Performance Evaluation of Improved Flexible Runway Pavement under Aircraft Loads

, Liu, Xuemei, , & (2023) Performance Evaluation of Improved Flexible Runway Pavement under Aircraft Loads. Australian Journal of Civil Engineering, 21(1), pp. 1-19.

View at publisher

Description

Safe runway pavements are essential for the smooth landing of aircraft. Due to aircraft movements, these pavements are subjected to large dynamic loads that can cause their failure and jeopardise safety. This paper proposes the use of improved cement-based layers to enhance the performance of flexible runway pavements. The performance of such retrofitted runway pavements under both static and moving loads is investigated by experimental study and three-dimensional numerical simulations. Results indicate that the improved cement-based layers can significantly reduce surface deflections in the runways under heavy static and moving loads. Under heavy moving loads, the proposed cement-based layers can distribute the vertical stresses to the surrounding soil area, significantly reduce surface deformations and prevent failure. Findings of this research will contribute towards improved designs of runway pavements resulting in enhanced safety and failure mitigation.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

53 since deposited on 18 Apr 2022
33 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 229819
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Fawzia, Sabrinaorcid.org/0000-0002-1095-2940
Thambiratnam, Davidorcid.org/0000-0001-8486-5236
Measurements or Duration: 19 pages
DOI: 10.1080/14488353.2022.2056307
ISSN: 1448-8353
Pure ID: 108465685
Divisions: Current > Research Centres > Centre for Materials Science
Current > QUT Faculties and Divisions > Faculty of Science
Current > QUT Faculties and Divisions > Faculty of Engineering
Current > Schools > School of Civil & Environmental Engineering
Copyright Owner: 2022 Engineers Australia
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 18 Apr 2022 23:27
Last Modified: 20 Jul 2024 17:07