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a b s t r a c t

Predicting links in complex networks has been one of the essential topics within the realm of data mining
and science discovery over the past few years. This problem remains an attempt to identify future,
deleted, and redundant links using the existing links in a graph. Local random walk is considered to be
one of the most well-known algorithms in the category of quasi-local methods. It traverses the network
using the traditional random walk with a limited number of steps, randomly selecting one adjacent node
in each step among the nodes which have equal importance. Then this method uses the transition prob-
ability between node pairs to calculate the similarity between them. However, in most datasets this
method is not able to perform accurately in scoring remarkably similar nodes. In the present article,
an efficient method is proposed for improving local random walk by encouraging random walk to move,
in every step, towards the node which has a stronger influence. Therefore, the next node is selected
according to the influence of the source node. To do so, using mutual information, the concept of the
asymmetric mutual influence of nodes is presented. A comparison between the proposed method and
other similarity-based methods (local, quasi-local, and global) has been performed, and results have been
reported for 11 real-world networks. It had a higher prediction accuracy compared with other link pre-
diction approaches.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Complex networks can describe many current natural phenom-
ena, including biological networks, brain networks, and human-
made phenomena in the era of technology, such as social networks
and transportation networks. This has made network science a hot,
widespread, and interdisciplinary field in the current era. There are
numerous problems, such as community detection (Fortunato,
2010; Berahmand et al., 2018, 2020; Berahmand and Bouyer,
2018), identifying spreader nodes (Berahmand et al., 2019, 2018),
maximal influence (Berahmand et al., 2018), and link prediction

(Nasiri et al., 2019), in the center of these complex networks, which
are considered as the main challenges. Link prediction is a critical
task in complex network analysis. Link prediction approaches use
past data to predict the future structure of a complex network. It
can be formulated for a given social network G as the prediction
of the list of edges not provided in G½t0; t00�, but predicted to exist
in G½t1; t01�, in which G½t; t0� implies the subgraph of G at the time-
stamp interval of ½t; t0 �. The training interval is denoted by ½t0; t00�,
and ½t1; t01� is referred to as the testing interval. It aims at predicting
missing, spurious, or new links in the current structure of the net-
work (Martínez et al., 2017). It is a generic task for analyzing net-
worked data, which appears in both application and theoretical
analysis, new friendships, and recommend possible friends in
social networks including Twitter and LinkedIn. In biological net-
works, it can be used to recover the consideration and understand-
ing of protein function and discover the unknown protein–protein
interactions. Link prediction in the theoretical analysis assists in
comprehending the mechanism of propagation and diffusion of
information (Wu et al., 2019).

Numerous link prediction algorithms have been recently pro-
posed. Three categories of node similarity-based algorithms (Li
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et al., 2020; Leicht et al., 2006; Zhou et al., 2009; Liben-Nowell and
Kleinberg, 2007), maximum likelihood algorithms (Clauset et al.,
2008), and probabilistic models (Airoldi, 2008) are the classifica-
tions of these algorithms. In particular, similarity-based algorithms
are the most effective and of the basic methods for solving the
problem of link prediction. In this method, for every single pair
of vertices i and j, a score (sij) is calculated, which shows the sim-
ilarity between the two vertices i and j. Generally speaking, the
similarity between two nodes is defined as follows: two nodes
have similarities in the case of having many shared features. In
terms of time and space complexity, the similarity index is classi-
fied into three categories of local, quasi-local, and global (Kumar,
2020). Local similarity indexes make use of structural information
from vertices’ neighbors to calculate their similarity, and they do
not need structural information from the whole network. Com-
pared to global similarity indexes, this approach is much faster,
and it can be used in a parallel way during runtime. The main
weakness of local similarity indices is that they are able to use local
information from only first and second-degree neighborhoods.
Most links, however, occur in paths which have more than two
nodes (Kumar, 2020). Global similarity indexes use structural
information from the whole network to score edges, and their com-
putational complexity in large networks makes them inefficient.
Also, they cannot be run in parallel mode. However, they have
higher accuracy compared to local similarity indices. Quasi-local
similarity indices, on the other hand, have been able to create an
equilibrium between these two indexes. They use more informa-
tion than local indices, and, unlike global indices, they do not make
use of redundant information, which does not affect accuracy
(Wang et al., 2015).

In recent years, random walk algorithms have been one of the
researchers’ interests because of being straightforward to interpret
(Zhou et al., 2018; Xia, 2019). From a practical perspective, there
have been several useful applications of random walks in the area
of computer science such as link prediction (Liu and Lü, 2010;
Curado, 2020; Tong et al., 2006), community detection (Su et al.,
2017; Pons and Latapy, 2005), network embedding (Perozzi et al.,
2014; Grover and Leskovec, 2016), recommender systems (Gori,
et al., 2007), and diffusion on networks (Masuda et al., 2017).
The graph and a starting node are given in a random walk-based
method. Throughout a walk on the graph, the walker moves ran-
domly to one of the current node’s neighbors at each step. A
sequence of nodes is constructed during this procedure, which
determines a traverse for the graph.

Random walk is one of the primary similarity-based methods
used for link prediction, which detects similarities between nodes
by randomly going through the graph in global and quasi-local
ways. In a global way, using the random walk with restart algo-
rithm, the walker starts traversing from the first vertex by taking
random steps and goes randomly to one of the neighbors of the
first vertex with a probability of c, and it returns to the first vertex
with a probability of ð1� cÞ (Tong et al., 2006). The value of this
index for the pair i and j is equal to the probability of this random
walker started from vertex i and locating at the vertex j in the equi-
librium state. This method is not very efficient for today’s vast net-
works because of its high complexity and global information.
However, the Local Random Walk (LRW) (Liu and Lü, 2010) algo-
rithm limits the number of random steps to the amount l, and by
applying this limit, the method does not have any control over
equilibrium anymore. Most methods used in the random walk
for the link prediction problem are using pure walking. Since in a
pure random walk, the importance of all nodes and links are
equally considered, the obtained result is going to be not accurate
enough to recognize similarities of node pairs.

To address the above problems clearly, a modified version of the
LRW algorithm is proposed. Since LRW is conducted using pure
random walking and selects the destination nodes based on a ran-
dommanner, its further step depends on node neighbors. Through-
out its decision-making process to determine the next step, LRW
randomly selects one of the neighbors using its degree. If LRW pre-
cisely selects one of the neighbors with a more significant proba-
bility, the accuracy of node similarity will improve. To help to
improve the LRW, the concept of asymmetric mutual influence of
nodes is presented. This concept expresses the influence of pair
of nodes on each other asymmetrically. Using this concept, the
walker selects the next node using its effect on the current node
and selects more efficient paths for the next step. This process
helps to traverse through the network structure more precisely
and effectively. Therefore, nodes with a more significant structural
similarity will obtain a higher score in the proposed algorithm. As a
result, our proposed algorithm, called Mutual Influence Random
Walk (MIRW), will be going through more efficient paths. There-
fore, network structure will be examined more accurately, and
more similar nodes will obtain a higher score Compared with many
other algorithms, our proposed algorithm, with its use of quasi-
local information and linear time complexity, will have higher
accuracy and efficiency.

The rest of this paper is organized as the following. Section 2
summarizes relevant studies on link prediction in a complex net-
work and the existing methods for measuring the node’s similarity.
In Section 3, some preliminaries of the present study, including the
definition of mutual information, mutual influence, preference
link, and a new method of local random walk, is introduced, which
depends on mutual influence for measuring the nodes’ similarity in
a complex network. Section 4 presents the results of experimental
analysis and simulation. Finally, Section 5 provides a conclusion.

2. Related works

Recently, numerous algorithms have been implemented for link
prediction, and there have already been several excellent surveys
that work for the link prediction problem (Martínez et al., 2017;
Kumar, 2020; Wang et al., 2015; Pech, 2019).

Several classifications such as similarity-based algorithms,
maximum likelihood methods, and probabilistic models can be
provided for these methods. The maximum likelihood methods
and probabilistic models provide higher accuracy than similarity-
based algorithms; however, they have some intrinsic drawbacks
(Clauset et al., 2008). The probabilistic models often depend on
node attributes besides the network structure, so their applications
are considerably restricted (Leicht et al., 2006). Furthermore, the
quantity of parameters to be fixed is too large, and as a result,
we cannot gain insight into the network organization, albeit build-
ing a considerably precise model. Maximum likelihood methods
are not very efficient in terms of time consumption, and they can
only handle the networks with hundreds of nodes (Newman,
2001). In contrast, numerous real networks include nodes of differ-
ent numbers from millions to billions. In this paper, we only
emphasize structure-based similarity approaches using structural
topology information.

The topology features of networks are applied to assign similar-
ity scores to unconnected node pairs using structure-based simi-
larity methods. These methods can be classified into three
categories: local, quasi-local, and global (Perozzi et al., 2014).

Therefore, overall speaking, the similarity-based algorithms, in
particular the ones based solely on quasi-local topological informa-
tion, have found the widest applications. Local similarity
approaches use only the information of paths with length 2 for a
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pair of nodes. It is divided into two main classifications, common
neighbor-based and clustering coefficient-based approaches. In
the category of common neighbor–based, two disconnected nodes
are more probably to be mutually connected if they have more
common nodes such as the Common Neighbors Index (CN)
(Adamic and Adar, 2003) directly counting the number of common
neighbor nodes, Adamic–Adar Index (AA) (Sørensen, 1948) and
Resource Allocation Index (RA) (Zhou et al., 2009) punishing large
common neighbor nodes, Sørensen Index (Cannistraci et al., 2013),
Leicht–Holme–Newman Index (Leicht et al., 2006) with a penaliza-
tion of large-degree endpoints.

Other approaches, such as CAR-based Common Neighbor Index
(CAR), Node Clustering Coefficient (CCLP), Node and Link Cluster-
ing Coefficient (NLC), not only consider the common neighbors of
node pairs but also take into account the local clustering coefficient
between those common neighbors too. In the paper (Wu et al.,
2016), the author considered the number of edges among the com-
mon neighbors and the CAR index presented based on the assump-
tion that the edge exists between two nodes is more likely if their
common neighbors are members of a local community (local-
community-paradigm (LCP) theory). Wu et al. (Wu et al., 2016)
designed the CCLP index. This index is also based on the local clus-
tering coefficient property of the network. The local clustering
coefficients of all the common neighbors of a seed node pair are
computed and summed to calculate the final similarity score of
the pair. The same author developed the NLC index in which com-
bining both node and link clustering information to find the final
similarity (Katz, 1953).

The main advantage of local similarity indices is their low com-
putational complexity. Although, considering the immediate
neighbors leads to this index to experience weak performance in
prediction. On the contrary, global similarity points out the simi-
larity according to the network’s global structure information,
including the Katz Index (Lü et al., 2009), counting all paths in
which the connection of two nodes with shorter routes is desired.
Random Walk with Restart (RWR) is a direct application of the
PageRank algorithm (Tong et al., 2006). Take a random walker into
account starting from node i, who will iteratively move to a ran-
dom neighbor with probability c and come back to node i with
probabilityð1� cÞ. Denote by qij the probability this randomwalker
locates at node j in the steady-state.

Quasi-local indices do not rely on global information but they
use additional topological information compared to local methods
to obtain a nice trade-off between computational complexity and
performance. This approach can be divided into two categories
local path and random walk with finite steps. The information of
all 2-step and 3-step paths, with all 2-step paths preferred, is taken
into account in Local Path (LP) (Yao et al., 2018). Effective Path (EP),
Significant Path (SP), and Resources from Short Paths (RSP) (Zhu
et al., 2014) are the improved versions of the LP. Xuzhen et al.
investigated the effective influence of endpoints and captured the
connectivity, and proposed the EP in which creating the influence
model among two nodes as the connectivity of paths where it is
defined as the product of transfer probability of every single link
included in the path (Zhu et al., 2014). Zhu et al. presented the
SP index derived from the intuition that short paths make better
proof of a missing link connecting its two ends (they expressed
that such paths are significant); the low degree intermediate nodes
are examples. Practically, the Significant Path index only applies
the paths with lengths 2 and 3 (Ver Steeg and Galstyan, 2013). Yab-
ing et al. (Zhu et al., 2014) considered the interactions of paths
with different lengths based on the resource-traffic flow mecha-
nism on networks and proposed the RSP index. Random walking
with finite steps that randomly walk on the graph is very useful
in calculating the similarity and proximity between nodes. The

local random walk (Liu and Lü, 2010) and Superposed Random
Walk (SRW) (Liu and Lü, 2010) indices are two famous random
walks with finite step similarity indices. Local random walk index
limiting a randomwalker within a local range, and superposed ran-
dom walk index based on local random walk continuously releas-
ing a random walker at the starting node to emphasize the nodes
near the target node. Semi-local methods provide a trade-off
between the computational complexity and the obtained accuracy.
They, therefore, have been recognized as one of the most efficient
approaches to deal with the link prediction problem. In semi-local
methods, the local random walk algorithm is very popular and
effective in finding the probability of a link existing between a pair
of nodes. However, this algorithm suffers from a significant draw-
back in terms of accuracy. In all link prediction methods that use
random walking approaches, the importance of all links and nodes
is considered equal, and this makes this approach not so efficient in
traversing graph structure. Here we take a different approach from
previous works. In the present work, we intend to take advantage
of a new concept, i.e., mutual influence, to compute the transition
probability between node pairs and, therefore, not choose the ran-
dom walk nodes in a purely random manner. We claim that our
proposed algorithm is one of the most efficient algorithms in the
semi-local category due to its high performance in the link predic-
tion task, based on the obtained results from experiments per-
formed on large-scale datasets.

3. Proposed method

3.1. Background and notation

In this section, before getting to the algorithm, some fundamen-
tal definitions and concepts in the proposed algorithm are
reviewed.

3.1.1. Definition 1 (Mutual Information)
In information theory, mutual information is a concept that is a

measure of the amount of information that a random variable has
about another variable and also is applied to indicate the relation-
ships between the information of nodes. Consider a couple of ran-
dom variables X and Y with a joint probability mass function Pxy

and marginal probability mass functions px and py (Hangal, S.,
ACM KDD. , 2010). The Mutual InformationMIðX;YÞ can be denoted
as follows:

MI X;Yð Þ ¼
X
x2X

X
y2Y

Pxy � log Pxy

px � py
ð1Þ

MIðX;YÞmeasures the amount of information gained by observ-
ing each of the random variables relative to the other, and has
three significant features:

� MI (X;Y) is always non-negative.
� MI (X; Y) is zero if and only if the random variables X and Y are
independent of each other.

� MI (X;Y) = MI (Y;X) In fact, mutual information is a symmetrical
function.

So the above properties of MIðX;YÞ can measure the result of
linear and nonlinear dependence between random variables X
and Y .

3.1.2. Definition 2 (Asymmetric Mutual Influence (AMI))
In social networks, nodes have different influential and impor-

tant values, and each can influence their neighbors or be influenced
by their neighbors. The concept of social influence has affected var-
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ious aspects of social network interactions and can be studied from
different perspectives. Here, we are investigating its role in the
problem of link prediction. More specifically, we take advantage
of the mutual influence concept to measure how much a node
can affect its neighbors and use the influence between nodes to
tackle link prediction. This concept will be implemented using
the network’s structural information and quasi-local information
of nodes. A quantity is introduced to represent the mutual influ-
ence of nodes, which uses a concept called ’Mutual Information’
presented in Equation (1). We have modified this definition
according to our purpose. Therefore, we measure the influence
between a pair of nodes, using their first-order neighbors and the
intersection of those nodes. The mutual influence between the
two nodes is calculated using Equation (2.d):

Pi ¼ Ni

N
ð2aÞ

Pj ¼ Nj

N
ð2bÞ

Pij ¼ CN i; jð Þ
N

ð2cÞ

MI i; jð Þ ¼ Pij � log Pij

pi � pj
ð2dÞ

Where Ni is the number of first-order neighbors of node i, and N
implies the total number of nodes in the network. Pi refers to the
probability of node i getting influence from other nodes of the net-
work. CNði; jÞ is referred to as the number of nodes direct connec-
tion to both nodes i and j, in addition to both nodes, and Pij implies
the occurrence probability of the intersection of node i and node j.
In fact, Pij is a probability that is calculated using the count of com-
mon neighbors of node i and node j divided by the total number of
nodes in the network, and it can be interpreted as the node pair i
and j getting influence by a set of common nodes in the network.
This formula measures the mutual influence between a pair of
nodes in terms of the fraction of the neighborhood that they share.
Therefore, the influence that a node gives to its neighbor is equal to
the influence it gets from it. But we know that in a real-life situa-
tion, this cannot be true. According to (Rossi and Ahmed, 2015), the
notion of influence between a couple of social entities is an asym-
metric value, and it depends on various factors, e.g., an individual’s
importance and role in the network. We assume that the more
influence a node has on its neighbor, the greater its chance to be
visited from that node. Hangal et al. (Rossi and Ahmed, 2015) pro-
vided a quantitative definition of influence between two entities,
which is as follows:

Influence i; jð Þ ¼ Invest j; ið ÞP
k2Cj

Invest j; kð Þ ð3Þ

The influence that i has on j is determined using the amount of
investment of j, on i divided by the amount of investment of j on all
the other entities. The concept of investment can be interpreted as
the time or effort that one person spends on the other person. In
this paper, we take advantage of the concept provided by (Rossi
and Ahmed, 2015) and modified it to be applicable for our purpose.
The new asymmetrical mutual influence, which is an asymmetrical
version from Equation (2.d), is computed via the following
Equation:

Pi ¼ Ni

N
ð4aÞ

Pj ¼ Nj

N
ð4bÞ

Pij ¼ PiCN i; jð ÞP
k2Cj

CN j; kð Þ ð4cÞ

AMI i; jð Þ ¼ Pij � log Pij

pi � pj
ð4dÞ

Where Pij, i.e., the joint probability of i and j, is the ratio of the
number of common neighbors between i and j to the total number
of common neighbors between node j and all of its neighbors mul-
tiplied by Pi, and Cjshows the first-order neighborhood of node
j 2 V. Using this Equation means that the influence that a node
gives to its neighbors depends not only on the number of common
neighbors it has with that neighbor but also the number of com-
mon neighbors it has with its other neighbors. More specifically,
in Equation (4.d), the maximum score is reached for nodes i and j
when nodes i and j have low degrees and many mutually shared
neighbors. Also, the minimum score for nodes i and j is reached
when nodes i and j have high degrees and no mutually shared
neighbors; under these conditions, they will be independent of
each other and will not be affected by each other. Considering
the following network in Fig. 1 as an example, where PA ¼ 4

6,
PE ¼ 2

6, CN A; Eð Þ ¼ 3 ,
P

k2CA
CN A; kð Þ ¼ 10 and

P
k2CE

CN E; kð Þ ¼ 6.
Therefore, we can see that node E receives the strongest influence
from node A, while node A receives the least influence from node E.
This is happening due to the fact that node E has a lower degree
compared to node A and, in addition to that, shares fewer common
neighbors with its adjacent nodes compared to the number of com-
mon neighbors between node A and its adjacent nodes and, there-
fore, invests more resources on A, compared to the A’s investments
on node E.

3.2. Mutual influence random walk (MIRW) algorithm

Structural similarity between vertices, which are normally hid-
den, recognizes the similarities between nodes utilizing topological
and structural information of the graph. If the structural similarity
between two nodes is significant, the creation of a link between
them is extremely probable. In the random-walk-based methods,
if the structure of the network is traversed more efficiently, the
similarity score between nodes is calculated more accurately. The
local random walk and superposed random walk were some of
the most effective and efficient examples of the random walk
approach. They possess a significant advantage compared to other
random-walk-based methods, e.g., random with restart walk,
which is that these methods used quasi-local information of the
network. Therefore, they significantly reduce computational com-
plexity. The key contribution of LRW and SRW was limiting the
number of steps that the walker could take. In this method, the
transition probability matrix, i.e.; PR, could be computed using
the following rule:

PRij ¼
1

degreeðiÞ if i; jð Þ 2 E

0otherwise

(
ð6Þ

After the transition probability matrix was obtained, the proba-
bility of the walker starting from node i and reaching node j after t
steps can be computed as follows:

pi;jðtÞ ¼ PRTpi;jðt � 1Þ
In the above setting, pið0Þ is aN � 1 vector, with the ith element

equal to1 and all the other ones equal to 0. Therefore, according to
LRW, the similarity between a pair of nodes is computed using the
following formula:

sLRWij tð Þ ¼ ki
2 Ej j :pi;j tð Þ þ kj

2 Ej j :pj;i tð Þ ð7Þ
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Where k and E are referred to as the degree of node and number
of existing links in the network, respectively.

SRW has improved the LRW by continuously releasing walkers
from the source node, resulting in a higher similarity between
node pairs that were near each other. The similarity resulted from
the SRW method can be obtained as follows:

sSRWij tð Þ ¼
Xt

l¼1

sLRWij lð Þ ð8Þ

Even though LRW and SRW possessed many advantages like
lower computational complexity and higher accuracy in predicting
the missing links, compared to the previous works, their main
drawback was that the process of computing the transition proba-
bility matrix was only according to the degree of the source node
and therefore the results of the randomwalk were completely gen-
erated by random and are not accurate enough in capturing net-
work structure and finding similarities between pairs of nodes.
However, each node in the network can possess specific impor-
tance in its neighborhood and should not be treated like other
nodes. To overcome this limitation, we proposed a biasing function
to distinguish between every relationship of a node with its neigh-
bors. The biasing function that is introduced in this article takes
advantage of the mutual information concepts. This approach mea-
sures the influence that each node possesses on its neighbors.
Therefore, the probability of the walker locating in a node, choos-
ing one of its neighbors for the next step, is computed proportion-
ally to the influence that it gets from that neighbor. The mutual
influence between the pair nodes can be calculated by Equation
(3). As previously stated, this concept is symmetrical and assumes
that the influence that a node has on its neighbor is equal to the
influence it gets from that neighbor. However, to produce more
effectively our biasing function, we need to consider the influence
of nodes on each other to be asymmetric and prefer to use AMI
instead of MI. In this way, the probability of moving from node i
toward node j is not the same as moving from node j toward nodei.
Therefore, the authors use Equation (4.d) to compute a transitional
probability for each pair of nodes. Consequently, we introduce a
new matrix transition according to Equation (9). In this way, by
tuning the parameters of the biasing function, one can force the
walk to visit nodes preferentially with high values of asymmetric
mutual influence.

PRij ¼ PR Xtþ1 ¼ jjXt ¼ ið Þ ¼
Pij � log Pij

pi�pjP
j�C ið Þ Pij � log Pij

pi�pj

� � ¼ AMIijP
j�C ið ÞAMIij

ð9Þ

Our proposed algorithm (Mutual Influence Random Walk)
allows the use of an asymmetric mutual influence matrix. It is

more likely to move towards a node by which it is more affected.
The MIRW algorithm is defined using Equation (10):

SMIRW
ij tð Þ ¼

Xt

l¼1

ki
2 Ej j :

AMIijP
j�C ið ÞAMIij

lð Þ þ kj
2 Ej j :

AMIjiP
j�C ið ÞAMIji

lð Þ ð10Þ

By defining an appropriate weight for each pair of vertices (i, j),
the walker jumps from one node to a neighboring node with a pref-
erence towards the link with higher weight. The pseudo-code of
the proposed method is indicated below.

Algorithm 1-The implementation procedure of MIRW
similarity

Input:G= (V, E) with n=|V|, m=|E|Output:AUC and
PrecisionBegin algorithm1: Divide the original network G
into training set Gtrain and test set Gtest2: For each pair of a
node (i,j) in Gtrain do3: Compute the Asymmetric Mutual
Influence (i,j)4: End for5: For each unconnected pair of
nodes (x,y) in Gtrain do6: Compute the similarity score of the
edge(x,y) as Sxy using Eq (6).7: End For8: Arrange the list of all
Sxy in descending order9: Insert top-L edges from the ordered
list to Gtrain. //L is the number of removed edges from the
original network10: Compute AUC and Precision11: End
algorithm

4. Experimental analysis

In this section, to investigate the efficiency of the proposed
method, the authors have conducted some experiments and
reported their results. The proposed method’s performance is eval-
uated against some of the state-of-the-art link prediction methods.
These methods were categorized according to the network’s struc-
ture to local, global, and quasi-local categories. In the following
sections, we describe the details of datasets used for performance
analysis, compared methods, metrics for evaluation, and the
results evaluations and comparisons. All the experiments were
performed in a desktop pc equipped with a quad-core Intel i7
2.20 GHz processor and 16 GB RAM.

4.1. Datasets

The proposed approach is evaluated on real-world datasets.
These real-word networks have some features, including the num-
ber of nodes, edges, average clustering coefficient, average shortest
path, etc. A detailed description of these properties can be found in

Fig. 1. A. Before inferring Asymmetric Mutual Influence B. After inferring Asymmetric Mutual Influence.
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Table 1. Columns from left to right of Table 1 are respectively: net-
work name, number of nodes (|V|), number of edges (|E|), average
degree (hKi), average clustering coefficient (hCi), average shortest
path length (ASPL), diameter (D). Each dataset has been collected
from different domains for research and analysis purposes. Zachary
Karate Club is a network consisting of 34 members of a university
karate club, and each edge describes a friendship relation (Girvan
and Newman, 2002). FOOTBALL is also a network of football games
between college teams (Lusseau et al., 2003). DOLPHINS is a net-
work representing relationships between some dolphins (Watts
and Strogatz, 1998). CELEGANS is a neural network of the nema-
tode Caenorhabditis Elegans (Coleman et al., 1957). PHYSICIANS
is a network of 246 physicians being friends or trusting each other
(Melián and Bascompte, 2004). Food is a food web consisting of
128 nodes and 2075 edges (Dorsey, 1991). SmaGri is a citation net-
work in which nodes are documents, and a link is formed if a doc-
ument is cited by another document (Bu, 2003). Yeast is a network
describing interactions between proteins (Newman, 2006). NetS-
cience is a co-authorship network connecting scientists (Datasets,
2015). King James is a network of vocabularies co-occurring in
the same sentences (Leskovec et al., 2007). CA-GrQc is a collabora-
tion network covering scientific collaborations between the
author’s papers (Lü and Zhou, 2011).

4.2. The evaluation criteria

For assessing the efficiency of the proposed method against
compared methods, we need some evaluation metrics to measure
how well each method is working. The two metrics used here are
the area under the receiver operating characteristic curve (AUC)
and precision. In the following subsections, we briefly introduce
each metric separately, and then we describe the evaluation
process.

4.2.1. AUC (Chowdhury, 2010)
The AUC is the most common metric for measuring how well a

method distinguishes the missing link, i.e., links that will appear in
the future, and non-existent edges, i.e., a pair of nodes that are not
going to be connected. Almost all link prediction methods have
been evaluated using this metric. In theory, this metric ranks all
the non-observed links using their given score. It then counts the
number of times a randomly selected missing edge is higher com-
pared to a randomly chosen non-existent edge.

This is a time-consuming process, so in practice, when we want
to evaluate a method instead of ranking all the non-observed
edges, at each time, we just randomly select a missing edge and
a non-existent edge and compare their scores. In n independent
comparison, if n’ is the number of times that the missing edge

has a higher score than the non-existent edge, and n‘‘ is the num-
ber of times that both of them have the same score, then the AUC
can be calculated as follows:

AUC ¼ n
0 þ 0:5n}

n
ð12Þ

If a link prediction model gives a score to non-observed links
randomly, then the AUC will be equal to 0.5. So, if the resulted
score is higher than 0.5, it means that the model performs better
than random performance.

4.2.2. Precision
The precision metric is used to measure how well the model

predicts missing edges right. In other words, precision is for mea-
suring the accuracy of the model. To measure the precision of a
model, first, we need to rank all the non-observed edges using their
given score in descending order. Then out of top-L node pairs that
have the highest score, we count the number of them that are a
missing edge. Suppose Lr missing edges exist in the top-L node pair.
This means that the precision of the model is equal to:

precision ¼ Lr
L

ð13Þ

4.2.3. Determination of random walk length
According to (Liu and Lü, 2010), there is a positive correlation

between the average shortest path distance and the appropriate
length of the walk. Thus we find the best value of random walk
length with respect to the average shortest path.

4.3. Comparison methods:

To evaluate our proposed method, we consider several baseli-
nes and state-of-the-art link methods from different categories,
i.e., local, quasi-local, and global. In this section, these methods
are introduced.

Local methods:

� Jaccard coefficient: this method computes the similarity of the
node pair using the fraction of common neighbors they share
relative to the total number of their neighbors. Jaccard coeffi-
cient for a pair of nodes can be computed as follows (Ou
et al., 2007):

JC i; jð Þ ¼ CðiÞ \ CðjÞ
CðiÞ [ CðjÞ

CðiÞshows the first-order neighborhood of node i 2 V.

Table 1
Topological details of real-world benchmark networks.

Network |V| |E| <K> <C> ASPL D

1 Karate 34 78 4.5880 0.588 2.408 5
2 Football 115 613 10.661 0.403 2.508 4
3 Dolphins 62 159 5.1290 0.303 3.357 8
4 Celegans 297 2148 14.465 0.308 2.455 5
5 Physicians 241 1098 9.1120 0.251 2.490 5
6 Food 128 2075 32.422 0.335 1.776 3
7 SmaGri 1024 4916 9.6020 0.349 2.981 6
8 Yeast 2375 11,693 9.8470 0.388 5.09 15
9 NetScience 1461 2742 3.7500 0.878 5.82 17
10 King James 1733 9131 18.500 0.163 3.38 8
11 CA-GrQc 5242 14,496 6 0.529 7.60 17
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Table 2
AUC results of different algorithms compared to the proposed method.

Local Quasi-local Global Proposing
Network JC RA AA CCLP LP LRW SRW RWR MIRW

Karate 0.7464 0.7639 0.7733 0.8404 0.7898 0.8629 0.8648 0.8056 0.9057
Football 0.6443 0.6385 0.6386 0.8214 0.8472 0.8380 0.8433 0.8420 0.8603
Dolphins 0.7088 0.7078 0.7092 0.7460 0.7806 0.7786 0.7803 0.7363 0.8001
Celegans 0.8000 0.8767 0.8719 0.8670 0.8648 0.8666 0.8697 0.8697 0.8905
Physicians 0.7304 0.7247 0.7240 0.8529 0.9278 0.9094 0.8564 0.9256 0.9337
Food 0.6495 0.6195 0.6071 0.6323 0.6580 0.6102 0.6245 0.6103 0.6761
SmaGri 0.7908 0.8477 0.8432 0.8642 0.9059 0.9244 0.8676 0.9312 0.9247
Yeast 0.9116 0.9134 0.9083 0.9090 0.9560 0.9632 0.9115 0.8684 0.9705
NetScience 0.6834 0.6524 0.6424 0.9118 0.9950 0.9149 0.9924 0.9965 0.9976
King James 0.9399 0.9458 0.9234 0.9480 0.9527 0.9414 0.9843 0.9802 0.9862
CA-GrQc 0.8337 0.8462 0.8341 0.9263 0.9668 0.9172 0.9698 0.9698 0.9837

Fig. 2. ROC Curve comparison for the proposed method vs. local methods, quasi-local and global methods.
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Fig. 2 (continued)
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� Resource allocation: this metric also takes advantage of the
concept of common neighbors to compute the similarity
between a pair of nodes but penalizes the common neighbors
with a higher degree. Resource allocation for a pair of nodes
can be calculated as follows (Zhou et al., 2009):

RA i; jð Þ ¼
X

z2jCðiÞ\CðjÞj

1
jC zð Þj

� Adamic-Adar coefficient: this metric works in a similar way to
resource allocation, and the common neighbors with lower
degrees contribute more in the similarity calculation process;
however, the difference between these two methods is the
way they penalize nodes with higher degrees. Adamic-Adar
coefficient is computed as follows [58]:

AA i; jð Þ ¼
X

z2jCðiÞ\CðjÞj

1
logjC zð Þj

� CCLP: this metric also uses the common neighbors of node
pairs, but instead of considering all the common neighbors
equally, it assigns weights to them using the clustering coeffi-
cient of that node. CCLP for a pair of nodes is computed as fol-
lows (Wu et al., 2016):

CCLP i; jð Þ ¼
X

z2jCðiÞ\CðjÞj
ClusteringCoefficientz

Quesi-local methods:

� Local random walk: this similarity index uses random walks
and measures the similarity between a pair of nodes using local
random walks (Liu and Lü, 2010):

SLRWi;j ¼ ki
2jEj :pijðtÞ þ kj

2jEj :pjiðtÞ

In this formulation, pxyðtÞ is the probability of reaching from
node x to node yin t steps.

� Superposed random walk: this method works using a local
random walk but gives more scores to the nodes nearby (Liu
and Lü, 2010).

SSRWi;j ¼
Xt

l¼1

SLRWi;j ðlÞ

� Local path: this is a path-based method that uses paths with a
length of 2 and 3 to compute the similarity between node pairs,
but paths with a length of 2 are more important (Yao et al.,
2018).

LP ¼ A2 þ aA3

Where A is the adjacency matrix.
Global methods

� Random walk with restart (Tong et al., 2006): in this method,
to find the similarity between a node and other nodes, a random
walk is started from that node, and at each step, the walker
decides the next node using the transition probability of edges.
Also, the walker may return to the start node with the probabil-
ity of a. Finally, the similarity between the start node and other
nodes is determined using the probability of reaching that node.

4.4. Experimental results

To evaluate our proposed method against other methods, we
randomly remove 10% of edges from a dataset and consider them
as missing edges. The remaining 90% of edges consist of the train
set. Then we consider all the other node pairs that are not con-
nected as non-existent edges. The union of these two sets of edges
forms the non-observed edge set. After using each method to com-
pute the score of all the non-observed edges, we evaluate the
method using AUC and Precision. This process is repeated ten times
for each dataset, and the average of them has been reported as final
results.

Table 2 illustrates the results of our proposed algorithm and
other comparing methods on eleven real-world datasets. The best
AUC obtained for each dataset has been shown in highlighted in
bold. It is obvious that although quasi-local methods, i.e., LRW,
SRW and LP, and global methods, i.e., RWR are computationally
more expensive compared to local methods, i.e., JC, RA, AA, and
CCLP, they have achieved a significant advantage in results almost
for all the networks. For example, in the Physicians network, global
and quasi-local methods have achieved over 10% higher AUC com-
pared to local methods. Comparing the proposed method to the
other methods, we understand that MIRW has significantly outper-
formed local, quasi-local, and global methods, which proves that
MIRW has a huge advantage over all of them. In particular, com-
paring to the global method, i.e., RWR, it has been a 10%, 7%, and
11% improvement in AUC in karate, dolphins, and yeast networks,
respectively, which is remarkable. Also, comparing to local meth-
ods, the performance of the proposed method was outstanding.
For instance, in football, dolphins, and SmaGri networks, there
has been an increase of 22%, 10%, and 8% resulted in AUC, which
means that MIRW has considerably outperformed all the baseline
local methods. In addition to that, comparing to quasi-local meth-
ods, the obtained results are very noticeable. To be more specific, in
most of the networks, MIRW has significantly outperformed both
LRW and SRW simultaneously, except for King James and NetSi-
cence, in which the performance of MIRW was competitive. This
is very important because it proves that using the concept of

Table 3
top precision results of different algorithms compared to the proposed method.

Local Quasi-local Global Proposing
Network JC RA AA CCLP LP LRW SRW RWR MIRW

Karate 0.0000 0.1999 0.2285 0.0571 0.1999 0.3141 0.2571 0.3698 0.3999
Football 0.3474 0.2917 0.2917 0.0000 0.2524 0.1999 0.2950 0.2196 0.3802
Dolphins 0.2034 0.0666 0.1333 0.0700 0.2033 0.1666 0.0666 0.1333 0.2077
Celegans 0.1333 0.0980 0.1366 0.1300 0.1400 0.1433 0.1566 0.1300 0.1625
Physicians 0.1195 0.1739 0.1521 0.1200 0.1195 0.1521 0.1739 0.1413 0.1883
Food 0.0400 0.1200 0.1200 0.1470 0.1370 0.1366 0.1367 0.1250 0.1800
SmaGri 0.0110 0.1800 0.1933 0.2166 0.2000 0.1066 0.1066 0.1166 0.2233
Yeast 0.5800 0.4900 0.7200 0.7000 0.6800 0.8600 0.7300 0.5200 0.8900
NetScience 0.6663 0.5453 0.5119 0.4800 0.3120 0.5400 0.5400 0.5500 0.6900
King James 0.4700 0.6340 0.5126 0.8300 0.4210 0.0900 0.2000 0.1400 0.5600
CA-GrQc 0.1200 0.1300 0.1500 0.1800 0.7800 0.2100 0.2600 0.2200 0.2700

K. Berahmand, E. Nasiri, S. Forouzandeh et al. Journal of King Saud University – Computer and Information Sciences 34 (2022) 5375–5387

5383



Fig. 3. AUC comparison for the proposed method vs local methods, quasi-local and global methods.
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Fig. 3 (continued)
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mutual influence in the transition probability computation process
is very beneficial in the link prediction task.

4.4.1. ROC curve
A receiver operating characteristic curve is a graphical plot that

shows how well a method identifies true positive samples and dis-
tinguishes them from negative samples. We need to plot the true-
positive rate against the false-positive rate at varying thresholds to
have a ROC curve. Fig. 2 illustrates the ROC curves for each network
and evaluates the performance of the proposed method, i.e., MIRW,
against other comparing methods. The MIRW has outperformed all
the methods, including local, quasi-local, and global methods, in
almost all the datasets and has reached the best area under the
curve. From these curves, it can be understood that using mutual
influence to calculate weights of edges can greatly improve link
prediction performance.

4.4.2. Precision
Table 3 summarizes the accuracy resulted from each method

using the top precision metric. The best precision for each network
is highlighted in bold. It is obvious that in most networks, our pro-
posed method has a significant advantage compared to the local
methods. In particular, in Karate, Celeganse, and Food networks,
the proposed method has reached 0.3999, 0.1625, and 0.18 preci-
sion, respectively which is higher than all the local methods. How-
ever, it is clear that in some cases, the local methods have
outperformed all the quasi-local and global methods in terms of
top-100 precision. Compared to quasi-local and global methods,
we can see that the proposed method has shown a competitive
performance and proved to be precise and efficient at the same
time. To be more specific, we can see that almost in all the net-
works, MIRW has gained more precision than LRW and SRW,
which proves that taking advantage of mutual influence improves
the method’s performance in terms of precision. For instance, in
the case of Food, Football, and King James networks, MIRW has
performed 5%, 19%, and 47% better than LRW and 5%, 9%, and
36% better than SRW, which is remarkable. In other networks,
MIRW has achieved acceptable results compared to LRW and SRW.

4.4.3. The varying size of the training set
Fig. 3 illustrates the effect of different training sizes on the per-

formance of the proposed method against other methods. From
this figure, it can be observed that in general, with the increase
of training size, the accuracy of prediction is improving. It is obvi-
ous that almost in all datasets, the MIRW has gained higher AUC
compared to local, quasi-local, and global methods in different
training set sizes. This is very important because it proves that
even when we have access to a small fraction of observed edges,
the MIRW can still predict the non-observed edges with an impres-
sive accuracy compared to the state-of-the-art methods. In partic-
ular, in most of the networks, when the training size is very small,
the proposed method has a significant advantage over the local
methods. For example, in Food, Physician, and Dolphins datasets,
MIRW has 7%, 12%, and 9% higher accuracy than local methods.
Compared to other quasi-local random walk based methods, i.e.,
LRW and SRW, the obtained results for Food, Dolphins, and Physi-
cians networks shows approximately 6%, 5%, and 7% improvement
of AUC for MIRW, which emphasizes the role of mutual influence in
measuring the similarity using random walks. Also, MIRW has a
noticeable advantage over the global method, i.e., RWR, when the
size of the training set is very small and outperforms it in almost
all the networks.

5. Conclusion

In the present research, a new metric similarity is proposed for
link prediction, which considers mutual influence nodes; mutual
influence nodes are the interactions of two nodes between each
other in an asymmetric form. Also, the proposed method takes into
consideration the mutual influence neighbors of the node during
the movement of the random walk to reach the next step and con-
ducts a random walk toward the node in which the source node is
affected; this results in higher efficiency compared with SRW. In
order to prove the performance of our proposed approach, a com-
parative experiment was performed on eleven real-world net-
works. Our proposed approach’s advantages can be observed
evidently in these tests. The experimental findings from tests on
many networks of various sizes indicated that the proposed plan
yielded positive results than other algorithms. In future studies,
the proposed method will have the option to be applied to multi-
layer, weighted, directed, and bipartite networks. Furthermore,
suggesting an approach to specify a proper length of random walk
in the proposed metric in the present study is capable of being an
excellent topic for future studies.
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