The Effectiveness of CFRP-and Auxetic Fabric-Strengthened Brick Masonry under Axial Compression: A Numerical Investigation

, , & Thamboo, Julian A. (2022) The Effectiveness of CFRP-and Auxetic Fabric-Strengthened Brick Masonry under Axial Compression: A Numerical Investigation. Polymers, 14(9), Article number: 1800.

[img]
Preview
Published Version (PDF 6MB)
110030968.
Available under License Creative Commons Attribution 4.0.

Open access copy at publisher website

Description

Bonded brickwork used for loadbearing walls is widely found in heritage structures worldwide. The evaluation of bonded masonry structures and their strengthening strategies against dynamic actions require appropriate understanding under cyclic loading. Subsequently, a simplified 3D microscale numerical model is developed in this paper to analyse bonded brickwork under cyclic compression. A plasticity-based damage constitutive model to represent damage in masonry bricks under cyclic compression loading was employed, and zero-thickness interfaces were considered with non-linear damage properties to simulate the mechanical behaviour of masonry. A threshold strain level was used to enact the element deletion technique for initiating brittle crack opening in the masonry units. The developed model was validated against the experimental results published by the authors in the past. The models were able to accurately predict the experimental results with an error limit of 10% maximum. Mainly, two types of strengthening materials, possessing (1) high energy absorption characteristics (auxetic fabric) and (2) high strength properties (carbon fibre reinforced polymer composites/CFRP) were employed for damage mitigation under cyclic compression. Results show that the CFRP-strengthened masonry failure was mainly attributed to de-bonding of the CFRP and crushing under compression. However, the auxetic strengthening is shown to significantly minimise the de-bonding phenomenon. Enhanced energy dissipation characteristics with relatively higher ductility (up to ~50%) and reduced damages on the bonded brickwork were observed as compared to the CFRP-strengthened brickwork under cyclic compression loading. Additionally, the auxetic fabric application also increased the compressive resistance of brickwork by 38–60% under monotonic loading, which is comparably higher than with the CFRP strengthening technique.

Impact and interest:

3 citations in Scopus
1 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

47 since deposited on 17 May 2022
25 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 230834
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Asad, Mohammadorcid.org/0000-0002-4306-7198
Zahra, Tatheerorcid.org/0000-0003-1930-5704
Measurements or Duration: 26 pages
DOI: 10.3390/polym14091800
ISSN: 2073-4360
Pure ID: 110030968
Divisions: Current > Research Centres > Centre for Materials Science
Current > QUT Faculties and Divisions > Faculty of Science
Current > QUT Faculties and Divisions > Faculty of Engineering
Current > Schools > School of Civil & Environmental Engineering
Copyright Owner: 2022 The Author(s)
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 17 May 2022 02:32
Last Modified: 01 Mar 2024 04:02