
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Hussain, Etikaf, Bhaskar, Ashish, & Chung, Edward
(2023)
Zone prioritisation for transit improvement using potential demand esti-
mated from smartcard data.
Transportmetrica A: Transport Science, 19(2), Article number: 2028930.

This file was downloaded from: https://eprints.qut.edu.au/228431/

c© 2022 Hong Kong Society for Transportation Studies Limited

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial 4.0

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1080/23249935.2022.2028930

https://eprints.qut.edu.au/view/person/Hussain,_Etikaf.html
https://eprints.qut.edu.au/view/person/Bhaskar,_Ashish.html
https://eprints.qut.edu.au/view/person/Chung,_Edward.html
https://eprints.qut.edu.au/228431/
https://doi.org/10.1080/23249935.2022.2028930


1 
 

Zone Prioritisation for Transit Improvement Using Potential Demand 1 

Estimated from Smartcard Data  2 

Etikaf Hussaina, Ashish Bhaskara*, Edward Chungb 3 

a School of Civil and Environmental Engineering, Queensland University of 4 

Technology, Brisbane, Australia 5 

bDepartment of Electrical Engineering, The Hong Kong Polytechnic University, Hong 6 

Kong, China 7 

a*corresponding author: Associate prof. Ashish Bhaskar, School of Civil and 8 

Environmental Engineering, Queensland University of Technology, Brisbane, Australia  9 

Email: ashish.bhaskar@qut.edu.au 10 

aEmail: etikaf.hussain@hdr.qut.edu.au 11 

bEmail: edward.cs.chung@polyu.edu.hk 12 

 13 

Keywords: 14 

smartcard data, transit improvement, gradient boost, potential demand, public transit 15 

demand 16 

17 

mailto:ashish.bhaskar@qut.edu.au
mailto:etikaf.hussain@hdr.qut.edu.au
mailto:edward.cs.chung@polyu.edu.hk


2 
 

Zone Prioritisation for Transit Improvement Using Potential Demand 1 

Estimated from Smartcard Data  2 

It is of utmost importance to understand the networkwide transit service needs for 3 
future planning and effective funding allocations. For this purpose, this study 4 
proposes a methodology that uses a zone’s transit potential demand as an 5 
indicator to prioritise them for public transport-related improvements. This study 6 
utilises observed demand (referred to as served demand) from smartcard data to 7 
estimate the potential demand. The smartcard data is used to estimate the 8 
observed demand of a zone, based upon which high and low trip zones are 9 
segregated. An ensemble tree-based Gradient Boosting model is trained and 10 
validated using observed trips by employing demographics, socio-economic, and 11 
geographic variables. From the analysis, zones with high and low potential 12 
demand are identified. Based on the estimated potential demand per unit area, all 13 
the zones are clustered into four groups identifying the areas with the lowest, 14 
low, medium, and high transit improvement requirements. 15 

Keywords: smartcard data, transit improvement, gradient boost, potential demand, public 16 
transit demand 17 

1. Background and literature review 18 

In an urban area, potential or induced travel demand for public transport from a zone 19 

can be used as an indicator of the need for transit service improvement. Zones with high 20 

potential travel demand are most likely to have a high rate of return on investment in 21 

public transit projects as compared to those with low potential travel demand. From a 22 

public transport planning point of view, it is of utmost importance to prioritise the zones 23 

to receive funds for transit-related improvement (both infrastructure and supply wise). 24 

Overall, travel demand estimation is a well-studied topic and is vital for planners 25 

and transport engineers in an urban area. It serves as the primary input for transport and 26 

mobility-related infrastructure planning. Demand estimation is essential for the control, 27 

operation, and management of urban travel facilities.  28 
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There are several models exist in the literature that are explored for demand 1 

estimation, ranging from linear models to multivariate, to log-models, etc., (Gaudry and 2 

Wills 1978). Traditionally, four-step demand modelling and activity-based modelling 3 

are employed to estimate the travel demand. The first step in the 4-step trip demand 4 

modelling consists of trip generation, which is usually done based on regression models. 5 

More lately, the trip generation is calculated based on activity models, assuming that 6 

activities trigger trips. These models, along with the statistical methods with the survey 7 

data (Household Travel Survey (HTS)) (Stopher and Greaves 2007), are employed to 8 

estimate trip attraction/production from one zone to all other zones (Toole et al. 2015).  9 

The HTS is very carefully designed to be able to provide related information. Due to the 10 

high amount of time requirement and cost of such surveys, the sampling methods are 11 

critical, so that the HTS results need to be generalised over the entire population. Also, 12 

because of its cost, the temporal resolution of HTS varies from 3 years to 10 years for 13 

different cities. Demand for the base year is calculated using the HTS data projected 14 

over the population. For the rest of the years, predicted travel demands are used to plan 15 

and construct new transit infrastructure-related decisions. With the advent of new big 16 

datasets and their availability, transport planners can access the low cost per sample and 17 

finer temporal resolution data (longitudinal data). Examples of such datasets are; loop 18 

detector data (Chen et al. 2001), mobile phone data (White and Wells 2002), smartcard 19 

data (Barry et al. 2002), Bluetooth data (Bhaskar and Chung 2013; Nusser and Pelz 20 

2000), to name a few. Depending on the type of data, it may have a very high 21 

penetration rate. Though, the mentioned datasets are primarily designed for other 22 

purposes. For instance, smartcard data’s primary objective is fare collection. With these 23 

datasets, it is required to develop algorithms and validate them to be used with current 24 

models.   25 



4 
 

The smartcard data records the boarding and alighting information of 1 

passengers. If a system is an entry-only or exit-only system, the smartcard data contains 2 

only boarding or alighting information, respectively. However, if a system is an entry-3 

exit, it records both boarding and alighting information, as passengers are required to 4 

tap their cards while entering and exiting the system. So far, a considerable research has 5 

been done to exploit the uses of smartcard data in transportation, most important are 6 

being transit origin-destination (OD) matrix estimation (Sánchez-Martínez 2017; Alsger 7 

et al. 2016), travel pattern (Kusakabe and Asakura 2014; Naveh and Kim 2019), activity 8 

detection (Han and Sohn 2016; Nassir, Hickman, and Ma 2015), transit performance 9 

(Trépanier, Morency, and Agard 2009), delay predictions (Yap, Cats, and van Arem 10 

2020), etc.  11 

The smartcard data can be employed to find the number of trips produced or 12 

attracted to a zone(Hussain, Bhaskar, and Chung 2021b). However, this transit travel 13 

demand is highly biased towards transit service availability, i.e., places with high 14 

frequency and high-quality transit services attract more passengers (Hussain et al. 15 

2021). Thereby, the OD matrix from smartcard data represents the served demand (SD) 16 

instead of total demand (TD). A transit potential demand (PD) may exist in a zone (or 17 

place), which is not served due to spatial and or temporal non-availability of transit 18 

services. Apart from the non-availability of transit services, other factors also account 19 

for non-utilisation of transit for travelling, such as higher travel time, quality of service 20 

provided, fare affordability, security, type of journey, to name a few (Nurdden, Rahmat, 21 

and Ismail 2007; Beirão and Cabral 2007). PD is defined as the induced demand that 22 

will be present if an appropriate transit service is provided. The PD determination can 23 

lead the planners and policymakers to prioritise the areas for transport-related funding 24 

and improvements.  25 
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Yao (2007) estimated the relative transit PD by proposing a transit need index 1 

by employing multiple regression in the literature. The same variables incorporated in 2 

multiple regression are also used to develop self-organising maps to cluster the zones 3 

based on the independent variables. Another study used the GIS-based approach to 4 

determine transit PD (Aljoufie 2014). The study categorises the zones in low, medium, 5 

and high need for public transit based on a composite index developed from regression. 6 

The above studies used the demand (demand due to workers only in Yao (2007)) and 7 

proposed an index for transit prioritisation; however, this study uses a machine-learning 8 

algorithm to enhance the prediction and uses observed total transit demand (or served 9 

demand) from smartcard data. 10 

Apart from econometric regression, studies have utilised big data sources to 11 

identify the transit potential demand or identify the OD zones for which the public 12 

transit improvement may be needed. For instance, Olleczek et al. (2014) used the 13 

smartcard and cell phone data to identify the OD-pairs with high car trips and low 14 

public transit in Singapore. Regt et al. (2017) made use of smartcard and cell phone data 15 

to estimate the potential demand for public transport. The differences between the trips 16 

made in smart card data and visitors detected by cell phone data are compared to make 17 

inferences for the transit need. While developing a demand-oriented coordination model 18 

for rail, Li, Luo, and Cai (2019) found the potential demand for the last rail of the day 19 

by integrating AFC (rail and bus) and taxi data. The study found potential demand (the 20 

missed demand due to transfer non-coordination) by identifying trips made on buses 21 

and taxis after the last train had passed near rail stations. In a study, Cheng et al. (2020) 22 

determine the taxi demand from GPS data that can potentially shift to rail. The method 23 

applies spatial and temporal closeness of historical taxi trips to be potential rail trips. 24 
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The above-cited literature portrays that attempts have been made to understand 1 

and determine the transit potential demand. However, in most cases, they only consider 2 

the regression methods and the projected data from surveys, such as HTS, which may 3 

not accurately represent the network demand. Similarly, other studies utilised smartcard 4 

data along with other big datasets, i.e., cell phone data, taxi data, and GPS data. 5 

Therefore, the contribution of this study is three-fold; firstly, this study presents a 6 

methodology to estimate the relative transit potential demand from smart card and 7 

census data. Secondly, machine learning algorithms are explored instead of regression 8 

models for improved predictability. Thirdly, this study prioritises zones for transit 9 

improvement/future funding by employing relative potential transit demand.  10 

To this end, the paper is arranged as follows: Section 2 describes the proposed 11 

modelling methodology; Section 3 includes the detailed results obtained; and, the last 12 

section (Section 4) provides the conclusion of the study along with future research 13 

directions.  14 

2. Methodology 15 

The proposed methodology to estimate potential transit demand by employing 16 

demographic and socio-economic variables and smart card data is divided into four 17 

parts and presented in Figure 1. Firstly, the transit trips produced/attracted to a zone are 18 

calculated from smart card data, and high and low ridership zones are identified, where 19 

high ridership zones will be utilised to train the model. Secondly, the training and 20 

testing of the model are carried out. Once the model is tested, it is applied to the 21 

remaining zones (zones with lower ridership) for the estimation of potential transit 22 

demand in the third step. Lastly, the zones are clustered based on their potential demand 23 

for transit improvement. The above-stated steps are described in detail in the following 24 
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paragraphs. 1 

Figure 1 Workflow of the study to determine zones’ potential demand and their 3 

prioritisation for transit improvement. 4 

For a zone ‘z’, total transit demand (TDz) consists of served demand (SDz) and 5 

potential demand (PDz), written as: 6 

z z zTD PD SD z Z= + ∀ ∈  (1) 

Where subscript ‘z’ denotes a zone in a set of total zones’ Z’. Smartcard data gathered 7 

by transit agencies contain either boarding event information in an entry-only system or 8 

boarding and alighting event information in an entry-exit system for all passengers 9 

(except those using paper tickets). An entry-only system is where passengers are 10 

required to tap only once, either while boarding or alighting. In contrast, an entry-exit 11 

system is where passenger taps smartcard while boarding and alighting. In any respect, 12 

both cases contain trip-leg details made on the transit network. Trip legs can be 13 

converted to trips/journeys after performing some calculations. Once trips are extracted 14 
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from trip-legs from smartcard data, it provides the transit demand which has been 1 

served (SD). 2 

Potential demand is defined as the expected number of extra trips that will occur 3 

from a zone if appropriate transit service is provided to residents of that zone. The 4 

significant factors contributing to impact PD may include spatial and temporal non-5 

availability of transit service. If transit service is available, people may not choose it 6 

because of many other factors such as, high walking distance to access and egress 7 

public transit facility, longer waiting times at stop, longer travel time (including the 8 

number of transfers involved in the journey), affordability, safety, quality of human-9 

public transit interaction infrastructure (e.g., type of bus stop, condition of transit 10 

vehicles), etc. However, this study does not aim to determine the absolute potential 11 

demand (as per the above definition); instead, this study determines the relative 12 

potential demand in low ridership zones in order to have similar demand as that of high 13 

ridership zones given the fare, type and quality of transit service in the area remain 14 

same. 15 

Based on the above construct, this study considers that there may exist no, or 16 

negligible PD in high ridership zones (H). Mathematically, 17 

0             zPD z H Z≈ ∀ ∈ ⊇  (2) 

Hence, for high observed demand zones, Equation (1) can be re-written as: 18 

         z zTD SD H Zz≈ ∈ ⊇∀  (3) 

The above equation states that TD is approximately equal to SD in zones having high 19 

transit usage or in zones having the availability of the high quality of transit service. 20 
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Here, the PD estimation is for reference only due to the non-availability of the ground 1 

truth. The actual or true PD may vary from PD calculated from Equations (2), (3), and 2 

(4). Thereby, this study aims to find the PD for all other zones using the demand from 3 

high usage zones, which will be employed to prioritise zones for transit improvement. 4 

Mathematically, PD is the difference between total demand and served demand, 5 

represented by the following Equation (4). 6 

      &z z zPD TD SD z Z z H= − ∀ ∈ ∉  (4) 

The above equation can be utilised to estimate the transit potential demand for a 7 

zone provided that total demand and served demand for a zone are given. Please note 8 

that a suitable transit supply (Hussain, Bhaskar, and Chung 2021a) or accessibility 9 

index can also be employed for zone segregation instead of employing the SD. 10 

Consequently, the zone with higher supply can be labelled as (H) instead of high 11 

ridership and vice versa. 12 

For this purpose, a machine learning model can be trained by employing TDz  13 

for all the zones with higher demand as the dependent variable. Various explanatory 14 

variables related to demographics, socio-economic, land use, etc., which contribute to 15 

demand production/attraction, can be employed to train the model. Once the model is 16 

trained and validated using TDz for only high utility zones; that when applied to all 17 

other zones (low utility zones), will provide the TDz for those zones. TDz for those 18 

zones are, theoretically, greater than their corresponding SDz.  19 

2.1 Transit trips production/attraction estimation from smartcard data 20 

The primary objective of accumulating smart card data is the management of fare 21 

collection. The structure of collected data by an agency varies across the transit 22 
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providers. The type of data gathered depends on the type of fare system installed. The 1 

data are from either an entry-exit system or an entry-only system. Typical boarding and 2 

or alighting information consists of the time and location of the events. The type of 3 

datasets and various methodologies to estimate Transit Origin-Destination matrix (tOD) 4 

are discussed in detail in Hussain, Bhaskar, and Chung (2021b). 5 

This study does not build on the literature of tOD using smartcard data. It 6 

utilises pre-established procedures identified in the literature and emphasises the 7 

application of big data generated from smartcard. Estimating tOD from an entry-exit 8 

system data is relatively easier and straightforward as it only requires separating trips 9 

from journeys. A trip includes boarding and alighting a transit service; however, a 10 

journey may consist of many trips to reach the destination. In brief, it is necessary to 11 

identify transfer and activity in order to estimate true tOD. Once the tOD is estimated, 12 

the row-wise summation gives transit trips produced, and the column-wise summation 13 

provides transit trips attracted.  14 

2.2 High demand zones selection 15 

After trips produced/attracted are estimated, the next step comprises the selection of 16 

appropriate zones for model training (shown in Figure 1). For this purpose, zones with 17 

high and low usage of transit services can be identified by utilising the concept provided 18 

in the studies Hussain et al. (2021) and Louail et al. (2015), where zones are clustered 19 

into low, medium, and high trip production/attraction zones. More specifically, trips 20 

produced/attracted from a zone are divided by its area, giving trips produced/attracted 21 

per unit area. The rows are then arranged in ascending order of those values.  22 

According to Hussain et al. (2021), fewer zones contribute to high transit 23 

ridership (Figure 2 shows the same phenomenon for the study area). The figure depicts 24 
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the distribution of trips attracted or produced per unit area from a zone in descending 1 

order. Zones above a cut-off value α are considered high trip production/attraction 2 

zones. Modelling results can be sensitive to the selection of α. However, the difference 3 

in the values of observed zonal demand for low and high demand zones is generally 4 

very prominent, as in the case of Brisbane (Figure 2), and analysts can make a 5 

reasonable estimate of α by checking the trip production per unit area. It is expected that 6 

a small change in α will not drastically change the ranking of a zone, which is the output 7 

of this study. For further research, it is recommended to thoroughly test the sensitivity 8 

of the modelling with respect to different values of α. Also, a higher value of α will 9 

provide a lesser number of high utility zones. Whereas for model training, it is 10 

favourable to employ a high number of cases (high utility zones in this case).  11 

After high trip zones are identified, these zones will be further used in model 12 

training explained in the next sub-section.   13 

Figure 2 Illustration of the typical distribution of per unit area trip production/attraction 15 

in descending order in a transit network. 16 
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2.3 Model development 1 

In this study, the model development step is divided into an explanatory variable 2 

selection from demographic, socio-economic, and land-use variables and training and 3 

validation of the model. The last step is to infer the total demand from the validated 4 

model. Below, the sub-section describes these steps in detail. 5 

2.3.1 selection of explanatory variables 6 

For model development, three groups of variables are initially identified from the 7 

literature and are selected for analysis. The type of datasets includes demographic 8 

variables, socio-economic variables, and spatial characteristics of the zone. The 9 

demographic variables mainly comprise the population with different age groups in a 10 

zone. The socio-economic variables include population with a different group of 11 

income, employed/unemployed persons, the number of households with number of cars, 12 

etc. The spatial characteristics of a zone may contain the zone area, the distribution of 13 

land use (commercial, residential, etc.), number of park & ride spaces, etc.  14 

To model the total demand, there is a long list of candidate independent 15 

variables. However, when calibrating the model, there is a high chance that we have 16 

fewer zones with high transit demand. Therefore, it may not be feasible to use all the 17 

variables. Hence, applying one of the dimension techniques is required to reduce the 18 

candidate independent variables. There exist various dimension reduction techniques 19 

such as analysing the correlation amongst the variables, principal component analysis, 20 

backward/forward feature elimination/selection, recursive elimination technique, to 21 

name a few.  22 

In this study, a feature of the gradient boost model is employed, which provides 23 

the variable’s importance and rank the variables accordingly. The importance of a 24 
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variable is shown by the mean increase/decrease in the model’s error when that variable 1 

is included/excluded (Breiman 2001). 2 

2.3.2 Model selection 3 

Many machine learning algorithms are currently employed for classification, ranking, 4 

and regression. Machine learning algorithms are preferred over econometric models due 5 

to their enhanced prediction capability.  6 

In order to select a suitable model for potential demand estimation purpose, three 7 

machine learning algorithms (artificial neural network, random forest, and gradient 8 

boost) and a suitable econometric model (negative binomial model) are chosen and 9 

tested for their prediction. An initial investigation suggested that the gradient boost 10 

algorithm outperform all other econometric and machine learning algorithms employed. 11 

In this study, a gradient boosting algorithm is selected to model the total demand by 12 

utilising the variables found in the last step. Gradient boosting is a supervised ensemble 13 

machine learning algorithm that builds shallow independent trees (Friedman 2001). 14 

Each tree in gradient boosting learns from the previous tree and improves the results 15 

(Boehmke and Greenwell 2020). One of the tree-based method’s advantages is that 16 

averaging independently grown trees does not allow the model to overfit by employing 17 

appropriate hyperparameters. 18 

The primary task of boosting is to combine the model sequentially to the 19 

ensemble, which is more effective when the model has high bias and low variance. 20 

Given that, it averages the error in regression, which decreases the variance. Thereby, it 21 

is efficient for the model to have high variances and low bias. The trade-off between the 22 

bias and variance compels the algorithm to start with a weaker model, which is then 23 

enhanced in every next model (tree) by transcending previous models’ problems (tree). 24 
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The gradient founds the improvement. For more details on the model’s mathematical 1 

formulation and workflow, the readers are suggested to refer to Friedman (2001) and 2 

Natekin and Knoll (2013). 3 

2.3.3 Model training and validation 4 

Once the independent variables and models are selected, the next step is to train and 5 

validate the model. Gradient boost algorithm includes two types of hyperparameters, i) 6 

those related to boosting and ii) those related to tree building. Training these parameters 7 

requires fine-tuning before finalising the model.  8 

One of the boosting-related hyperparameters is the number of trees in the model. 9 

As discussed above, the averaging method of gradient boost tends not to overfit the 10 

model with a slightly higher number of trees; however, a high number of trees can 11 

overfit the model. Therefore, it is suggested to find the optimal number of trees. The 12 

other boosting related hyperparameter is the learning rate, which dictates how quickly 13 

the algorithm learns. Its value ranges from 0 to 1. The smaller the learning rate value, 14 

the better the model provided that it tends to overfit the model. Also, with smaller steps, 15 

the model may not reach global minima. 16 

Tree related hyperparameters are tree depth and minimum observations in 17 

terminal nodes. The former restricts the depth of the tree. The smaller values of tree 18 

depth are computationally efficient. On the other hand, a model with higher values can 19 

capture more variance. Therefore, it also increases the chance of overfitting. The 20 

minimum number of observations in terminal nodes specifies the complexity of trees in 21 

the model. It usually does not affect the model since gradient boost utilises the shallow 22 

trees. The typical values for this hyperparameter range between 5-15. 23 
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After training the model, the next step is to validate the model. In this study, the 1 

number of cases (or high trip zones) is limited. Hence the one-left k-fold validation 2 

method is found suitable for this purpose. In one-left k-fold validation techniques, one 3 

case is excluded from the data, and the model is built before each run. The same model 4 

is then used to predict trips for that case. The difference between the observed and 5 

predicted value is the error. Two types of errors are calculated, namely mean absolute 6 

error (MAE) and root mean square error (RMSE). This process is repeated until all the 7 

points are left once from the model. 8 

2.3.4 Total demand and potential demand inference for low trip zones  9 

After training and validation of the model using total demand from high trip zones, it 10 

can be employed to give the total demand for low trip zones, from which the potential 11 

demand can be computed as per Equation (4). In Equation (4), the demand values (total 12 

demand) estimated from the modelling should provide higher values than served 13 

demand (from smartcard) for all the zones of analysis. This will enable us to justify the 14 

assumption made for Equations (2) and (3). 15 

2.4 Application of the developed methodology 16 

This section provides details about the application of the developed framework for the 17 

estimation of potential transit demand.  18 

2.4.1 Study area 19 

The proposed framework to estimate the PD for transit service of a zone used as an 20 

indicator to prioritise zones transit improvement is applied to Australia’s South-East 21 

Queensland region. For the analysis, 298 statistical analysis 2 (SA2) zones with a 22 

median area of 7.86 sq. km are included. Figure 3 shows the study area SA2 zone 23 
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boundary delineation superimposed with the transit routes. The study area has the 1 

Pacific Ocean to the East. Also, the seaport and airport lie in Brisbane East. Brisbane 2 

central business district (CBD) lies in the Brisbane Inner-city. TransLink operates the 3 

public transit services in this region. The public transit modes in the study area consist 4 

of buses, trains, ferries, and trams. 5 

Figure 3 Study area map, South-East Queensland region’s SA2 zone boundaries. 7 

 

CBD

SA2 zones

Brisbane 
airport



17 
 

2.4.2 Served demand (𝑆𝑆𝐷𝐷𝑧𝑧) estimation 1 

The first step to obtain the 𝑃𝑃𝐷𝐷𝑧𝑧 is to calculate the 𝑆𝑆𝐷𝐷𝑧𝑧 from smart card data. For the 2 

analysis, the smartcard data of 7th March 2017, a typical day, are acquired and used for 3 

transit OD estimation. The smartcard data contains 31 fields, out of which six fields are 4 

retained, which are vital for tOD estimation (Table 1). The rest of the fields are dropped 5 

from the data for simplicity and computational efficiency. In smartcard data, EIS 6 

(executive information system) is the 20 digits encrypted smartcard number; operations 7 

date is the date on which the trip is made; boarding time and alighting time, 8 

correspondingly records the start and end time and date of a trip; and, boarding stop and 9 

alighting stop show the stop number from where a trip starts and ends, respectively.   10 

Before application, the smartcard is cleaned for anomalies, such as missing 13 

boarding and or alighting time. It is also possible to have an incorrect or missing 14 

boarding/alighting stop. All such transactions are deleted, and the rest of the data are 15 

applied to calculate 𝑆𝑆𝐷𝐷𝑧𝑧. Before estimating 𝑆𝑆𝐷𝐷𝑧𝑧, the trip (individual trip-leg) 16 

represented by each row/transaction from smartcard data is converted to journeys (one 17 

trip or combination of trips based on transfer inference).  18 

Various researchers have developed many criteria to differentiate between 19 

transfer and activity. For this purpose, as per literature, a threshold for transfer time, 20 

which is the time between successive alighting and boarding, is used to separate trip-21 

legs from journeys. This study utilises the criteria of 30 minutes between alighting and 22 

EIS Operations 
date 

Boarding 
time 

Alighting 
time 

Boarding 
stop 

Alighting 
stop 

20-digit number 2017-03-07 11:33:47 11:50:32 2606 19052 
20-digit number 2017-03-07 15:23:49 15:39:28 19064 2630 
20-digit number 2017-03-07 07:52:18 08:07:31 C128 C5 
20-digit number 2017-03-07 18:10:19 18:22:07 C5 C128 
… … … … … … 
… … … … … … 
20-digit number 2017-03-07 07:52:23 08:31:27 6399 63 
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next boarding for transfer inference (Hussain, Bhaskar, and Chung 2021b). It suggests, 1 

if a person spends less than 30 minutes between alighting a transit service and boarding 2 

the next transit service, it depicted transfer. In this case, the two trips would be merged 3 

to represent one journey. Furthermore, the physical location of a stop is considered 4 

while assigning a zone to a stop, i.e., if a stop geographically lies in a zone, all the 5 

transactions made on that stop are considered from the same zone.  6 

After the tOD matrix is estimated from smartcard data, the trips made from a zone to all 7 

other zones are summed to get 𝑆𝑆𝐷𝐷𝑧𝑧 of that zone. 8 

2.4.3 High demand zone identification 9 

Following the tOD estimation, the trips produced/attracted are divided by that zone’s 10 

area to get the trips produced/attracted per unit area. Then all the rows are sorted in 11 

ascending order based on the resulting values.  12 

From the sorted tOD, high demand zones are identified based on the 13 

methodology described in section 2.2. Here, the cut-off value between high and low 14 

demand zones (α) is taken as 360 trips per unit area per day. From the sorted tOD 15 

matrix, the zones having trips produced per unit area of more than 360 are identified 16 

and are labelled as high trip production zones. The model will be trained for these zones 17 

(as per Figure 2). Here, we get 67 high demand zones responsible for 63% of the total 18 

trips, and the rest of the zones having low demand, for which the served demand will be 19 

estimated. It is to be noted that Brisbane CBD is not considered for analysis, as it has a 20 

very high number of trips (three times more than the second-highest trip production 21 

zone) as compared to other zones. Hence, it is believed as an outlier. 22 
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2.4.4 Explanatory variables data 1 

A list of explanatory variables based on demographic, socio-economic, and spatial 2 

characteristics of zones are identified. Table 2 presents all the independent variables 3 

initially selected for model training.  4 

Table 2 List of independent variables to be considered for model training. 5 

Group No. Variables Min. Max. Mean 
Demographic 
variables 

1 Persons aged 5-14 years 4 5600 1352.4 
2 Persons aged 15-19 years 0 2286 667.1 
3 Persons aged 65 years and 

above 
0 7349 1550.9 

4 Total population 25 31214 10521.3 
5 Total students 8 10630 3248.1 
6 Persons need assistance 0 1672 468.2 
7 Population density 0.7 6134.9 1500.7 

Socio-
economic 
variables 

8 Unemployed looking for 
work 

0 1368 390.8 

9 Unemployed labour force 6 9250 2654.6 
10 Percent employment 16.4 73.7 58.1 
11 Jobless persons or with 

negative income 
0 2843 759.5 

12 Persons having low income 3 11301 3669.1 
13 Persons having medium 

income 
3 8279 2717.5 

14 Persons having high 
income 

3 2044 645.5 

15 Persons with unpaid work 19 16645 6074.0 
16 Number of homes with 0 

motor vehicles 
0 1336 227 

17 Number of homes with 1 
motor vehicles 

4 4896 1287.6 

18 Number of homes with 2 or 
more motor vehicles 

3 6687 2082.1 

Zone 
characteristics 

19 Commercial service area 
(sq. km) 

0 3.02 0.30 

20 Urban residential area (sq. 
km) 

0 16.66 3.20 

21 Rural residential without 
agriculture (sq. km) 

0 105.50 4.90 

22 Rural residential with 
agriculture (sq. km) 

0 86.55 0.80 

23 Zone total area (sq. km) 1.21 2544.66 51.1 
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Group No. Variables Min. Max. Mean 
24 Park n Ride spaces 

(numbers) 
0 1780 102.3 

Out of 24 variables, seven belong to demographic, eleven to socio-economic, 1 

and six variables to zonal characteristics. The variables are carefully chosen based on 2 

the literature. The proposed estimate of the transit PD should not be dependent on the 3 

supply. Therefore, we do not consider transit supply or accessibility index as 4 

independent variable for the modelling. Parameters given in Table 2 can be used to 5 

explain the variation in transit demand in the zones. As mentioned in the earlier section, 6 

the number of zones in high demand is limited (only 67 zones). Using many explanatory 7 

variables cannot be used for model training as it may not provide an accurate model.  8 

Among many data reduction techniques available, this study utilises the gradient 9 

boosting method built-in feature in R package ‘gbm’ (Greenwell et al. 2020). Figure 4 10 

presents the plot of relative influence on the x-axis and variables on the y-axis. The 11 

figure shows that the number of homes with zero motor vehicles is the most influential 12 

attribute, followed by jobless persons or with negative income. Out of 24 variables, the 13 

first seven variables were selected so that the model does not improve by adding 14 

another variable. 15 

Figure 4 Relative influence for the individual independent variable. 17 
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Here, the independent variables chosen for the model training include (in descending 1 

order of importance) number of homes with zero vehicles, jobless persons and persons 2 

with negative income, persons having low income, number of homes with two or more 3 

motor vehicles, commercial area in sq. km, number of park & ride spaces, and 4 

population density.  5 

3. Results 6 

This section elucidates the results of the study. The results are related to 𝑆𝑆𝐷𝐷𝑧𝑧, model 7 

results and its validation, total demand predicted for zones, and consequently PD. The 8 

PD can then be utilised as an indicator for prioritising transit service improvement.  9 

3.1 Served Demand (𝑺𝑺𝑫𝑫𝒛𝒛) 10 

The SD for the study area is estimated from the smartcard data following the 11 

methodology presented in section 2.4.2. The output, i.e., SDz for the study area, is 12 

presented in Figure 5. The green colour shows high trip production zones, while the 13 

transition to red colour depicts the other way around. Figure 5 shows most of the zones 14 

with high SD are concentrated towards Brisbane City Business District (CBD), with a 15 

few exceptions in the Gold-coast region (the South region). Zones with low demand are 16 

scattered throughout the area, mostly far from the Brisbane CBD.  17 
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Figure 5 Graphical presentation of SDz from smartcard data for different zones. 2 

The trips from smartcard data are scaled up by employing a growth factor (Regt et al. 3 

2017). TransLink reports smartcard penetration of around 90%. Therefore, the 𝑆𝑆𝐷𝐷𝑧𝑧 4 

calculated from smartcard data is multiplied by a factor of (100/90) to cater for the lost 5 

 

Zones with no 
trips

High demand 
zones



23 
 

trips (paper-ticket based trips or trips with missing boarding and alighting stops/time).   1 

A minimum of 2 trips is observed from Ipswich – North and Gympie region, 2 

while a maximum observed trips from City Centre are 105168 in one day. The study 3 

area has 723 median trips. Due to high disparity in the trips originated from CBD and 4 

other zones, it is not considered further in the modelling. 5 

3.2 High demand zones 6 

As per the methodology proposed in section 2.2, high demand zones are identified from 7 

𝑆𝑆𝐷𝐷𝑧𝑧. The high demand zones are highlighted in Figure 5. It shows that the high demand 8 

zones are mostly near CBD. There are 67 zones responsible for 63% of all the trips 9 

produced. As described earlier, CBD has the most trips and is not considered in further 10 

modelling. Other 67 zones lie in the high demand zones and are employed in the model 11 

training. The remaining 230 zones lie in the low demand zones. Hence, the TD, and 12 

consequently, PD will be estimated for all these zones. 13 

3.3 Model results 14 

Three machine learning algorithms and a suitable econometric model are calibrated and 15 

validated to predict potential demand, results for which are shown in Figure 6. Two 16 

metrics, MAE and RMSE are employed to evaluate the models’ results. From Figure 6, 17 

analysis indicates that the gradient boost model outperforms other models selected for 18 

this purpose. The next closest model is based on artificial neural network, where MAE 19 

increases from 1149 trips/zone to 1487 trips/zone, and RMSE increases from 2186 20 

trips/zone to 2462 trips/zone. Therefore, the gradient boosting model is selected for this 21 

study, further details of which are given below.22 
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Figure 6 Comparison of various models – (a) gradient boost, (b) artificial neural network, (c) random forest, and (d) negative binomial model, 2 
initially employed to predict total demand 3 
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Hyperparameter selection is a vital step in machine learning algorithms. Here for the 1 

gradient boosting model, the hyperparameters are selected such that the error metric 2 

decreases in the model training and validation step. The ‘gbm’ package of R utilises 3 

Poisson deviance as the error function for model evaluation when the model’s 4 

distribution is set to Poisson. The error metrics employed to evaluate the validation are 5 

the MAE and RMSE. All the hyperparameters, i.e., the number of trees, interaction 6 

depth, shrinkage (tree depth), and a minimum number of observations in terminal nodes 7 

are selected for which the evaluation error metrics are found to be minimum. The 8 

distribution of the model is kept as Poisson.  9 

The number of trees is selected based on Figure 7, which shows a plot between 10 

the number of iterations and Poisson deviance. It portrays that Poisson deviance 11 

decreases with an increase in the number of trees; however, there is a negligible 12 

improvement in the validation error after initial improvement. The suggested optimised 13 

value is 197 trees for the model. Next, the values of other hyperparameters are selected 14 

by considering the error function. The final model has a shrinkage of 0.05, tree depth of 15 

five, and the minimum number of observations in terminal nodes are ten. 16 
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 1 

The selected gradient boosting model has a coefficient of determination of 0.878, which 4 

can be considered as an acceptable model and shows an enhanced prediction capability 5 

as compared to the earlier proposed similar model by Yao (2007) (R2=0.678). The 6 

relation between the observed trips from smartcard data and predicted trips from the 7 

selected gradient boosting model is depicted in Figure 8. The figure shows that most of 8 

the points lie on the equity (45-degree) line, advocating a reasonable model fit. Please 9 

note that zones having trip values of more than 15000 are not shown in the figure for 10 

improved readability. For model training, the disconformity between observed and 11 

predicted trips in terms of MAE is 1118, and RMSE is 2152. 12 

 

Training error
Validation error
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 1 

Tree-based algorithm inherently uses cross-validation techniques in building models. 4 

More specifically, it selects subsets of rows and columns for the training of the model. 5 

Nevertheless, one-left k-fold cross-validation is also applied to showcase the model’s 6 

robustness and presents the model’s independence on the input data. In one-left k-fold 7 

cross-validation, one row (i.e., one zone) is excluded from the input data, and the model 8 

is trained without that zone. The model is then used to predict trips for that left-off zone. 9 

In this way, the process is repeated for all zones (67 in this case). The results for the 10 

validation process are shown in Figure 9 (in blue). The validation has a MAE of 1149 11 
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and RMSE of 2186 trips. 1 

Figure 9 further portrays the predicted demand (TDz) for low demand zones, 2 

shown by red circles. As discussed earlier, all the predicted trips for low zones must lie 3 

above the equity line. In Figure 9, most of the points lie above the equity line; however, 4 

it also depicted a few red points below the equity line. This shows that there may still be 5 

high error exist in the model. Further, each point’s perpendicular distance to the equity 6 

line is the potential demand of that zone. Hence, the more the perpendicular distance of 7 

a point from the equity line, the higher the potential demand. From Figure 9, most of the 8 

zones have TD between 2000 to 4000, while a few zones have greater TD (>5000 trips) 9 

where their SD is less than 3000 trips.  10 

Figure 9 Validated trips (in blue) and predicted trips for low demand zones (in red). 12 

The TD demand for all the low demand zones is depicted in Figure 10. The figure 13 

shows overall a high potential demand in the area for public transport. However, the 14 

choropleth map can be deceiving because a zone may have a higher PD; however, it 15 
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would be more prominent in the map if it has more area than the one having less area. 1 

Nonetheless, it can be seen from Figure 10 that there sparsely exist zones that can 2 

positively contribute to public transport patronage. 3 

It is to be noted that, in this study, the aim is to prioritise the zones for transit 4 

improvement by considering transit PD (derived from TD) and not the sole prediction of 5 

the PD (or TD) for a zone. As quoted earlier, the selected method (Gradient boosting) 6 

may not have given the best model. Nonetheless, the above-predicted TD is utilised for 7 

the analysis given below to showcase the proposed method. 8 
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Figure 10 Choropleth map depicting TD estimated for low demand zones. 2 

3.4 Potential demand (PDz) 3 

From TDz and SDz, found earlier, PDz is calculated by employing Equation (4). The 4 

results of PDz are presented in a choropleth map shown in Figure 11. Each zone has a 5 

 

Zone with no 
demand
High demand 
zones



31 
 

colour corresponding to the PD value, where the red colour presents low PD, and the 1 

transition towards green depicts increasing PD. 2 

Figure 11 portrays that most of the zones have high PD. As noted earlier, zones 3 

far away from Brisbane CBD are relatively bigger; consequently, the green colour is 4 

prominent in Figure 11.  5 

Figure 11 PDz illustration of low demand zones in the study area. 7 
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The zone area plays a vital part in the transit trip generation. Further, to compare the 1 

potential among two zones, it is required to normalise the PD by dividing the PD of a 2 

zone with its geographic area giving output in PD per sq. km. The resulting map is 3 

presented in Figure 12, where zones are further divided into four groups based on their 4 

PD values.   5 

The figure shows that most of the zones in the vicinity of Brisbane CBD, along 6 

with a few zones in the Gold Coast region (in the South), have higher PD than those far 7 

away from the Brisbane CBD, for instance, zones in the far North-East, far South-East, 8 

South, and Western zones have lesser PD per sq. km. More specifically, the Lockyer 9 

Valley – East zone was expected to have the least priority primarily because of their low 10 

population density and type of land use (low commercial and urban residential area). In 11 

addition, Chapel Hill was highly likely to have high potential demand due to high 12 

population density, type of land use and other related variables.  13 

In Figure 12, the higher the PD per unit area value of a zone, the higher the 14 

priority of that zone for transit improvement and the other way around. The zone 15 

classification is done based on PD percentile values. Zones in the first quarter are 16 

classified as the lowest priority zones. Likewise, zones in the top quarter are labelled as 17 

the highest priority zones. Low priority zones have the least PD per unit area. 18 

Correspondingly, zones having a PD of less than 80 per sq. km lie in this group. The 19 

second group, labelled as the low priority group, is based on PD range between 80 and 20 

180 per sq. km. The third group, medium priority zones, has PD between 180 and 360 21 

per sq. km, while other zones with PD greater than 360 per sq. km are termed the high 22 

priority zones.  23 
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Figure 12 Choropleth maps depicting the priority of zones for public transit 2 

improvement based on PD per unit area. 3 

Further to elaborate on the above figure, a histogram is plotted (Figure 13), offering an 4 

overview of all the network zones. The figure portrays that most of the zones have 5 

minimal tendency to produce high transit even if a good quality of service is provided. 6 

Approximately 50% of the zones have less than 180 trips day PD. Out of 232 zones, 7 

only eleven zones have unit area PD more than 630 trips per day, which can be treated 8 
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as high priority zones for public transit improvement (shown mainly by dark green 1 

colour in Figure 12).  2 

Figure 13 Histogram depicting the distribution of zones in the network based upon the 4 

PD from the unit area of each zone in the study area. 5 

4. Conclusion 6 

Transit demand estimation is a widely studied topic in transportation, which is vital for 7 

planners and decision-makers. This paper proposes a novel concept to rank the zones 8 

for transit improvements based on systematic mining of the transit and census data for a 9 

large urban network. The automated fare collection data serve as input to estimate the 10 

trip produced from a zone, termed as the served demand. Theoretically, served demand, 11 

when combined with potential demand, gives the total transit demand for public 12 

transport in a zone. The study assumes that high transit ridership zones have negligible 13 

potential demand. Consequently, total transit demand approximately equals served 14 

demand in these zones.  15 
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The devised methodology is applied to the South-East Queensland region using 1 

smartcard data from TransLink for demand estimation. A threshold value on the number 2 

of trips per unit area originated from a zone is applied to bifurcate between high and 3 

low demand zones. Out of 298 zones, 68 zones are found to be high demand zones, and 4 

the remaining zones are low demand zones for which the potential demand will be 5 

calculated and prioritise transit improvement. 6 

An ensemble tree-based gradient boosting super machine learning model is 7 

trained on high demand zones. The model includes important variables of the zones’ 8 

demographic, economic, and geographic attributes. The final model has an r-square of 9 

0.878. the MAE of the model is found to be 1118 trips/zone using the one-left k-fold 10 

validation technique. The same model is then applied to low demand zones. 11 

Given the modelling is on the same geographical region, in this case on the 12 

Brisbane network, it is expected that errors in the transferability of the modelling from 13 

high ridership zones to the low ridership zones should not be significant. Moreover, this 14 

study ranks the zones for which it is fair to assume that the relative errors should not 15 

have much impact. In the absence of the ground truth, it is hard to quantify the errors, 16 

and the proposed methodology provides a good tool to practitioners to rank the zones 17 

with high potential demand. The total transit demand and corresponding potential 18 

demand for the low demand zones are predicted from the developed model, and the 19 

results are presented by employing a choropleth map. It is normalised by the zone’s 20 

total area, giving potential demand per unit area. 21 

Furthermore, all low demand zones are divided into four quantiles based on 22 

normalised potential demand and plotted, depicting lowest, low, medium, and high 23 

transit improvement areas. The results demonstrate that the proposed methodology can 24 

be effectively used to group the zones for transit priority. In addition, the results show 25 
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that approximately 50% of zones do not intend to produce high trips, even if very high 1 

quality and quantity of transit service are provided. On the other hand, eleven zones lie 2 

in the high priority for transit improvement.  3 

Future research may include the applications of developed methodology on other 4 

regions with census availability at a finer level so that the high demand zones’ number 5 

is higher, enhancing the confidence in the model results. Besides, this study only 6 

considers the origin location (i.e., trip production of a zone) and the destination location 7 

(trip attraction) is ignored. Future research may include considering both the origin and 8 

destination of transit trips for potential demand estimation. The proposed methodology 9 

is generic. The models need to be recalibrated and revalidated if applied to other 10 

regions. This may change the explanatory variables due to the region’s diversity of 11 

transit network, cultural, demographic, and socio-economic attributes. Besides, the 12 

results from potential demand estimation will provide a better picture of the network to 13 

the transit planners when combined with the transit supply. Thus, these results will 14 

make more impact when combined with transit supply.  15 
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