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Assessing the accuracy of record linkages 
with Markov chain based Monte Carlo 
simulation approach
Shovanur Haque1, Kerrie Mengersen1 and Steven Stern2*

Introduction
Record linkage [13, 27] is the process of finding matches and linking records from one 
or more data sources (e.g., the Census and various health registries or Centrelink data-
sets) such that the linked records represent the same entity. An entity might be a busi-
ness, a person, or some other type of listed unit. The term record linkage came originally 
from the area of public health and also from epidemiological and survey applications 
[42]. In record matching algorithms, records in two files are compared with one another, 
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Record linkage is the process of finding matches and linking records from different 
data sources so that the linked records belong to the same entity. There is an increas-
ing number of applications of record linkage in statistical, health, government and 
business organisations to link administrative, survey, population census and other files 
to create a complete set of information for more complete and comprehensive analy-
sis. To make valid inferences using a linked file, it has become increasingly important to 
have effective and efficient methods for linking data from different sources. Therefore, 
it becomes necessary to assess the ability of a linking method to achieve high accuracy 
or to compare between methods with respect to accuracy. This motivates the devel-
opment of a method for assessing the linking process and facilitating decisions about 
which linking method is likely to be more accurate for a particular linking task. This 
paper proposes a Markov Chain based Monte Carlo simulation approach, MaCSim for 
assessing a linking method and illustrates the utility of the approach using a realistic 
synthetic dataset received from the Australian Bureau of Statistics to avoid privacy 
issues associated with using real personal information. A linking method applied by 
MaCSim is also defined. To assess the defined linking method, correct re-link propor-
tions for each record are calculated using our developed simulation approach. The 
accuracy is determined for a number of simulated datasets. The analyses indicated 
promising performance of the proposed method MaCSim of the assessment of accu-
racy of the linkages. The computational aspects of the methodology are also investi-
gated to assess its feasibility for practical use.
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typically using variables, for example, name, address, and date-of-birth, sex, etc. The 
individual variables used for connecting records are generally called linking variables or 
linking fields.

The most commonly used methods in record linkage are deterministic and probabil-
istic linkage methods. In a deterministic approach, two records are said to be a link if 
they agree on a high quality identifier (e.g. social security number, tax file number, driver 
license, etc.) or a combination of identifiers (e.g. first name, date of birth and street 
name). In a probabilistic method, no unique identifier is available. Record pairs from dif-
ferent files are compared using a set of identifying information comprising one or more 
linking fields. Each record pair is given a weight based on the likelihood that they are a 
match. This weight is determined by assessing each linking field for agreement or disa-
greement, assigning a weight based on this assessment, then summing these individual 
weights over all linking fields for that pair. This summation is based on the premise of 
conditional independence, which means that for a record pair the agreement on a link-
ing field is independent of agreement on any other linking field for that pair [13]. A deci-
sion rule, typically based on a cut-off value, finally determines whether the record pair 
is asserted to be linked, non-linked or should be considered further as a possible link. 
Probabilistic record linkage methods are now being well accepted and widely used [20, 
31–33, 37, 38, 43, 44].

Perfect linkage means all records belonging to the same individual are matched and 
there are no links between records that belong to different individuals. However, in the 
absence of a unique identifier without error, perfect linkages are very unlikely. This is 
because linking variables that may be suitable for identifying similar records, such as 
name, address and/or date of birth may not uniquely identify a person; for example, 
names may change over time, ages may be entered incorrectly, or addresses may be dis-
played in different formats, all of which can result in erroneous linkage. In addition to 
the challenges of missing values, typographical or spelling errors and non-standardized 
formats of data, sometimes it is hard to identify a correct link even after clerical review. 
Linkage must also deal with issues of privacy and confidentiality. For example, a person 
may choose not to enter their age, or individuals’ names may not be provided in a de-
identified file made available to an analyst or manager.

In recent years, large amounts of data are being collected by organizations in the pri-
vate and public sectors, as well as by researchers and individuals. Analysing these rel-
evant data can provide huge benefits to businesses and government organizations. 
Technological advancement now makes it possible to store and process these massive 
data. However, data from different sources relating to the same entity need to be linked. 
Moreover, data within a single source may also need to be linked, for example, if there 
are multiple records for entity over time. Connecting data from different data sources 
can improve data quality and give better modelling structure [1, 27, 39]. For instance, 
The Australian Longitudinal Census Database (ACLD) is created by linking the 2006 and 
2011 Australian Population Censuses. For the analysis of how characteristics of cohorts 
change over time, the Australian Bureau of Statistics performed probabilistic linkage of 
person records in its 2006 and 2011 Census of Population and Housing [46]. Wilkins 
et  al. [40] used a linked data set obtained by merging data collected in the Canadian 
Community Health Survey and data held in Statistics Canada’s Hospital Person-Oriented 
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Information database in order to model the relationship between an individual’s prob-
ability of hospitalization and length of time spent subsequently in hospital and his/her 
smoking status. In these applications, different data sets related to the same individuals 
at different points in time are linked.

To make correct inferences using a linked file, it is important to assess the accuracy of 
the linkages. This motivates two research challenges: to develop a method for assessing 
the linking method, and to find techniques to improve linking method to achieve higher 
accuracy where the overall accuracy assessment approach can be used with any method.

In this paper, we propose a Markov chain based Monte Carlo simulation approach, 
MaCSim to assess a linking method. When there are two files to link, MaCSim can 
help to choose between candidate methods to decide on the most effective and efficient 
approach. That is, MaCSim can assess the ability of a linking method to achieve high 
accuracy or compare between methods with respect to accuracy.

The paper is organised as follows. “Related work” section discusses recent and relevant 
work in the literature focusing on improving the quality of the linkage in the domain. 
The discussion covers recent development on the probabilistic linking method in the sta-
tistical boundaries. “Method” section describes a problem scenario and a solution idea 
behind the proposed method. The proposed assessment method, MaCSim is described. 
A range of analyses using the method is described in “Results” Section. Results of the 
execution of MaCSim on a full dataset are provided in “MaCSim on full dataset” section 
followed by discussion in “Discussion”section. The paper concludes with a summary and 
potential future work in “Conclusion” section.

Related work
There are two types of error involved in a linking process: declaring a true non-link as 
a link which is defined as false positive and declaring a true link as a non-link which 
is defined as false negative. These two possible linkage errors can produce biased esti-
mates. Bias increases as linkage error increases [12, 15, 28]. It is difficult to measure the 
extent of this bias with the formal measures of linkage errors such as sensitivity, specific-
ity or match rate as explained below [3, 4, 10, 24].

Belin and Rubin [2] estimated ‘false match rate’ by “ 1− (number of true links/total links) ”. 
They considered the distribution of observed weights as a mixture of two distributions: 
matched pairs and non-matched pairs distributions. They estimated these distributions 
by fitting transformed normal curves to the record pair weights. Later, Winkler [45] 
noted that their method performs well when the curves are well separated for matches 
and non-matches. The parameter estimation process relies on clerical review and the 
distributional assumptions may not be valid when the weight distribution is multimodal. 
The input parameter estimates for the mixture model depends on the quality of train-
ing data and without a good training dataset these estimates will affect the estimated 
error rates. Winkler [45] provided an unsupervised learning method without training 
data for automatically estimating false match rates. Larsen and Rubin [23] used the pos-
terior probability of a match to estimate true match status and improved the classifica-
tion of matches and non-matches through clerical review. However, clerical review can 
be expensive and time consuming for large datasets. Moreover, it may not be possible 
to identify a correct link even after the clerical review. As a quality measure, Christen 
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[9] suggested precision, which is the proportion of links that are true matches. Winglee 
et al. [41] designed a simulation-based approach, Simrate that uses the observed distri-
bution of data in matched and non-matched pairs to generate a large simulated set of 
record pairs. They assigned a match weight to each record pair following specified match 
rules and used the weight distribution for error estimation.

Missing links or false negatives can make datasets unrepresentative of the total popu-
lation of true links. To address this problem, McGlincy [26] developed a full Bayesian 
model for the posterior probability that a record pair is a true match given observed 
agreements and disagreements of comparison fields. The method gives representative 
sets of imputed linked record pairs. Liseo et al. [25] cast the record linkage issue as a 
formal inferential problem and improved standard model selection techniques by adopt-
ing recent advances in Bayesian methodology. Goldstein et al. [14] claimed that methods 
that select records that have the maximum weight larger than an assigned threshold may 
lead to biases in subsequent analysis of the linked data as they ignore all information 
from matches with lower weights and for some individuals assign no match. They pro-
posed a multiple imputation framework to obtain unbiased and efficient parameter esti-
mates by using information from all potential matches at the analysis stage rather than 
go to a full probabilistic linkage. Sayers et al. [34] showed how to calculate match weights 
and convert them into posterior probabilities of a match using Bayes’ theorem. While 
emphasizing the benefit of using probabilistic methods to improve the linkage, they 
acknowledged the complex issues that might affect this choice, including privacy (Smith 
et al., 2014) and the intended analysis of the linked data sets [14]. The authors also noted 
other algorithms for automated selection of matched and non-matched records, such as 
expectation–maximisation (EM) [18].

One way of measuring linkage error is by the proportion of links that are correct 
matches. Incorrect links create measurement error and bias the analysis [6, 8, 19, 22]. 
Lahiri and Larsen [22] proposed a method to calculate unbiased estimates of coefficients 
for a linear regression model given data from a probabilistically linked file. Later, Cham-
bers et al. [6] and Chambers [5] proposed models using generalised estimating equations 
when linking two files where one file is a subset of the other file. Chipperfield et al. [7] 
focused on the analysis of binary variables. Kim and Chambers [21] extended this work 
to a wide set of models using estimating equations. With some strong constraints on the 
linkage model, they also allowed for 1–1 linkage, in which every record from one file is 
linked to a distinct record in another file. This is in contrast to earlier work which did not 
consider 1–1 linkage (e.g., [22, 35]. Kim and Chambers [21] estimated the parameters of 
the model using a clerical sample which is not always easy to obtain and also can lead to 
measurement error. Chipperfield and Chambers [8] developed a parametric bootstrap 
method of making inferences for binary variables in which they used a probabilistically 
linked file which is created under the 1–1 constraint. They compared their approach 
with the Lahiri and Larsen [22] method and showed that the analytic estimates of preci-
sion in Lahiri and Larsen [22] are poor for 1–1 probabilistic linkage. The Chipperfield 
and Chambers [8] method can assimilate 1–1 linkage and is valid as long as the linkage 
process can be replicated.

Harron et al. study [19] found that the bias is greater when the match rate is low or the 
error rate in variable values is high. In their analysis, they assumed that both the match 
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weight and match probabilities are calculated accurately as they are based on the true 
match status of record pairs. However, this would not be the case in a real linkage situa-
tion. Di Consiglio et al. [11] provided a sensitivity analysis of the effect of linkage errors 
both on bias and variability of regression estimates. They showed that the correction for 
the bias is more effective in the linear model than in the logistic model and that missing 
matches should be considered to completely remove the bias. They suggested an assess-
ment of the trade-off between the adjustment of the bias and the expected increase in 
variance while estimating linkage errors. Resnick and Asher [29] proposed a new Type 
I and Type II error measurement technique in which they develop synthetic data with 
known match patterns and apply a probabilistic matching process on this data. The 
results of the probabilistic match process are then compared to the known match pat-
tern to estimate error. The error measurement technique needs further exploration to 
determine which record linkage conditions are required for its use.

There has been a lot of work in the literature which measures the quality of the linked 
file. However, none of these papers considered methods for assessing and compar-
ing candidate linking methods. In this paper, we propose a Markov chain based Monte 
Carlo simulation approach, MaCSim to assess a linking method. MaCSim is developed 
to assess a linking method before using the method to link new data files. To achieve this 
goal, MaCSim needs two linked files that have been previously linked on similar types 
of data and links these files to obtain observed links using a defined linking method. In 
this process, the linked files are simulated and relinked using the same linking method. 
Then the accuracy of these simulated links is calculated by correct relink proportions 
using observed and simulated links. Based on accuracy results, one can conclude how 
accurate the linking method is or even whether it is worth linking the new files with this 
linking method. This approach can also help to decide which linking method to use to 
obtain higher accuracy by comparing different linking methods. More concisely, MaC-
Sim assesses the linking method and can be used as a tool to help decide on a preferred 
linking method or evaluate whether it is worth linking the files.

Method
A scenario and solution idea

Figure  1 shows a problem scenario and a solution idea behind the proposed method. 
When we have two files to link, we need to compare each record pair in these two files 
to give them a weight and set a cut-off value to declare link. The number of record pairs 
that need to be compared will be the product of the size of the two files. Thus, for large 
data files, it will be time consuming. Also, it is hard to know which linking method will 
give the highest accuracy or even whether it is worth linking these two files (Fig. 2).

The goal of the developed methodology is to help on this situation by assessing a link-
ing method using a linked file so that we can decide whether the linking method is useful 
or not. To achieve this goal, we need two linked files that have been previously linked on 
similar types of data, link these files using a linking method. We simulate the linked files 
many times and relink the files using the same linking method. Then we compare these 
links before and after simulation and calculate accuracy. Based on accuracy results, we 
can conclude how much accurate the linking method is or even whether it is worth link-
ing these two files.
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Proposed solution—MaCSim

We proposed a Markov Chain based Monte Carlo simulation method (MaCSim) for 
assessing a linking process or linking method. MaCSim utilizes two linked files to cre-
ate an agreement matrix. From this agreement matrix calculate necessary parameter 
values and create observed link using a defined linking method. Then, simulate the 
agreement matrix using a defined algorithm developed for generating re-sampled ver-
sions of the agreement matrix. In each simulation with the simulated data, records are 
re-linked using the same linking method that has been used before simulation. Then 
the simulated link is compared with the observed link and the accuracy of the indi-
vidual link is calculated, which ultimately implies the accuracy of the linking method 
that has been followed to link the records.

MaCSim steps involve creating agreement matrix, calculate match and non-match 
probabilities, create observed link, simulate agreement matrix, calculate probabilities 

Fig. 1 A problem scenario and possible solution idea

Fig. 2 MaCSim 
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on simulated agreement matrices, create simulated link, calculate accuracy by com-
paring simulated link with the observed link.

Consider a pair of linked files X and Y  , where X contains RX entries and Y  contains 
RY  entries. There are L linking fields in each file. We define ml to be the probability that 
the lth linking field in both files has the same value for a matched pair of records and ul 
to be the probability that the lth linking field values in both files are the same for a non-
matched pair of records. Further, let gl be the probability that either or both of the lth 
linking field values in any record pair are missing regardless of whether the record pair 
is matched or non-matched. We assume that all missing values occur at random, and 
denote by wl the probability that the lth linking field has a value in either file X or file Y  , 
individually. Hence, the probability that neither value is missing (from both files) is 1–gl 
= (1–wl)2. Therefore, we obtain wl = 1−

√

1− gl .

Creating agreement matrix A

An agreement matrix, A, is created from the two files to be linked, X and Y  , where

is a three-dimensional array denoting the agreement pattern of all linking fields across 
all records in the two files. Here, Aijl = 1 if the lth linking field value for record i of file 
X and record j of file Y  , are the same; Aijl = −1 if these values are not the same and 
Aijl = 0 if either or both the values are missing. Therefore, an agreement matrix is a 
three-dimensional array, contains agreement values 1, − 1, and 0, which are the com-
parison outcome between record pairs of the two files to be linked. We assume that 
RX ≤ RY  , and each record in file X has a single true matching record in file Y  . We also 
assume for simplicity of notation that Aiil represents the agreement value of the lth link-
ing field for the true matched record pair in both files.

Probabilistic record linkage

The basis of a probabilistic linkage method supposes that there are two files X and Y  
with records iandj , where i ∈ X , j ∈ Y  . All possible pairs of records from these two files 
can be divided into two disjoint sets M(for matched pair) and U (for non-matched pair). 
A pair of records will be an element of the set M if they are truly matched (i.e. both rep-
resent the same entity). Otherwise, it will be an element of the set U (i.e. represent two 
different entities). The probabilistic method aims to classify the record pair as an ele-
ment of either M or U . It will be observed whether or not each record pair agrees on the 
values of the lth linking variable to help decide whether they belong to set M or U [13].

The conditional probabilities ml and ul can be written as

The odds ratio Pr
{

Aijl

∣

∣M}

Pr
{

Aijl

∣

∣U}
 can be used for considering the evidence of ( i, j) as a link.

A =
(

Aijl

)

; i = 1, . . .RX , j = 1, . . .RY , l = 1, . . . , L,

ml = Pr
{

Aijl = 1
∣

∣i, j a match} = Pr
{

Aijl = 1
∣

∣(i, j) ∈ M}

ul = Pr
{

Aijl = 1
∣

∣i, j not a match} = Pr
{

Aijl = 1
∣

∣(i, j) ∈ U}
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The estimates of ml and ul can be used to calculate the odds ratios for agreement and 
disagreement on lth linking variable. The agreement and disagreement weights are then 
defined as follows:

where wagr
l  and wdagr

l  represent the agreement and disagreement weights for lth linking 
variable respectively. The base of the logarithm used is immaterial, and base 2 is chosen 
here as it allows a comparison to information theory results [13], [27].

Simulating agreement matrix A

In order to assess standard errors for estimates deriving from analysis of the linked data, 
it is of interest to generate re-sampled versions of the agreement matrix A in such a way 
as to preserve the underlying probabilistic linking structure. For this purpose, the MaC-
Sim algorithm develops a Markov Chain 

{

A(n)
}

n=0,1,2,...
 on = A{set of possible agree-

ment pattern arrays}, with A(0) = A , the observed agreement pattern array for the files X 
and Y  . The key step is to simulate the observed agreement matrix A to create A∗ which 
includes all the simulated agreement matrices and then apply a linking method to link 
records using the simulated agreement matrices in each simulation. We estimate the 
linkage accuracy for each record in every simulation. These estimates are collated and 
summarized to provide an overall linkage accuracy as described in “Results” section.

Simulation algorithm

Markov Chain Monte Carlo (MCMC) [16, 17] is an algorithm that constructs a Markov 
Chain which converges after a certain number of steps to the desired probability distri-
bution and then samples efficiently from this distribution. The generated sample is used 
as an approximation to the probability distribution for further inference.

The structure of the transition probabilities for the MCMC algorithm employed by 
MaCSim is now outlined. Given the current state of the chain, A(n), the next state, A(n+1), 
will be constructed as follows:

Step 1: Initially, set A(n+1)
ijl = A

(n)
ijl  for all i, j, andl.

Step 2: Randomly select values of i ∈ {1, . . . ,RX } and l ∈ {1, . . . , L}.
Step 3: If

a.  A(n)
iil = 1 , change A(n+1)

iil  to –1 with probability p1.
b. A(n)

iil = −1 , change A(n+1)
iil  to 1 with probability p2.

Step 4: For each j ≠ i, if

a.  A(n)
iil = 1 & A(n+1)

iil = −1 , then

w
agr
l = log2

(

ml

ul

)

if record pair agrees on linking field l

w
dagr
l = log2

(

1−ml

1− ul

)

if record pair disagrees on linking field l
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 i.  If A(n)
ijl = 1 , change A(n+1)

ijl  to –1.
 ii.  If A(n)

ijl = −1 , change A(n+1)
ijl  to 1 with probability q1.

b. A(n)
iil = −1 & A(n+1)

iil = 1 then.

 i.  If A(n)
ijl = 1 , change A(n+1)

ijl  to –1.
 ii.  If A(n)

ijl = −1 , change A(n+1)
ijl  to 1 with probability q2.

c.  A(n)
iil = −1 & A(n+1)

iil = −1 then.

The values of p = (p1, p2) and q = (q1, q2, q3) are described in "Maintaining marginal 
distributions" section. Once values for p and q are determined to ensure the stationary dis-
tribution of the chain has the desired structure (see "Underlying intuition and maintain-
ing consistency" and "Maintaining marginal distributions" sections), this Markov chain 
can be used to generate an appropriate set of re-sampled A values. In particular, we can 
setA∗(s) = A(sd) , for s = 1, . . . ., S and some constantd . Note that the use of every d th 
member of the chain is designed to reduce the correlation between individual steps which 
ensures minimal changes in the values of the chain. Also, note that, missingness is static 
here.

Underlying intuition and maintaining consistency

The transition structure as defined above is designed to replicate circumstances whereby a 
random element of either file is selected and then a change in its value is made with prob-
ability based on its current agreement status with its corresponding partner in the opposite 
file. Note that if a change does occur, this has the consequent effect of changing the agree-
ment patterns in the associated non-matching record pairs. For instance, if the selected 
linking variable value in the selected record of the selected file matches its counterpart in 
the opposite file and was changed, then any agreement indicator for which the associated 
record in the opposite file was unity (indicating agreement of the values for the selected 
linking variable) must be re-set to -1, as in steps 4(a)(i) and 4(b)(i) , as they can no longer 
agree. Alternatively, for non-matched records for which the agreement indicator was -1, the 
values now may or may not agree, so we reset the indicator value to 1 with the given prob-
ability. With this underpinning, it is clear that the internal consistency patterns of agree-
ment will be maintained.

Maintaining marginal distributions

In addition to internal agreement consistency, we need to ensure that the stationary dis-
tribution of the Markov chain maintains the required probabilities of agreement for both 
matched and non-matched records across the two files. This requires appropriate selection 
of the transition probability parameters p = (p1, p2) and q = (q1, q2, q3).

In particular, we require that the probability that linking field values for matched record 
pairs agree remains equal toml . That is, r

{

A
(n+1)
iil = 1

}

= ml.

Assuming that the chain starts in the following state, it is straightforward to see that
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Thus, we requirep2 = p1ml/
(

1−ml − gl
)

 . Of course, this requirement puts limits 
onp1 , since any value of p1 >

(

1−ml − gl
)

/ml would result inp2 > 1 . However, if 
ml > 0.5

(

1− gl
)

 (which it certainly should be for any reasonable and useful linking 
variable), the necessary constraint of p1 <

(

1−ml − gl
)

/ml is always satisfied. p1 in 
this scenario can be thought of as a “mixing rate” parameter and thus the value of p1 
should be set as large as possible for using our Markov chain in a computationally effi-
cient manner (i.e. allowing the use of a relatively small value ofd ). This means, with-
out any other constraints, we should select p1 =

(

1−ml − gl
)

/ml which then implies 
thatp2 = 1 . However, as we shall now see whether we can choose this option for p1 
depends on the values of ul . In our approach, the key assumption is 

(

1−ml − gl
)

≥ 0 , 
(

1− ul − gl
)

≥ 0 andml , the probability of agreement for matched record pair, should 
always be greater than the probability of agreement for non-matched record pair, ul 
i.e.ml > ul.

Choosing appropriate values for the q parameters arises from the requirement to 
maintain the probability of agreement between values of the linking variable among 
non-matched records. In other words, we must ensure Pr

{

A
(n+1)
ijl = 1

}

= ul . To this 

end, based on the steps in the algorithm described in "Simulation algorithmSimula-
tion algorithm" section, we note:

Pr
{

A
(n+1)
iil = 1

}

= Pr
{

A
(n)
iil = 1, No Change in Step 3 (a)

}

+Pr
{

A
(n)
iil = −1, Change in Step 3 (b)

}

= Pr
{

No Change in Step 3 (a)|A
(n)
iil = 1

}

Pr
{

A
(n)
iil = 1

}

+Pr
{

Change in Step 3 (b)|A
(n)
iil = −1

}

Pr
{

A
(n)
iil = −1

}

= (1− p1)ml + p2
(

1−ml − gl
)

= ml + p2
(

1−ml − gl
)

− p1ml

Pr
{

A
(n+1)
ijl = 1

}

= Pr
{

A
(n)
ijl = 1,A

(n)
iil = −1

}

+Pr
{

A
(n)
ijl = 1,A

(n)
iil = 1, No change Step 3(a)

}

+Pr
{

A
(n)
ijl = −1,A

(n)
iil = 1, Change Step 3(a) & Step 4(a)(ii)

}

+Pr
{

A
(n)
ijl = −1,A

(n)
iil = −1, Change Step 3(b) & 4(b)(ii)

}

+Pr
{

A
(n)
ijl = −1,A

(n)
iil = −1, No change Step 3(b) & Change Step 4(c)

}

+Pr
{

A
(n)
ijl = 1,A

(n)
iil = −1, No change Step 3(b)

}

= ulwl +mlul(1− p1)/(1− wl)+ml

(

1− ul − gl
)

p1q1/(1− wl)+
(

1−ml − gl
)

(

1− ul − gl
)

p2q2/(1− wl)

+
(

1−ml − gl
)(

1− ul − gl
)

(1− p2)q3/(1− wl)

+
(

1−ml − gl
)

ul(1− p2)/(1− wl),
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where the above probabilities are calculated based on the relationships between the val-
ues of A(n)

iil  and A(n)
ijl  . For example, Pr

{

A
(n)
ijl = 0

}

= gl , but Pr
{

A
(n)
ijl = 0|A

(n)
iil �= 0

}

= wl.

As noted previously, we would like p1 =
(

1−ml − gl
)

/ml which implies p2 = 1 . In 
this case:

We can readily reduce this to the value of ul provided q1 = q2 = ul/(1− ul − gl) . 
However, these values are only allowable if ul ≤ 0.5

(

1− gl
)

 , as otherwise.
ul/(1− ul − gl)exceeds unity.
In the caseul > 0.5

(

1− gl
)

 , we need different values for the p and q parameters. We 
note that if ul > 0.5

(

1− gl
)

 , then setting q1 = q2 = q3 = 1 and

yields Pr
{

A
(n+1)
ijl = 1

}

= ul.

Based on the above discussion, in order to maintain the marginal probabilities of 
matching, we choose the transition probability parameters as follows:

Estimating m, u and g probabilities

In the comparison stage, each linking field value for a record pair from the two files is 
compared; the result is a ternary code, 1 (when values agree), -1 (when values disagree) 
and 0 (when either or both values are missing). Hence, the comparison outcomes (i.e. 
agreement matrix, A ) contain values 1, -1, and 0. According to these codes, each linking 
field is given a weight using the probabilities m , u and g to recap, m is the probability that 
the field values agree when the record pair represents the same entity; u is the probabil-
ity that the field values agree when the record pair represents two different entities, and 
g is the probability when the field values are missing from either or both records in the 
pair.

For each linking field using the synthetic data, m,u , and g are estimated in the follow-
ing way:
m = number of values that agree for matched record pairs/total number of matched 

record pairs.

Pr
{

A
(n+1)

ijl = 1

}

= ul
(

2ml + gl − 1
)

/(1− wl)

+
(

1− ul − gl
)(

1−ml − gl
)

q1/(1− wl)+
(

1−ml − gl
)(

1− ul − gl
)

q2/(1− wl)

= 1/(1− wl)[mlul +
(

1−ml − gl
)

{(−ul + q1
(

1− ul − gl
)

+ q2
(

1− ul − gl
)

}]

= 1/(1− wl)[mlul +
(

1−ml − gl
)

{(−ul +
(

1− ul − gl
)

(q1 + q2)}]

p1 =

(

1−ml − gl
)(

1− ul − gl
)

ml

(

3ul + gl − 1
)

p1 =

{ (

1−ml − gl
)

/ml iful ≤ 0.5
(

1− gl
)

(

1−ml − gl
)(

1− ul − gl
)

/
{

ml

(

3ul + gl − 1
)}

otherwise

p2 = p1ml/
(

1−ml − gl
)

q1 = q2 =

{

ul/
(

1− ul − gl
)

if ul ≤ 0.5
(

1− gl
)

1 otherwise

q3 = 1.
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u = number of values that agree for nonmatched record pairs/total number of non-
matched record pairs.
g = total number of record pairs of which one or both values are missing/total number 

of possible record pairs.
These probabilities can be estimated using a linked file or they may be known from 

previous linkages of similar types of data.

Creating observed link

To create the observed links, weights are calculated from the agreement matrix A using 
the probabilities m,u and g . For any (i, j)-th record pair and any linking variable l , if the 
agreement value is 1 (i.e. Aijl=1) then the weight is calculated using wijl = log

(

ml
ul

)

 ; if 

the value is −  1 (i.e. Aijl=  − 1), the weight is calculated using 
wijl = log(1−ml − gl)/(1− ul − gl) and for a missing value (i.e. Aijl=0), the weight for-
mula is wijl = log(gl/gl) = log(1).

Given the assumption that missingness occurs at random, and thus has the same 
chance of occurring in a true matched pair as in a non-match, missing values will not 
contribute to the weight.

After calculating the weight for each record pair that agree or disagree on a linking 
variable value explained above, a composite or overall weight, Wij is calculated for each 
record pair ( (i, j) by summing individual weights, wijl over all linking variables for that 
pair using the following formula:

Once weights of all record pairs, Wij are calculated, the observed links are created fol-
lowing the steps of defined linking method below:

 i. First, all record pairs are sorted by their weight, from largest to smallest.
 ii. The first record pair in the ordered list is linked if it has a weight greater than the 

chosen cut-off value.
 iii. In all the other record pairs that contain either of the records from the associated 

record pair that have been linked in step b, are removed from the list. Thus, pos-
sible duplicate links are discarded.

 iv. Go to step b for the second record and so on until no more records can be linked.

Results
Data

A synthetic dataset received from the Australian Bureau of Statistics is used for demon-
stration and analysis to avoid privacy issues associated with using real personal infor-
mation. Moreover, for synthetic data, it is possible to assign a unique identifier to every 
record and link them back for verification. Thus, it is possible to calculate the matching 
quality and validate the accuracy of the model predictions. Many critical issues related 
to linking process can be investigated by providing controlled conditions with synthetic 
datasets.

Wij =
∑

l

wijl
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A large file Y  is generated that comprises 400,000 randomly ordered records corre-
sponding to 400,000 hypothetical individuals. Then, the first 50,000 records are taken 
to form file X . Every record has eight data fields Table 1. For a record, the value of each 
variable is generated independently (e.g. the value of BDAY is independent of the value 
of SA1) and a discrete uniform distribution is used to generate its value except the value 
of COB. 300,000 records are assigned a value ‘1101’ for ‘Born in Australia’. The remaining 
100,000 records are randomly assigned one of about 300 country codes according to the 
corresponding proportion of people in the 2006 Australian Census. In file X , the RECID 
(Record Identifier) stays matched to the Y  file for each record. This makes it easy to iden-
tify true matches and non-matches in the linking process.

Some values in file X are changed intentionally to simulate errors in linking fields. The 
value of a variable in file X is changed by replacing it either with a randomly chosen 
value from the records in file Y  or setting the value to ‘missing’. For this modification, 
individual records are selected independently. The SA1 field is changed to an adjacent 
SA1 for 500 (1%) records, and the first five digits of the corresponding Meshblock code 
are altered appropriately. For 1,500 (3%) records, the MB is changed to another MB 
within the same SA1 region. BDAY is changed to ‘missing’ for 4,000 (8%) records. For 
500 records (1%), the day and month corresponding to the numeric code are altered. In 
the BYEAR field, 50 records are replaced with ‘BYEAR–2′, 50 with ‘BYEAR + 2′. 1200 
records are reset to ‘BYEAR–1′ and 1200 to ‘BYEAR + 1′. For the SEX field, the value 
of 50 records (0.1%) is reversed. For 5,000 records (10%), the value of EYE field is set to 
‘missing’. For another 5,000 records (10%) a valid alternative is chosen as a replacement 
value. The COB field is set to ‘missing’ for 750 records (approximately 2%) of the records 
coded to “1101”. COB is also set to ‘missing’ for 250 records (approximately 2%) with 
another country code. For 125 of these cases, records are replaced with ’Australia’ and 
for the remaining 125 cases, records in COB are recoded to another country within the 
same broad geographical region (e.g. with the same two-digit SACC code) [30].

Table 1 Data field description

Data field Value

RECID (Record identifier) 7 alphanumeric characters ranges from ‘A000001′ to ‘A400000’

SA1 (Statistical Area 1) A hypothetical two-level geographical location system, Statistical Area 1 (SA1). Each 
SA1 contains exactly 400 records. The values are 5 digit code numbered from 10,001 
to 11,000

MB (Meshblock) Every SA1 consists of exactly 5 Meshblocks or MB. Each Meshblock contains 80 records 
of file Y and 10 records in file X  . The values are 7 digit code ranges from 1,000,101 to 
1,100,009

BDAY (Birth Day) 20,000 consecutive days from 1 January 1955 to 3 October 2009. BDAY values are 
numeric and ranges from 1 to 366

BYEAR (Birth Year) Value is numeric and ranges from 1955 to 2009

SEX (Male/Female) The value 1 and 2 represents male and female respectively. Exactly 50% of all records 
are male, and the rest 50% are female

EYE (Eye Colour) Values are numbered from 1 to 5 and are evenly distributed

COB (Country of Birth) 75% of the total records are assigned a value ‘1101′ for ‘Born in Australia’. The remaining 
25% records are randomly assigned one of about 300 country codes according to 
the corresponding proportion of people in the 2006 Census
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Blocking strategy

In the linking process, the number of possible record pairs to compare will depend on 
the size of the two files. For large data files, comparing and calculating weights of each 
record pairs can cause a significant performance bottleneck. Moreover, it is not com-
putationally efficient and often not possible to undertake matching algorithms which 
search through entire large data files to find matches. To overcome these challenges, the 
files are split into blocks where the matches are most likely. Thus, blocking reduces the 
large number of comparisons by only comparing record pairs that have the same value 
for a blocking variable.

The analysis used two different blocking variables, namely SA1, and SA1 & SEX. We 
combine two variables as a blocking variable. For every blocking variable, the number of 
records in each block in file X is different. Due to the introduced misclassification error 
described above, the values of the variable SA1 are changed in file X . Therefore, while 
blocking with SA1, we took the original value of SA1 to make sure all the true matches 
are within this block. Similarly, while blocking with SA1 & SEX, we consider the original 
values of this combined variable. For the analysis, seven variables (i.e. SA1, MB, BDAY, 
BYEAR, SEX, EYE, COB) are used. Following the specific blocking strategy, an agree-
ment array, A is created from the two files to be linked for a single block. Block-specific 
m,u and g probabilities are calculated for each linking variable, following the procedure 
described in "Estimating m,u and g probabilities" section.

Simulation—creating simulated values of A

The initial agreement matrix A is simulated following the steps described in Sect. 2.5. 
The thinning value d is set as 1,000 and the number of desired replicates of A , say 
A∗ , is S = 1,000. Hence, 1,000,000 MCMC simulations are run and s samples A(s) , 
s = 1, . . . ., 1000 , are retained. In A∗ , we have 1000 instances of the agreement matrix 
A . The “thinning” parameter allows us to specify whether and how much the MCMC 
chains should be subsampled in order to reduce the correlation between the elements 
of the MCMC sample. In our case, a thinning value d=1000  results in keeping every 
1000th value and discarding all interim values.

Examine simple distance between A∗ entries
The distances between A∗ entries ( A∗(2) , A∗(3) , …., A∗(S) ) from the initial agreement 
matrix A∗(1) is calculated. In every simulation, the distance is calculated by the total 
number of agreement values that are changed from the initial values divided by the total 
number of agreement values. In this way we obtain the proportion of agreement values 
that are changing in each simulation.

Figure 3 shows the distances in 1000 simulations using: (i) blocking variable SA1, (ii) 
combined variable SA1 & SEX.

For SA1, the distance plot allows estimation of a “burn-in” period for the chain as well 
as the thinning parameter (d) to ensure that the retained simulated matrices are less cor-
related. From the distance graph on blocking variable ‘SA1′ Fig. 3(i), the chain appears 
to have converged after 50 iterations when approximately 11% of the values in the ele-
ments of A∗ are changed. The chain stays stable in 1000 simulations. In the case of the 
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combined blocking variable SA1 & SEX, we see from the plot Fig. 3(ii)) that the chain 
converges after 180 iterations to around 0.24. Hence compared to the single blocking 
variable SA1, the chain for the combined variable took more iteration to settle in.

Table 2 shows the comparison of the percentage of agree, disagree, and missing val-
ues for blocking variable SA1 and SA1_SEX. From the table we noticed that the per-
centage of agree is higher in case of SA1 compared to SA1_SEX. Since in the simulation 
algorithm, the changes of agreement/disagreement values in the next state depends on 
the agreement/disagreement values of the current state,thus, for these two variables the 
total number of values changes in each simulation is expected to be different. Therefore, 
the convergence occurs in two different points for these two blocking variables.
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Fig. 3 Distance of A∗ entries from the initial agreement matrix for blocking variable (i) SA1 and (ii) Combined 
SA1 and SEX

Table 2 Percentage of agree, disagree and missing for each blocking variable

Block size All record pairs Matched record pairs Non-matched record pairs

“1” (%) “− 1” (%) “0” (%) “1” (%) “− 1” (%) “0” (%) “1” (%) “− 1” (%) “0” (%)

SA1 59 24.1 72.5 3.4 92.9 3.1 4.0 23.9 72.7 3.4

SA1_SEX 26 19.2 77.8 3.0 92.6 3.7 3.7 18.8 78.2 3.0
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Total number of agreement values changes in A∗ in each simulation
The agreement matrices in A∗ contain ternary values, 1 for agree, -1 for disagree and 0 
for missing when we compare a record pair for each variable. In every simulation these 
three agreement values are changed following our defined algorithm ("Simulation algo-
rithm" section). Figure 4(i) shows the total number of agree (1) values in each simulation 
among all the 141,600 (= 59 × 400 × 6, with 59 records in file X , 400 records in file Y  
and 6 linking variables) agreement values in each agreement matrix inside A∗ . Similarly, 
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Fig. 4(ii) shows the total number of disagree (− 1) values in each simulation among the 
141,600 agreement values in each agreement matrix inside A∗ . The difference in total 
number of agree (1) and disagree (− 1) values in each simulation indicates the changes 
made by the algorithm. The missing (0) values are not shown as these are kept static and 
do not contribute to the weight.

Agreement value changes in A∗ for a record pair in each simulation
Figure 5 shows the changes in the agreement values (1, − 1, and 0) of six linking vari-
ables for one record pair in each of the 1000 retained simulations in A∗ . Here, each 
coloured line represents each linking variable values and the distribution of these 
lines over 1000 simulations proves the changes of agreement values made by the algo-
rithm from one simulation to the next.

Proportion of times each record in File X is correctly re-linked

Based on the agreement values from A∗ , in every simulation we link records follow-
ing the same linking method described earlier ("Creating observed link" section) and 
observe how many times each record has been re-linked to the record to which it was 
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originally linked. We perform this analysis on the first block when blocking with SA1 
and also with combined variable SA1 & SEX.

When we block the data with SA1, the first block contains 59 records in file X . 
Figure  6(i) shows the proportion of correct links of each X record for this block in 
1000 simulations. From this plot, we see that the correct re-link proportion for all 59 
records lies between 93.5 and 100%. The plot also shows the average accuracy with 
the red line, which is 99%. We have a very low error rate for each record. The maxi-
mum error we obtained was 6.5% for record number 44.

With the combined variable SA1 & SEX Fig.  6(ii)), there are 26 records in the first 
block in file X . Figure 6(ii) shows the correct re-link proportion of each X record in 1000 
simulations. Here we obtained an accuracy in excess of 98%. The average accuracy is 
99.8% which is shown by the green line. The maximum error is only 1.2%, for record 
number 8.

Correct re-link proportion in every simulation

In this analysis, we estimate the accuracy in every simulation for all records in File 
X for the first block when blocking with variable SA1 and also with the combined 
blocking variable SA1 & SEX. The plot Fig. 7(i)) shows the correct re-link proportion 
of all 59 records in each of 1000 simulations. We obtained 100% accuracy in most of 
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Fig. 7 Correct re-link proportion in every simulation
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the simulations. For some simulations 98.3% accuracy is obtained where 58 records 
(out of 59) are correctly linked to the original records and one record is incorrectly 
re-linked. The smallest accuracy, 93.2% (= 55/59), is found in only three simulations 
where 4 records are incorrectly linked. Note that the average accuracy (indicated with 
the red line in Fig. 7(i)) for all records in every simulation is 99%, which is exactly the 
same as the average accuracy for each record in all simulations Fig. 6(i)).

With the combined blocking variable SA1 & SEX Fig. 7(ii) shows the correct re-link 
proportion of all 26 records in each of 1000 simulations. We obtained 100% accuracy 
in most of the simulations. For some simulations 96.1% accuracy is obtained where 
25 records (out of 26) are correctly linked to its original records. The smallest accu-
racy, 92.3% (= 24/26), is found in only one simulation where 2 records are incorrectly 
linked. Note that the average accuracy (indicated with the green line in Fig. 7(ii)) for 
all records in every simulation is 99.8%, which is exactly the same as the average accu-
racy for each record in all simulations Fig. 6(ii)).

MaCSim on full dataset
We execute MaCSim on full dataset. With 50,000 records in file X and 400,000 
records in file Y  with 1,000 blocks and with 6 variables, a total of 120 millions com-
parisons are made in each simulation. We performed 1 million simulations using 
MaCSim algorithm and retained every  1000th simulated agreement matrix to create 
overall simulated outcome. Blocking strategy reduced the overall simulation execu-
tion time. For a dataset, it is possible to save the overall simulated outcome and reuse 
it for analysis instead of going through the simulation process each time. However, 

Table 3 Full dataset execution time

MaCSim steps Each block (s)

Create agreement matrix 4

Calculate block-specific probabilities < 1

Create observed links 1

Simulate agreement matrix to create A* 83

Calculate probabilities from simulated agreement matrices 35

Create simulated links 695

Calculate proportion of correct links 1

Total execution times 819

Table 4 Correct re-link proportion result on full dataset
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Fig. 8 Correct re-link proportion of each record—average is 0.9911 (red line)
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relinking based on simulated agreement matrices took a rather long time for calculat-
ing weights for all record pairs in each simulation.

Execution setup

The code ran on an IBM Thinkpad with the processor of Intel i7 and memory of 
16  GB. MaCSim is executed in each block one after another and the results for all 
blocks are concatenated.

In the table Table  3 we showed the execution time of each step of MaCSim on full 
dataset. Total execution time is 227.5 h. Although, the execution time looks reasonable, 
various optimization techniques, such as parallelisation can improve the execution time.

We calculated correct re-link proportion for each of 50,000 records in every simula-
tion. We found more than 99% records have correct re-link proportion more than 90% 
Table 4. The right side of the table shows (more granular results) correct re-link propor-
tions of records between 90 to 100%. We found 90% records have correct re-link pro-
portions more than 98%. Figure 8 shows the average correct re-link proportion of each 
X record in 1000 simulations. From this plot, we see that the average proportion for all 
50,000 records is 99.1% indicated by the red line. These proportions are also shown by 
the density in Fig. 9 and histogram in Fig. 10.   

Discussion
When there is a task to link two files, it is hard to decide which method to use for linking. 
Since these are new files, there is no way to measure the accuracy after linking without 
further review. MaCSim can assist in the evaluation of which method will give higher 
accuracy to link these files. MaCSim needs two linked files that have been previously 
linked on similar types of data to ultimately assess or help decide which linking method 
to use for linking new files or even whether it is worth linking the files. Match and non- 
match probabilities can be estimated using a linked file or they may be known from pre-
vious linkages of similar types of data. The approach can be used as a tool to assess a 
linking method, or to evaluate or compare other linking methods. Based on the obtained 
accuracy results, the user can decide on a preferred method or evaluate whether it is 
worth linking the two files at all.

The MaCSim algorithm develops a Markov Chain 
{

A(n)
}

n=0,1,2,...
 on A={set of possi-

ble agreement pattern arrays}, with A(0) = A , the observed agreement pattern array for 
the files X and Y  . The structure of the transition probabilities for the chain is outlined. 
Once values for these probabilities are determined to ensure the stationary distribution 
of the chain has the desired structure, this Markov chain can be used to generate an 
appropriate set of re-sampled A values. It is shown that in addition to internal agree-
ment consistency, our chain maintains the required probabilities of agreement for both 
matched and non-matched records across the two files. Therefore, transition probability 
parameter values are derived to maintain the marginal probabilities of matching.

The Markov chain employed by MaCSim can be used to generate an appropriate set 
of re-sampled A (agreement matrix) values. In our study, 1,000,000 MCMC simulations 
are run and s samples A(s) , s = 1, . . . ., 1000 , are retained. In A∗ , we have 1000 instances 
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of the agreement matrix A . Note that the use of every d th member (thinning parameter 
d = 1000 ) of the chain is designed to reduce the correlation between individual steps 
which results in minimal changes in the values of the chain. The characteristics of A∗ 
is observed ("Total number of agreement values changes in  A* in each simulation" and 
"Agreement value changes in  A* for a record pair in each simulation" sections) by looking 
at the changes of agreement values (agree, disagree, and missing) made by the algorithm 
from one simulation to the next.

In MCMC sampling, once the chain has converged, its elements can be seen as a sample 
from the target posterior distribution. The distance plots Fig. 3 for both single and combined 
variables show convergence of the chain. By the nature of the MCMC process, the elements 
of the sample can be highly correlated. The parameter “thinning” allows us to specify whether 
and by how much the MCMC chains should be subsampled in order to reduce this correla-
tion. In our case, a thinning value d=1000 results in keeping every 1000th value and discard-
ing all interim values. This ensures that the retained simulated matrices are less correlated.

MaCSim measures the average accuracy of each record in all simulations and aver-
age accuracy for all records in every simulation Figs. 6 and 7. In both cases, we obtained 
average accuracy, which is 99%. Therefore, the linking method used in MaCSim could be 
a better choice to link new files of similar types of data as it gave high accuracy. Alterna-
tively, the user can test other methods using MaCSim and compare the accuracy results 
to decide which method to choose to link the new files.

Two different blocking variables, namely SA1 (Statistical Area 1), and combined variable 
SA1 & SEX are used for the analyses. Other variables e.g., MB, BYEAR, BDAY can also be 
used for blocking and testing. When we blocked with these variables, we had only a small 
number of records to link (for MB, there were 6 records in one block) and the correct re-
link proportions for those records exceeded 95%. Considering the purpose of the proposed 
method, we elected to present results with only a couple of blocking variables.

Probabilistic linkage is widely used in the absence of unique identifier. Our MaCSim 
approach is tested on numeric data for the case study. The method compares records, 
checks for similarity and assigns values (1, − 1, and 0) according to the match and non-
match between records. MaCSim can also be used on text data fields, in which case data 
needs to be prepared, such as by exploiting text similarity functions, the processes of 
parsing, standardisation etc.

MaCSim has been implemented in R (programming language) and the computational 
aspects of the methodology is investigated. The code is stable, parameterized and reus-
able on different sets of data. Blocking is used to reduce computational time. The com-
putational time can be further reduced by using high performance computing (HPC) 
and applying optimization techniques, such as parallelisation.

The MaCSim approach is tested on two datasets. The method is yet to be investigated 
on multiple datasets. In MaCSim, missingness is considered static and the effect of miss-
ing data patterns on the accuracy of record linkage is ignored. MaCSim also did not con-
sider the effect of conditional independence assumptions (which means for a record pair, 
the agreement on a linking field is independent of agreement on any other linking field 
for that pair) on linkage accuracy.
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Conclusion
With ever expanding overlapping datasets, both administrative and substantive, the 
need to accurately assess the linkage of these databases is crucial. It is also important for 
assessing which, if any, linking method is likely to be more accurate for a linkage task. 
This paper proposed a Markov Chain based Monte Carlo simulation approach MaCSim 
which can be used as a tool to assess a linking method, or to evaluate or compare other 
linking methods. Based on the obtained accuracy results, the user can decide on a pre-
ferred method or evaluate whether it is worth linking at all. The accuracy is determined 
for a number of simulated datasets, and therefore will better represent uncertainty than 
an estimate from just one dataset. The linking method that is used in MaCSim could be a 
better choice to perform linking as it gave promising results.

The MaCSim approach is tested on numeric data for the case study. The method can 
also be used on text data fields, in which case data needs to be prepared, such as by 
exploiting text similarity functions, the processes of parsing, standardisation etc.

We have implemented MaCSim in R (programming language) and investigate the 
computational aspects of the methodology. Test results show robust performance of the 
proposed method of assessment of accuracy of the linkages. Blocking is used to reduce 
computational time. The computational time can be further reduced by using high per-
formance computing (HPC) and applying optimization techniques, such as parallelisa-
tion. Furthermore, for a dataset, it is possible to save the overall simulated outcome and 
reuse it for analysis instead of going through the simulation process each time. The sim-
ulated agreement matrix can be stored and reuse to assess other linking methods.

Future work is to investigate the approach to assess the effect of missing informa-
tion and conditional independence assumptions on linkage accuracy and enhance the 
Markov chain methodology to account for the case of conditional dependence. Moreo-
ver, in this work we have used two datasets; how the approach will work on more than 
two datasets is yet to be investigated.
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