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Several lines of evidence implicate serotonin (5-hydroxytryptamine, 5-HT)in regulating
personality traits and mood control. Serotonergic neurons are classically thought to
be tonic regular-firing, “clock-like” neurons. Neurotransmission by serotonin is tightly
regulated by the serotonin transporter (SERT) and by autoreceptors (serotonin receptors
expressed by serotonin neurons) through negative feedback inhibition at the cell bodies
and dendrites (5-HT1A receptors) of the dorsal raphe nuclei or at the axon terminals
(5-HT1B receptors). In dorsal raphe neurons, the release of serotonin from vesicles in
the soma, dendrites, and/or axonal varicosities is independent of classical synapses
and can be induced by neuron depolarization, by the stimulation of L-type calcium
channels, by activation of glutamatergic receptors, and/or by activation of 5-HT2

receptors. The resulting serotonin release displays a slow kinetic and a large diffusion.
This process called volume transmission may ultimately affect the rate of discharge
of serotonergic neurons, and their tonic activity. The therapeutic effects induced
by serotonin-selective reuptake inhibitor (SSRI) antidepressants are initially triggered
by blocking SERT but rely on consequences of chronic exposure, i.e., a selective
desensitization of somatodendritic 5-HT1A autoreceptors. Agonist stimulation of 5-HT2B

receptors mimicked behavioral and neurogenic SSRI actions, and increased extracellular
serotonin in dorsal raphe. By contrast, a lack of effects of SSRIs was observed in the
absence of 5-HT2B receptors (knockout-KO), even restricted to serotonergic neurons
(Htr2b5−HTKO mice). The absence of 5-HT2B receptors in serotonergic neurons is
associated with a higher 5-HT1A-autoreceptor reactivity and thus a lower firing activity
of these neurons. In agreement, mice with overexpression of 5-HT1A autoreceptor show
decreased neuronal activity and increased depression-like behavior that is resistant to
SSRI treatment. We propose thus that the serotonergic tone results from the opposite
control exerted by somatodendritic (Gi-coupled) 5-HT1A and (Gq-coupled) 5-HT2B

receptors on dorsal raphe neurons. Therefore, 5-HT2B receptors may contribute to
SSRI therapeutic effects by their positive regulation of adult raphe serotonergic neurons.
Deciphering the molecular mechanism controlling extrasynaptic release of serotonin,
and how autoreceptors interact in regulating the tonic activity of serotonergic neurons,
is critical to fully understand the therapeutic effect of SSRIs.
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INTRODUCTION

In any given year, nearly 40% of the population in European
countries is affected, directly or indirectly, by mental illness (Insel
and Sahakian, 2012). Mental illness or psychiatric diseases are
heterogeneous pathologies and much effort remains necessary
to improve diagnosis and therapies. For example, 30–40% of
patients with major depression do not respond to current
treatments, which suggests that ontogeny of the disease may
vary among individuals, and that novel pathways and therapeutic
targets have to be identified. Serotonin (5-hydroxytryptamine,
5-HT) is implicated in the processing of perception, emotion,
and cognitions and has been involved in various psychiatric
disorders (Krishnan and Nestler, 2008). Several lines of evidence
implicate serotonin in regulating personality traits and mood
control. Indeed, serotonin has also been implicated in the etiology
of several mood disorders, including autism spectrum disorders
(ASD), major depressive disorder (MDD), schizophrenia or
bipolar disorder (BD) (Vadodaria et al., 2018). Accordingly, a
growing interest in understanding the molecular and cellular
effect of many therapeutic compounds has emerged: serotonin
transporter (SERT) is the main target of serotonin selective
reuptake inhibitor (SSRI) antidepressants, and 5-HT2 receptors
are targets of atypical antipsychotics.

Variations in serotonin levels may affect mood and motivation
but functions of endogenous serotonin remain controversial. It
has been recently suggested that serotonin enables organisms
to adapt to dynamic environments by controlling neuronal
plasticity and behavior (Matias et al., 2017). Therefore, the
clinical benefits of improving serotonin function would stem
from facilitating adaptive changes to negative affects rather
than positively modulating the emotional states (Branchi, 2011).
Serotonergic neurons are classically thought to display regular
tonic firing, or “clock-like,” neurons (Jacobs and Azmitia, 1992),
whereas phasic firing in bursts is associated with specific
behaviors. Phasic and tonic firing of serotonergic neurons have
also been proposed to have opposite functions. However, the
respective contribution of serotonergic mode of firing to behavior
remains unclear. Tonic firing of serotonin neuron population
activity seems related to the extra-synaptic tonic serotonin levels
and burst firing to the rapid, high-amplitude, and intra-synaptic
phasic serotonin release.

However, how the positive modulation of serotonin tone
translates into raised mood or decreased anxiety is not
yet understood and the precise relationship between certain
behaviors and brain serotonin levels remains unclear. For
instance, anxiolysis as a result of reducing brain serotonin is well
established, suggesting that serotonin increases anxiety. However,
anxiety is often paired with depression, which is classically
associated with low serotonin levels (Jennings et al., 2010). Also,
SSRIs are effective in treating both disorders, but only in a
fraction of patients. Therefore, the precise relationship between
serotonin levels and behavior is still to be established. Studies
to date have not provided a sufficiently detailed understanding
of how tonic serotonin neuron activity can be related to
serotonin levels. In this review, we will summarize the known
molecular mechanisms controlling tonic release of serotonin, in

which autoreceptors (serotonin receptors expressed by serotonin
neurons) and SERT participate in regulating the excitability of
serotonergic neurons. An understanding of the detailed dynamics
of serotonin dendritic release might clarify how serotonin
governs behavior, which is critical to fully understand the
therapeutic effect of SSRIs.

THE TWO MODES OF MONOAMINE AND
SEROTONIN TRANSMISSION

In the brain, neuronal communication is mediated by two major
modes of chemical transmission. In the presynaptic terminal,
neurotransmitters are released rapidly and locally, and signal
to post-synaptic partners for synaptic transmission. In “non-
synaptic” transmission, by contrast, neuromodulators diffuse
over a large area to stimulate surrounding cells including
glial cells (Agnati et al., 1995). In fast neurotransmission, the
active zone, which is formed by defined and ordered protein
network and docks synaptic vesicles, releases neurotransmitters
in millisecond timing. By enhancing their release probability,
this neurotransmission allows ordered vesicles to fuse in front
of post-synaptic neurotransmitter receptors (Südhof, 2012). The
non-synaptic mode of transmission does not take place between
two pre- and post-synaptic elements as described above, and
neuromodulators are released in a pseudo-open space. Thus,
non-synaptic transmission is defined as “volume transmission”
(Agnati et al., 1995; Zoli et al., 1999) and lasts for seconds.
Precise organization of secretion is not necessary for volume
transmission. This signal, which is slow and diffuses in a space
larger than the synaptic cleft, involves a low concentration of
neurotransmitters.

Monoamine (including serotonin) release has been subdivided
into tonic and phasic modes. Tonic release controls the large
variation in extracellular monoamine through basal and non-
synchronous firing of neurons; by contrast, in phasic release,
synchronized burst firing results in a fast, large, and transient
neuromodulator increase (Grace, 2016). These neurochemical
findings correspond to different neuronal activities. For example,
the tonic activity of serotonin neurons can be related to extra-
synaptic serotonin-containing vesicle release; the burst firing can
be related to the rapid, high-amplitude, intra-synaptic phasic
serotonin-containing vesicle release. Tonic firing is characterized
by low frequency (0.1–3 Hz), and is classically defined as having
clock-like, pace-maker regularity. Phasic firing characterized with
burst of higher firing rates (up to 17 Hz) has indeed been
reported in serotonin neurons (Allers and Sharp, 2003; Kocsis
et al., 2006; Hajós et al., 2007). The precise control of neuronal
activity that differentiates these two modes of release is not yet
well understood.

The existence of serotonin volume transmission has
been supported by several observations, (1) the distribution
of serotonergic receptors and transporter not facing post-
synaptic densities suggests that they detect serotonin released
extrasynaptically (Ridet et al., 1994; Bunin and Wightman,
1999); this is notably the case for the 5-HT1A receptor, which
is known to play an autoreceptor function in the dorsal raphe
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(Kia et al., 1996; Riad et al., 2000); (2) serotonin- and vesicular
transporter (VMAT2)-positive vesicles are found not only in
axonal varicosities, but also in the soma and dendrites; these
VMAT2-positive vesicles are located independently of post-
synaptic elements (Chazal and Ralston, 1987; Descarries and
Mechawar, 2000), suggesting that non-synaptic vesicular storage
and release can also occur in the somatodendritic compartment;
(3) finally, it has been shown that similar amount of serotonin
can be found at the somatic or dendritic level compared to
axonal terminals (Bruns et al., 2000; Kaushalya et al., 2008b);
in addition, extracellular concentrations of serotonin can
increase in response to single stimulation pulses (Bunin and
Wightman, 1999). Extrasynaptic release mechanisms likely occur
by regulated exocytosis of vesicles (Trueta and De-Miguel, 2012)
leading a widespread release in the extracellular space.

In axons, serotonin can be released from presynaptic
terminals, but also from extra-synaptic sites (varicosities). In
axonal varicosities, in dendrites and in soma, serotonin is released
via volume transmission. The tonic activity of serotonin neurons
being related to extra-synaptic serotonin release is likely to use
volume transmission. However, the vesicular release machinery
for this mode of transmission may be different from that used for
synaptic transmission.

VESICULAR COMPLEXES INVOLVED IN
SEROTONIN RELEASE BY VOLUME
TRANSMISSION

Members of the family of soluble N-ethylmaleimide-sensitive
fusion protein-attachment protein receptors (SNAREs) are
involved in intracellular vesicular trafficking. The association of
SNARE proteins expressed by interacting membranes triggers
exocytosis by forming complexes through four coiled-coil
SNARE motifs (Jahn and Scheller, 2006). Evoked synaptic vesicle
release needs the canonical SNARE proteins, including the
vesicle-associated SNAREs (v-SNAREs) synaptobrevin 2 that
interacts with target membrane SNAREs (t-SNAREs) syntaxin 1
and SNAP-25 that are required for vesicle fusion (Figure 1 and
Table 1).

Volume transmission likely involves a particular vesicular
machinery. Vesicular transporters traffic to synaptic vesicles
as well as large dense core vesicles (Fei et al., 2008). It
has been shown that, in transfected neurons, VMAT-2 is
spontaneously targeted to the regulated secretory pathway and
is sufficient to drive regulated exocytotic release of monoamine
(Li et al., 2005). In midbrain, it has been recently reported
that axons of dopamine neurons contain non-synaptic release
sites (varicosities) that are required for action potential-
triggered dopamine release in 30% of dopamine vesicle clusters,
leading to the conclusion that a large proportion dopamine
varicosities release dopamine independently of action potentials
and thus use a different exocytotic release machinery (Liu et al.,
2018).

If synaptic transmission mechanisms are well described,
volume transmission mechanisms remain to be precisely
investigated. Vesicles exocytosis might use similar machinery

to the evoked transmitter-release exocytosis of neurons and
neurosecretory cells. Regulated release likely uses the non-
canonical SNARE proteins, present in serotonergic neurons
(Okaty et al., 2015) and listed in Table 1 including VAMP4,
VAMP7 (Raingo et al., 2012; Bal et al., 2013), Vti1a or Vti1b
(Kunwar et al., 2011; Ramirez et al., 2012), see for reviews (Burré,
2007; Ramirez and Kavalali, 2012). Whether volume transmission
uses a mechanism more closely related to regulated vesicular
release rather than classical synaptic release has to be further
investigated.

TABLE 1 | Vesicles-associated molecules and mRNA expression in serotonergic
neurons.

Molecule Type Expression in 5-HT
NeuronsD

Vesicular SNAREs (v-SNAREs)B,R

Synaptobrevin 1/VAMP1 NC ++

Synaptobrevin 2/VAMP2 C ++++

Vamp3 NC +

Vamp4 NC ++

Vamp7 NC +

Vti1a NC +

Vti1b NC ++

Target membrane SNAREs (t-SNAREs)B,R

Syntaxin Stx1a C +

Stx1b C +++

Stx2 NC +

Stx3 NC +

Stx4a NC ++

Stx5a NC +

Stx6 NC +

Stx7 NC ++

Stx8 NC +

Stx12 NC +++

Stx16 NC ++

Stx17 NC +

Stx18 NC +

SNAP-25 C +++++

SNAP-29 NC +

Calcium sensorsB,R

Synaptotagmin Syt1 ++++

Syt2 +

Syt3 +

Syt4 +++

Syt5 ++

Syt6 +

Syt7 +

Syt9 ++

Syt11 +++

Syt12 +

Syt13 +++

Syt16 +

Syt17 +

C, Canonical SNAREs; NC, non-canonical SNAREs; data are from D(Okaty et al.,
2015), R(Ramirez and Kavalali, 2012), and B(Burré, 2007).
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FIGURE 1 | Vesicle release needs the SNARE proteins. v-SNARE proteins, synaptobrevins/VAMPs, Vti1a/1b and t-SNARE proteins, syntaxins and
synaptosomal-associated proteins (SNAPs) mediate synaptic vesicles fusion to the plasma membrane with a contribution of calcium sensors, synaptotagmins.

MODELS OF SOMATODENDRITIC
SEROTONIN RELEASE

The mechanisms of non-synaptic serotonin release are difficult
to study in physiological situations. Therefore, only few models
of non-synaptic serotonin release have been described. Serotonin
can be non-synaptically released at somatodendritic, pure
somatic and/or pure dendritic compartments, with different
control mechanisms (de Kock et al., 2006; Kaushalya et al., 2008a;
Colgan et al., 2009; Leon-Pinzon et al., 2014).

In Leeches
One of the best described model is the leech Retzius giant
serotonergic neurons, in which low electrical stimulation
(induced by a single action potential) causes the somatodendritic
release of serotonin as evaluated by amperometry (Bruns
et al., 2000). This release lasts several seconds following initial
stimulation (Trueta et al., 2003), allowing serotonin to spread to
several micrometers. The initial stimulation triggers the opening
of L-type calcium channels (Trueta et al., 2003), the release of
serotonin from few serotonin-containing vesicles, which then
via 5-HT2-receptor activation produces a Ca2+ release from
intracellular calcium stocks amplifying the release of serotonin
from serotonin-containing vesicles (Trueta et al., 2004; Trueta
and De-Miguel, 2012; Leon-Pinzon et al., 2014). In summary,
somatodendritic release/exocytosis of serotonin occurs following
low electrical stimulation and opening the L-type calcium
channels. Ca2+-induced Ca2+ release is reinforced by activation
of 5-HT2 receptors, which, by their coupling to the PLC pathway,
amplify the serotonin release in a feed-forward manner (Leon-
Pinzon et al., 2014; Figure 2). The resulting positive feedback

loop maintains exocytosis for the following several seconds until
the last vesicles in the cluster have fused (Trueta and De-Miguel,
2012; Leon-Pinzon et al., 2014). Taking into account the fact that
some serotonergic neurons are capable of releasing glutamate, the
co-release of this neuromodulator by simultaneous stimulation
of the 5-HT2 receptors and NMDA receptors would induce a
stronger signal and thus a rapid and strong reinforcement of
serotonin transmission.

In Rats
At somatodendritic level of dorsal raphe neurons, the presence of
VMAT2 allows the accumulation of serotonin in vesicles (Chazal
and Ralston, 1987). As shown by amperometry and 2-Photon
calcium imaging, the non-synaptic somatodendritic release of
serotonin-containing vesicles can be induced by the stimulation
of calcium channels, or by activation of glutamatergic NMDA
receptors in the absence of action potentials (de Kock et al.,
2006). Using 3-Photon microscopy in living rat brain slices along
with immunofluorescence and electron microscopy, vesicular
serotonin release from soma and dendrites in the dorsal raphe
was visualized for the first time (Kaushalya et al., 2008a; Colgan
et al., 2012). These authors clearly established that punctate
fluorescence does represent serotonin based on properties of
multiphoton wavelength excitation, its detection in microdialysis
serotonergic neurons, and its depletion upon exposure to
serotonin synthesis inhibitors. Moreover, the presence of clusters
of serotonin vesicles in dendrites was confirmed by (i) the
immunolocalization of VMAT2 and the dendritic marker MAP2
with serotonin, (ii) the localization of VMAT2 vesicle clusters
by electron microscopy in dendrites of serotonergic neuron, (iii)
the size of dendritic serotonin/VMAT2 clusters comparable to
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FIGURE 2 | Schematic representation of the potential role of 5-HT2B receptor in extrasynaptic release of serotonin. Left, in soma, the somatic release of serotonin
depends on AMPA and NMDA receptors, L-type calcium channels, and action potentials, 5-HT1A and potentially 5-HT2B receptor via its coupling to PKC (Trueta
et al., 2003, 2004; de Kock et al., 2006; Colgan et al., 2012; Leon-Pinzon et al., 2014). Activation of 5-HT1A and 5-HT2B receptors may decrease or increase the
membrane expression of NMDA receptors, respectively (Yuen et al., 2005, 2008). Right, the NMDA receptor-dependent dendritic release is controlled by L-type
calcium channels (Colgan et al., 2012), negatively by 5-HT1A and positively by 5-HT2B receptors at dendritic “puncta” independently of action potential (Colgan et al.,
2012).

the size of dendritic puncta and larger than terminal boutons,
and (iv) the serotonin release from dendritic vesicles upon
electrical stimulation or exposure to glutamate agonists, which
requires extracellular Ca2+ and is blocked by the VMAT2
inhibitors. In the soma of serotonergic neurons, calcium channel-
and NMDA receptor-activation by action potentials increases
serotonin release (Figure 2-left); in proximal dendrites, both
AMPA and NMDA receptor activation by back propagating
action potentials may facilitate serotonin release; in contrast to
standard release from axon terminals triggered by glutamate
receptors, dendritic release of serotonin is independent of action
potentials and requires L-type Ca2+ channels, but not sodium
channels (Colgan et al., 2012; Figure 2-right).

Thus, unlike synaptic dendritic release in other spiking
neurons, the dendritic release/exocytosis of serotonin is based
on dendritic glutamatergic excitation without requirement for
back-propagating action potentials, and is characterized by its
sensitivity to NMDA, L-type Ca2+ channel blocker nimodipine.
Furthermore, it was reported that upon electrical stimulation, the
serotonin releasable pool is 300 times lower in comparison with
dopamine despite comparable tissue content. Serotonin may be
stored in vesicles or other compartments that do not exocytose
consistent with a small quantity of serotonin available for release
(Hashemi et al., 2012; Jennings, 2013). Hence, dorsal raphe
dendrites release serotonin, and this function is physiologically
and pharmacologically unique, although the molecular effectors
and regulators of these dendritic non-synaptic events remain to
be described in details.

SEROTONIN TONE AND
SEROTONERGIC AUTORECEPTORS

5-HT1 Receptors
Neurotransmission by serotonin is tightly regulated by
autoreceptors through negative feedback inhibition at

somatodendritic levels (5-HT1A receptors) of the raphe
nuclei or at axonal levels (5-HT1B receptors). The 5-HT1A
autoreceptor is found in the soma and dendrites of serotonergic
neurons of raphe (Kia et al., 1996; Riad et al., 2000). In the raphe,
the 5-HT1A autoreceptor-mediated inhibition was for long
time believed to be the only homeostatic feedback mechanism
controlling the tonic firing rate, pacemaker-like, of serotonergic
neurons, mainly based on in vitro data, for review see (Piñeyro
and Blier, 1999; Vizi et al., 2010). However, accumulating
results are weakening the traditional model postulating that
serotonin neuron autoinhibition is mediated exclusively by
the hyperpolarizing 5-HT1A autoreceptor and that is the main
factor controlling the pacemaker-like firing rate of serotonergic
neurons, for review see (Andrade et al., 2015).

At somatodendritic levels, a reduction of expression of
5-HT1A autoreceptors produces strong antidepressant effects,
probably due to a reduction of the negative feedback on
serotonergic neuron activity (Bortolozzi et al., 2012). Moreover,
the genetic suppression of 5-HT1A autoreceptors causes an
anxiety-like behavior in the basal state, and a higher increase
in serotonin release compared to wild-type mice in response
to stress (Richardson-Jones et al., 2010). Deletion of either 5-
HT1A or 5-HT1B autoreceptors (somatodendritic and axonal,
respectively) does not modify brain serotonergic tone as assessed
by microdialysis (Guilloux et al., 2011). Moreover, while complete
deletion of both receptors in Htr1a/1b−/− mice affected the
acute response to SSRIs in the forced swim test, the chronic
effects of SSRIs were still observed in anxiety test (Guilloux
et al., 2011). In mice with overexpression of 5-HT1A autoreceptor,
hypothermic response is increased, and both serotonin content
and neuronal activity are decreased in the dorsal raphe.
These mice display increased anxiety- and depression-like
behaviors that are resistant to chronic antidepressant treatment
(Vahid-Ansari et al., 2017). In addition, blockade of 5-HT1A
autoreceptors in dorsal raphe brain slices was found to have
surprisingly no effect on the firing of the serotonergic neurons
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as reviewed in Liu et al. (2005). There is thus a discrepancy in 5-
HT1A receptors acting as a regulator of pace-maker homeostasis
of serotonergic neurons between in vivo and in vitro studies.

Other studies showed that serotonergic cell groups can
be interconnected, the dorsal raphe in particular receiving
serotonergic inputs from the caudal raphe (Bang et al., 2012),
which may implicate different types of serotonergic neurons. 5-
HT1A receptors participate in serotonergic neurons with different
electrophysiological profiles, the inhibitory effect of 5-HT1A
receptors being superior in dorsal raphe than in median raphe
neurons, suggesting greater negative feedback in the dorsal raphe
(Beck et al., 2004). Similarly, Teissier et al. (2015) identified
opposed consequences of dorsal vs. median raphe serotonergic
neuron inhibition, suggesting that median raphe hyperactivity
increases anxiety, whereas low dorsal over median raphe
serotonergic activity ratio increases depression-like behavior.
These observations suggest a heterogeneity of serotonergic
neurons, which are interconnected but not necessarily located in
the same serotonergic nucleus. It will thus be worth testing the
effect of altering volume transmission in various raphe nuclei.

5-HT2 Receptors
On dorsal raphe slices, most serotonin neurons are
hyperpolarized following the opening of GIRK channels by
the application of a 5-HT1A receptor agonist. In the presence
of 5-HT1A-receptor antagonists, it has been reported that
serotonin induces a depolarization, which can be blocked by
different antagonists specific of Gq-coupled 5-HT2 receptors
(Craven et al., 2001). In another study using rat brain slices,
the stimulation of 5-HT1A receptors also hyperpolarized most
serotonin neurons, and about half of these neurons show also a
depolarization in response to 5-HT2 receptor agonists (Marinelli
et al., 2004). These data suggest that 5-HT2 receptors expressed
by subsets of serotonergic neurons could participate in serotonin
somatodendritic volume transmission. Local agonist stimulation
of 5-HT2B receptors in dorsal raphe increased extracellular
serotonin, supporting an excitatory effect of this receptor on
serotonergic neuron activity (Doly et al., 2008). Furthermore, a
fraction of raphe serotonergic neurons coexpress both 5-HT1A
and 5-HT2B receptors (Diaz et al., 2012). These observations
confirmed that serotonergic neurons are heterogeneous by
expressing different serotonin receptors and that both 5-HT1A
and 5-HT2 receptors could participate in serotonin tone
regulation.

Putative positive regulation of dorsal raphe by 5-HT2B
receptors has been proposed (McDevitt and Neumaier, 2011).
Strikingly, acute and long-term effects of SSRIs both in behavior
and neurogenesis were eliminated after genetic ablation of 5-
HT2B receptors or upon selective antagonist treatment (Diaz
et al., 2012). Conversely, pharmacological experiments indicated
that acute agonist stimulation of 5-HT2B receptors mimicked
acute SSRI action (Diaz and Maroteaux, 2011) and that chronic
agonist stimulation of 5-HT2B receptors mimicked chronic SSRI
action on behavior and neurogenesis, which were abolished
in mice knocked-out (KO) for the 5-HT2B receptor gene
(Htr2b−/−) (Diaz et al., 2012). Accordingly, conditional KO

mice for 5-HT2B receptors only in serotonergic neurons (Htr2b-
cKO5−HT mice), reproduced the lack of SSRI effects; these mice
also displayed a reduced tonic firing frequency of dorsal raphe
serotonin neurons, and a stronger hypothermic effect of 5-HT1A-
autoreceptor stimulation (Belmer et al., 2018). The increased
excitability of serotonergic neurons observed upon selective 5-
HT2B-receptor overexpression in raphe serotonergic neurons
confirmed the cell autonomous effect of this receptor. The excess
of inhibitory control exerted by 5-HT1A receptors in Htr2b-
cKO5−HT mice may thus explain the lack of response to chronic
SSRI in these mice. Conversely, the raphe neurons from mice
expressing reduced amount of 5-HT1A receptors (5-HT1A-Low)
are more likely to fire at higher rates than control mice, consistent
with decreased autoinhibition (Richardson-Jones et al., 2010). In
parallel, Philippe et al. (2018) showed that an increased 5-HT1A-
autoreceptor binding and function led to reduced serotonergic
tone, increased anxiety-depression-like behaviors, and induced
mice to be resistant to chronic fluoxetine. A higher 5-HT1A-
autoreceptor reactivity and a lower firing activity of these neurons
was observed in Htr2b-cKO5−HT mice (Belmer et al., 2018).
Confirmation of these findings have been obtained in mice
expressing the activator Gq-coupled DREADDS hM3Dq (similar
to 5-HT2B receptor’s coupling) in serotonergic neurons, which
demonstrates, upon stimulation, an increase in serotonergic
neurons firing rates (Teissier et al., 2015) and an antidepressant-
like behavioral response (Urban et al., 2016). On the contrary,
mice expressing the inhibitory Gi-coupled DREADDS hM4Di
(similar to 5-HT1A receptor’s coupling) in serotonergic neurons
display, upon stimulation, a decrease in serotonin neuronal firing
rates (Teissier et al., 2015). The serotonergic tone may thus
result from the opposite control exerted by cross-regulation
between Gi-coupled 5-HT1A and Gq-coupled 5-HT2B receptors
on serotonergic neurons (Belmer and Maroteaux, 2018).

Interestingly, frog motor neurons showed potentiation of
NMDA-induced depolarization by serotonin. The underlying
mechanism involves: (1) activation of 5-HT2B receptors; (2)
activation of a Gq-protein; (3) a transduction mechanism causing
an influx of extracellular Ca2+ through L-type calcium channels;
(4) binding of Ca2+ to calmodulin; and (5) reduction of the open-
channel block of the NMDA receptor produced by physiological
concentration of Mg2+ ions (Holohean and Hackman, 2004).
Furthermore, Bigford et al. (2012), showed that either 5-
HT2B or 5-HT2C receptor antiserum immunoprecipitated GluN1
subunit of NMDA receptors, suggesting that these receptor
subtypes are able to interact in complexes with NMDA receptors
and our unpublished data confirmed a 5-HT2B- and GluN1-
receptor association. Independently, the 5-HT2B receptor, which
is expressed in stomach and cardiomyocytes, has been reported
to act via L-type calcium channels in both tissues (Cox and
Cohen, 1996; Bai et al., 2010) and activation of 5-HT2B receptors
triggered also intracellular calcium release from ryanodine-
sensitive stores as shown in the leech somatodendritic release
of serotonin (Leon-Pinzon et al., 2014). Together, these data
indicate that somatodendritic release of serotonin is a model
in which 5-HT2B receptors could participate and regulate
the excitability of serotonergic neurons together with 5-HT1A
receptors.
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The mechanism by which these two receptors interact remains
to be described as well as the associated partners and intracellular
pathways involved in the regulation of serotonergic tone at the
level of serotonin neurons themselves.

VOLUME TRANSMISSION, SERT, AND
SSRI ANTIDEPRESSANTS

The serotonin transporter SERT by regulating extracellular levels
of serotonin is a major partner in the regulation of serotonin
tone (Piñeyro and Blier, 1999; Vizi et al., 2010). Under normal
conditions, evoked extracellular serotonin concentration shows
strong firing frequency-dependence. Mice lacking SERT (KO
mice) or treated with SSRIs display extracellular serotonin
concentrations evoked by stimulation that tend to similar high
levels at all frequencies, while in SERT overexpressing mice,
evoked extracellular serotonin concentrations tend to equal low
levels (Jennings et al., 2010). These findings, therefore, indicate
that SERT plays a role of a frequency pass filter in regulating
extracellular serotonin concentrations evoked by stimulation.
The role of SERT in setting basal extracellular serotonin
concentrations and detailed contribution to serotonergic tonic
and volume transmission has yet to be investigated in vivo.

The therapeutic effects of SSRIs are initially triggered by
blocking SERT. Microdialysis experiments have shown that
acute SSRI injections increase extracellular levels of serotonin
by approximately 400% in the dorsal raphe and nearly
200% in forebrain terminal regions (Invernizzi et al., 1992,
1997). The SSRI-dependent increases in extracellular serotonin
concentration require Ca2+-dependent vesicular release, which
should induce somatodendritic 5-HT1A autoreceptor-mediated
decreases in spontaneous release of serotonergic neurons
(Gartside et al., 1995; Hajos et al., 1995). Following SSRI injection,
although basal serotonergic firing rates should decrease, the
tonic activity increases extracellular serotonin levels (Dankoski
et al., 2016). Interestingly, local infusion in the dorsal raphe
of a 5-HT2B receptor agonist through the microdialysis probe
produced an increase in extracellular serotonin concentration
that could be blocked by 5-HT2B receptor antagonist (Doly
et al., 2008) and mimicked the SSRIs effects. These data support
a contribution of this receptor subtype in carrier-dependent
serotonin accumulation.

One mechanism by which SERT can contribute to the
enhancement of extracellular serotonin includes reversed
transport, i.e., by carrier-mediated efflux (Forrest et al., 2008;
Sitte and Freissmuth, 2015). The “club drug” 3,4-methylenedioxy
methamphetamine (MDMA, ecstasy) binds preferentially to and
reverses the activity of SERT, by causing release of serotonin
from vesicles. Acute pharmacological inhibition or genetic
ablation of 5-HT2B receptors in KO mice completely abolished
MDMA-induced hyperlocomotion, sensitization, and serotonin
release. Furthermore, the 5-HT2B receptor dependence of
MDMA-stimulated release of endogenous serotonin relies on
its expression in serotonergic neurons as recently demonstrated
in mice lacking 5-HT2B receptors only in serotonergic neurons
(Htr2b-cKO5−HT mice) (Belmer et al., 2018). These data support

also a contribution of this receptor subtype in carrier-dependent
serotonin efflux. Unlike serotonin release in soma or terminals,
dendritic serotonin release in response to AMPA or NMDA
receptor stimulation requires L-type Ca2+ channels. AMPA-
evoked serotonin release measured with varying fluoxetine
concentrations showed that somatic serotonin release has
fivefold greater sensitivity to fluoxetine than responses from
dendritic puncta (Colgan et al., 2012). Differences in SERT
regulation, localization and/or function may explain this
difference, since SERT immunoreactivity has been mainly found
at the plasma membrane in extrasynaptic location including
axonal varicosities, whereas in soma and dendrites it was mainly
observed intracellularly (Vizi et al., 2010; Belmer et al., 2017).

The therapeutic effects induced by SSRIs rely on long-term
neuroadaptations. Since the activation of 5-HT1A autoreceptor
decreases the activity of serotonin neurons (Commons, 2008),
more than 2 weeks of SSRI treatment are necessary to observe
a decreased expression of 5-HT1A receptors in serotonergic
neurons (Popa et al., 2010). This decrease in expression of 5-
HT1A receptors, which is followed by an increase in the firing of
serotonergic neurons, has been proposed to explain the clinical
delay of the antidepressant effect of SSRIs (Adell et al., 2002;
Santarelli et al., 2003; Richardson-Jones et al., 2010; Rainer et al.,
2012). In SERT KO mice, 5-HT1A autoreceptors are desensitized
in raphe nuclei, while they remain intact in post-synaptic neurons
(Fabre et al., 2000). This desensitization of 5-HT1A autoreceptors
in the raphe is thought to be due to the chronic accumulation
of extracellular serotonin in the absence of uptake (Soiza-Reilly
et al., 2015). The lack of acute and chronic SSRI efficacy observed
in Htr2b-cKO5−HT mice is associated with a reduced tonic
firing frequency of dorsal raphe serotonin neurons, whereas the
selective 5-HT2B-receptor overexpression in raphe serotonergic
neurons increases the excitability of these neurons (Belmer et al.,
2018). Together with the observation that agonist stimulation of
5-HT2B receptors is sufficient to reproduce SSRI effects including
raphe serotonin accumulation, these results support that the
reduction in 5-HT1A receptor activity drives the antidepressant
efficacy that may involve SERT regulation.

Colgan et al. (2012) proposed that the differential regulation
between somatic vs. dendritic serotonin release may explain
the antidepressant effects of inhibitors of NMDA receptors like
ketamine (Machado-Vieira et al., 2009; Casamassima et al.,
2010). Ketamine, has recently been shown to increase serotonin
in prefrontal cortex, which correlates with antidepressant-like
activity in the forced swimming test; its antidepressant-like
activity requires activation of raphe AMPA receptors that
recruits the prefrontal cortex neural circuit (Pham et al., 2017).
Furthermore, AMPA receptor-dependent serotonin release and
subsequent 5-HT1A receptor stimulation may be involved in
the actions of an mGlu2/3 receptor antagonist and ketamine
in the NSF test (Fukumoto et al., 2014). However, it has
been reported that a direct activation of AMPA receptors
by ketamine metabolites and mTOR signaling is sufficient to
increase synaptogenesis in prefrontal cortical pyramidal neurons
and to enhance serotonergic neurotransmission via descending
inputs to the raphe nuclei or even by a direct inhibition of NMDA
receptors localized on GABAergic interneurons, for reviews see
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(Artigas et al., 2018; Zanos and Gould, 2018). It is therefore
unlikely that the rapid antidepressant effects of NMDA receptor
inhibitors act through a control of serotonergic tone, which
would require time to be efficient, but through a direct control
of upstream targets.

GENETIC VARIANTS OF MOLECULES
PUTATIVELY ASSOCIATED TO VOLUME
TRANSMISSION

Interestingly, human polymorphisms associated to psychiatric
diseases have been found in genes encoding molecules putatively
involved in somatodendritic release, including voltage-gated
L-type calcium channel subunit, 5-HT2B receptor, 5-HT1A
receptor, VMAT-2, or SERT. Single-nucleotide polymorphisms
(SNPs) in the α1 subunit (CACNA1C) of the L-type calcium
channels Cav1.2 rank among the most consistent and replicable
genetics findings in psychiatry and have been associated
with schizophrenia, bipolar disorder and major depression
(Casamassima et al., 2010; Dedic et al., 2018) and more recently
with treatment resistant depression (Fabbri et al., 2018). In
humans, a loss-of-function SNP of 5-HT2B receptors is associated
with serotonin-dependent phenotypes, including impulsivity and
suicidality (Bevilacqua et al., 2010). Association studies with
the functional 5-HT1A receptor promoter SNP rs6295 showed
that patients present early deficits in cognitive, fear and stress
reactivity that may lead to depression (Albert and Fiori, 2014).
A specific haplotype in SLC18A2, the gene encoding VMAT-2,
was significantly associated with depression symptoms in men
(Christiansen et al., 2007). Furthermore, a significant association
was found between post-traumatic stress disorder (diagnosis)
and SNPs in SLC18A2 (Solovieff et al., 2014). Carriers of the
short allele of the promoter polymorphism of SERT gene (5-
HTTPR) have increased anxiety-related traits and elevated risk
of depression (Pezawas et al., 2005). Evidence points to a
lower response to SSRIs among Caucasian patients with the 5-
HTTPR short genotype and among (Asian) patients with the
STin2 10/12 genotype (Smits et al., 2008). However, humans
carrying the short variant of the 5-HTTPR outperform subjects
carrying the long allele in an array of cognitive and social
tasks (Homberg and Lesch, 2011). So, one has to be careful
in interpreting data from human gene polymorphism, without
extensive characterization of their physiological consequences.
These human polymorphisms that are associated to psychiatric
diseases have then to be validated in models of serotonin
somatodendritic release.

CONCLUSION

Our understanding of serotonin transmission has been
limited by technical problems. This review has summarized
different mode of serotonin transmission and how they
could impact behavioral and antidepressant efficacy. A better
description of the molecular mechanisms involved in regulating
serotonin somatodendritic release in vivo, using for example
3-Photons microscopy, is necessary to identify the impact
of various modes of serotonin release and to unravel the
mechanisms of tonic serotonin level regulation. These data
should indicate if different modes of serotonin release
mediate distinct behavioral effects. Understanding whether
and how serotonin tone is controlled may also increase our
understanding how its impact on behavior. By deciphering
the molecular mechanisms of serotonin release that regulate
firing patterns we should be able to increase our knowledge
of serotonin function in physiological and pathophysiological
situations. This should ultimately allow us to improve
treatment of psychiatric disorders involving serotonin, such as
depression.
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