structural health monitoring (SHM) based on vibration 44 

characteristics of the structure has emerged as a useful technique. The principle of this technique is 45 

that the damage in a structure causes a change in its vibration properties, and this change can be used 46 
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to detect damages in the structure. Vibration-based damage detection (VBDD) techniques are 47 

categorized as global methods [5]. They are cost-effective and comparatively easy to apply. Over the 48 

last few decades, mode shapes [6] and mode shape derivatives [7] have been used as damage detection 49 

indicators. Mode shape curvature is the second derivative of mode shape, and it has a direct relationship 50 

with bending strains in beams, plates, and shells [8]. Absolute change in mode shape curvature 51 

(ACMSC) can hence be an effective tool for detecting and locating structural damage.   52 

Dynamic behaviour of a structure depends on the structure type, and hence damage detection 53 

methods developed for one structure type are normally not be applicable to other structure types. 54 

Hyperbolic cooling towers due to their unique shape, have rather complex vibration characteristics. It 55 

is thus necessary to develop an appropriate vibration-based damage detection method to detect, locate, 56 

and quantify the damage in them. To address this a coupled method associated with ACMSC was 57 

developed to successfully detect and locate damage in hyperbolic cooling towers, as presented in [9]. 58 

Quantifying the damage or predicting damage severity is a more challenging task than that of detecting 59 

and locating the damage and it is usually not within the capability of vibration-based damage detection 60 

methods. Existing numerical methods used for damage quantification in beams [10] and trusses [11] 61 

have some drawbacks. They are not generic but are specific for a particular structure and may not be 62 

capable of quantifying the damages in complex structures. There are few references in the literature 63 

on damage quantification in bridge structures using the combination of vibration characteristics and 64 

ANN [12], [13]. This present paper develops and applies ANN techniques, in conjunction with 65 

ACMSC method to detect, locate and quantify damage in hyperbolic cooling towers and thus complete 66 

the task of damage assessment in these types of structures. 67 

ANN, which imitates the mechanism of the human brain is introduced as a smart and efficient 68 

tool to assess (locate and quantify) damage in cooling towers. ANN  comprises of a large number of 69 

neurons which are simple processing units [14]. It can capture complex relationships between input 70 

and output through the process of learning, self-organizing, and auto improving [15]. A properly 71 
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trained network is capable of predicting the accurate output from unknown input data which are 72 

inconsistent, noise polluted, and uncertain [16]. The method proposed in this paper is verified for a 73 

full-scale hyperbolic cooling tower for a range of damage scenarios. Further, its capability of damage 74 

quantification under field conditions is tested by adding white Gaussian noise to the input data in the 75 

numerical simulations. Results confirm the accuracy of the proposed method to detect, locate and 76 

quantify method in hyperbolic cooling towers and the outcomes of this paper will enable the safer 77 

operation of these large structures. 78 

2. Methodology    79 

2.1 Vibration based damage detection method 80 

Hyperbolic cooling towers have complicated vibration mode shapes due to their geometrical 81 

shape. Preliminary studies indicate that the radial (U1) and vertical (U3) components of mode shapes 82 

in general provide the greater contribution for damage detection in hyperbolic cooling towers [9]. 83 

Therefore, instead of the resultant modes, mode shape components corresponding to maximum 84 

effective mass values are chosen for the process of damage detection considering the first three global 85 

modes [9]. The finite element model (FEM) of the cooling tower structure has two modes with the 86 

same frequency and similar mode shape, due to its symmetry. Therefore, the first three global modes 87 

represent the 1st, 3rd, and 5th mode shapes in general.  88 

According to the Pandey et al. 1991[17], the mode shape curvature method was used to locate 89 

damage in cantilever and simply supported beams. Mode shape curvature can be determined from 90 

displacement mode shapes as in Equation 1 using the central difference approximation. 91 

                                                ∅𝒋,𝒊
" =

∅𝒋−𝟏,𝒊−2∅𝒋,𝒊+∅𝒋+𝟏,𝒊

ℎ2                                                         (𝟏)                            92 

where h is the distance between two nodes and ∅𝒋,𝒊 is the mode shape of the jth element for ith mode. 93 

As observed previously [9], the highest peak in the absolute change in mode shape curvature (ACMSC) 94 
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between damage and intact states as shown in Equation 2 indicates the location of the damage in the 95 

hyperbolic cooling tower.  96 

𝐃𝐈 =  ∆∅𝒋,𝒊
" = [

∅𝒋−𝟏,𝒊 − 2∅𝒋,𝒊 + ∅𝒋+𝟏,𝒊

ℎ2
]

𝒅

− [
∅𝒋−𝟏,𝒊 − 2∅𝒋,𝒊 + ∅𝒋+𝟏,𝒊

ℎ2
]

𝒖

                   (2) 97 

In the above equation superscripts u and d denote the undamaged and damaged states, respectively. 98 

The above procedure was validated experimentally, and details are provided in [9]. For the 99 

completeness of this paper, a brief description of the validation is presented below. 100 

Feasibility of the proposed method was verified using the results from experimental testing of 101 

laboratory scale cooling tower models, shown in Fig.1. The cooling tower models were made from 102 

general steel. Free vibration tests were carried out on the intact and damaged models to obtain the 103 

natural frequencies and mode shapes and were used to validate the proposed method under laboratory 104 

conditions. In practical situations, mode shape data are not measured directly, but are obtained from 105 

measured acceleration data. Damage was introduced by cutting a small hole in the upper section of the 106 

cooling tower model, as shown in Fig.1. 107 

 108 

 109 

 110 

 111 

 112 

 113 

 114 

 115 

 116 

 117 

 118 

Fig.1. (a) Experimental cooling tower model with accelerometer arrangement (b) Damage at the 119 

upper section of the cooling tower model 120 

(a) (b) 
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A finite element model (FEM) of the experimental cooling tower was simulated in ABAQUS 121 

finite element modelling software package and validated by comparing the natural frequencies of the 122 

numerical and experimental models. Dominant effective mass values were extracted from the 123 

undamaged finite element model. Mode and mode shape components corresponding to maximum 124 

effective mass values were used to calculate Damage Indices (DIs), plot the DIs along a few vertical 125 

cross-sections to accurately determine the damage location. Lines A-B, C-D, E-F and G-H in Fig. 2 126 

indicate the different vertical cross-sections of the cooling tower model considered in the damage 127 

detection process. Line G-H is very close to the damage location while the distance to the damage 128 

location gradually increases for lines E-F, C-D, and A-B. The two lines of “Damage Location” in 129 

legend of Fig. 3 indicate the starting point and ending point of the damage area. It can be seen from 130 

Fig. 3 that the damage around the upper section of the cooling tower model is precisely detected by 131 

the proposed procedure which can hence be considered as validated. 132 

 133 

 134 

 135 

 136 

 137 

 138 

 139 

Fig.2. (a) Plan view (b) Front view of selected nodal paths 140 

The applicability of the proposed damage detection method was illustrated using the full-scale 141 

Mülheim-Kärlich hyperbolic cooling tower in Germany [18]. A full-scale finite element model of this 142 

cooling tower was developed using ABAQUS finite element modelling software. The height of the 143 
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Mülheim-Kärlich cooling tower is 162 m. The throat, top and base diameters are 65.3 m, 68 m, and 144 

117 m, respectively, while the thickness of the tower is 0.24 m. The throat is located 37 m above the 145 

base of the tower. As mentioned in the literature [19], unit weight, Poisson’s ratio and Young’s 146 

modulus of concrete were considered as 25kN/m3, 0.2, and 39GPa, respectively. 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

Fig.3. Locating damages at upper section of the cooling tower using dominant mode shape 161 

component (Mode 2 -U1) 162 

Table 1. Selection of mode shape and mode shape component 163 

Tower 
Global 

Mode 

Effective 

mass of U1 

direction 

Effective 

mass of U3 

direction 

Maximum 

effective 

mass 

Selected 

mode shape 

and component 

Mülheim-

Kärlich 

1 1.36E-12 1.68E-13 

5.41E-10 Mode 2 – U1 2 5.41E-10 1.47E-10 

3 2.85E-10 5.32E-10 

 164 

Two damage cases, one at a time, were simulated by reducing the 10% of the Young’s modulus 165 

at a small area in the upper section and the bottom section of the cooling tower, as shown in Fig. 4 to 166 

demonstrate the ability of proposed damage detection method. As described above, effective masses 167 

corresponding to first three global modes (1st, 3rd, and 5th mode shapes in general) are extracted from 168 
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the intact finite model, as shown in Table 1. The mode and mode shape component (Mode 2 - U1) 169 

corresponding to maximum effective mass values is selected for the damage detection process. Figs.5 170 

and 6 clearly show the significant increase of DIs at the damage locations in the upper and lower 171 

sections of the hyperbolic cooling tower.  172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

Fig.4. Two damage scenarios of hyperbolic cooling tower 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

Fig. 5. Results of locating damage between the neck and the upper section of Mülheim-Kärlich 190 

cooling tower 191 

These results demonstrate that the proposed method is able to detect and locate damage in 192 

hyperbolic cooling towers as shown in Figs 5 and 6. Figs. 7,8 and 9 show the plots of the damage index 193 

(ACMSC) at three different locations for different damage intensities. It is evident from these figures 194 
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that the intensity of damage at a location is proportional to the peak of the damage index at that 195 

location. This paper therefore explores the use of regression analysis to quantify damage and then due 196 

to its limitation, it develops and applies Artificial Neural Networks (ANNs) to extend the damage 197 

assessment procedure to quantify (or predict damage severity) under field conditions and thereby 198 

complete damage assessment in hyperbolic cooling towers. 199 

 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

Fig. 6. Results of locating damage between the neck and the bottom section of Mülheim-Kärlich 211 

cooling tower 212 

3. Damage quantification   213 

3.1 Damage quantification in hyperbolic cooling towers using linear regression 214 

The Mülheim-Kärlich cooling tower mentioned earlier was selected to test the proposed damage 215 

quantification method. As categorized by the Rytter [20], quantifying the severity of the damage is the 216 

third level of damage detection in a SHM system. Compared to detecting and locating damage, 217 

quantification of damage is quite a challenging task. Most of the procedures for damage quantification 218 

are not generic but treat specific simple structures such as beams [10] and trusses [11]. These 219 

techniques may not be pertinent for damage quantification in complex structures. To address this issue, 220 

this paper first tried using ACMSC based damage indices (DIs) to quantify damage in cooling towers. 221 
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As shown in the Figs. 7, 8 and 9, the ACMSC based DIs are plotted along the height of the 222 

cooling tower for different damage severities of 10%,15%,20%,25% and 30% (or stiffness reductions). 223 

The damage is represented by reducing the Young’s modulus of elements in a small area at the 224 

particular damage location.  225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

Fig. 7. Plots of DIs based on ACMSC for 10%, 15%, 20%, 25% and 30% damage (stiffness 234 

reduction) at the neck of the Mülheim-Kärlich cooling tower 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

Fig. 8. Plots of DIs based on ACMSC for 10%, 15%, 20%, 25% and 30% damage (stiffness 243 

reduction) between the neck and base of the Mülheim-Kärlich cooling tower 244 
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 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

Fig. 9. Plots of DIs based on ACMSC for 10%, 15%, 20%, 25% and 30% damage between the neck 253 

and top of the Mülheim-Kärlich cooling tower 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

                                                                                                                                                                                                               264 

 265 

Fig. 10. Plot of maximum DI values of ACMSCs vs percentage stiffness reduction in (a) neck (b) 266 

upper part and (c) lower part of Mülheim-Kärlich cooling tower 267 
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As seen from these Figures the maximum values of the DIs, at a particular damage location 268 

seem to vary linearly with the severity of the damage. Linear regression analysis was therefore used to 269 

develop an the equation for damage quantification in hyperbolic cooling towers. A set of equations 270 

was developed for the three different locations, as shown in Figs. 10 (a),(b) and (c). In this process, 271 

the damaged location has to be determined first using ACMSC method and then maximum DI value 272 

of ACMSC in that nodal path can be applied to the relevant equation to calculate damage severity as 273 

shown in Table 2. These equations unfortunately are not capable of quantifying damage when DIs are 274 

calculated in the presence of noise.  275 

Table 2. Calculation of damage severity using equations  276 

Location Absolute damage 

severity 

Results obtained 

from equations 

Variation 

Damage around neck 

of the tower 

12.5% 13.65% -1.15% 

22.5% 21.80% 0.70% 

35% 33.70% 1.30% 

Damage around neck 

and upper section of 

the tower 

13% 12.67% 0.33% 

33% 34.39% -1.39% 

40% 43.80% -3.80% 

Damage around neck 

and bottom section of 

the tower 

12.5% 12.64% -0.14% 

22.5% 22.21% 0.29% 

35% 36.28% -1.28% 

 277 

Table 2 compares the predicted damage severities at the 3 locations obtained from these 278 

equations with the actual damage severities at these locations. It is evident that the errors are quite 279 

small making the results quite acceptable. 280 

 281 
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Fig. 11 shows the plots of the ACMSC based DIs for 20 damage scenarios along the height of 282 

the Mülheim-Kärlich cooling tower for 10%,15%, 20%, 25% and 30% damage severities. As shown 283 

there, the peak value is location specific. The peak values of DIs curves can be different for two similar 284 

damage intensities at different locations. Therefore, these patterns can cause problems when the 285 

location and intensity of the damage are not known. To overcome this issue, most researchers have 286 

commonly used ANN, generic algorithm, and computational intelligence techniques to quantify the 287 

damage severities of the structure [21], [22]. To address the problems with using equations to quantify 288 

damage, this paper develops and applies ANNs. These ANNs are trained to detect, locate, and quantify 289 

damage in hyperbolic cooling towers using the vibration characteristics (mode shapes) of the cooling 290 

tower. 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

Fig. 11. Plots of DIs based on ACMSC for 10%, 15%, 20%, 25% and 30% damage at different 301 

locations in the Mülheim-Kärlich cooling tower 302 
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3.2 Damage quantification using Artificial Neural Network (ANN)  305 

3.2.1 Background 306 

Artificial Neural Network (ANN) is a smart and efficient technique that is used to recognise 307 

patterns, analyse data, and provide nonlinear control. It is capable of learning the solution to a problem 308 

from the set of examples and also it has a high processing speed. The mechanism of the neural network 309 

inspires from the biological nervous system. The neuron is the combination of body, axon, dendrites, 310 

and synapses. In the biological network, dendrites (input) transfer the signals to the neurons, while 311 

axon (output) carries away the signal from the neurons. Synapses are used to communicate between 312 

neurons. Each synapse has its own strength which is similar to the weight used in the neural network 313 

[23]. 314 

The concept of the neural network was introduced by McCulloh and Pitts in 1943 [24]. The 315 

structure of the ANN is the combination of three layers which are the input layer, the output layer and 316 

one or more hidden layers. Each layer has a number of processing units called neurons. All the inputs 317 

are fed to the network through the input layer (i), which is the first layer of ANN, as shown in Fig. 12, 318 

while the last layer, which is called the output layer (k), gives the outputs. 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

 327 

Fig. 12: Neural network architecture 328 
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 329 

A single neuron is a nonlinear function that transforms a set of input variables into output 330 

variables. The transformation process of the McCulloh and Pitts model can be presented, as shown in 331 

Equation 3. The input variables (xi) are multiplied by the weights (wji) and then added to all the other 332 

weighted input variables to give a total input to a resultant unit. In Equation 3  𝑤𝑗0  is the bias which 333 

corresponds to the firing threshold in a biological neuron. The net input value in the hidden layer (zi) 334 

is processed using linear or nonlinear activation function (g) as shown in Equation 4. The output from 335 

the hidden layer (zj) is considered as the input of the output layer. The final output (zk) can be written, 336 

as shown in Equation 5. 337 

                                               𝑧𝑖(𝑥) =  ∑ 𝑤𝑗𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑤𝑗0                                                                      (3)                                            338 

                                                           𝑧𝑗(𝑥) =  𝑔 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑤𝑗0)                                                                (4) 339 

                                                       𝑧𝑘(𝑥) = 𝑔 (∑ 𝑤𝑘𝑗  𝑔 (∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑤𝑗0

𝑛

𝑖=1

)

𝑚

𝑗=1

+ 𝑤𝑘0)                              (5) 340 

Neural network training is performed by changing the weights and bias parameters to obtain 341 

the predefined targets (𝑡𝑘). The total error (E) can be calculated from the average squared difference 342 

between outputs and targets, as shown in Equation 6. 343 

                                                 𝐸 =  
1

2
∑(𝑡𝑘 − 𝑧𝑘(𝑥))2

𝑚

𝑘=1

                                                                     (6) 344 

A feed-forward neural network having one hidden layer with the backpropagation learning 345 

technique is used to train the network in the present study. This feed-forward network consists of three 346 

layers which include input, hidden and output layers. The network input is connected to the first layer 347 

and each subsequent layer is connected to the one before it. The final layer produces the output of the 348 

network. Feed-forward networks are the ones in which the information moves through layers in only 349 

one direction, i.e., from the input layer to the output layer through hidden layers. Backpropagation 350 

belongs to supervised learning, which used the known behaviour to train the network. The error term 351 
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is backpropagated to alter the weights and the bias to obtain the optimum network, as shown in Fig. 352 

12 [25]. It is necessary for a network to have adequate training.  353 

In the present study, ANN was developed to predict the damage severity in a hyperbolic cooling 354 

tower. The absolute changes in mode shape curvature (ACMSC) based damage index was used as the 355 

input for the ANN network instead of mode shape values to avoid overfitting and reduce the 356 

computational effort. Also, lessor data can be used for input of the network to train the network. 357 

The selection of ANN architecture is mainly based on trial and error because there is no 358 

theoretical procedure [26]. Neural network architecture consists of different key features such as type 359 

of neural network, number of hidden layers, number of hidden neurons, learning algorithms, transfer 360 

functions and convergence algorithm. 361 

This paper used the multilayer feed forward network with backpropagation algorithm in 362 

MATLAB 2018a to learn the relationship between inputs and outputs. The number of hidden layers 363 

and the number of hidden neurons depend on the complexity of the problem and the amount of noise 364 

[27]. Insufficient selection of hidden layers will cause large training and generalisation errors. The 365 

selection of the convergence algorithm depends on the complexity, size of the training set and the 366 

number of input parameters in the neural network. Convergence algorithm has different performance 367 

speed, memory requirements and different efficiencies. In this paper, optimum convergence was 368 

achieved by using Bayesian Regularization (trainbr) as a training algorithm. This algorithm typically 369 

requires more time to train, but it gives good generalization for complicated, limited, or noisy data 370 

sets. Regularization method [28], early stopping method [29] and Pruning [30] are the few methods 371 

which can be used to minimise overfitting and increase the generalization capacity of the training 372 

network. The training function (trainbr) usually works well with the early stopping method and hence 373 

in this paper, the early stopping method [31], which is also easy to handle, is used to terminate the 374 

training process. The termination of the training process was done manually.  375 

 376 
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3.2.2 Data extraction from numerical model 377 

Mülheim-Kärlich cooling tower in Germany mentioned earlier was studied for damage assessment 378 

using ANN. A validated FEM model of this cooling tower was used to create the input data for ANN.  379 

Capability of detecting and locating damage in the Mülheim-Kärlich cooling tower using the DIs based 380 

on ACMSC has been presented in section 2.1.  381 

This time damage is simulated by reducing the Young’s modulus in 20 different locations along the 382 

height of the cooling tower for a range of damage severities (5%, 10%, 15%, 17%, 20%, 24%, 25%, 383 

28%, 30%, 50%). Mode shape data are extracted from the intact and damaged structures using the 384 

validated FE model. Mode shape data generated from the FEMs are free from noise. But in practice 385 

vibration responses of the structure are polluted with environmental and measurement noise.  386 

Therefore, field testing conditions are simulated by adding white Gaussian noise [32],[33] and with 387 

limited data points. Adding noise not only reduces the overfitting but can also be used for faster 388 

optimization. Adding artificial noise into the input data set is one way of improving the generalization 389 

error, and it also improves the robustness of the model [34]–[36]. Moreover, adding noise also expands 390 

the size of the data set, which is used for training. Equation 7 [33] was used to create noise-391 

contaminated mode shape data by changing the random noise level (𝝆𝒙
𝝋

) by 2%, 5%, 10%, 15% and 392 

20%.   393 

                                     ∅𝒙𝒊 = ∅𝒙𝒊(𝟏 + 𝛄𝐱
𝛗

𝝆𝒙
𝝋

|∅𝒎𝒂𝒙,𝒊|)                                                          (7) 394 

In the above equation,  ∅𝒙𝒊  and ∅𝒙𝒊 denote the mode shape values with and without noise at the 395 

location of x in the ith mode.  𝛄𝐱
𝛗

 is a random number with a variance equal to 1and mean equal to zero. 396 

|∅_(max,i) | denotes the absolute maximum mode shape value. 397 

 398 

3.2.3 ANN model architecture 399 

All the extracted mode shape data are converted to DIs using Equation 2 to create the input data for 400 

the neural network. Damage severity and location are used as the target values for the neural network. 401 
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Altogether 612 data samples are used to train the network. A higher number of input data will increase 402 

the accuracy of the outcome. The number of input and output nodes depends on the number of variables 403 

in input and output data sets. A trial and error process was used to find the number of neurons in the 404 

hidden layer. After finding the best network configuration, few trials were carried out to acquire the 405 

best network with minimum error. This was been done because each network assigns different weights 406 

and sampling, which will create different networks. The input data is divided into three sets, namely 407 

training (75%), testing (20%) and validation (5%). Training data set is used during the training to 408 

adjust its error while the validation set is used to measure network generalization. Testing data set has 409 

no effects on training, but they are used to measure the performance of the network during and after 410 

training.  411 

The neural network shown in Fig. 13 has one hidden layer which contains 24 hidden neurons. Letters 412 

‘w’ and ‘b’ refer to the weight and bias, respectively. The training function of the network is Bayesian 413 

Regularization (trainbr), while the transfer function of the hidden layer is the hyperbolic tangent 414 

sigmoid function. Performance of the trained neural network can be evaluated using mean square error 415 

(MSE) and regression analysis. Regression plots of trained neural network are presented in Fig.14 in 416 

which the regression value (R) represents the correlation between output and targets. The value close 417 

to 1 means, it has a close relationship while 0 means random relationship. The overall values of R 418 

(0.99274) confirm that the network is properly trained. These graphs illustrate the variation of target 419 

values (FEM results) vs ANN outputs. As shown in Fig.14, the best fit line of the trained network 420 

overlaps with perfect fit line (Y=T). MSE is the average squared difference between outputs and 421 

targets. MSE value of this trained network is 0.0289. Moreover, the error histogram Fig. 15, shows the 422 

variation of error between targets and outputs for training and testing stages of NN. In most instances 423 

these are at zero line. 424 
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 430 

Fig. 13. Neural network configuration 431 

Once the network is trained, it can be used to predict the location of damage and the severity of the 432 

damage in unknown scenarios. 433 

 434 

                          435 

 436 
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 452 

 453 

Fig. 14. Regression plots of trained Neural Network 454 

 455 

 456 
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 468 

Fig. 15. Error histogram 469 

4. Results and Discussion 470 

4.1 Single Damage Scenarios 471 

The developed ANN is used to predict the location and severity in unknown damage cases. Seventy- 472 

five damage cases corresponding to 12 locations, 12 severities and 10 noise levels are simulated in the 473 

FEM of Mülheim-Kärlich cooling tower and mode shape data corresponding to each damage case are 474 

extracted. As the next step, DI values of unknown damage cases are calculated using Equation 2. These 475 

DIs are fed into the trained neural network in order to test its ability to locate and quantify damage. 476 

The capability of the network is tested considering five types of unknown damage cases as follows. 477 

(i) DIs calculated from different damage severities under different noise conditions 478 

(ii) DIs calculated from different damage severities at different locations with respect to height and 479 

circumference at that height 480 

(iii)DIs calculated from different damage severities with the same noise 481 

(iv)  DIs calculated for same damage severity, but with different noise conditions 482 

(v)  DIs calculated for zero damage severity 483 
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4.1.1 DIs calculated from different damage severities under different noise conditions 484 

 485 

Each of these damage scenarios are different, and none of these damage severities and noise 486 

conditions were used to train the network. Table 3 shows the damage cases tested on the trained neural 487 

network with actual damage severities and neural network predictions. It can be seen that the variation 488 

between two actual and predicted severities (in columns 3 and 5) is less than 2.2%. This confirms that 489 

the trained neural network (NN) is capable of accurately predicted different damage severities even 490 

under different noise conditions. Figs 16 (a), (b), (c), and (d) show the graphical representation of few 491 

cases in Table 3. It can be seen that the actual and predicted damage severities match reasonably well. 492 

Table 3. Neural network predictions for different damage severities with different noise conditions 493 

Damage 

case 

        Actual Damage  NN Prediction Variation 

Noise Severity Location Severity Location 

1 0% 13% Hi=30.79 m 13.18% Hi=30.79 m -0.18% 

2 0% 13% Hi=133 m 12.92% Hi=133 m 0.08% 

3 0% 33% Hi=153.2 m 32.88% Hi=153.2 m 0.12% 

4 0% 33% Hi=93.27 m 33.37% Hi=93.27 m -0.37% 

5 0% 40% Hi=153.2 m 40.83% Hi=153.2 m -0.83% 

6 0% 55% Hi=125 m 54.39% Hi=125 m 0.61% 

7 3% 13% Hi=30.79 m 13.73% Hi=30.79 m -0.73% 

8 3% 13% Hi=93.27 m 13.59% Hi=93.27 m -0.59% 

9 3% 13% Hi=153.2 m 13.66% Hi=153.2 m -0.66% 

10 3% 40% Hi=93.27 m 40.51% Hi=93.27 m -0.51% 

11 4% 13% Hi=30.79 m 14.27% Hi=30.79 m -1.27% 

12 4% 33% Hi=93.27 m 33.17% Hi=93.27 m -0.17% 

13 4% 33% Hi=133 m 32.53% Hi=133 m 0.47% 

14 7% 13% Hi=93.27 m 12.52% Hi=93.27 m 0.48% 

15 7% 33% Hi=30.79 m 33.18% Hi=30.79 m -0.18% 

16 7% 40% Hi=93.27 m 42.16% Hi=93.27 m -2.16% 

17 12% 13% Hi=30.79 m 13.01% Hi=30.79 m -0.01% 

18 12% 13% Hi=93.27 m 13.67% Hi=93.27 m -0.67% 

19 12% 33% Hi=30.79 m 32.78% Hi=30.79 m 0.22% 
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20 12% 33% Hi=93.27 m 33.34% Hi=93.27 m -0.34% 

21 12% 40% Hi=93.27 m 41.47% Hi=93.27 m -1.47% 

22 12% 55% Hi=125 m 56.58% Hi=125 m -1.58% 

 494 
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 522 

Fig. 16. Graphical representation of few damage cases in Table 3 523 
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4.1.2 DIs calculated from different damage severities at different locations with respect to height 524 

and circumference at that height 525 

In order to test the ability of the trained neural network, unknown damage severity cases at different 526 

locations with respect to height and circumference at that height are considered, as shown in Table 4. 527 

These damage locations and severity cases are completely random. It can be seen that the variation 528 

between the actual and predicted severities (in columns 3 and 5) is less than 2.4 %. This verifies that 529 

the trained NN is capable of determining other damage severities and at other locations different from 530 

that used in the training. 531 

Table 4. Neural network outcomes for different damage severity with different Locations 532 

Damage 

case 

Absolute Damage NN outcome 
Variation 

Noise Severity Location Severity Location 

1 0% 52% Hi=92.8 m 54.4% Hi=93.2 m -2.4 % 

2 0% 23% Hi=69.55 m 23.8% Hi=69.55 m -0.8 % 

3 0% 45% Hi=125 m 45.8% Hi=125 m -0.8 % 

4 3% 18% Hi=46.8m 16.44% Hi=46.2 m 1.56 % 

5 3% 23% Hi=69.55m 22.15% Hi=69.55 m 0.85 % 

6 4% 52% Hi=92.8m 52.7% Hi=93.2 m -0.7 % 

7 4% 23% Hi=124.2m 20.7% Hi=125 m 2.3 % 

8 7% 18% Hi=46.8m 18.6% Hi=46. 2m -0.6 % 

9 7% 45% Hi=125m 44.72% Hi=125m 0.28 % 

10 7% 23% Hi=69.55m 23.17% Hi=69.55m -0.17% 

 533 

 534 

4.1.3 DIs calculated from different damage severities with same noise conditions 535 

In order to test the ability of the trained neural network, unknown damage severity cases with the 536 

same noise conditions are tested, as shown in Table 5. These damage severity cases are completely 537 

random. Same noise conditions which are used to train the network are used to train the network.  It 538 

can be seen that the variation between the actual and predicted severities (in columns 3 and 5) is less 539 
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than 2.2%. This verifies that the trained NN is capable of determining new damage severities even 540 

under the same noise conditions.  541 

Table 5. Neural network outcomes for different damage severities with same noise conditions 542 

Damage 

case 

Absolute Damage NN outcome Variation 

Noise Severity Location Severity Location 

1 0% 12.5% Hi=61.73 m 11.72% Hi=61.73 m 0.78% 

2 0% 12.5% Hi=145.1 m 11.87% Hi=145.1 m 0.63% 

3 0% 22.5% Hi=125 m 22.24% Hi=125 m 0.26% 

4 0% 35% Hi=125 m 35.12% Hi=125 m -0.12% 

5 2% 12.5% Hi=61.73 m 12.40% Hi=61.73 m 0.1% 

6 2% 22.5% Hi=145.1 m 22.2% Hi=145.1 m 0.30% 

7 2% 22.5% Hi=61.73 m 22.18% Hi=61.73 m 0.32% 

8 2% 35% Hi=125 m 34.24% Hi=125 m 0.76% 

9 5% 12.5% Hi=145.1 m 12.57% Hi=145.1 m -0.07% 

10 5% 22.5% Hi=61.73 m 22.92% Hi=61.73 m -0.42% 

11 5% 35% Hi=125 m 36.20% Hi=125 m -1.20% 

12 5% 35% Hi=145.1 m 33.60% Hi=145.1 m 1.40% 

13 10% 12.5% Hi=61.73 m 13.26% Hi=61.73 m -0.76% 

14 10% 12.5% Hi=125 m 14.67% Hi=125 m -2.17% 

15 10% 22.5% Hi=145.1 m 22.76% Hi=145.1 m -0.26% 

16 10% 35% Hi=145.1 m 35.87% Hi=145.1 m -0.87% 

17 15% 12.5% Hi=61.73 m 12.44% Hi=61.73 m 0.06% 

18 15% 12.5% Hi=145.1 m 12.24% Hi=145.1 m 0.26% 

19 15% 22.5% Hi=125 m 24.54% Hi=125 m -2.04% 

20 15% 35% Hi=145.1 m 35.65% Hi=145.1 m -0.65% 

21 20% 12.5% Hi=125 m 11.31% Hi=125 m 1.19% 

22 20% 12.5% Hi=61.73 m 12.36% Hi=61.73 m 0.16% 

23 20% 22.5% Hi=125 m 24.37% Hi=125 m -1.87% 

24 20% 35% Hi=145.1 m 33.36% Hi=145.1 m 1.64% 

 543 
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4.1.4 DIs calculated from same damage severity, but with different noise conditions 544 

The capability of locating and quantifying damages in the cooling tower is also tested for the same 545 

damage severity (which was used for training the network), but under different noise conditions. 546 

Results are shown in Table 6, where the variation in percentage severity between actual predicted 547 

values (in columns 3 and 5) is less than 1.75%. This trained neural network is therefore capable of 548 

detecting damage severity even in the presence of different noise conditions. 549 

Table 6. Neural network outcomes for same damage severity, but with different noise conditions 550 

Damage 

case 

Absolute Damage NN outcome 
Variation 

Noise Severity Location Severity Location 

1 3% 5% Hi=30.79 m 4.43% Hi=30.79 m 0.56% 

2 3% 5% Hi= 153.2 m 4.99% Hi= 153.2 m 0.01% 

3 3% 24% Hi=93.27 m 22.26% Hi=93.27 m 1.74% 

4 3% 24% Hi=133 m 25.55% Hi=133 m -1.55% 

5 4% 5% Hi=30.79 m 4.37% Hi=30.79 m 0.63% 

6 4% 5% Hi=93.27 m 5.23% Hi=93.27 m -0.23% 

7 4% 24% Hi=133 m 25.53% Hi=133 m -1.53% 

8 4% 24% Hi= 30.79 m 25.35% Hi= 30.79 m -1.35% 

9 7% 5% Hi=30.79 m 5.04% Hi=30.79 m -0.04% 

10 7% 5% Hi=93.27 m 5.01% Hi=93.27 m -0.01% 

11 7% 24% Hi=133 m 22.59% Hi=133 m 1.41% 

12 7% 24% Hi= 153.2 m 23.25% Hi= 153.2 m 0.75% 

13 12% 5% Hi=30.79 m 5.35% Hi=30.79 m -0.35% 

14 12% 5% Hi= 153.2 m 4.90% Hi= 153.2 m 0.10% 

15 12% 24% Hi=93.27 m 24.68% Hi=93.27 m -0.68% 

16 12% 24% Hi= 133 m 24.92% Hi= 133 m -0.92% 

 551 

 552 

4.1.5 DIs calculated from zero damage severity 553 

The trained artificial neural network is tested using the DIs calculated from locations where the 554 

damage does not exist (zero damage severity). The results are presented in Table 7. The variation of 555 
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percentage severity between actual and predicted values is less than 0.15%. This trained neural network 556 

therefore will not capture false alarms. 557 

Table 7. Neural network outcome for zero damage severities 558 

Damage case Location Actual Damage  

Severity 

NN outcome Variation 

1 Hi=46.17 m 0% 0.11% -0.11% 

2 Hi=30.79 m 0% -0.08% 0.08% 

3 Hi=30.79 m 0% 0.15% -0.15% 

 559 

Conclusions 560 

Hyperbolic cooling towers are large, reinforced concrete structures used to cool wastewater. Though 561 

they are designed to have long lives, damage can occur due to one of many reasons. Such damage must 562 

be detected and assessed at the outset to enable appropriate retrofitting and prevent the collapse of 563 

these large structures. Due to their unique shape, hyperbolic cooling towers have rather complex 564 

vibration characteristics. Traditional vibration-based methods are hence not applicable to detect, locate 565 

and quantify damage in them. This paper developed and presented a method incorporating artificial 566 

neural networks together with the absolute change in mode shape curvature-based DIs for locating and 567 

quantifying damages in hyperbolic cooling towers. The proposed method includes the input data using 568 

absolute mode shape curvature method, network architecture, network training and validation 569 

processes. The feasibility of the trained neural network was illustrated through its application to several 570 

damage scenarios, even in the presence of noise polluted data. Results confirm the accuracy of the 571 

proposed method. The outcome of this paper will help towards the safe efficient functioning of 572 

hyperbolic cooling towers. 573 
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