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Abstract

The composition and volume of patients treated in a hospital, i.e., the patient

case-mix, directly impacts resource utilisation. Despite advances in technol-

ogy, existing case-mix planning approaches are mostly manual. In this paper,

we report on a solution that was developed in collaboration with the Queens-

land Children’s Hospital for supporting its case-mix planning using process

mining. We investigated (1) How can process mining capabilities be used to

inform hospital case-mix planning?, and (2) How can process data be used to

assess hospital capacity assessment and inform hospital case-mix planning?

The major contributions of this paper include (i) an automated workflow to

support both process mining analysis, and capacity assessment, (ii) a process

mining analysis designed to detect process performance and variations, and

(iii) a novel capacity assessment model based on limiting-resource saturation.
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1. Introduction

Hospitals are critical elements of health care systems. To provide the best

care, hospitals must have sufficient resources and be managed and operated

well [1]. Their productivity and utilisation are affected by many things, but

it would be fair to say that the number of hospital resources employed (i.e.,

staff, treatment spaces, wards, and theatres), their time availability, and

the shrewd allocation of patients’ surgical and medical activities to those

resources is highly influential [2, 3].

At present the corona virus pandemic has stretched the capacity of many

hospitals around the world. The lack of capacity in hospitals, however, has

been an issue for some time, due to population growth, aging populations

and a rise in obesity related conditions [4]. To meet future demands better

and to restrict further increases in the cost of health care, hospitals need

to be expanded and reconfigured wisely where possible or else their exist-

ing capacity should be utilised more effectively via improved scheduling and

resource allocation [4, 5, 6].

Capacity planning and capacity assessment [7, 5] activities are equally

vital in this endeavour. The purpose of capacity planning is to determine

the resources that are required to meet notional levels of demand. Capacity

assessment in contrast, considers what can be achieved with a given set of

resources. It is an enabler for capacity planning, which can not be performed

without a means to evaluate alternative resource selections.

Despite the advancements in information technology (IT) over the last 30

years, planning and scheduling in most hospitals, to the best of our knowl-

edge, is predominantly performed at a departmental level, in meetings, using
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experience and mental arithmetic, and Excel style spreadsheets. The existing

planning approaches can often be myopic, and the consequences of decisions

are seldom known from a long-term hospital wide perspective. Anecdotal

evidence and site visits to local hospitals revealed few scientific methods and

“on the shelf” IT technologies for hospital staff to use. A lack of appropriate

visualisation tools exacerbates the situation.

Analysing hospital capacity and productivity is an important topic. Hos-

pital planners and executives regularly contend with challenging capacity-

related decisions [5, 7]. Decisions relating to prioritisation, allocation and

sharing of resources within a single hospital or across many hospitals within

a localised region, have a profound impact on productivity, efficiency, and

patient outcomes.

Choosing a patient case-mix that can be treated efficiently is key to suc-

cess [8]. The composition and volume of patients to be treated in a hospital,

namely the patient case-mix, has a large impact on resource utilisation. Case-

mix planning (CMP) is the name given to the problem of determining the

ideal composition and volume of patients to be treated in a hospital. Case-

mix planning is a task specifically relevant to hospitals and other health care

facilities [9, 5]. This is the problem of identifying a patient cohort (a.k.a.,

case-mix) with a specific set of features deemed desirable or ideal [9]. Some

case-mixes are favourable for some patient types and unfavourable for oth-

ers. Second, the term “ideal” is subjective and can mean different things in

a practical setting. A case-mix may be sought that is most equitable, for

instance in the allocation and usage of hospital resources (e.g., [10]). A

case-mix may also be sought that is most economical or financially viable to
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treat (e.g., [11]). From a utilisation and output-oriented perspective, a max-

imal cohort may also be sought. That cohort results in the greatest number

of patients treated over time. A maximal cohort saturates the resources of

the hospital and is a measure of the hospital’s capacity. Identifying a case-

mix that meets or exceeds specified demands or targets is also of significant

interest

In recent years, there has been much research on hospital capacity plan-

ning and capacity assessment. Patient case-mix and care pathways are a

key ingredient in the approaches developed [7, 5, 9, 12]. However, upon

retrospection, those two things are difficult to obtain from current hospitals.

Identifying the current case-mix as it were, is difficult. Understanding a hos-

pital’s case-mix is challenging. CMP is often made more complex by either

a lack of precise information, a high volume of unrefined empirical data, and

stochastic parameters.

Process mining is a specialised form of data-driven analysis that uses al-

gorithms and data (in the form of event logs) to construct models that aim to

provide insights into the behaviour of organisational processes [13]. Process

mining takes a retrospective, bottom up approach to understanding process

behaviour. The execution of individual process steps (events) are logged.

Within the log, events are grouped into cases where each case represents

a single, end-to-end, process execution instance. An event will minimally

include attributes that identify the case (process execution instance), the ac-

tion that was performed, and an attribute (usually a timestamp) that allows

actions to be ordered within a case. Optionally, an event log record may

contain other attributes, such as the resource that performed the action,
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the organisational unit associated with the action or resource, that provide

additional information about the event.

Evidence of the application of process mining across multiple industry sec-

tors can be found in studies such as [14] and [15] which review respectively

144 and 152 case studies. Both these studies found that process mining was

most frequently applied in sectors such as public administration, finance, in-

surance, healthcare, manufacturing, and education. Rojas et al. [16] provides

a detailed review of 74 published accounts of the application of process min-

ing in the healthcare domain. Although there have been many applications

of process mining in healthcare, to the best of our knowledge, existing pro-

cess mining studies have not explored how process driven insights could be

used to inform hospital case-mix planning.

Research Aims and Methodology. In this work we explore how pro-

cess mining techniques can be used to inform the problem of hospital case-

mix (capacity) planning, and report on a solution that was developed in

collaboration with the Queensland Children’s Hospital (QCH), a major Aus-

tralian hospital, for supporting its case-mix planning. We investigated two

interrelated analysis questions which emerged, after consultation with QCH

planners, as being of interest to both the research team and the hospital

planners.

1. How can process mining capabilities be used to detect process be-

haviour and performance variations to inform hospital case-mix plan-

ning?

2. How can process data be used to assess hospital capacity assessment

and inform hospital case-mix planning?
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The major contributions of this paper include (i) an automated workflow

to support both process mining analysis, and capacity assessment to inform

case-mix planning, (ii) a process mining analysis designed to detect process

performance and variations, and (iii) a novel capacity assessment model based

on resource saturation.

The rest of the paper is organised as follows. Section 2 discusses re-

lated work while Section 3 describes the case scenario of the hospital and

the dataset. Section 4 details the overall approach proposed in the paper.

Section 5 presents our key findings while Section 6 concludes this paper.

2. Related work

In this section, we consider related works in the areas of (i) process mining

in healthcare, and (ii) capacity planning and assessment.

2.1. Process Mining in Healthcare

Healthcare processes are characterised as being complex with significant

variations over time [17]; the variation being due to the patient-centric na-

ture of treatment pathways and multiple sequences in which activities in the

treatment pathways can be executed by resources (physicians, nurses, etc).

Process mining, with its various techniques for discovering process models

and analysing their performance, affords the exploitation of the wealth of

information stored in hospital information systems (HIS) to properly under-

stand and improve the quality and efficiency of delivered healthcare services.

The first published accounts of process mining being applied in the health-

care domain [18, 19] were exploratory studies of data pertaining to stroke

patients [18], and to gynaecological oncology patients [19] which aimed to
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demonstrate the potential utility of process mining in the healthcare domain.

These studies discuss some important considerations in applying process min-

ing to healthcare processes including (i) event log preparation - identifying,

extracting, abstracting, and pre-processing event data from hospital informa-

tion systems (that are generally not ‘process-aware’) such that interpretable

results can be obtained, (ii) ‘spaghetti’ process models - discovered process

models with a high number of pathways due to the multiple ways in which a

typical, patient-centric healthcare process may execute.

In an important contribution to the field, Mans et al. [20] addresses three

issues affecting process mining in healthcare namely (i) data correlation from

multiple systems, (ii) typical questions of interest for healthcare stakeholders,

and (iii) identification of data quality issues.

In [21], the authors review 37 studies in which process mining was ap-

plied to clinical pathways. The studies are classified according to whether

they attempt to (i) discover actual execution pathways of different clinical

pathways (process discovery), (ii) analyse variants of execution pathways, or

(iii) evaluate and improve clinical pathways. The authors conclude, that at

the time of writing, challenges remain including improving process mining

algorithms so that they are (i) efficient enough to deal with the unstructured

processes (clinical pathways) and (ii) able to discover models from which a

good explanation of the variants can be obtained.

More recently, process mining has been used to discover processes, anal-

yse performance, and check conformance of medical treatment processes and

healthcare organisation processes [16]. For instance, process mining has been

widely applied to improve cancer care processes [22]. Another application of
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process mining is to compare processes between healthcare organisations.

Partington et al. [23] describe approaches to performing comparative analy-

sis using process mining for cohorts of patients suffering chest pains in four

Australian hospitals. Process mining has also been applied in pre-hospital

setting. Badakhshan and Alibabaei [24] apply discovery, conformance check-

ing and performance analysis techniques in a case study involving ambulance

services in Iran. Process mining has also been conducted to obtain additional

valuable insights related to processes. For example, social network can be

mined to understand interaction among health professionals [25].

Process mining thus enables data-driven process improvement in health-

care. However, there still remains limited uptake of process mining in health-

care organisations [26]. In particular, the potential of process mining for

hospital capacity planning remained unexplored.

2.2. Capacity Planning

Quantitative research on hospital processes has increased significantly

over the last decade. Hospital capacity assessment, however, has received

comparatively less attention in the literature. There are a few well docu-

mented “stand alone” capacity assessment approaches like the deterministic

approach of [7, 5, 9, 12]. Stochastic approaches like those of McRae et al. [27]

now also exist.

A brief summary of the contributions of the aforementioned approaches

is now provided. Burdett et al. [5] developed a mixed integer linear program-

ming (MIP) model that determines the maximum number of activities that

can be performed within a given duration of time, subject to some technical

constraints. The definition of activity is unrestricted and open to interpre-
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tation. In that paper, it was defined as a surgical or medical activity within

a patient care pathway. Burdett et al. [7] later continued their research and

introduced multiple objectives. The multi-objective hospital capacity model

(MOHCM) identifies non-dominated capacity solutions and provides a sen-

sitivity analysis of patient case-mix and the effect on hospital capacity. In

their numerical testing, 21 objectives were considered, one for each surgical

specialty.

Freeman et al. [12] considered case-mix planning and developed a multi-

phase approach to generate a pool of solutions. They used simulation to

evaluate each solution. They also simulated the master surgical schedule

(MSS). They reported that existing CMP approaches provide a single so-

lution and exclude uncertain patient arrivals and operation times and the

arrival of patients requiring urgent care.

McRae et al. [9] developed a non-linear mixed integer programming model

for CMP. Their model incorporates economies of scale and permits an investi-

gation of the effect of changes in the efficiency of resource use with increasing

scale on the optimal case-mix. As their model is non-linear, piecewise linear

functions were used, and an iterative approximation scheme (e-optimal solu-

tion methodology) was applied. They conclude that meaningful results de-

pend upon the accuracy of input parameters. Demand for instance is difficult

to obtain. They omitted uncertainty to keep their computations tractable.

McRae et al. [27] presented a framework for evaluating stochastic aspects

and different levels of aggregation on the performance of CMP in hospitals.

Stochastic influences are categorised according to whether they relate to de-

mand, resource consumption, and resource availability. Numerical testing
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of different options is performed. Capacity planning (a.k.a. resource capac-

ity planning) has been considered far more frequently. Capacity planning

however is a catchphrase for many types of resource planning, scheduling

and forecasting activities. Hulshof et al. [28] have provided a comprehen-

sive, structured overview of resource capacity planning and control in health

care. Their review of the literature confirms prior observations that there are

few contributions that incorporate complete hospital and health care system

interactions.

Within the domain of capacity planning, a variety of models that de-

termine how many beds are required for notional levels of demand have

been developed [29]. Approaches to forecast hospital demand also exist.

Jalalpour et al. [30] developed a MATLAB toolbox to forecast count data.

Their toolbox uses the maximum likelihood method to estimate model pa-

rameters from data. A generalised auto-regressive moving average (GARMA)

model was used because it can produce forecast models that outperform the

traditional Gaussian models. An approach like this can be used to predict

hospital demands and predict overall performance. It is however incapable of

analysing the system if parametric or structural changes are made, as there

is no longer data to analyse. Their approach does not consider concrete

physical attributes of a hospital.

Network flow models have also been successfully developed in Akcali et

al. [31]. Their generic approach produces bed capacity plans and incorporates

facility and budgetary constraints over a finite planning horizon. They con-

clude however that alternative model formulations are needed when there

are specialty-specific demand rates, length of stays and costs. Rechel et
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al. [32] report that bed numbers are still used for capacity planning in many

countries. An empty bed, however, does not count as capacity if there is

insufficient staff to care for a patient in that bed [33].

Chen et al. [34] consider patient flow scheduling and capacity planning

within the context of a smart hospital and health care environment. In their

viewpoint, a smart environment is one that is designed to facilitate people’s

experience that includes a set of devices and many intelligent supporting

techniques. In response, a quantitative analysis and a dynamic scheduling

policy are proposed. A formal algebraic modelling approach, an ordinary

differential equation (ODE) based fluid flow analysis and simulation tools

are implemented to facilitate the activities. Promising as their approach is,

it has only been applied to a rheumatology department and not to an entire

hospital.

Hospitals are located within specific geographical locations, and the ef-

fect of demographic factors on hospital management decisions is important.

Li and Benton [35] have analysed the effect of hospital capacity resource

management choices on cost control and quality using a structural equation

modelling (SEM) methodology. Their goodness of fit statistical approach

relates specified factors to observed/collected data. A data envelopment

analysis (DEA) approach was developed by Valdmanis et al. [33] to deter-

mine state-wide hospital capacity. Each hospital in their study was assessed

in terms of specialty capacity and general capacity. Their capacity metric

is consistent with engineering practices and is the maximum rate of output

per unit of time. Their approach was developed to facilitate emergency pre-

paredness planning. Information on hospital capacity, patient characteristics
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of inpatient discharges, and financial performance were merged to perform

their study.

Process mining has not, to date, been applied to capacity planning in

hospitals. Further, to date, no end-to-end, automated, approach has been

found that can pre-process and format data routinely collected process data

extracted from hospital information systems, and perform analyses (such as

process mining and capacity assessment) that are the precursors for capacity

(case-mix) planning. In this paper, we explore how process data and process

mining can be used to contribute to capacity assessment and capacity (case-

mix) planning for a hospital. In particular, we aim to develop an integrated,

automated workflow, using already available tools, to support these tasks.

3. Case Scenario

The Queensland Children’s Hospital (QCH) provides general paediatric

care within its catchment area of inner Brisbane (a major metropolitan city

in Australia). QCH provides emergency, critical care, general and specialist

paediatric services for patients from all over Queensland and northern New

South Wales, which has a combined population in excess of 5 million people.

The dataset used for this study was provided by QCH and included all

inpatient and outpatient episodes in the period July 1, 2019 to December

2020. The data included admission details (for inpatients), ward movements

or location changes for any patient during a hospital encounter, imaging

(scans and treatments), as well as details of all surgical procedures for each

surgical admission.

The data was supplied in tabular form (4 x CSV files) with a unique

12



Table Description Size

Admissions Details of an inpatient en-

counter for an individual patient.

57,472 records including

57,138 distinct encounters.

NB An outpatient is a patient

that consumes one or more hos-

pital resources, such as a cubicle

in the emergency department, or

undergoes a day surgery, without

being formally admitted to the

hospital.

There were 54,831 outpa-

tient encounters recorded

in the study period.

Movements Details of ward movements for

a patient encounter (including

ward/location name, time of al-

location, and time of departure.

119,865 records.

Imaging Details of request/orders as well

as type of imaging/radiation

treatment carried out for a pa-

tient during an encounter.

89,211 records

Surgery Details of surgical procedures

carried out for a patient during

an encounter.

46,450 distinct procedures

comprising 46,211 so-called

surgeries.

Table 1: Summary of Queensland Children’s Hospital data.

encounter identifier provided as a linking key. NB Outpatients are patients

that consume some hospital resource, e.g., an emergency department cubicle,

for some period of time without being properly admitted to the hospital.
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Outpatients include emergency department presentations that are discharged

from emergency, patients undergoing day surgery (no ward stay after the

procedure), and patients undergoing some form of regular treatment such as

radiotherapy. Table 1 provides more details of the QCH data.

Features of interest to the project stakeholders, and required by the hos-

pital capacity assessment model include:

• a process model,

• descriptive statistics of ward and operating theatre usage over time,

• assignment of individual resources (wards, theatres, etc.) into func-

tional resource groups,

• determination of patient groups around which capacity assessment and

case-mix planning is done),

• determination of patient care pathways that capture the resources and

utilisation of the resources by each patient group.

4. Research Approach

Figure 1 provides an overview of how process data was used for case-mix

planning in this paper. The coloured boxes in the figure depict tasks that

were conducted by the research team (and will be elaborated further in the

later subsections) while the other three tasks (i.e., identification of analysis

questions, data extraction, hospital case-mix planning) were led by hospital

stakeholders.

The first step involved the identification of key analysis questions, follow-

ing which an appropriate dataset was defined and extracted. We conducted

an in-depth data quality assessment and pre-processed the data provided by
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Figure 1: Overall approach demonstrating the use of process data for case-mix planning.

the hospital (described in 3) to extract an event log. The event log (process

data) was used as input for process mining analysis, in particular, discovery,

performance, and patient group analysis. The event log (particularly data

related to patient groups and resources) was also the input to the automated

workflow developed for hospital capacity assessment. Furthermore, alloca-

tions were provided by stakeholders and also analysed from dataset, which

was another input for the automated workflow for capacity assessment. In ad-

dition, patient care pathways were discovered using process mining analysis,

which was another input for the automated workflow for capacity assessment.

The process insights and the capacity assessment report are then produced by

this approach to assist case-mix planning at QCH. The following subsections

describe the key steps of the proposed approach in detail.
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4.1. Data Quality Assessment and Data-preprocessing

The impact of data quality on insights derived from model-based analy-

sis techniques (e.g., process mining and capacity assessment) is well recog-

nised. This is why considerable time was spent in assessing the quality of

data and pre-processing it. The original dataset was extracted from hospital

information systems and comprised tables regarding admission of a patient,

movement of patients among wards and operation theatres, and surgical pro-

cedures conducted on the patients. Inspection of the dataset revealed mul-

tiple data quality issues such as missing timestamps, duplicate values, and

incorrect event ordering due to manual editing of timestamps during case

review. Examination of the organisational context revealed that many of the

data quality issues resulted from a combination of human error and system

configuration. For instance, when conducting post hoc review/edit of times-

tamped activities, rather than presenting the originally recorded date/time

for the activity, the system defaulted to the current date/time. So, if the

operator was not aware of this and changed only the time component, the

edited date no longer reflected the date on which the activity was conducted.

These issues were rectified in consultation with domain experts. Addition-

ally, a lack of clarity regarding movement to wards and operation theatres

was also observed. This information was also clarified through discussions

with domain experts.

4.2. Event Log Generation

A unique encounter identifier was used in each of the Admissions, Move-

ments, Imaging, and Surgery tables. This attribute was used as the case

identifier.
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The Admissions table included 2 attributes (admission date/time and

discharge date/time) that could be cast as events in an event log. The

Admissions table contained attributes such age, gender, DRG (Diagnostic

Related Group), and (medical) specialty that could easily be cast as event

log case attributes. We note that only patients that were actually admit-

ted to hospital (i.e., inpatients) appeared in this table. Emergency patients

not requiring admission for further treatment (i.e., discharged home from

the emergency department) and outpatients (for instance, patients receiving

regular chemotherapy treatment and not requiring an overnight stay) were

not recorded in the Admissions table.

The Movements table included 2 attributes (allocation date/time and

leaving date/time) that could be cast as events in an event log. The location

against which the allocation was made could be cast as an event attribute

and constituted the resource being consumed by the patient during the period

between allocation to, and departure from, the location.

The Imaging table contained 3 attributes (order date/time, image start

date/time, and image complete date/time) that could be cast as events. The

name of the actual imaging or treatment procedure was included as an event

attribute. We note that the imaging data did not include the location used

for the imaging procedure. Hence, it was not possible to model the resource

utilisation associated with imaging (or radiation oncology treatments).

The Surgery table contained 11 attributes that were converted to events.

These events captured the milestones of a usual surgery and included the

date/time the patient was (i) checked-in for surgery, (ii) pre-op begin and

end, (iii) anaesthesia begin and end, (iv) surgery begin and end, and (v)
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post-operative recovery begin and end. Attributes such as the relevant sur-

gical specialty, the theatre suite and actual operating theatre, as well as the

actual surgical procedure carried out, were cast as event attributes. Here the

surgical specialty was used to group patients, and the operating theatre was

treated as a resource utilised by the patient.

For analysis, we chose the period 1-July-2019 to 31-December-2020 as

representing a relatively stable and recent period. Ultimately, the event log

consisted of:

• 109,501 cases (inpatients and outpatients)

• 901,431 events

• 19 activities

• 30 surgical specialties

• 70 locations (wards, operating theatres emergency, imaging)

Case numbers in each of the three 6 month segments were as follows:

• 2019-07-01 to 2019-12-31: 39,885 cases (avg duration: 11 days)

• 2020-01-01 to 2020-06-30: 31,930 cases (avg duration: 9 days)

• 2020-07-01 to 2020-12-31: 37,686 cases (avg duration: 3 days)

We note that the period 2020-01-01 to 2020-06-30 corresponded to the

emergence of COVID-19 in the Australian community. During this period,

there were disruptions to normal behaviour (including work from home, lock-

downs, etc.) which may have had some influence on reduced case numbers.

4.3. Automated Workflow to Support Capacity Assessment

To generate insights related to the analysis questions, we used a combi-

nation of SQL queries to extract model inputs from the event log data and
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RapidMiner 1 to develop an automated workflow which executed the SQL

queries, and developed and visualised summary statistics relevant to resource

utilisation. Using the RapidProM extension, the RapidMiner workflow also

read the event log and visualised the log as a discovered process model using

the Inductive visual Miner operator. The RapidMiner workflow executed

the SQL queries that populated the capacity assessment model inputs (see

Section 4.4). These were passed to the ExecutePython operator to execute

the capacity assessment model (which had been implemented as a Python

script). In this section, the automated workflow is explained (see Section

4.5).

For the first phase of the study, it was decided to focus on operating

theatre utilisation, hence, cases in the event log were grouped according to

the dominant (most frequent) surgical specialty.

A possibility for such characterisation was to simply use event log trace

variants. However, for the initial capacity assessment modelling, it was suf-

ficient to know only which resources were consumed, (and for how long).

Hence, cases were grouped according to the case’s dominant surgical spe-

cialty, and the set of hospital resources consumed by the case. Thus, we

characterise a patient care pathways as vectors, with each vector having

a care path identifier, an attribute for the relevant patient group, and at-

tributes for each resource type and the average utilisation (in hours) of the

resource type by patients belonging to the group. To determine hospital-

level resource usage over time, the event log and patient-level resource usage

1https://rapidminer.com/
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was combined to construct a dataset that gave an hour-by-hour occupancy

of hospital locations (wards and operating theatres). For operating theatres,

the relevant surgical specialty was also recorded. Lastly, to assist in ‘typing’

patient admission and pathways, a dataset was constructed that mapped

each admission to the set of surgical specialties involved with the admission.

The data transformation process is illustrated in Fig 2.

Figure 2: Data Transformation Summary

Figure 3 illustrates the RapidMiner process developed to address the

process mining, capacity assessment modelling, and operating theatre usage

summary statistics and visualisations. Inputs to the process include (i) event

data (exported from the relational database, (ii) trace attributes (exported

from the relational database), and (iii) resource usage (direct connection to

the database).

The RapidMiner process is divided into four concurrent streams. The

first stream filters the event data to extract events such that durations of key

surgery activities can be extracted (Figure 3(a) - Filter Durations). These
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(a) High level RapidMiner workflow.

(b) Sub-process that implements the capacity as-

sessment model.

Figure 3: RapidMiner Automated Workflow.

activities include PreOp, Anaesthesia, Surgery, Patient in OT, PostOp Care

(PACU). The workflow then loops through each activity (Figure 3(a) - Loop

- Durations) to allow visualisation of activity durations.

The second stream of the RapidMiner process converts the tabular event

data to an event log suitable for process analysis (Figure 3(a) - Convert to

Event Log). The Inductive Visual Miner plugin of the RapidProM extension

of RapidMiner is used to discover a process model (Figure 3(a) - Inductive

Visual Miner). Once the variations in distribution of resource usage across

specialities is investigated, the developed approach enables the user to model

and view process behaviour for different specialities. The discovered model

can also be used to conformance checking purposes and identify specialities,

which display the behaviour that is different from the expected behaviour.

The third stream of the RapidMiner workflow reads the hour-by-hour

resource usage (wards and operating theatres ) from the database. Here, we
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define resource usage as occupancy rate. That is, the number of patients

in the ward or operating theatre at any given hour of any given day in the

study period. Once the variations in distribution of resource usage across

specialities is investigated, the developed approach enables the user to model

and view process behaviour for different specialities.

The fourth stream is a sub-process (Figure 3(a) - Capacity Assessment

expanded in (Figure 3(b)) that executes the SQL queries that extract the

capacity assessment inputs from the data and executes the model Python

code.

4.4. Capacity Assessment

Hospital capacity assessment is similar to bottleneck analysis in process

mining. In process mining, timestamped activity information enables anal-

yses involving the timing and frequency of events, including monitoring of

resource utilisation, and discovery of bottlenecks (where a bottleneck is a

resource having an arrival rate greater than the throughput rate).

In the hospital setting, different patient groups will have different limiting

resources. For each patient group, a limiting resource is a resource that (i) has

a fixed and finite capacity (i.e., patient occupancy), (ii) is used by all patients

in the group. Examples of such limiting resources include, (i) the number

of haemodialysis machines for renal dialysis patients, and (ii) the number of

operating theatres for surgical patients requiring general anaesthetic. Each

patient group will also, optionally, utilise other hospital resources. For exam-

ple, some (not all) patients will be admitted to the hospital and will occupy

a ward bed for some period of time. Some (not all) patients will require

intensive care and occupy a bed in ICU for some time. This therefore means
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that the hospital’s patients divided into mutually exclusive patient groups

according to the set of hospital resources utilised.

To formalise the problem of hospital case-mix planing, we define R as the

set of all resource types, G as the set of patient groups and P as the

set of all patient care pathways (PCPs) where P =
⋃

g∈G Pg, where Pg

are mutually exclusive sets of PCPs within patient group g ∈ G. We denote

Rg ⊆ R as the set of resource types with dedicated capacity allocated to

patient group g ∈ G (with r = 0, r ∈ R representing operating theatres).

Now we define Tr as total time capacity (per unit time) of resource type

r ∈ R; Tr,g as the total time capacity of resource type r ∈ Rg allocated to

patient group g ∈ G; tr,g,p as the total time required of resource type r for

one patient from group g with PCP p ∈ Pg; µ
2
g,p as the case sub-mix, i.e. the

proportion of group g with PCP p ∈ Pg. Lastly, we define rg ∈ Rg as the

allocated resource type considered to be capacity limiting for group g, with

rg = 0 for surgical in-patients.

We calculate n2
g,p the number of patients from PCP p ∈ Pg treated per

unit time (see Eq. 1), and subsequently derive ρr,g the utilisation of type r

resource allocation for group g with r ∈ Rg (see Eq. 2), and ρr the overall

utilisation of type r ∈ R resources (see Eq. 3).

4.4.1. Capacity Assessment Model

This model does not restrict patient throughput due to over-saturation

of resources upstream or downstream of surgery. However, any capacity vio-

lations will show up with utilisation greater than 1. From a decision-maker’s

perspective this would be symptomatic of misalignment between allocated

theatre capacity (e.g. operating theatres in the case of the Master Surgical
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Schedule), and capacity of other parts of the hospital.

The number of surgical patients per unit time of PCP (g, p) that can pass

through operating theatres (rg = 0 and T0,g > 0), or medical patients that

can pass through allocated treatment space (rg > 0 and T0,g = 0):

n2
g,p =

µ2
g,pTrg ,g∑

q∈Pg
µ2
g,qtrg ,g,q

∀g ∈ G, p ∈ Pg (1)

The overall utilisation of resource type r is then:

ρr =

∑
g∈G

∑
p∈Pg

tr,g,pn
2
g,p

Tr
∀r ∈ R (2)

And the utilisation of group g allocation for resource r ∈ Rg is:

ρr,g =

∑
p∈Pg

tr,g,pn
2
g,p

Tr,g
∀g ∈ G, r ∈ R (3)

4.4.2. Calculation of Parameters

Assume that ward beds correspond to resource type r = 1, then T1 would

be the total number of ward beds in the hospital, and T1,g would be the

number of beds allocated to specialty g.

For operating theatre capacity, let τg be the number of theatre hours per

week allocated to specialty g (in a weekly Master Surgical Schedule). Let ρ̄

be the limiting capacity of operating theatres (e.g. ρ̄ = 0.85 representing a

practical upper limit on utilisation of 85%). Then the total time capacity

per unit time available (per week) to specialty g can be calculated as:
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T0,g = ρ̄τg ∀g ∈ G (4)

Consider the following as an example of the way the model may be ap-

plied. If there are 2 specialties, with 2 PCP in specialty 1, and 1 PCP in

specialty 2. Consider R = {0} including operating theatres only. Assume

the following parameter values with time units in hours:

T0 = (120, 80), t0 = ((2, 2.5), (1.22)) , µ2 = ((0.5834, 0.4166), (1))

Let t̄1 = 0.5834× 2 + 0.4166× 2.5 = 2.2083 and t̄2 = 1.22

then, n2
0,1,1 = 0.5834×120

2.2083
= 31.7 and n2

0,1,2 = 0.4166×120
2.2083

= 22.6

and n2
0,2,1 = 80

1.22
= 65.6

Now for ward bed utilisation and assuming 20 beds shared between spe-

cialties we have T1 = 3360, (total bed hours per week) and assume the

following average post-op times t1 = ((12, 18), (7)). We can calculate bed

utilisation as follows:

ρ1 = 12×31.7+18×22.6+7×65.6
3360

= 0.37

Low utilisation suggests ward beds are over-supplied.
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4.4.3. Capacity Assessment Model Input

The following describes the inputs and data used by the model.

Resources: these are the physical resources occupied by each patient during

their stay in hospital. For instance, a bed in a ward, an operating theatre,

or an ICU bed. There were 77 separate locations in the hospital to which

patients were allocated. (The location is an event attribute for the ‘Allocate

Location’ and ‘Surgery Start’ activities in the event log.) After consulta-

tion with hospital stakeholders, it was decided to exclude several of these

locations on the basis that they were not limiting resources. That is, they

did not impact on the hospital’s ability to deal with inpatients. Such loca-

tions included so-called ‘virtual’ locations, i.e., used for tele-medicine, and

‘waiting lounges’. Also excluded were some specialist locations catering for

small numbers of patients, e.g., burns or renal patients. Finally, resources

associated with emergency patients were excluded as, while in the emergency

department, a patient is not considered an inpatient. The remaining 55 re-

sources were then grouped according to ‘type’. Resource types included in

the model then were operating theatres (OT), ward beds (WBED), and ICU

beds (ICU). Table 2 gives the number of resources in each resource type.

Resource Type Locations Description

ICU 3 intensive care wards

OT 25 dedicated operating theatre rooms

WBED 27 inpatient wards

Table 2: Resource types and number of locations by type

Groups: these are non-overlapping subsets of 109,501 cases included in the

study. Each such subset is designated a ‘group’. In this scenario, as the
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focus was on operating theatre capacity, groups were based on the surgical

specialty under which each case (patient) is treated. If a patient used an

operating theatre (underwent a surgical procedure), they were assigned to a

group related to the surgical specialty performing the procedure(s). There

were 30 such surgical specialties. A further group was created for patients

who were admitted but who did not undergo a surgical procedure. The top 5

largest patient groups are shown in Table 3. Note that the limiting resource

is resource that all patients in the group must use.

Patient Group Num Patients Limiting Resource

Non-Surgical 83,366 WBED

Paediatric Surgery SN 5,049 OT

Ear Nose and Throat SN 3,889 OT

Orthopaedic SN 3854 OT

Gastroenterology SN 1,493 OT

Table 3: Top 5 largest patient groups (SN = surgical)

Patient Care Pathways: are the set of resources and the quantity of each

resource consumed. Each Group may have multiple patient care pathways

(carepaths) depending on the locations (and hence resource types) used by

patients in the group. The actual hospital locations were used to generate

the carepaths, then the resources were aggregated by type. Carepaths were

identified by querying the event log. Cases in each patient group were queried

to determine the set of resources used and the time-based utilisation of each

resource. These were aggregated into distinct sets, and the distinct locations

were mapped to their respective resource type to form a carepath.

Table 4 shows the distribution of cases and patient care pathways across
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Surgical Specialty Cases PCPs Surgical Specialty Cases PCPs

Paediatric Surgery 5,279 808 Oncology 2,063 222

Orthopaedic 3,885 528 Gastroenterology 1,496 220

Ear Nose And Throat 3,897 335 Plastics 1,435 191

Radiology 2,799 250 Respiratory 419 150

Neurosurgery 518 237 Paediatric Medicine 233 148

Table 4: Surgical Specialties, Case Load, and Patient Care Pathways

the top ten largest surgical specialties. NB A patient may be admitted more

than once. A case refers to an admittance. Multiple cases may relate to one

patient. Table 3 refers to patients and Table 4 refers to cases.

Example of carepaths are shown in Table 5. Overall, 4,142 distinct

carepaths were identified.

Patient Group Carepth ID Resource Occupancy (hrs)

Paediatric Surgery SN 2780 OT 3.05

Paediatric Surgery SN 2780 WBED 29.05

Anaesthetic SN 10 OT 2.5

Anaesthetic SN 10 WBED 279.36

Table 5: Sample carepaths

Allocations: these are the planned allocation of hospital resources to the

various patient groups. The hospital planners provided its Master Surgical

Schedule, a 4 week roster specifying on any day, for each theatre, hours of

theatre usage by surgical specialty. The Master Surgery Schedule is not pre-

scriptive, however, and may be interrupted for various reasons (e.g. emer-

gency cases or unavailability of the surgeon for whom the room had been

reserved). As some surgical specialties require operating theatres only infre-
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quently, not all specialties are included in the Master Surgery Schedule and

will reserve time by negotiation. Similarly, the hospital tries to use certain

wards and locations for particular dedicated functions. For our study, we

used the Master Surgery Schedule to determine allocations for specialties in-

cluded in the schedule, and then interrogated the event log to find the usual

allocations for other patient groups. Allocations are recorded in terms of

hrs/week for OT resources and physical space, i.e., number of beds for other

resources. No such detailed information was available for resources such as

ward beds. Allocations for ward bed and ICU bed usage was estimated by

sampling and averaging the actual ward bed usage as recorded in the event

log.

5. Findings

5.1. Data Analysis Through RapidMiner Interface

RapidMiner provided an interface where a workflow could be devised

such that event data could be rapidly compiled and visualised. The process

mining event log was the source data for all the analysis and subsequent

visualisations. One aspect of interest to stakeholders was the actual operat-

ing theatre usage. A workflow was constructed that interrogated the event

log for occurrences of the “Surgery End” activity. For this activity, event

attributes included the surgical specialty, operating theatre, and surgery du-

ration. Hence, it was possible to assess theatre usage by surgical specialty.

Figure 4 exploits RapidMiner’s visualisation capabilities to show theatre us-

age across the study period for a selected theatre. The visualisation clearly

shows that the theatre was mainly used by a single surgical specialty (Oph-
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Figure 4: Theatre usage by Surgical Specialty Jul-2019 to Dec 2020 (Theatre - LCCH OT

11).

thalmology). At QCH, it is not uncommon for a single specialty to dominate

a particular theatre, given that some theatres have specific, fixed equipment

that’s only used for that specialty. This is not to say they cannot be utilised

for other cases, and indeed are, when the theatre is not occupied by the

dominant specialty.

The workflow could also be used to analyse operating theatre time by

surgical specialty. Figure 5 shows distinct differences between usual surgery

durations across surgical specialties in a single operating theatre - LCCH OT

11.
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Figure 5: Median theatre duration per Surgery by Surgical Specialty Jul-2019 to Dec 2020

(Theatre - LCCH OT 11).

5.2. Proces Mining

The RapidProM extension of the RapidMiner suite was included in the

automated workflow to generate a process model. RapidProM includes In-

ductive visual Miner which was used to generate various process models to

highlight differences in process behaviour between various patient groups.

We automatically discovered models for emergency and elective cases for the

Ear Nose Throat (ENT) specialty.

Figure 6 shows the process model for emergency cases and Figure 7 dis-

plays the process model for elective cases. We note there are control flow

differences between the ENT emergency and elective surgery process models.

For elective cases, higher degree of parallelism is observed for surgery and

anaesthesia than emergency cases.
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Figure 6: Process model derived from patient care data - Ear Nose Throat SN - Emergency

cases.

Figure 7: Process model derived from patient care data - Ear Nose Throat SN - Elective

cases.

The process models are also able to highlight performance differences

between the two patient groups. For instance, the average sojourn time (time

in theatre) from surgery start to surgery end (26 mins 12 sec for emergency

and 28 mins 59 sec for elective) as well as average PACU time (51 mins 08

sec for emergency and 53 mins 21 sec for elective) is similar for both cohorts.

However, the average admission time (1 hr 46 min 58 sec for emergency and

31 sec for elective) is distinctly different. Such comparative analysis can be

repeated for any specialty and patient group of interest.

5.3. Capacity Assessment

The capacity assessment model reports on utilisation of resources by (i)

resource type, and (ii) patient group. Utilisation is as a fraction of the

32



allocations made for the resource type and patient group. Overall resource

utilisation is shown in Table 6. When applying the capacity assessment

model, we specify a set of resources to saturate (in this case, the OT for

surgical patients). The model then calculates the resulting utilisation of the

other hospital resources. We note that the model is indicating ward bed

utilisation lower than that expected by the hospital planners. Expectations

were that saturating OT, the WBED would be over-saturated (i.e. utilisation

in excess of 100%).There are several possible explanations for this, including,

for example, modelling ward bed utilisation as actual hours of occupancy

plus an allowance for a (minimum) bed change-over times (we did not include

periods of time when a bed is not occupied by a patient but is nevertheless

unavailable for use by another patient), moving towards bed-nights rather

than bed-occupancy hours for characterising bed use in particular wards, or

perhaps our representation of available hospital resources needs fine-tuning.

Resource Type Utilisation

WBED 67.3%

OT 100.0%

ICU 40.8%

Table 6: Resource utilisation by resource type against allocations.

Utilisation by patient group shows utilisation of resources against the

limiting resource. The limiting resource is the resource that governs the

number of patients that may be handled by the hospital.

Table 7 presents some results for a small selection of patient groups. The

capacity assessment model reports utilisation of resources against allocation

where the limiting resource is fully utilised by the patient group.
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Patient Group ICU OT WBED

Paediatric Surgery SN 0.05% 100% 20.9%

Ear Nose And Throat SN 0.04% 100% 21.6%

Oncology SN 0.02% 100% 52.3%

Radiology SN 100% 24%

Non-surgical 0.0% 100%

Table 7: Resource utilisation against allocation by patient group.

5.4. Discussion

Our focus in this study was in using process data anaytics to support hos-

pital capacity assessment and case-mix planning. As a starting point, process

mining (discovery and comparative analysis) was used to provide insights into

process behaviour and differences in performance between different patient

groups. We noted that there were many similarities between event data/log

and the inputs for capacity assessment. For instance, both utilise the notion

of process (as patient journey through the hospital). Both utilise the notion

of patient groups, and both rely on being able to attribute resources to pa-

tient care pathways. We therefore investigated whether process data could

inform capacity assessment and case-mix planning.

We developed a basic capacity assessment model which took as inputs

patient groups, resource groups, and care paths (sets of resources utilised by

each patient group). We then developed techniques whereby these inputs

could be automatically derived from the event log.

While planned usage of operating theatres was provided in the Master

Surgical Schedule, planned allocations of ward beds, another major resource

provided by the hospital, was not able to be provided by the hospital plan-
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ners. Here we note some limitations affecting the results, particularly, relat-

ing to the allocations of resources to patient groups. The Master Surgery

Schedule provided planned usage of the theatres for some, not all, of the

surgical specialties. For surgical specialties not explicitly mentioned in the

Master Surgical Schedule, a sampling approach was employed that derived

average theatre hours over the 78 weeks of the study period for each such

specialty. This was used as the allocation for these surgical specialties. For

other resource types (WBED, ICU), sampling of occupancy of each location

was taken at 4 times per day (6am, 9am, 3pm, 9pm) over the 78 weeks

of the study. The average occupancy by patient group was taken as the

allocation for that resource type and patient group. Actual occupancy dura-

tions derived from the event log were used in generating in-theatre hours and

ward-bed occupancy times. The sampling approach is valid for large groups

of patients however, allocations for small groups where individual patients’

usage of the resource varies widely, are possibly not reflective of the actual

allocation. Hence, utilisation against allocation for non-limiting resources for

these groups may not accurately reflect the true resource usage.

We also observed, that when saturating OT usage, the utilisation of other

resources, particularly ward beds, was different from that expected by the

hospital planners, i.e., the expectation was that resource type WBED (ward

bed) would be over-saturated (i.e. utilisation in excess of 100%). There are

several possible explanations for this. For example, (i) ward bed occupation

should include not only hours occupied, but include an additional allowance

for bed change-over times, and (ii) moving towards bed-nights rather than

hours for characterising bed use in particular wards. On-going, we will con-
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tinue to work on this data/model in collaboration with QCH planners to

improve the model.

6. Conclusion

The composition and volume of patients to be treated in a hospital,

namely the patient case-mix, has a large impact on resource utilisation.

In this paper, we reported on a project that used process data analytics,

including process mining and a custom capacity assessment model, to in-

form hospital case-mix planning activities in a major Australian hospital

(the Queensland Children’s Hospital). We developed an integrated approach

supported by an automated workflow. Our approach applied process mining

to analyse historical process data to detect variations in process performance

and behaviour across various patient groups. We also developed a novel ca-

pacity assessment model which calculated resource utilisation in the hospital

where a selected resource (in our case, operating theatres) was saturated. We

implemented the approach using the ProM process mining framework, and

the RapidMiner scientific workflow environment (including the RapidProM

environment).

We note that the approach can be enhanced by better use of process

mining techniques to define patient groups and more fine-grained definition

of resources. That is, rather than simply defining WBED (ward bed) as a

resource, the actual ward, and individual bed in the ward, could be used.

These enhancements will be the subject of future collaborative work with

Queensland Children’s Hospital. Refining the method for quantifying ward

bed usage (for use by the capacity assessment model) that is more in line
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with hospital planners’ conception of this particular resource is also an area

for future work.

We believe that the approach, i.e., linking process mining and capacity

assessment to inform case-mix planning, is a natural fit and promising. We

recognise that the implemented approach was specific to Queensland Chil-

dren’s Hospital. However, all hospitals record, in some form or other, the

data (admissions, ward movements, operating theatre usage, etc.) used as

input in our implementation. We further note that Queensland is moving to-

wards a ‘digital hospital’ environment across the larger hospitals in the state,

with each hospital using the same hospital information systems. Hence, there

is an opportunity to generalise our approach for use in multiple sites. This

will be the basis for future work.
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G. Ibáñez, O. A. Johnson, F. Mannhardt, L. Marco-Ruiz, S. Mertens,

J. Munoz-Gama, F. Seoane, J. Vanthienen, M. T. Wynn, D. B. Boilève,
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