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Abstract

Understanding forecast revisions is critical for weather forecast users to determine the optimal
timing for their planning decisions. A set of multi-horizon forecasts for wind speed produced
by the Australian Bureau of Meteorology for 12 weather stations in eastern Australia are
examined. The forecasts are examined in terms of the econometric definition of rationality
and, as a robustness check, the economic value of the forecasts is also assessed using a cost-
loss model. It is demonstrated that while the forecasts exhibit some of the characteristics of
rational forecasts, when official testing is introduced forecast rationality is rejected at all the
weather stations considered. Furthermore, the behaviour of the forecasts is shown to be very
erratic over the course of the day and over forecast horizons. Although there is some evidence
that the official forecasts can provide positive economic value, this metric also indicates that
there is substantial room for improvement.
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1 Introduction

The Bureau of Meteorology (BOM) is Australia’s national weather, climate and water agency.

Through regular forecasts, warnings, monitoring and advice spanning the Australian region and

Antarctic territory, the Bureau provides one of the most fundamental and widely used services of

government. Of particular interest to this research are forecasts of hourly wind speed at weather

stations across Australia which are made by the BOM up to one week in advance, and the public

updates of these forecasts are provided once each day before the target date.

The reliability of forecasts across various forecast horizons is of paramount importance and cannot

be overstated. Two important examples of the importance of forecasts to end users are in bushfire

management and the energy sector. Forecasts of wind speed1 are crucial to the control and

management of bush fires including when and how to deploy fire fighting resources most efficiently

(García-Portugués et al., 2014). The energy sector relies on forecasts to determine optimal

bidding of generation, timing of maintenance and storage of gas for peaking plant production in

the event of wind drought or shadow (Soman et al., 2010; Milligan et al., 1995).

Despite the significant economic importance of accurate wind forecasts, there has been no rigorous

econometric evaluation of the reliability of the official BOM forecasts.2 Lynch et al. (2014)

calculate the correlation coefficient of wind speed forecast deviations from the seasonal and

diurnal cycles in order to evaluate the skill inherent in forecasting anomalies. Pinson & Hagedorn

(2012) compare ensemble wind speed forecasts with a benchmark that is derived using kernel

density estimation. Similar to other weather forecasts, the precision of wind speed forecasts

is often measured by accuracy scores such as the root mean squared error (RMSE) and mean
1In addition to wind speed, it should be noted that forecasts of wind direction, temperature and humidity are

also important in practical settings. The focus in this paper, however, is entirely on forecasts of wind speed and
these forecasts are evaluated in a univariate setting rather than in a multivariate context involving other weather
variables.

2There is, however, substantial interest in forecast evaluation in terms of weather forecasting generally. McLay
(2011) builds a dynamic decision model conditional on variability of revised weather forecasts rather than accuracy
of revised forecasts. Motivated by a simple “flip-flop" decision rule, Griffiths et al. (2019) study the stability of
a sequence of weather forecasts. Smith (2016) presents decision-makers in the energy sector with an example of
how to utilise information contents in a sequence of revised weather forecasts that is known to be inaccurate.
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absolute error (MAE), see for example, Sweeney et al. (2013), Pinson & Hagedorn (2012) and

Xie et al. (2006) .

This paper addresses the problem of forecast evaluation from an econometric perspective and

uses a suite of methods designed to test for the econometric rationality of point forecasts of

wind speed. In essence, rational multi-horizon forecasts require that any revision to forecasts

should incorporate newly available information efficiently and the literature in this area is well

developed (Lovell, 1986; Nordhaus, 1987; Clements, 1997; Clements & Taylor, 2001; Patton &

Timmermann, 2012). The official wind speed forecasts can be interpreted in multiple ways due to

a two-stage production process that the BOM adopts for producing their official weather forecasts
3. The forecasts are first computed using a global numerical weather prediction model, namely

the Australian Climate Community Earth Systems Simulator or ACCESS model, and are then

examined by meteorologists who use their knowledge and experience of local weather features to

post-process the forecasts. By testing the rationality of wind speed forecast revisions, this paper

sheds light on the combination of the efficacy of a large-scale numerical weather model together

with the skill of the BOM’s meteorologists in processing the information relevant to future local

weather conditions.

As an additional robustness check, the paper also provides an evaluation of the wind speed fore-

casts from an end-user perspective using a cost-loss model (Murphy, 1977; Richardson, 2000;

Foley & Loveday, 2020). This paper assumes that wind speed forecast users are primarily con-

cerned about two wind anomaly events, namely, wind droughts and wind gusts. In order to

assess the value of official forecasts in this context, point forecasts of wind speed are converted

into event forecasts, that is, forecasts of the occurrence of each of the anomaly events. In this

way an attempt is made to relate the evaluation of the forecasts to an economic loss function

as opposed to the purely statistical metrics used in the tests of econometric rationality. The

decision-based approach for forecast evaluation has been considered not only by meteorologists

but also by economists. See, for example, Granger & Pesaran (2000a,b) and Pesaran & Skouras
3Details on how the BOM forecasts weather can be found at http://media.bom.gov.au/social/blog/1696/

explainer-how-meteorologists-forecast-the-weather/.
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(2004) for discussion of the links between statistical and economic measures of forecast accuracy.

The forecast evaluation is carried out using the offical BOM forecasts of hourly wind speed made

at daily horizons out to 7 days. Wind speed forecasts of BOM are “fixed event" rather than “fixed

horizon" in the sense that the target is fixed while the horizons of the forecasts change from 7

days to 1 day (see, for example, Yetman (2018)). Fixed-event forecasts provide an effective

way to evaluate how expectations of the target change in response to information arrival. The

hourly data set used in the paper is for 12 weather stations in eastern Australia, three for each of

Queensland (QLD), New South Wales (NSW), Victoria (VIC) and South Australia (SA). Each

station has been selected because of its proximity either to an existing or proposed wind farm,

or to the bushfires of the 2019-20 Australian bushfire season (September 2019 to March 2020),

which has become known colloquially as the black summer.

Very briefly, the results reported here demonstrate that the BOM’s wind-speed forecasts cannot

be regarded as rational forecasts. The results also illustrate differences in the extent of irra-

tionality both across stations and the hours of a day. In addition, limited evidence from simple

quantile regressions suggests that the BOM official wind speed forecasts perform better when the

wind speed is relatively high. Furthermore, examination of internal consistency of a sequence of

forecasts and comparing forecasts with realised wind speed, reveals that these wind-speed fore-

casts mimic problems encountered in the macroeconomic literature on forecasting with real-time

data in the sense that the forecasts may reflect considerable judgmental information (Croushore

& Stark, 2001; Croushore, 2006; Corradi et al., 2009). The major issue which is raised in these

situations is the question of what exactly the forecasters are trying to predict. It certainly seems

that the BOM considers objectives beyond those of simply providing the best wind forecasts

across all horizons. These objectives may include providing advance warning of extreme bush

fire conditions or maintaining consistency between wind speed forecasts and forecasts of other

weather conditions also generated by the numerical weather prediction model.

4
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2 Wind speed observations

Wind speed, or wind flow speed, is a fundamental atmospheric quantity caused by air moving

from high to low pressure, usually due to changes in temperature. Official BOM data on hourly

wind speed and multi-horizon forecasts for up to 7 days ahead have been collected from 12

Australian weather stations. The sample period for the targeted hourly wind speed is from 15:00

on 1 June 2015 to 14:00 on 6 March 2020 comprising 41089 targets (note that the realisation of

the targets is observed up to 22:00 on 5 March 2020). The locations of the 12 weather stations

are indicated in Figure 1 which shows that they should provide a good indication of the efficacy

of forecasts in different positions across eastern Australia.4

In QLD, Cairns and Kingaroy are the closest BOM stations to the Mt. Emerald and Coopers

Cap Wind Farms, while Applethorpe is both near to the planned Macintyre wind farm but was

also at the centre of the bushfires in south east QLD in the summer of 2019. In NSW, Merriwa is

adjacent to the largest proposed wind farm in Australia, the Liverpool Range wind farm which

has a planned 267 turbines with a capacity of 1000 MW. Glen Innes is also close to a wind farm

while Moruya was at the epicentre of the bush fires along the south coast of NSW. The three VIC

stations are all associated with actual or approved wind farms with Stawell being close to the

third largest farm in Australia at the time of opening, Ararat wind farm. Hamilton is also close

to the Grampian National Park bushfire zone. Finally, SA has the highest proportion of wind

generated electricity to total energy demand of all the Australian states and all three weather

stations were chosen because of their proximity to a significant wind farm, namely Snowtown

(Clare), Lincoln Gap (Whyalla) and Wattle Point (Edinburgh) wind farms.

The International System of Units (SI) measurement of speed and velocity is metres per second

(m/s) while the BOM forecasts are published in terms of Knots, that is nautical miles per hour.

The conversion factor of 1 Knot is equal to 0.514444 metres per second has been used to express

all the data in terms of the SI standard.
4The data and code used to generate the results reported in this paper are available upon request from the

corresponding author.
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Figure 1: Illustration of the location of the 12 BOM weather stations in QLD, NSW, VIC
and SA that are used in the analysis.

There seems to be relatively good spread to the statistics of wind speed between the 12 stations.5

There are the low-mean, low-variance stations such as Applethorpe (QLD) and Clare (SA) and

the high-mean, high-variance stations such as Glen Innes (NSW) and Hamilton (VIC). There are

also interesting anomalies like Kingaroy (QLD) having a relatively low mean and variance but

also having the second highest maximum speed recorded at 19.75m/s. The highest maximum

wind speed of 21.61m/s is recorded at Hamilton (VIC).6 From the perspective of generating
5The data shows many hours with zero wind speed. A cup or propeller anemometer does not turn at a low

wind speed (< 0.5m/s) because of internal mechanical friction. There is a small range after the low threshold
value where measurements from this range are prone to errors (Brock & Richardson, 2001). The BOM confirmed
that these observations were in fact recorded wind speed and were not missing observations. The presence of a
large number of zeros precluded the use of a logarithms in the analysis.

6The fastest wind speed ever recorded was measured on Barrow Island, Australia. It was associated with
Tropical Cyclone Olivia on 10 April 1996 and was measured at 113.3m/s.

6
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Table 1

Descriptive statistics of actual hourly wind speed for 12 weather stations in Australia. The sample
period for the observed wind speed runs from 1 June 2015 to 5 March 2020. Wind speeds were provided

in knots, but were translated into metres per second.

Station State Lat. ◦S Long. ◦E Mean Std. Dev. Max

Cairns QLD 16.92 145.78 4.29 2.19 14.56
Kingaroy QLD 26.54 151.84 2.95 1.92 19.75
Applethorpe QLD 28.62 151.94 2.00 1.43 9.52
Glen Innes NSW 29.67 151.69 4.31 2.44 17.54
Merriwa NSW 32.18 150.17 3.64 2.27 15.48
Moruya NSW 35.90 150.14 3.12 2.15 14.40
Sheoaks VIC 37.90 144.13 3.74 2.21 15.95
Stawell VIC 37.07 142.74 3.68 2.10 14.10
Hamilton VIC 37.64 142.06 5.11 2.39 21.61
Edinburgh SA 34.71 138.62 4.49 2.65 18.57
Clare SA 33.82 138.59 2.78 2.03 11.99
Whyalla SA 33.05 137.52 4.95 2.54 16.98

electricity from wind turbines, these statistics should be appraised bearing in mind that 3.5m/s

is the typical speed at which small wind turbines start generating power (cut-in speed). This

means that Kingaroy (QLD), Applethorpe (QLD), Moruya (NSW) and Clare (SA) all have

average wind speeds below the cut-in speed. On the other hand it has been estimated that

average speeds of at least 6 − 8m/s are required for a small wind turbine to be economically

viable. At the other end of the range, turbines reach maximum power generation in the range

10−15m/s and most turbines are braked or stopped at 25m/s (cut-out speed). Finally, it should

also be remembered that the BOM wind speeds are typically measured at height of 10 meters

above ground level. The hub height of wind turbines may reach 100 meters and wind speed

increases with height.

3 Econometric rationality and information flow

The BOM provides multi-horizon forecasts for hourly wind speed yt with t = 1, 2 · · · at horizons

h1 < h2 < · · · < hH . The forecasts for yt made h periods earlier at time t − h are denoted

by ŷt|t−h. Forecast errors are denoted et|t−h = yt − ŷt|t−h. The frequency of forecast revisions

7
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is daily which is lower than the hourly frequency for wind speed observations.7 As the target

date approaches, the wind forecast users observe a number of forecast revisions for the same

target defined as ŷt|t−hs
− ŷt|t−hl

with hs < hl. For forecasts to be rational, any revisions to the

forecasts must incorporate newly arrived information efficiently.8 Isiklar & Lahiri (2007) develop

two measures of information flow in multi-horizon forecasts, the mean square forecast revision

(MSFRh) and the improvement in the forecast accuracy with the new information computed as

the change in the mean squared forecast error (∆MSFEh).

The value of MSFR for a horizon h is computed as the difference in the forecast between horizon

h and h+ 1

MSFRh = E
[
ŷt|t−h − ŷt|t−(h+1)

]2
, (1)

and may be taken as a measure of the informational content of the revision made at horizon h.

As the BOM’s official wind speed forecasts reflect both the output of the ACCESS model and

post-processing by BOM meteorologists, the value of MSFRh incorporates not only information

arrival between two adjacent points in time, but potentially also meteorologists’ behavioural

characteristics. In this sense the MSFRh may be interpreted as the revision effort.

The ∆MSFEh measures the difference in forecast accuracy between horizon h and h+ 1, that is

∆MSFEh = E
[
yt − ŷt|t−(h+1)

]2 − E [yt − ŷt|t−h]2 . (2)

Positive values indicate that forecast revisions result in improvement in forecast accuracy, whereas

negative values suggest a worsened update compared with the forecast made previously.

The fundamental point made by Isiklar & Lahiri (2007) is that for forecasts to be rational,

in the sense that each update incorporates new information efficiently, the revision effort must
7The difference of frequencies in wind speed observation t and forecast horizon h means an increment in h is

equivalent to 24 increments in t. However, instead of using t − 24h to denote the time of forecasting, the paper
follows the general notation t− h, keeping in mind that t and h share different frequencies.

8Based on the assumption of a quadratic loss function there are a number of monotonicities in variance relating
to the rationality of multi-horizon forecasts (Patton & Timmermann, 2012). These derived bounds for the second
moments are implied by rational forecast and hence are only necessary conditions (Lahiri, 2012). Although not
reported here the variance of the BOM multi-horizon wind forecasts largely satisfy these minimum (necessary)
requirements. These results are available from the corresponding author on request.
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be rewarded by an equivalent improvement in forecast accuracy, or in other words MSFRh =

∆MSFEh. This equality between MSFRh and ∆MSFEh may be used to assess forecast rationality

with any non-negative differential between MSFRh and ∆MSFEh providing evidence of forecast

irrationality.

Figure 2 presents the values of MSFRh and ∆MSFEh across 6 horizons for all weather stations in

the sample. The most striking result is that for all the weather stations and across all horizons

without exception, the values of MSFRh are much higher than the values of ∆MSFEh. This

is a quite remarkable result and is a clear indication that the BOM’s forecast revisions do not

only incorporate new information with a view to improving forecast accuracy, but perhaps also

reflect behavioural characteristics that represent either overreaction to new information or are

irrelevant to the realisation of wind speed but are judged to be important for other reasons.9

The robust conclusion that emerges from Figure 2, therefore, is that forecasts of wind speed at

these stations are irrational, at least when judged on this metric.

There are a number of other interesting observations to be made. First, in some cases (Ap-

plethorpe, Clare, Kingaroy, Moruya and Sheoaks), ∆MSFEh for one day and/or two days ahead

is negative. This result suggests short-horizon forecast revisions have actually led to more in-

accurate forecasts. This result may be due to an increase in the bias of the forecasts at short

horizons, a point that is taken up again later. Second, analysing the patterns in MSFRh and

∆MSFEh across horizons helps to identify the timing of information arrival. For some stations

(Edinburgh, Hamilton, Merriwa and Whyalla) there is a non-increasing pattern in both revision

effort (MSFRh) and accuracy improvement (∆MSFEh) as the horizon shrinks, suggesting that

forecast revisions are consistent with the purpose of improving forecast accuracy. Moreover, this

observation suggests that the most valuable information to be incorporated in the BOM’s revised

forecast arrives 6 days before realisation. Cairns is the station where both MSFRh and ∆MSFEh

exhibit a U shape, implying information adopted in one day and two days ahead forecasts is
9Isiklar & Lahiri (2007) and Lahiri (2012) model suboptimal forecast revisions using a parameter to control

how forecasters perceive the impact of news. They show that ∆MSFEh < MSFRh can result from the overreaction
of forecasters to news impact.

9
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Figure 2: Illustrations of revision effort, MSFRh and change in accuracy, ∆MSFEh for the
12 BOM stations. The measurement for h=7 is lost in computing the difference in MSFE.

important. Glen Innes is a perverse case where revision effort appears to be completely incon-

sistent with improvement in forecasting performance. The values of MSFRh at short horizons
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(h = 1 and 2) are larger than the longer horizons but ∆MSFEh in these short horizons gets

smaller. Large revision effort accompanied with small accuracy improvement implies that BOM

neither pursues forecast stability nor optimises skills when forecasting wind speed at some sta-

tions. This feature differs from BOM’s official maximum temperature forecasts, which Griffiths

et al. (2019) find more stable than automated guidance based on a numerical weather prediction

model.

4 Regression-based tests of rationality by horizon

Simple regression based tests of forecast rationality are based on the so-called Minzer-Zarnovitz

(MZ) regression10

yt = αh + βhŷt|t−h + ut (3)

with the test of rationality being given by the joint test

αh = 0 and βh = 1 ∀h. (4)

For h > 1 day the disturbance term ut will exhibit serial correlation of order 24(h− 1) because

of the overlapping forecast problem. Consequently a Newey-West correction is required when

estimating equation (3). Although the order of the serial correlation is known in theory, in

practice there is likely to be remaining serial correlation in addition to that induced by the

overlapping forecasts. As a result the Newey-West estimator is specified with a maximum lag of

168 (one week).

Consider imposing the restriction that βh = 1 in equation (3). This restriction would leave the

interpretation of αh as the bias for each forecast horizon. A negative estimate of bias would mean

that the forecast over-predicts the actual, while a positive value would imply that the forecast

under-predicts the actual. A property of a rational forecast with a symmetric loss function is that

it is unbiased. It is not unreasonable to expect therefore that in these multi-horizon forecasts,
10The MZ regression test and variance and information flow tests do not subsume one another. Rejection of

forecast optimality by one test does not necessarily imply rejection by the other. Each approach may add value
in terms of the interpretation of deviations from rationality.
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the bias will approach zero as the forecast horizon shrinks. In other words, given rational forecast

revisions, one would expect the bias of the forecast to approach zero, from above or from below,

as the forecast horizon shrinks.

Figure 3 plots the estimated bias of the forecasts for all 12 of the BOM stations. Although the

extent of the bias varies from station to station, many stations exhibit a startling pattern of

increasing (over-) prediction with decreasing horizon. In 8 of the 12 stations the bias actually

diverges from zero as the horizon shrinks.

Edinburgh (SA) experiences almost linear growth in bias which passes through zero at a forecast

horizon of 2-days. Cairns (QLD) and Glen Innes (NSW) demonstrate an odd pattern with an

almost constant positive bias (under-prediction) for up to 3 days out and then a sudden change

to negative (over-prediction) bias at 1 day out. Only at Merriwa (NSW) is the pattern more or

less as expected with the bias approaching zero as the horizon shrinks.

Note that the highest over-predictions across all seven horizons are observed in Applethorpe and

Clare, and Table 1 suggests that these two stations have the lowest average wind speed (2.00m/s

at Applethorpe and 2.78m/s at Clare). In fact the four stations, Kingaroy, Applethorpe, Moruya

and Clare, that have the average wind speed under the cut-in speed, are all subject to over-

prediction. This may imply that BOM tends to over-predict wind speed when wind speed is

low. The high-wind-speed stations, such as Cairns, Glen Innes, Hamilton and Edinburgh (with

an exception of Whyalla), are observed with under-predictions.

The results obtained by estimating the full MZ regression in equation (3) for the weather stations

are given in Table 2. The scale of the rejection of rationality in this approach is unprecedented.

None of the stations comes with estimated αh and βh being close to zero and one respectively

at any horizon. The expected pattern is for the estimates to converge to the expected value of

1, either from below or from above, but in an orderly monotonic way as information arrival is

processed rationally. This pattern is observed at 3 of the 12 stations, namely, Cairns (QLD),

Glen Innes (NSW) and Hamilton (NSW). The other stations exhibit a wide variety of behaviour

including, rather perversely, that of Applethorpe (QLD), Sheoaks (VIC) and Clare (SA) where

12
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Figure 3: Plots of the bias of the forecasts for each of the 12 BOM stations for horizons of
1 to 7 days.
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Table 2

The coefficients of MZ regressions in equation (3) for 12 BOM stations over horizons of 1 to 7 days. The
sample period runs from 1 June 2015 to 6 March 2020. The standard errors shown in parentheses are

computed using a Newey-West correction with a maximum lag of 168.

Station Coef. ŷt|t−1 ŷt|t−2 ŷt|t−3 ŷt|t−4 ŷt|t−5 ŷt|t−6 ŷt|t−7

Cairns αh 1.0701 1.3371 1.3586 1.3188 1.2165 1.3459 1.5128
(0.0841) (0.0943) (0.1709) (0.1507) (0.0936) (0.0904) (0.1003)

βh 0.7218 0.7058 0.7649 0.7843 0.8101 0.7624 0.7213
(0.0182) (0.0235) (0.0474) (0.0417) (0.0244) (0.0232) (0.0252)

Kingaroy αh 0.5202 0.6201 0.6444 0.8294 1.0660 1.2433 1.3438
(0.0613) (0.0597) (0.0610) (0.0721) (0.0801) (0.0762) (0.0746)

βh 0.6120 0.6203 0.6392 0.5943 0.5359 0.4903 0.4679
(0.0162) (0.0159) (0.0170) (0.0210) (0.0240) (0.0230) (0.0213)

Applethorpe αh -0.0922 0.0623 0.2089 0.3575 0.5940 0.7594 0.9133
(0.0476) (0.0519) (0.0629) (0.0686) (0.0672) (0.0660) (0.0626)

βh 0.4474 0.4233 0.4047 0.3724 0.3242 0.2880 0.2547
(0.0114) (0.0126) (0.0165) (0.0181) (0.0179) (0.0176) (0.0167)

Glen Innes αh 1.1196 1.2015 1.2387 1.3027 1.2800 1.6052 1.9809
(0.0556) (0.0591) (0.0832) (0.0847) (0.0967) (0.1022) (0.0982)

βh 0.6950 0.7047 0.8084 0.8116 0.8892 0.7919 0.6851
(0.0121) (0.0128) (0.0242) (0.0242) (0.0298) (0.0319) (0.0316)

Merriwa αh 0.7747 0.8469 0.7714 0.8160 0.7856 1.0787 1.4398
(0.0367) (0.0402) (0.0480) (0.0537) (0.0609) (0.0622) (0.0687)

βh 0.7941 0.7916 0.8362 0.8405 0.9500 0.8451 0.7287
(0.0104) (0.0110) (0.0156) (0.0166) (0.0190) (0.0210) (0.0233)

Moruya αh 0.7621 0.7430 0.6594 0.8044 0.9643 1.2201 1.5321
(0.0436) (0.0447) (0.0544) (0.0724) (0.0736) (0.0725) (0.0760)

βh 0.6046 0.6168 0.6333 0.6074 0.6098 0.5388 0.4463
(0.0132) (0.0134) (0.0167) (0.0219) (0.0237) (0.0230) (0.0238)

Sheoaks αh 0.2133 0.3458 0.5049 0.6702 0.8469 1.1380 1.4851
(0.0382) (0.0390) (0.0496) (0.0501) (0.0592) (0.0649) (0.0778)

βh 0.6792 0.6822 0.7372 0.7005 0.6657 0.5928 0.5146
(0.0082) (0.0087) (0.0130) (0.0136) (0.0158) (0.0171) (0.0200)

Stawell αh 0.6093 0.7123 0.8389 0.9834 1.1511 1.3797 1.7268
(0.0396) (0.0391) (0.0467) (0.0503) (0.0592) (0.0659) (0.0785)

βh 0.7149 0.7123 0.7385 0.6987 0.6554 0.5890 0.5041
(0.0101) (0.0100) (0.0133) (0.0137) (0.0162) (0.0169) (0.0200)

Hamilton αh 1.0740 1.2395 1.4989 1.6695 1.8837 2.3191 2.7050
(0.0497) (0.0502) (0.0653) (0.0683) (0.0751) (0.0857) (0.1022)

βh 0.7783 0.7787 0.8119 0.7739 0.7308 0.6306 0.5460
(0.0095) (0.0093) (0.0148) (0.0153) (0.0171) (0.0191) (0.0236)

Edinburgh αh 0.5165 0.7248 0.8113 0.9277 1.2132 1.4690 1.9104
(0.0438) (0.0448) (0.0573) (0.0615) (0.0726) (0.0861) (0.1041)

βh 0.8453 0.8382 0.8348 0.8115 0.7558 0.6960 0.6001
(0.0106) (0.0108) (0.0140) (0.0153) (0.0179) (0.0207) (0.0257)

Clare αh -0.2906 -0.1090 0.1151 0.2753 0.4320 0.6799 1.0208
(0.0546) (0.0603) (0.0668) (0.0689) (0.0776) (0.0790) (0.0933)

βh 0.5781 0.5642 0.5547 0.5246 0.5012 0.4486 0.3801
(0.0095) (0.0109) (0.0137) (0.0145) (0.0171) (0.0176) (0.0211)

Whyalla αh 0.4854 0.6528 0.7078 0.9382 1.1539 1.4058 1.7058
(0.0359) (0.0411) (0.0471) (0.0558) (0.0604) (0.0706) (0.0807)

βh 0.8413 0.8462 0.8524 0.8074 0.7713 0.7144 0.6546
(0.0074) (0.0091) (0.0106) (0.0128) (0.0131) (0.0153) (0.0172)
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5 Regression-based tests of rationality by hour

Considering that the ability of meteorological models to forecast local wind speed may vary

depending on time of a day (Monk et al., 2019), this section focuses on a task of breaking down

the forecasts hour-by-hour to see if any additional performance information can be gleaned.

Consequently, the MZ regression is now applied to each hour

yit = αih + βihŷit|t−h + uit. (5)

The null hypothesis of rationality requires that αih = 0 and βih = 1 for all i = 1, · · · , 24 and

h = 1, · · · , 7 days. The following analysis focuses on the forecasts made at the longest horizon

(7-day ahead) and two short horizons (1-day and 3-day ahead).

Figures 4 and 5, respectively plot the intercept and slope coefficients from the hourly MZ re-

gressions for each of the three horizons considered. The estimates of the intercepts portrayed in

Figure 4 are all far too large at midnight and in the early hours of the morning, decline over

the course of the morning and remain there until 8pm before starting to increase again. This

midnight effect coincides with the finding in Monk et al. (2019) who find systematic overnight

biases in the wind speed forecasts produced by meteorological models. There is less of a struc-

tured pattern in the slope coefficients in Figure 5 but the one promising sign is that the solid

curve for the 1-day forecast horizon is usually closest to the optimal value of 1.

Based on these hourly MZ regressions, it should come as no surprise that the null hypothesis of

the econometric rationality of the multi-horizon forecasts is rejected for every station, at every

hour and for every horizon.11 The best performing stations over the period 8am to 8pm are

Cairns, Glen Innes, Merriwa and Hamilton, although all the formal tests still indicate rejection

of the rationality of the forecasts. Interestingly, these are the stations with relatively high wind

speeds. Together with the observation made in Section 4 that the bias is most marked at low

wind speed stations, the general conclusion appears to be that the higher the average wind speed,
11These results are not presented for reasons of space. They are available from the corresponding author on

request.
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the better the BOM forecasting performance.
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Figure 4: The intercepts, αih of hourly MZ regressions for horizons of 1 (solid line), 3 (short
dashed line) and 7 (long dashed line) days. Forecast rationality requires that αih = 0 for all
i and h.
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Figure 5: The slope coefficients, βih of hourly MZ regressions for horizons of 1 (solid line), 3
(short dashed line) and 7 (long dashed line) days. Forecast rationality requires that βih = 1
for all i and h.
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6 Discussion

There are several fundamental questions that arise out of the rationality test results for the official

BOM forecasts of wind speed. The first of these is simply this: why are the characteristics of

the forecasts so different across stations? The tentative reason that emerges from these results

is that the BOM is better at forecasting in places where average wind speeds are higher. This

question is worthy of research in its own right, but as a first attempt to explore the topic it is

useful to use quantile regression techniques aimed at assessing forecasting performance at low and

high wind speeds respectively.12 Consequently, MZ quantile regressions for 7 forecasting horizons

were implemented for the 25th and 75th quantiles to see if there was any significant difference

in performance. For reasons of space only the results for the slope coefficient are plotted in

Figure 6, in which the long dashed line represents the β̂ coefficient for the 75th percentile of

wind speed and the short dashed line is the same quantity for the 25th percentile. The solid

line represents the coefficient from the ordinary least squares regression. In many instances the

coefficient estimated from the 75th quantile regression is significantly closer to 1, providing some

support to the conjecture.

The puzzling aspect of these results is why the characteristics of the forecasts differ so greatly

across the hours of the day. Generally, the Australian Digital Forecast Database (ADFD) files

with the official forecasts are updated twice a day (around 6am and 6pm each day). While these

discrete revision times may hint at granularity in the resolution of forecast performance, they do

not really explain the consistently poor performance around midnight and the early hours of the

day. In general, forecast performance is determined by two factors, namely, the data generating

process of the realisation and forecaster’s effort. There are, therefore, two possible explanations

for differences across hours. The first is that forecasting effort is not expended equally across the

day by the BOM. On this argument, the BOM would seem to be expending minimal effort to

forecasting wind speed in the hours around midnight and just after. The second, and possibly
12For reasons of space it is not possible to include a description of quantile regression but interested readers

unfamiliar with the method will find that Koenker & Hallock (2001) is a useful survey while Koenker (2005)
provides a comprehensive treatment.
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more persuasive, is that wind speed around midnight is very complicated to model and hence

difficult to forecast.

.7

.75

.8

.85

.9

1 2 3 4 5 6 7

Cairns

.45

.5

.55

.6

.65

.7

1 2 3 4 5 6 7

Kingaroy

.25

.3

.35

.4

.45

1 2 3 4 5 6 7

Applethorpe

.5

.6

.7

.8

.9

1

1 2 3 4 5 6 7

Glen_Innes

.6

.7

.8

.9

1

1 2 3 4 5 6 7

Merriwa

.4

.5

.6

.7

.8

1 2 3 4 5 6 7

Moruya

.4

.5

.6

.7

.8

1 2 3 4 5 6 7

Sheoaks

.4

.5

.6

.7

.8

1 2 3 4 5 6 7

Stawell

.4

.5

.6

.7

.8

.9

1 2 3 4 5 6 7

Hamilton

.4

.6

.8

1

1 2 3 4 5 6 7

Edinburgh

.4

.45

.5

.55

.6

1 2 3 4 5 6 7

Clare

.5

.6

.7

.8

.9

1 2 3 4 5 6 7

Whyalla

Figure 6: The slope coefficients of quantile MZ regressions for different horizons. The solid
line is the coefficient from the ordinary least squares MZ regression. The long dashed line
is the coefficient for the 75th quantile regression and the short dashed line is the coefficient
for the 25th percentile.
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The next fundamental question raised by these results is why the performance of the forecasts

at h = 1 is not significantly better than those at longer horizons across all stations? A possible

explanation is that achieving accurate weather forecasts is not the only purpose of BOM. In the

case of wind speed forecasts for a particular location at a given time, the forecast values may

also be used, for example, as an input into a model to predict maximum fire danger with a view

to providing a warning to the public. The two-stage procedure for producing the official wind

speed forecasts enables the meteorologists to adjust the forecast values made by the ACCESS

model in order to achieve this objective. The results show that 1- and 2-day ahead forecasts

tend to over-predict compared with longer horizon forecasts.

On the one hand, it has been argued in the literature that large and rapid revisions of wind speed

forecasts (so-called run-to-run volatility) at short horizon may impose substantial costs on other

wind speed forecast users (McLay, 2011). In this scenario, poor performance at shorter horizons

stems from a desire not to flip-flop (Griffiths et al., 2019). On the other hand, the public may

react more effectively to late warnings than to early warnings. Therefore, it may be that BOM

forecasters intentionally and artificially raise wind speed forecasts (produced by the ACCESS

model) a couple of days before the realisation in order to alert the public effectively.

From this perspective, the shorter the horizon, the more likely BOM forecasters will purposefully

add a bias that results in a forecast much higher than the future realised wind speed. While both

reasons may be an admirable traits from the point of view of public policy, it is clear that the

official forecasts of wind speed contain a substantial amount of judgemental adjustment. The

major issue which is raised in these situations is the question of what exactly the forecasters are

trying to predict and whether or not the forecast figure should in fact be treated as an optimal

point forecast at all.

Finally, during the almost 5 years of data, the BOM has experienced changes in forecasting prac-

tice which have been introduced at different times in different states. For instance, a procedure

of manual adjustment to forecasts for fire warning purpose could be introduced by individual

states at various points of time. Such a procedure often targets forecasts at specific horizons and
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for specific hours which may vary from state to state. Figure 7 plots the forecast biases for each

of the stations by year, but only for the 1-day horizon because it should be the most accurate.

Given the results reported so far, it should certainly not be expected that the value of the bias

exhibits minimal random fluctuations on either side of zero, but it is interesting to ascertain if

there is any evidence of improved performance or changes in forecast practice over the period.

Figure 7 does not present a consistent pattern in how bias changes over time across stations.

This result implies that changes in forecast practice indeed has been different across states and

even across stations within the same state. A limited number of stations, including Kingaroy,

Applethorpe, Glen Innes, Moruya and Clare, have experienced reduction in biases in recent years.

Large over-predictions are observed in many of the stations in 2020, which perhaps can be

attributed to the extraordinary circumstances of the bushfires and to the small sample size,

given that the data end in March. Since it is highly unlikely that the ACCESS model generates

systematic over-predictions over a specific period, it is possible to conjecture that the BOM

may have purposefully manipulated wind forecasts in the first three months of 2020 during the

intensive bushfire period. As a broad generalisation, up to this point, the Cairns’ forecasts

have performed relatively well in comparison to most other stations. Yet in Figure 7, a very

worrying pattern emerges, namely, an almost linear progression over the period from significant

under-prediction to significant over-prediction.

On a more positive note, there is weak evidence to suggest that the 2019 forecasting outcome, at

least in terms of the forecast biases reported here, is marginally better than the preceding years.

This improvement is observed particularly when benchmarked against the immediately preceding

year 2018. Interpreted in a manner as favourable as possible, despite that BOM’s official wind-

speed forecasts serve multiple purposes, pursuing accurate forecasts is one of BOM’s recent

targets and better forecasting performance can be expected in the next few years.
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Figure 7: Estimated biases of the 1-day ahead forecasts for each of the 12 weather stations
broken down by year.

Finally, all the properties of rational forecasts used in this paper are derived from a mean squared

error loss function. This assumption is widely used but is certainly not universally accepted.
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The significance of the over-prediction bias in the wind speed forecasts reported in Section 4 and

particularly in Figure 3, raises the question of whether or not the BOM has an asymmetric loss

function. From the perspective of fighting bushfires it can easily be argued that under-prediction

of wind speed poses more of a problem than over-prediction. However, it is difficult to argue

in favour of a lower cost to over-prediction in terms of the dispersion of pollutants or from

the perspective of the wind energy sector. The properties of rational forecasts in presence of

asymmetric loss and the estimation of the parameters of asymmetric loss functions are, however,

well documented (Elliott et al., 2005; Patton & Timmermann, 2007; Elliott et al., 2008). This

avenue for research looks promising in the light of the results reported here but is left for future

work.

7 Economic value

The rationality assessments in the previous sections rely purely on statistical metrics. In this

section an attempt is made to assess the economic value of the BOM’s wind speed forecasts and

their subsequent revisions based on a cost-loss ratio decision model (Murphy, 1977; Richardson,

2000; Foley & Loveday, 2020). Assume that wind speed forecast users face economic loss L when

a wind anomaly event occurs. If they decide to take an action in advance to protect against the

future wind anomaly event, they need to pay a cost of action C but are rewarded with a reduced

loss L1, with C +L1 < L, when the event occurs. Of course the quantities C, L and L1 are very

problem specific and may in fact be difficult to quantify exactly. However, defining the cost-loss

ratio α = C/(L − L1), where α is now the cost of action relative to the loss prevented, allows

this model to be made broadly applicable in the range α ∈ (0, 1).

The economic value of wind speed forecasts at a given horizon, V , is constructed using the

expected expense of taking action based on three types of forecast, namely, the expected expenses

due to taking action to mitigate the anomaly based on the unconditional probability of the event,

EU , hypothetical perfect forecasts, EP , and the official BOM forecasts, EF . The quantity V is
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now defined as

V =
EU − EF

EU − EP
. (6)

In order to construct an estimate of economic value due to relying on official BOM forecasts, the

three different types of expected expense must be computed.

Case 1: EU

In this case, the decision of whether or not to take action is simply based on the unconditional

probability of occurrence of the wind anomaly event, p. The expected expense, EU , is given by

EU = min{pL, C + pL1}. (7)

Case 2: EP

In a hypothetical scenario where users are provided with perfect wind speed forecasts and only

take action when the wind anomaly event will occur, the user’s expected expense, EP , is

EP = p(C + L1). (8)

Case 3: EF

Now consider using the official BOM wind speed forecasts to inform whether to take action. The

expected expense, EF , depends on three of the four probabilities of the joint events listed in the

following contingency table:

Observed

No Yes

Forecast No Free Hit Miss
Yes False Alarm Hit

The Free Hit is so named because the correct forecast is for no anomaly and thus no action is

required and no expense is incurred. The expected expense EF of using the BOM forecasts is
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then the weighted average of the expenses of the remaining three events,

EF = Pr(False Alarm)C + Pr(Miss)L+ Pr(Hit)(C + L1)

= Pr(False Alarm)C + (p− Pr(Hit))L+ Pr(Hit)(C + L1).
(9)

Define the relative false alarm rate F = Pr(False Alarm)/(1 − p) and the relative hit rate H =

Pr(Hit)/p. The expected expense of taking action based on the forecast is therefore rewritten as

EF = F (1− p)C + p(1−H)L+H p(C + L1). (10)

Combing equations (7), (8) and (10), and using the definition of the cost-loss ratio, α = C/(L−

L1), equation (6) for V can be rewritten as

V =
min{α, p} − Fα(1− p) +H p(1− α)− p

min{α, p} − pα
. (11)

This equation demonstrates that the relative economic value of wind speed forecasts is determined

by both the values of F and H that represent the forecasting performance of wind anomaly

events and the values of p and α that are independent to the wind speed forecasts. Given that

C+L1 < L and hence α ranges between 0 and 1, it follows that V can be computed for all values

of α in this range. Note, however, that irrespective of their accuracy, wind forecasts, can have

negative relative economic values particularly when α gets close to 0 or 1. A very low or very

high cost-loss ratio suggests that simply using climatological information to decide whether to

take action or not for all targeted days is likely a better strategy than relying on the forecasts,

that is EU < EF . Note that if V > 0, and the official forecasts do indeed provide positive value,

the upper bound of V is 1. This limit provides a useful metric for comparison across different

forecasts.

The economic value of the BOM forecasts will now be assessed by considering two different types

of wind anomaly.
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7.1 Wind drought

The first anomaly which is considered is wind drought. If wind speed drops below 3.5 m/s then

most wind turbines stop generating power and if this occurs during the peak hours of electricity

usage, namely 14:00 to 20:00, it is likely that gas operated peaking plants will have to be fired up

to meet demand. Specifically, daily wind drought is observed (or forecast at a given horizon) if

during a peak target period from 14:00 to 20:00, any five or more hourly wind speed observations

(or forecasts at the given horizon) are lower than 3.5 m/s. Accurate wind drought forecasts

are likely to be of critical importance to operators of peaking plants, for example, in helping to

optimise gas storage decisions.

Table 3 presents the frequencies of observed wind drought, p, the relative false alarm rate, F , and

the relative hit rate, H, for forecasts at the horizons of 1-day, 3-day and 7-day, respectively. Wind

drought is observed remarkably frequently. Especially at four stations, Kingaroy, Applethorpe,

Moruya and Clare, where average wind speed is low, wind drought occurs in more than 80%

of the sampled days. Interestingly, the relative hit rate H of wind drought forecasts does not

appear to increase significantly as the forecast horizon shrinks, and H3 is often higher than H1.

As expected, however, the relative false alarm rate, F , does decrease as the horizon shortens.

Table 3

Sample unconditional probability of wind drought, p, together with the sample relative false alarm rate F and
the sample relative hit rate H for forecasts at the horizons of 1-day, 3-day and 7-day, respectively.

p F1 F3 F7 H1 H3 H7

Cairns 0.45 0.44 0.52 0.50 0.89 0.88 0.84
Kingaroy 0.81 0.35 0.32 0.55 0.65 0.69 0.73
Applethorpe 0.94 0.00 0.01 0.08 0.42 0.42 0.42
Glen Innes 0.59 0.20 0.28 0.47 0.78 0.79 0.80
Merriwa 0.73 0.27 0.31 0.58 0.90 0.89 0.90
Moruya 0.89 0.12 0.10 0.33 0.78 0.69 0.72
Sheoaks 0.66 0.05 0.08 0.21 0.61 0.69 0.61
Stawell 0.71 0.12 0.21 0.34 0.73 0.78 0.68
Hamilton 0.37 0.14 0.28 0.35 0.80 0.82 0.66
Edinburgh 0.62 0.10 0.16 0.31 0.73 0.73 0.64
Clare 0.83 0.00 0.02 0.18 0.35 0.39 0.38
Whyalla 0.52 0.06 0.12 0.22 0.66 0.72 0.61
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Figure 8: The relative economic value V of wind drought forecasts at the horizons of 1-day
(solid line), 3-day (short dashed line) and 7-day (long dashed line).

The relative economic values of multi-horizon forecasts for wind drought, calculated using equa-

tion (11) for a cost-loss ratio α ∈ (0, 1), are shown in Figure 8. Note that only positive relative
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economic values are illustrated. It is apparent that using BOM forecasts of wind drought provide

users in NSW, VIC and SA with positive relative economic value over a wide range of values for

the cost-loss ratio. There are four stations, namely, Kingaroy, Applethorpe, Moruya and Clare,

where the positive value is limited to cost-loss ratios greater than 0.8. It is clear from Table 3

that these stations all have very high unconditional probabilities of wind drought. It would ap-

pear therefore that because wind drought occurs very frequently, decision-makers favour taking

action without reference to forecasts, except when the cost of taking action is almost as high as

the prevented loss, that is α ≈ 1.

The economic value of forecast revisions can be ascertained by comparing the values of V across

horizons. Given the same value of α, the relative economic value V of the initial forecasts made

7 days out is always less than that of the revised forecasts made 3 days out, suggesting a positive

economic gain. However, further revisions made between the 3-day and 1-day horizons out do

not necessarily result in a significant increase in economic value. There may therefore be little

gain to forecast end-users in waiting for the 1-day forecasts to be published.

Finally, it is worth noting that taken as a group the forecasts for the QLD stations, Cairns,

Kingaroy and Applethorpe appear to be of very limited economic value. The range of α for

which any value is provided is particularly small by comparison with stations in other states.

This result is particularly concerning given that all three stations have proximity to major wind

farms. Of the three stations, the forecasts provided for Cairns are definitely superior to the

other two in terms of the range of α over which the forecasts provide positive economic value.

Interestingly, however, the 1-day horizon forecasts for Cairns appear to be significantly better

than the 3-day horizon forecasts, suggesting a positive payoff for waiting to take any action.

7.2 Wind gusts

The second wind anomaly considered relates to bushfires. On hot and dry days, strong gusty

wind increases the risk of loosing control of bushfires, thereby endangering nearby communities.

Accurate forecasts of wind gusts during bushfire seasons therefore contribute to effective bushfire
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control and management, thereby having the potential to mitigate damages.13 For the purposes

of this paper, a wind gust is taken to be a wind speed of 4.17m/s (equivalent to 15 km/h)

because this speed represents a threshold that makes a significant difference in the behaviour of

bushfires in the open.14 An anomaly occurs if there are 3 or more wind gusts between 12:00 and

17:00 during the bushfire season from November to February.

Table 4

Sample unconditional probability of wind gust anomalies, p, together with the sample relative false alarm rate F
and the sample relative hit rate H for forecasts at the horizons of 1-day, 3-day and 7-day, respectively.

p F1 F3 F7 H1 H3 H7

Cairns 0.17 0.13 0.10 0.16 0.68 0.50 0.39
Kingaroy 0.11 0.35 0.25 0.23 0.71 0.64 0.44
Applethorpe 0.02 0.61 0.61 0.61 0.83 0.75 0.83
Glen Innes 0.39 0.24 0.15 0.17 0.84 0.67 0.56
Merriwa 0.29 0.16 0.10 0.11 0.66 0.58 0.29
Moruya 0.08 0.23 0.26 0.21 0.72 0.65 0.44
Sheoaks 0.19 0.25 0.20 0.28 0.87 0.80 0.62
Stawell 0.30 0.27 0.21 0.38 0.84 0.80 0.71
Hamilton 0.50 0.21 0.16 0.30 0.75 0.54 0.56
Edinburgh 0.31 0.36 0.34 0.45 0.86 0.80 0.70
Clare 0.08 0.62 0.58 0.61 0.98 0.95 0.82
Whyalla 0.63 0.40 0.40 0.68 0.95 0.92 0.92

It is apparent from Table 4 that the wind gust anomaly is an infrequent event by comparison with

the wind drought (see Table 3). In only two cases, Hamilton and Whyalla, is p ≥ 0.5 observed.

The behaviour of the false alarm rate, F , is counter-intuitive as it does not decrease significantly

as the forecast horizon shrinks. In fact in many cases, though not in either Hamilton or Whyalla,

the false alarm rate actually increases as the forecast horizon decreases. By contrast, the hit rate

behaves very much as expected and increases as the forecast horizon decreases.

Figure 9 shows the economic value of wind gust forecasts at all the stations for the various

forecast horizons. Once again the four stations at which forecasts appear to be least effective are

Kingaroy, Applethorpe, Moruya and Clare, which also happen to be where wind gusts are most

infrequent.
13Note that in addition to wind speed, wind direction, temperature and humidity are also prevailing weather

conditions that affect bushfire behaviour.
14See, for example, https://www.ga.gov.au/scientific-topics/community-safety/bushfire.
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Figure 9: The relative economic value V of wind gust forecasts made at the horizons of
1-day (solid line), 3-day (short dashed line) and 7-day (long dashed line).

At these four stations, positive values of V are only associated with the values of α that are

close 0. Since the anomaly almost never occurs, the best course of action for decision-makers is

30

Page 30 of 36The Economic Record



to ignore the wind gust forecasts unless the cost of taking action is negligible compared to the

expected benefit of the intervention. As for the case of the wind drought forecasts, in general the

7-day forecasts are not competitive and more economic value can be obtained by waiting for the

forecast revisions. There is, however, an added interesting twist to these results, namely, that for

some stations as α increases the economic value of the 3-day forecasts is seen to be greater than

that of the 1-day forecasts. This pattern is not observed in the wind drought forecasts. Finally,

as with the previous case, the QLD forecasts appear to be less useful than those for stations in

other states.

To conclude the discussion of the economic value of the official BOM forecasts a number of

comments of a general nature may be made. It is clear that despite failing the tests of econometric

rationality, the forecasts do offer some positive economic value to mitigate the effects of wind

anomalies. It is clear, however, that in some cases the positive value is confined to very small

ranges in the cost-loss ratio, α. In particular, the forecasts for QLD do not provide as much

value as the forecasts for stations in other areas. Moreover, the maximum value attained by V is

of the order of 0.6 which is substantially below its maximum value of 1. Even when the metric

of economic value is used, there is substantial room for official BOM forecasts to improve.

8 Conclusion

This paper has examined the performance of the official wind-speed forecasts produced by the

Australian Bureau of Meteorology for 12 weather stations along the eastern seaboard of Australia.

The production of the official wind speed forecasts is a two-stage procedure that involves adding

a human touch to the output of a complex large-scale numerical weather prediction model. The

hourly forecasts are produced up to 7 days in advance of the target and are updated daily. The

stations chosen represent a mix of locations important to existing and potential wind farms and

for deploying resources in the event of bush fires. Although the stations are broadly speaking

located in eastern states, there is a mix of coastal and inland positioning.
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The first framework within which the forecasts are examined is that of econometric rationality,

which in essence requires that information flow over the forecast period is used efficiently when

revising the forecasts. On the face of it, the evidence is completely conclusive: the BOM multi-

horizon forecasts are not rational forecasts in the econometric sense. While the task of passing

econometric tests of rationality is quite demanding, the concept of forecasting rationality provides

a formal framework within which it is useful to examine forecasting performance. The second

metric used to judge the forecasts is that of economic value. Here the evidence in terms of a

cost-loss model suggests that the BOM forecasts do indeed provide some positive value, but the

performance across the various stations is patchy and there is room for improvement both in

absolute terms and in the consistency across geographical areas.

This research demonstrates the importance of understanding BOM forecast revisions for various

wind-speed forecast users. The over-predicted BOM forecasts may help with making a successful

plan for controlling bushfires and protecting the public, but they can also mislead wind energy

generators in making suboptimal commitment decisions or maintenance schedules, and hence

cause large operating losses. BOM forecast users may need to re-adjust the official forecasts or

choose forecasts made at longer horizons in their decision making to achieve an optimal level

of individual benefits. Note that the non-increasing pattern in both revision effort measure and

accuracy improvement measure as horizon shrinks are observed in some stations, implying that

the most valuable information are incorporated in the longest horizon forecasts rather than in

short horizon forecasts.

In terms of the way forward, at the very least this research should prompt serious thinking in

terms of forecasting service provided by the BOM as an input into the current strengthening of

services currently in progress in terms of the BOM’s Strategy 2017–2022 roadmap (Bureau of

Meteorology, 2017) for maximising the value and impact that the BOM delivers for Australia.
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