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A B S T R A C T

It is well established that higher cognitive ability is associated with larger brain size. However, individual vari-
ation in intelligence exists despite brain size and recent studies have shown that a simple unifactorial view of the
neurobiology underpinning cognitive ability is probably unrealistic. Educational attainment (EA) is often used as
a proxy for cognitive ability since it is easily measured, resulting in large sample sizes and, consequently, suffi-
cient statistical power to detect small associations. This study investigates the association between three global
(total surface area (TSA), intra-cranial volume (ICV) and average cortical thickness) and 34 regional cortical
measures with educational attainment using a polygenic scoring (PGS) approach. Analyses were conducted on
two independent target samples of young twin adults with neuroimaging data, from Australia (N ¼ 1097) and the
USA (N ¼ 723), and found that higher EA-PGS were significantly associated with larger global brain size mea-
sures, ICV and TSA (R2 ¼ 0.006 and 0.016 respectively, p < 0.001) but not average thickness. At the regional
level, we identified seven cortical regions—in the frontal and temporal lobes—that showed variation in surface
area and average cortical thickness over-and-above the global effect. These regions have been robustly implicated
in language, memory, visual recognition and cognitive processing. Additionally, we demonstrate that these
identified brain regions partly mediate the association between EA-PGS and cognitive test performance. Alto-
gether, these findings advance our understanding of the neurobiology that underpins educational attainment and
cognitive ability, providing focus points for future research.

1. Introduction

It’s widely understood that significant differences in cognitive ability
exist between human beings. However, the biological aetiology behind
this variation remains somewhat elusive. The advent of brain imaging
has enabled the investigation of neural substrates for human cognitive
ability in vivo, leading to the identification of several anatomical and
functional correlates of cognitive ability (Jansen et al., 2019; Knol et al.,
2019; Schmitt et al., 2019).

Previous evidence has suggested that healthy individuals with higher
intelligence tend to have larger brains. The first published study exam-
ining intelligence and brain size reported a correlation of 0.5 in a group
of college students (Willerman et al., 1991). However, these estimates
lessened as sample sizes grew and associated variables, such as height
and socio-economic status (SES) were included in analyses. Several
recent studies have estimated the correlation between intelligence and
intra-cranial volume (ICV) to be between 0.2 and 0.4 (Cox, Ritchie,
Fawns-Ritchie, Tucker-Drob and Deary, 2019; MacLullich et al., 2002;
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McDaniel, 2005; Pietschnig et al., 2015; Rushton and Ankney, 2009),
with the two largest studies to date (N¼ 13,600 and N¼ 8000) reporting
a correlation of 0.19 (Nave et al., 2019) and 0.24 (Pietschnig et al., 2015)
respectively. Although these correlation estimates are modest, the asso-
ciation between brain size and intelligence appears to be almost entirely
due to genetics (Koenis et al., 2018; Posthuma et al., 2002).

Twin studies leverage the shared genes between twin siblings to
disentangle the genetic and environmental influences behind phenotypic
variability, and have contributed substantially to the current under-
standing of cognitive neurobiology. Twin analyses have found that gen-
eral cognitive ability positively correlated both phenotypically and
genetically with total surface area (TSA) however, no correlation was
observed with average cortical thickness (Vuoksimaa et al., 2014; Wal-
hovd et al., 2016). Additionally, the positive association between
cognitive ability and TSA remained significant throughout the lifespan
(Walhovd et al., 2016). Though reportedly uncorrelated at a global level,
some studies have found regional variability in the correlations between
average cortical thickness and cognitive ability, reporting both positive
and negative correlations (Panizzon et al., 2009; Winkler et al., 2010).

Several neuroimaging studies suggest that general intelligence,
termed ‘g’, is most strongly associated with grey matter volume measures
from the pre-frontal cortex, language centres in the fronto-parietal
network and specific regions in the temporal and occipital lobes (Bas-
ten et al., 2015; Gl€ascher et al., 2010; Jung and Haier, 2007). The
morphometry of these regions is also highly heritable in both children
(Lenroot et al., 2009) and adults (Rimol et al., 2010; Thompson et al.,
2001). In addition, twin studies have reported that a high-expanded
surface area (SA) in prefrontal, lateral temporal and inferior parietal
regions was positively associated with general cognitive ability (Vuok-
simaa et al., 2016; Walhovd et al., 2016) and that these regions exhibit
cortical stretching, where increased SA is accompanied by a thinner
cortex. Other cerebral features, such as structural and resting-state con-
nectivity (Dubois et al., 2018), white matter microstructure (Chiang
et al., 2009), the magnitude of local coherence (synchronized functional
activity between regions) (Fjell et al., 2015; Wang et al., 2011) and
neural network efficiency (Neubauer and Fink, 2009; Santarnecchi et al.,
2014; Van Den Heuvel et al., 2009) have also been associated with
general intelligence, highlighting potential functional mechanisms un-
derlying individual variability in intelligence (Santarnecchi and Rossi,
2016). To add further complexity, the regional association of brain
structure with intelligence may change across the lifespan (Fjell et al.,
2015). For instance, the surface area of the prefrontal and anterior
cingulate cortices are most strongly associated with intelligence in chil-
dren (Reiss et al., 1996; Schnack et al., 2014; Wilke et al., 2003), while
the orbitofrontal and middle frontal cortices are most strongly associated
with intelligence in adolescents (Frangou et al., 2004). For cortical
thickness, the association with intelligence changes with age, with the
strength of these associations appearing to peak around age 12 (Schmitt
et al., 2019; Shaw et al., 2006). These findings point to specific
age-mediated structural and functional anatomical events associated
with cognitive ability (Fjell et al., 2015). Together these findings indicate
that a simple unifactorial view of the neurobiology underpinning
cognitive ability is unrealistic, and that the relationship is far more dy-
namic and nuanced.

Intelligence is somewhat malleable through interventional strategies
that include education, improved diet and positive home environments
(Brinch and Galloway, 2012; Protzko, 2016). These correlates may be
important mediators of the association between cognitive ability and
neurobiology. For example, children from lower income families showed
greater variation in cortical surface area and thickness than those from
higher income families (Noble et al., 2015). These relationships were
most prominent in regions supporting language, reading, executive
functions and spatial skills. Variables such as these, which are themselves
influenced by genetics (Lee et al., 2018; Lemery-Chalfant et al., 2013;
Liu, 2019), add to the complexity of unravelling observed relationships
between cognition and brain phenotypes.

Due to the recent availability of large genome-wide association
studies (GWAS) of cognitive-related phenotypes, the relationship be-
tween intelligence and its neurobiological correlates can now be
examined at the molecular level. Recent studies have given weight to
previous twin research and found shared genetic factors between
cognitive traits and brain imaging phenotypes, such as total brain size
and cortical thickness (Elliott et al., 2018; Ge et al., 2018; Schmitt
et al., 2019). In fact, post-GWA studies of intelligence and brain vol-
ume found a genetic correlation (rg) of 0.23, which mapped to 67
shared genes (Jansen et al., 2019), and indicated that brain volume
accounted for approximately 2% of the variance observed in IQ and
1% in educational attainment (Nave et al., 2019). These studies have
predominantly examined this relationship with global anatomical
measures yielding insights into the shared genetic aetiology between
neuroanatomy and cognitive ability (Santarnecchi and Rossi, 2016).
Even so, the phenotypic and genetic correlations between regional
cortical areas and cognitive ability have not been thoroughly explored
(Grasby et al., 2020). Thus, further fine-scale analysis is required to
ascertain the extent to which the genetics influencing cognitive ability
affects the structure of individual cortical regions.

Educational attainment (EA), defined as the number of full-time
years of education an individual receives, is a useful proxy trait for
cognitive ability and is associated with important health-related and
life outcomes such as occupational success, social and geographic
mobility, mate choice and even the age an individual acquires reading
and writing skills (Belsky et al., 2016; Plomin and von Stumm, 2018).
EA is correlated both phenotypically (0.50) and genetically (0.65) with
intelligence (Plomin and von Stumm, 2018; Rietveld et al., 2014) but
is regarded as a combination of both cognitive and non-cognitive
skills, and is influenced by both genes and the environment (Belsky
et al., 2018; Krapohl and Plomin, 2016). For instance, parents’ poly-
genic scores for educational attainment (EA-PGS)1 were shown to still
predict their children’s EA even after adjusting for the child’s own
EA-PGS, substantiating an effect of parental environment on children’s
EA (Belsky et al., 2018). Additionally, children with higher EA-PGS
often display more social mobility and surpass their parents’ occupa-
tional success (Belsky et al., 2018). As ‘years of education’ is a
commonly obtained demographic marker collected in almost every
population or clinical GWAS study, a recent educational attainment
meta-analysis (termed EA3) was able to aggregate a sample size of 1.1
million people, giving unparalleled statistical power (Cesarini and
Visscher, 2017; Lee et al., 2018).

While the current literature suggests that genetics, neuroanatomic
specificity, and age are all critical to understanding the neural sub-
strates of intelligence, few studies have addressed this using large-
scale genetic data. Studies of the shared genetic aetiology between
neuroanatomy and intelligence have predominantly focused on global
measures, perhaps due to the limited statistical power of the GWAS of
intelligence-related phenotypes available at the time. Although this is
one of the first studies investigating the associations between the genes
for education and brain anatomy using a polygenic scoring approach, a
few recent studies have used a similar approach of examining the as-
sociation between PGS for behavioural/cognitive traits and neuro-
anatomy (Aydogan et al., 2019; Foley et al., 2017; French et al., 2015;
Matloff et al., 2019). This study aimed to assess the association be-
tween the genes related to education (as a proxy for general cognitive
ability) and the morphometry of specific cortical regions (3 global and
34 regional). Secondly, we assessed whether the established associa-
tion between an EA-PGS and IQ scores is mediated by identified brain
structures.

1 A polygenic score (PGS) is an individual’s cumulative genetic score for a
complex trait. PGS are derived from aggregating the contributions of all known
trait-associated genetic variants (Sugrue and Desikan, 2019).
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2. Materials and methods

2.1. Participants

Two cohorts were examined in this study. The first cohort was the
Queensland Twin Imaging Study (QTIM) (Blokland et al., 2014) consisting
of 1165 Australian twins and siblings. As it has previously been shown
that the EA-PGS (calculated from European ancestry GWAS), has poor
predictive ability in non-European samples (Lee et al., 2018), the cohort
was filtered by genetic ancestry, determined using principal component
analysis, resulting in a final sample of 1097 participants included in this
study. Principal component analysis was performed to identify ancestry
outliers2 using SmartPCA 1600 in EIGENSOFT 7.2.1 (https://www.hsph
.harvard.edu/alkes-price/software/). This ensured that individuals in the
analysis were of European descent by excluding those individuals who
were more than 6 s.d. from the principal component 1 and 2 centroid
from the 1000 Genomes European population (68 individuals excluded).
Thus, the final sample included 176MZ pairs, 228 DZ pairs, 212 unpaired
twins and 77 siblings, with a mean age of 22.3 years (s.d. ¼ 3.3, range
16–30). Written informed consent was obtained from each participant
and from a parent or legal guardian for participants under the age of 18.
All of these individuals had previously participated in the Brisbane Twin
Memory and Cognition study at age 16 (Wright and Martin, 2004). Thus,
additional information was available on general cognitive ability (full--
scale intelligence quotient; FIQ), as well as Verbal and Performance IQ
(VIQ and PIQ). The mean interval between cognitive testing and mag-
netic resonance imaging (MRI) scanning was 4.4 years (range 0–14
years). Gestational duration, birth weight, and parental socioeconomic
status were also obtained from parental reports. Individuals with sig-
nificant medical, psychiatric, or neurological conditions—including head
injuries, a current or past diagnosis of substance abuse, or current use of
medication that could affect cognition—were excluded from partici-
pating in the study. Zygosity was determined using genome-wide single
nucleotide polymorphism (SNP) genotyping chips (Illumina 610 K).

The second cohort was from the Human Connectome Project (HCP)
(Van Essen et al., 2013), which consists of 1113 ethnically-diverse adults
primarily from Missouri, USA (mean age 28.8, s.d. ¼ 3.7, range 22–37
years) with imaging data available. Individuals of non-European ancestry
were filtered according to i) their self-reported race (white) and ethnicity
(not Hispanic/Latino) and ii) genetic ancestry determined using principal
components analysis (as described for the QTIM cohort). Thus, the final
HCP sample analysed in this study consisted of 723 white,
non-Hispanic/Latino individuals, mean age 29.1 s.d. ¼ 3.5, range 22–36
years, consisting of 119 MZ and 64 DZ pairs, 96 singletons, and 261
siblings (390 individuals excluded). All subjects were scanned on a
customized 3 T scanner at Washington University in St Louis (WashU).
Genotyping was performed on the Illumina Infinium HD beadchip. De-
mographic and behavioural information, including fluid and crystallized
IQ scores, was also collected. Demographic information for both QTIM
and HCP cohorts are shown in Table 1.

2.2. Ethics statement

The QTIM study was approved by the Human Research Ethics Com-
mittees of the QIMR Berghofer Medical Research Institute, the University
of Queensland, and Uniting Health Care at Wesley Hospital. The HCP
study was approved by the internal review board of Washington Uni-
versity (IRB # 201204036).

2.3. MRI acquisition and processing

2.3.1. QTIM cohort
Imaging was conducted on a 4 T Bruker Medspec whole body scanner

(Bruker, Germany) with a transverse electromagnetic (TEM) head coil in
Brisbane, Australia. Structural T1-weighted 3D images were acquired
(TR ¼ 1500 ms, TE ¼ 3.35 ms, TI ¼ 700 ms, 230 mm FOV, 0.9 mm slice
thickness, 256 or 240 slices depending on acquisition orientation (86%
coronal [256 slices], 14% sagittal [240 slices]). Surface area and cortical
thickness were measured using FreeSurfer (v5.3; http://surfer.nmr.mgh
.harvard.edu/) as previously described (Fischl and Dale, 2000). Prior to
FreeSurfer analysis, the raw T1-weighted images were corrected for in-
tensity inhomogeneity with SPM12 (Wellcome Trust Centre for Neuro-
imaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). Total surface
area and average cortical thickness were extracted for 34 regions of in-
terest (ROI) per hemisphere from the Desikan-Killiany atlas (Desikan
et al., 2006) contained within FreeSurfer. Three global measures,
intra-cranial volume, total surface area, average cortical thickness, were
also extracted. Cortical reconstructions and ROI labelling were checked
using the standardised procedures of the ENIGMA consortium (enigma.in
i.usc.edu) (Thompson et al., 2014), with any incorrectly delineated
cortical structures also being excluded from the analysis.

2.3.2. HCP cohort
Details of the specific processing procedures used for the HCP dataset

can be found in previous articles (Glasser et al., 2013; Van Essen et al.,
2013). Briefly, for each subject in the HCP a pair of T1-weighted scans
and a pair of T2-weighted (T2w) scans were acquired, both with a spatial
resolution of 0.7 mm (isotropic voxels). All scans were quality-rated
based on visual inspection before processing, and only those of excel-
lent quality in both categories entered the processing pipeline. The HCP
structural pipelines used a specialized version of FreeSurfer ‘FreeSurfer
5.3-HCP’ software. Registration to atlas space included an initial volu-
metric registration to MNI152 space using FreeSurfer’s linear FLIRT tool,
followed by the nonlinear FNIRT algorithm to align subcortical struc-
tures. Cortical surfaces were aligned further to population-average sur-
faces using FreeSurfer to register each hemisphere to a separate left and
right hemisphere surfaces based on the matching of cortical folding
patterns (Fischl et al., 1999) and landmark assisted registration using the
Conte69 atlas (Van Essen et al., 2012).

Left and right hemispheres were averaged for each of the 68 regions
of the Desikan-Killiany atlas (Desikan et al., 2006) in both cohorts
resulting in a final 34 cortical ROI. This atlas was chosen as it is a com-
mon output from Freesurfer and yields larger regions based on common
cortical folding patterns resulting in regions that have clear boundaries
and are largely consistent between cohorts (Grasby et al., 2020). Aver-
aging the ROIs across hemispheres was done primarily due to the high
genetic correlation between corresponding ROI in each hemisphere
(Strike et al., 2018; Wen et al., 2016), indicating that variation between
corresponding ROI may be more environmental in nature and thus, not
within the scope of this study. Additionally, averaging across hemi-
spheres effectively halves the multiple testing burden, an important
consideration in genetic studies with relatively small associations -
especially in cohorts with smaller sample sizes. Lastly, averaging regions
combats laterality issues such as possible switching of left and right MRI
scans and the need to account for other confounding variables such as
handedness.

2.4. Computation of polygenic scores for educational attainment (EA-PGS)

Standard genotyping, imputation and quality control procedures for
the QTIM sample have been described previously (Colodro-Conde et al.,
2018). Briefly, quality-control, conducted using PLINK 1.9 (Purcell et al.,
2007), included removing SNPs with a minor allele frequency (MAF)
<0.005, SNP call rate (>95%), ancestral outliers and Hardy-Weinberg
equilibrium deviation (p < 1x10�6) before imputation using the

2 Systematic differences in genetic variant frequencies can occur in samples
that contain individuals from different ancestry populations, which can
confound results of GWAS. Genetic principal component analysis (PCA) can be
used to identify individuals in different ancestry groups so they can be excluded
from analyses. For more information see (Abegaz et al., 2019; Price et al., 2006;
Price et al., 2010).
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Haplotype Reference Consortium 1.1 reference panel. After imputation,
prior to EA-PGS calculation, insertions and deletions, ambiguous strands,
and low-quality imputation variants (R2 < 0.6) were excluded. For the
HCP cohort, imputed genotypes in dosage format from the HCP (dbgap:
phg000988.v1) were transformed to best guess using gtool (https://www
.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html). QC procedures
were conducted as described for QTIM.

Summary statistics from the most recent EA GWAS (EA3) (Lee et al.,
2018) were used to calculate the EA-PGS for all individuals in the QTIM
(N ¼ 1097) and HCP (N ¼ 723) cohorts. The EA3 GWAS comprised data
from over a million individuals (N ¼ 1,131,881) of European ancestry
from 71 independent cohorts across the world. As the QTIM cohort was
included in the EA GWAS, ‘leave-one-out’ summary statistics for EA were
required to avoid sample overlap. Leave-one-out summary statistics were
generated by removing all individuals from the Queensland Twin Reg-
istry (which includes the QTIM cohort) from the original dataset and
re-conducting the GWAS.

Using the leave-one-out summary statistics, EA-PGS were calculated
using PLINK 1.9. SNPs were clumped according to Purcell et al., (2007)
guidelines (r2 < 0.1, kb ¼ 10000) to account for linkage disequilibrium
(Purcell et al., 2007). Eight EA-PGSs were calculated using different SNP
p-value significance thresholds: p < 5 � 10�8, p < 1 � 10�5, p < 0.001, p
< 0.01, p < 0.05, p < 0.1, p < 0.5, p < 1. For each individual, at each
threshold, an EA-PGSwas calculated bymultiplying the dosage and effect
size for each SNP, and then these values were summed across all loci. For
the number of SNPs included at each p-value threshold, see Supple-
mentary Table 1.

2.5. Correlations between EA-PGS and examined phenotypes

Partial correlations between all EA-PGS thresholds, the three global
brain measures, IQ, and educational attainment (available only in HCP
cohort) were assessed in SPSS 22.0 (SPSS Inc., Chicago, IL, USA). One
member from each family was selected to ensure individuals were un-
related to avoid dependency among residuals within family. Significance
values were calculated using a two-tailed Students t-test (DF ¼ 979 in
QTIM and DF ¼ 718 in HCP). All correlations were corrected for sex and
age and significance values were Bonferroni corrected for multiple
testing (p < 0.05/effective number of independent observations).

2.6. Polygenic score association analysis

The association between the genetic influences on educational
attainment and neuroimaging phenotypes was assessed by estimating
how much of the variance in brain phenotypes was accounted for by the
EA-PGS in each cohort. The initial neuroimaging phenotypes of interest

were ICV, TSA and average cortical thickness. This was done using a
linear mixed model regression with the EA-PGS as a predictor variable
while accounting for sex, age, age,2 sex*age, sex*age,2 the first ten ge-
netic principal components (to account for residual population stratifi-
cation), and imputation run as fixed effects; relatedness among
individuals was accounted for as a random effect with a genetic relat-
edness matrix, implemented in GCTA 1.91.7 (Yang et al., 2011; Yang
et al., 2014). A partial R2 was used to estimate the variance explained by
the polygenic risk score. Significance values were calculated using a
two-tailed Student’s t-test. To correct for multiple testing error, the
effective number of independent observations (calculated from a corre-
lation matrix of 8 PGS thresholds x 3 ROIs) was estimated using Matrix
Spectral Decomposition (MatSpD) (Nyholt, 2004) before undergoing
Bonferroni correction.

After assessing the association with global brain measures, EA-PGS
were then tested for association with surface area and average cortical
thickness for each of the 34 cortical regions of interest. For these ana-
lyses, TSA or average thickness were added as covariates to the linear
mixed model regression in GCTA to test whether the EA-PGS predicted
variance that was specific to the cortical region. Resulting p-values were
corrected for multiple testing error as described above. The ROI analyses
were conducted separately from those of the global measures as they
included either TSA or average thickness as covariates. Thus, multiple
testing correction was conducted separately for the global measure
analysis and the regional analyses.

We next tested the robustness of observed associations between EA-
PGS and cortical measures when controlling for height, body mass
index (BMI) and socio-economic (SES). In both cohorts, both height and
body weight were collected at the time of MRI scanning. The closest
available approximation for family SES was calculated as a product of
parental income and occupation status at the time of IQ testing (an
average of 4 years prior to scanning) using the Australian Socioeconomic
Index 2006 (AUSEI06) occupational status scale for the QTIM cohort as
previously described (McMillan et al., 2009) (scale 0–100). For the HCP
cohort, SES was computed using income-to-poverty ratio based on
self-reported family income relative to poverty thresholds in the United
States and is adjusted by family size (Diemer et al., 2013; Somerville
et al., 2018) (scale 0–10).

2.7. Testing the association between EA-PGS and cognitive ability

Similar to the analyses described above, the proportion of individual
variance in general cognitive ability that could be predicted by the EA-
PGS was examined. Three measures of IQ were used in the QTIM
cohort: Full IQ, Performance IQ and Verbal IQ (FIQ, PIQ and VIQ)
(Jackson, 1998) and two in the HCP cohort (Crystallized and Fluid IQ)

Table 1
Demographic information for QTIM and HCP samples.

QTIM Sample HCP Sample

Females Males Total Females Males Total

Full sample (N) 683 414 1097 384 339 723
Twins (N) 631 389 1020 234 228 462
MZ pairs (N) 106 70 176 62 57 119
DZ pairs (N) 125 103 228 35 29 64
Age (s.d.) 22.2 (3.3) 22.4 (3.4) 22.3 (3.3) 29.9 (3.3) 28.1 (3.5) 29.1 (3.5)
FIQ/Fluid Intelligencea 111.8 (12.1) 116.8 (13.1) 113.6 (12.7) 115.2 (10.6) 117.1 (11.3) 116.0 (11)
Height (cm) 166 (6.9) 180.7 (7.3) 171.5 (10) 167 (6.6) 181.5 (7.4) 173.7 (10.1)
BMI (kg/m2) 22.8 (3.9) 23.9 (3.7) 23.2 (3.9) 25.6 (5.4) 27.0 (4.3) 26.8 (5.6)
Socio-Economic Statusb 53.3 (20.9) 56.6 (21.2) 54.6 (21.1) 5.3 (2.1) 5.5 (1.9) 5.4 (2.0)
Total Surface Area (mm2) 164049 (13046) 184379 (14713) 171229 (16759) 165203 (12741) 187667 (14511) 175736 (17622)
Average Thickness (mm) 2.5 (0.09) 2.5 (0.08) 2.5 (0.09) 2.7 (0.07) 2.7 (0.09) 2.7 (0.08)

Parentheses indicate standard deviation.
a Full-Scale Intelligence quotient (FIQ) measured in QTIM sample an average of 4 years prior to scanning; Fluid Intelligence measured in HCP sample at time of

scanning.
b Socioeconomic status (SES) is calculated on the Australian Socioeconomic Index occupational status scale in QTIM (scale 0–100) while SES in HCP was computed

using income-to-poverty ratio based on self-reported family income relative to poverty thresholds in the United States (scale 0–10).
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(Weintraub et al., 2014). The GCTA analysis was conducted using the
same covariates as above. Next, PGS-based regressions were conducted to
assess the association between EA-PGS, neuroanatomical correlates and
IQ scores. TSA and the identified cortical regions of interest were used as
covariates (both independently and simultaneously) to ascertain the
amount of variance in the association between EA-PGS and IQ scores that
these regions account for. To test the significance of each regional
cortical measure as a covariate on the EA-PGS association with FIQ score,
the standardized fixed effect (β) and s.e. for each covariate were used in a
Wald test to calculate their associated p-value.

2.8. Mediation analysis

A mediation analysis was conducted to test if the regional cortical
ROIs mediated the relationship between EA-PGS and FIQ (using the EA-
PGS calculated at p < 1 threshold). FIQ was chosen as the best repre-
sentative of general cognitive ability (as it is calculated as a function of
both PIQ and VIQ) (Jackson, 1998). A series of linear mixed models were
fitted in GCTA using sex, age, height, 10 PCs as covariates and the genetic
relationship matrix as a random effect. First, EA-PGS was used as a pre-
dictor of FIQ (path C). Secondly, EA-PGS was used as a predictor of the
mediator variable (the relevant ROI) (path A). Thirdly, both EA-PGS
(path C’) and the moderator ROI (path B) were included as predictors
of FIQ (see Fig. 1). Ideally a bias-corrected bootstrap CI would be used to
assess the significance of the indirect path (Hayes and Scharkow, 2013);
however, this was not a computation option using GCTA. A Sobel test was
conducted to test the significance of the indirect path (AB) so as to
establish whether mediation was occurring (Sobel, 1982). Although the
Sobel test is considered conservative, given that our sample size was
>500 this ought not to impede the decision accuracy in these data (Hayes
and Scharkow, 2013). In addition to testing the regional ROIs indepen-
dently, all ROIs, as well as a model with all ROIs and TSA were included
in multiple mediation models. The effective number of independent
observations was calculated between all ROI and TSA using MatSpD as
described for previous analysis. All comparisons were corrected for
multiple testing using the Bonferroni multiple testing correction as
described.

3. Results

3.1. Correlation between EA-PGS, IQ and brain measures

All EA-PGS thresholds had a significant, positive correlation with TSA
in both samples after correcting for the effects of age and sex (See Fig. 2).
ICV was also significantly correlated with EA-PGSs at most p-value
thresholds in QTIM; however, the association did not survive multiple
testing correction in the HCP sample. Average cortical thickness was
negatively correlated with TSA in both samples. Full-Scale IQ and Fluid
IQ showed significantly positive correlations with TSA, ICV and all EA-
PGS thresholds in both the QTIM and HCP cohorts respectively. Simi-
larly, educational attainment was significantly correlated with all mea-
sures except average thickness in the HCP cohort (EA data not collected
in QTIM) (see Fig. 2). Notably, given the age range in the HCP cohort, it is
possible that individuals are still studying and that this measure of EA
may not reflect their final education level. Further, the EA-PGS explains a
maximum of 1.6% of variance in TSA in the QTIM cohort and 1.2% of the
variance in the HCP cohort (p < 0.005) (Fig. 3, Supplementary Fig. 1).
Similarly, EA-PGS explains up to 0.5% of the variance in ICV in both
cohorts (p < 0.005). The amount of variance explained in cortical
thickness by the EA-PGS did not reach statistical significance at any EA-
PGS threshold in either cohort.

3.2. Secondary analysis controlling for height, BMI and SES

Further examinations were made to assess whether the associations
between EA-PGS and the three global measures were influenced by

height, BMI and SES; all of which have been associated with differences
in both EA and brain structure. The only variable with a significant effect
on all three global measures in both samples was height (see Table 2),
which was negatively associated with average thickness, though the as-
sociation was small.

Socio-economic status had a small but nominally significant (p <

0.05) effect on TSA (std β: 0.04 [0.00–0.08]) and ICV (std β: 0.05
[0.01–0.09]) but not average thickness in the HCP cohort. The effect of
SES was not significant for all three variables in the QTIM cohort.
Adjusting for all three covariates produced very similar results in the
variance explained of global measures and had no significant effect on
regional analysis. Nonetheless, height was included as a covariate in all
subsequent analyses. It is important to note that height, BMI and SES all

Fig. 1. Schematic of mediation model (based on Hayes, 2017) where EA-PGS
represents the independent variable, FIQ the dependent variable and ROI
the mediator.

Fig. 2. Partial correlations between global cortical measures, IQ, educational
attainment and EA-PGS p-value thresholds in both the QTIM and HCP cohorts.
Correlations control for sex and age using only unrelated individuals. Correla-
tions above the diagonal are for the QTIM cohort and below the diagonal are for
the HCP cohort. Magnitude of correlations are colour coded as indicated by
colour bar. White squares indicate correlations that did not meet significance
after correction for multiple testing (p < 0.05). Educational attainment (Years of
Edu) was only available for HCP cohort.
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share a substantial genetic correlation with EA (see Lee et al., 2018) so
adding these as covariates may diminish legitimate effects produced from
pleiotropic genes.

3.3. Cortical surface area ROI analysis

Further analysis of the association between regional surface area and
EA-PGS was conducted. Cortical regions were divided into 5 groups
based on their anatomical location (frontal, parietal, temporal and oc-
cipital lobes and the cingulate) and averaged across hemispheres. The
regions that comprise each area were designated according to the
Desikan-Killiany atlas (Desikan et al., 2006). In the QTIM sample, the
EA-PGS explained some of the variance in seven cortical regions, three in
the temporal lobes and four in the frontal lobes over and above the effect
of TSA – an effect that remained significant after Bonferroni multiple
testing correction (Fig. 3). EA-PGS significantly predicted up to 0.6% of
variance in the surface area of these cortical structures at most p-value
thresholds. These regions were the fusiform gyrus, entorhinal cortex, banks
of the superior temporal sulcus (bankssts) in the temporal lobes, all three
parts of the inferior frontal gyrus (pars orbitalis, pars opercularis and pars
triangularis) and the medial orbitalfrontal gyrus (Fig. 4). In the HCP repli-
cation sample, five of the same regions (up to 0.6% of variance
explained) were also significantly predicted by the EA-PGS, with the
exception of bankssts and medial orbital frontal gyrus (that did not survive
multiple testing correction) (Fig. 4). Most regions were positively asso-
ciated with EA-PGS, indicating that higher EA genetic scores were
correlated with larger SA, except for the medial orbital frontal gyrus that
was in the opposite direction (higher genetic scores associated with
smaller SA). No regions were significantly predicted in either cohort in
any of the remaining lobes or the cingulate after multiple testing
correction (Supplementary Fig. 2). Supplementary Table 2 contains the
standardized effect sizes of all 34 examined ROI SA and EA-PGS
associations.

3.4. Cortical thickness ROI analysis

Based on the findings of SA ROIs that covary with EA-PGS over-and-
above the effect of TSA, and the knowledge that cortical thickness varies
substantially between brain regions (Jha et al., 2018; Schmitt et al.,

2019; Shaw et al., 2006), the associations between EA-PGS and the
average thickness of all 34 cortical ROIs were examined, despite the lack
of a global association. Thickness ROIs showed substantially more dif-
ferentiation between cohorts than was observed in SA ROIs (Fig. 5,
Supplementary Fig. 3). Most of the identified ROIs from the SA analysis
were also significantly associated with EA-PGS (explaining up to 1.5% of
variance), with the exception of bankssts. The pars triangularis association
did not survive multiple testing correction in the HCP cohort (Fig. 5).
Several novel ROIs were also identified. These included the cuneus,
supramarginal, post central and inferior parietal thickness. Most of these
associations did not survive multiple testing correction or were only
observed in one cohort with the exception of inferior parietal thickness
which remained significant in both cohorts (Supplementary Fig. 3). Most
thickness associations with EA-PGS were negative, indicating that in-
dividuals with higher EA-PGS have thinner cortices in these regions.
Supplementary Table 3 contains the standardized effect sizes of all
examined ROI thickness and EA-PGS associations.

3.5. Estimating the effects of cortical surface area on cognitive ability

EA-PGS (at p < 1 threshold) was significantly positively correlated
with IQ scores (r¼ 0.23, p< 0.001) and TSA (r¼ 0.13, p< 0.001) (Fig. 6)
in the QTIM cohort. This threshold for the EA-PGS was chosen as it
generally accounted for the most variance explained in previous global
brain measures and it predicted the largest amount of variance in the
original EA3 GWAS (Lee et al., 2018). Additionally, EA-PGS explained
approximately ~5.7% percent of variance (std β ¼ 0.2, p < 0.001) in FIQ
scores in the QTIM cohort (Fig. 7). When examining IQ sub-types,
EA-PGS accounted for significantly greater variance in VIQ (~7.2%, std
β ¼ 0.23, p < 0.001) than PIQ (~3.6%, std β ¼ 0.15, p < 0.001) (dif-
ference ¼ p ¼ 0.006, two-tailed Students t-test, DF ¼ 979). In the HCP
cohort, EA-PGS predicted up to 2.5% of the variance in crystallized IQ
(std β ¼ 0.10, p < 0.001) but did not significantly predict fluid IQ
(Supplementary Fig. 4).

When accounting for the effect of TSA, the EA-PGS explained ~4.5%
of variance in FIQ scores (a 25% reduction) and a maximum of 5.8% and
2.9% in VIQ and PIQ respectively (a 20% reduction; p ¼ 0.25, p ¼ 0.28
and p ¼ 0.6 respectively; Fig. 7). The reduction in variance explained is
attributable to the effect of TSA on the association between EA-PGS and

Fig. 3. EA-PGS (p < 1) predicts a maximum of 1.6% of variance in total surface area and 0.5% of variance in ICV but does not predict average cortical thickness in both
cohorts of young adults. Results presented are from p < 1 EA-PGS threshold as it generally represented the greatest amount of variance explained in global brain
measures. Error bars represent 95% confidence intervals, Significance is indicated by *; calculated as p < 0.05 (after Bonferroni correction for multiple testing).
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the IQ measures. Next, we tested both the individual and combined effect
of the ROI identified from the EA-PGS prediction in the QTIM cohort by

adding them as covariates (without TSA) to the analysis. The significance
of adding each cortical region as a covariate (over and above the effect of

Table 2
Standardized effect sizes, 95% Confidence Intervals (CI) and p-values of height, BMI and SES on the association between EA-PGS (p < 1 threshold) and global brain
measures.

QTIM HCP

Std β 95% CI Pval Std β 95% CI Pval

EA-PGS 0.231 0.13–0.33 1.08E-05 0.393 0.191–0.582 1.05E-04
TSA Height 0.120 0.077–0.163 2.05E-08 0.308 0.224–0.392 6.21E-13

BMI 0.021 �0.008–0.049 0.153 0.017 �0.031–0.064 0.489
SES 0.033 �0.005–0.070 0.875 0.044 0.003–0.086 0.035
EA-PGS 0.143 0.074–0.203 7.06E-06 0.203 0.07 4–0.321 3.94E-06

ICV Height 0.090 0.051–0.129 2.58E-06 0.167 0.084–0.249 4.29E-10
BMI 0.003 �0.024–0.030 0.883 0.060 0.012–0.108 0.015
SES 0.015 – 0.017–0.047 0.349 0.051 0.006–0.095 0.026
EA-PGS 1.34E-03 �1.23E-03– 0.001 0.614 �0.024 �0.094–0.042 0.50

Av. Thickness Height �0.004 �0.007–�0.001 8.20E-04 �0.060 �0.072–�0.048 1.83E-14
BMI �0.003 �0.004–�0.001 0.799 0.034 �0.038–0.105 0.348
SES 9.60E-05 �0.002–0.002 0.924 �0.014 �0.082–0.054 0.687

Note: Standardized betas for EA-PGS (p< 1) are for the association with the three global measures after accounting for the effects of height, BMI and SES (as well as other
standard covariates).

Fig. 4. Surface area: PGS for educational attainment (EA3) predict four frontal cortical surface areas (left) and three temporal (right) in both the QTIM (lower) and
HCP (upper) cohorts. Brain plots show the location, as well as direction of association (z-scores), for identified regions with blue regions depicting negative asso-
ciations and red scores depicting positive associations. The y-axes of the heatmaps represent the p-value cut-off thresholds for EA-associated SNPs used to calculate the
PGS. The heatmap colour shading represents the amount of variance explained by the PGS. The double asterisk represents significant predictions after Bonferroni
correction for multiple testing. **p < 0.0001, * indicates associations that did not survive multiple testing correction. Only the medial orbitofrontal gyrus showed a
negative association with EA-PGS.
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TSA) was tested using a two-tailed Student’s t-test. All ROIs in the QTIM
sample had a significant effect on the association, except for the ento-
rhinal region that was only nominally so. Additionally, the fusiform and
pars orbitalis had the greatest effect on the association with FIQ (Sup-
plementary Table 4). When examining the effect of all ROI as a group, the
percentage of variance in FIQ explained by the PGS scores dropped even
further to ~3.8% (p ¼ 0.12; Fig. 7). A similar decrease in variance
explained for VIQ and PIQ (~4.8% and 2.5%; p ¼ 0.06 and p ¼ 0.8) was
observed. When assessing the six ROIs and TSA simultaneously as
covariates, the variance explained was significantly different from the
original analysis, indicating that these regions capture a significant
amount of the variance in IQ measures that is explained by the EA-PGS
(Fig. 7). Similar results were seen in the crystallized IQ measures from
the HCP cohort (Supplementary Fig. 5).

3.6. Mediation analysis

As established, FIQ is significantly predicted by EA-PGS (β [95% CI]
¼ 0.25 [0.192–0.310], p < 0.001) (path C). All paths and indirect paths
were significant for all ROI associations remained significant after

Bonferroni multiple testing correction (α ¼ 0.013). The Sobel test
established partial but significant mediation by all ROI, with fusiform
having the largest mediation effect (percentage mediation) and the
medial oribtofrontal gyrus having the smallest mediatory effect (See
Table 3). As a group, all ROIs were still significant mediators as well as
when all ROIs and TSA were added simultaneously as multilevel medi-
ators. The combination of all ROI as multiple mediators had the largest
mediatory effect (3.2%) (see Table 3).

4. Discussion

In this study, the association between the genetic influences on
educational attainment and cortical morphology was examined. Using
two large twin cohorts, robust, positive association was established be-
tween EA-PGS, total surface area and intra-cranial volume but not
average cortical thickness – lending weight to similar results from pre-
vious twin studies (Brouwer et al., 2014; Vuoksimaa et al., 2014, 2016).
These results also suggest that cortical surface area and average thickness
share a small correlation (r ¼ 0.08) at both global and regional levels,
despite both phenotypes being significantly heritable (h2 ¼ 0.8 and

Fig. 5. Thickness: PGS for educational attainment (EA3) significantly associate with the cortical thickness in four frontal regions (left) in at least one cohort and two
temporal (right). Brain plots show the location, as well as direction of association (z-scores), for identified regions with blue regions depicting negative associations
and red scores depicting positive associations. The y-axes of the heat maps represent the p-value cut-off thresholds for EA-associated SNPs used to calculate the PGS.
The heatmap colour shading represents the amount of variance explained by the PGS. The double asterisk represents significant predictions after Bonferroni correction
for multiple testing. **p < 0.0001, * indicates associations that did not survive multiple testing correction. All regions showed a negative association with EA-PGS.
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above; narrow sense) (Panizzon et al., 2009; Reiss et al., 1996; Schnack
et al., 2014; Wilke et al., 2003; Winkler et al., 2010). These results also
support recent studies utilizing large-cohort GWAS. For example, a strong
(~0.8), positive genetic correlation (rg) between TSA and ICV, while a
negative rg between TSA and average cortical thickness was seen in a
recent, exceptionally large (35 k individuals), neuroimaging
meta-analysis (Grasby et al., 2020), as well as smaller studies (Strike
et al., 2018). Significant, positive rg between TSA and EA (~0.2) and
general cognitive ability (~0.2) has also been reported in the ENGIMA
consortium study (Grasby et al., 2020). Similarly, a GWAS of brain

volume (N ¼ 54,407) reported a rg of 0.23 between brain volume and
intelligence and were able to identify 67 overlapping genes, which are
predominantly involved in cell growth pathways (Jansen et al., 2019).
This is in line with other studies that suggest that the phenotypic rela-
tionship between brain size and intelligence may be driven by TSA rather
than cortical thickness (Brouwer et al., 2014; Cox et al., 2019; Cox et al.,
2018; Nave et al., 2019; Panizzon et al., 2009; Vuoksimaa et al., 2014;
Vuoksimaa et al., 2016). Additionally, a study by Cox et al. (2019) found
that global measures account for double the variation in general cogni-
tive ability in older adults compared to middle-aged adults (S. Cox et al.,
2019), suggesting that age may moderate this relationship.

This study found a significant effect of height on our associations, but
not of BMI as was seen in other studies (Pietschnig et al., 2015; Vuok-
simaa et al., 2018). However, our associations still held even when cor-
recting for all three covariates, as was also seen in other studies
(Pietschnig et al., 2015; Rushton and Ankney, 2009). SES was a nomi-
nally significant covariate only in the HCP cohort, possibly due to the
active recruitment of individuals from diverse social backgrounds in this
study. Studies have shown that both genes and environment play sub-
stantial roles in the EA phenotype. In fact, individuals with higher
EA-PGS have been shown to be born in to homes of higher
socio-economic standing and be both socially and geographically mobile
(Belsky et al., 2016, 2018; Walhovd et al., 2016). Additionally, the as-
sociation between EA-PGS and educational attainment has been shown to
be mediated through personality traits such as self-control and neuroti-
cism (Belsky et al., 2016). It is thus understandable that both cognitive
and non-cognitive domainsmay play a role in the association between EA
and brain morphology. Despite these associations, it is important to note
that EA shares substantial genetic correlation with all three examined
variables and thus, by adding them as covariates, it may diminish legit-
imate associations that are driven by pleiotropic genes (Vuoksimaa et al.,
2018).

Significant regional heterogeneity and individual variation exist in
the associations among cortical ROI and cognitive phenotypes (Panizzon
et al., 2009; Vuoksimaa et al., 2016; Winkler et al., 2010). This study
identified seven specific cortical regions associated with EA-PGS over--
and-above the effect of global surface area, four in the frontal lobe and
three in the temporal lobe, which showed replicable association with
EA-PGS in both independent samples. These regions were the medial
orbitofrontal gyrus (part of the prefrontal cortex, responsible for cognitive
process and decision-making) and all three parts of the inferior frontal
gyrus (Broca’s area). Broca’s area is responsible for speech production
(Flinker et al., 2015), perception (Imada et al., 2006; Watkins and Paus,

Fig. 6. EA-PGS (p < 1 threshold) is positively correlated with FIQ (blue; r ¼
0.23) and TSA (green; r ¼ 0.13) in QTIM. The x-axis represents the deciles of EA-
PGS scores, y-axis represents the mean � standard deviation of TSA and FIQ
by decile.

Fig. 7. EA-PGS predicts up to 7.5% of variance in VIQ,
5.8% FIQ and 3.6% in PIQ scores in the QTIM cohort.
This decreases to approximately 5.8%, 4.5% and 2.9%
when TSA is added as an additional covariate for VIQ,
FIQ and PIQ respectively. A further reduction
(approximately 15%) is observed in all three IQ scores
when all ROIs are added as covariates simultaneously
(4.8%, 3.8% and 2.5% respectively). Only the ROI and
TSA analysis was significantly different from the
original analysis. Error bars represent 95% confidence
intervals.
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2004) and language comprehension (Musso et al., 2003) and has been
linked to semantic processing (Belyk et al., 2017; Sabb et al., 2007) and
working memory (Sabb et al., 2007). The surface area of three regions in
the temporal lobe were significantly predicted by EA-PGS, including the
fusiform gyrus implicated in semantic processing (Balsamo et al., 2006),
reading (McCandliss et al., 2003), face perception (Kanwisher and Yovel,
2006) and the learning of languages (Mei et al., 2015; Tan et al., 2011);
the entorhinal cortex involved inmemory, navigation, and perception, and
the banks of the superior temporal sulcus which has been linked to multi-
sensory processing (Hein and Knight, 2008). EA-PGS also showed a sig-
nificant negative association with the thickness of several of these
regions, which aligns with previous twin studies that identified cortical
stretching in regions associated with cognitive ability (Vuoksimaa et al.,
2016). In addition, EA-PGS was negatively associated with the thickness
of the cuneus and the inferior parietal cortex. Our findings substantiate
previous studies that show an expanded SA (and cortical thinning) in
prefrontal, lateral temporal and inferior parietal regions was positively
associated with general cognitive ability (Nave et al., 2019; Vuoksimaa
et al., 2014, 2016).

We hence examined if the surface area of the identified regions
mediated the relationship between EA-PGS and IQ scores. EA-PGS
explained a significantly greater amount of variance in VIQ than in
QTIM. Verbal IQ is a measure of acquired knowledge and verbal reasoning
(Kaufman, 1976), while PIQ assesses non-verbal cognitive ability such as
perceptual organization and processing speed. Previous studies have found
a phenotypic correlation of 0.16 with Fluid IQ (Ritchie et al., 2018) while
another study reported a similar correlation of 0.19 with VIQ on a large
sample of over 13,000 individuals (Nave et al., 2019). The increased
prediction of EA-PGS into VIQ indicates that the variants captured by the
EA-PGS probably relate more strongly to verbal cognitive processing,
which also supports the finding that the EA-PGS were associated with
cerebral regions important for memory and language. In addition, using a
Sobel test we also found significant evidence that all identified ROIs
partially mediate the relationship between EA-PGS and FIQ.

Although the results of this study provide evidence of the association
between EA-PGS and cortical brain regions, there is debate behind the

meaning of cognitive neuroanatomical correlations and how well results
would generalize across populations or individuals at either end of the
cognitive ability spectrum. For example, Pietschnig et al. (2015) and
Richie et al. (2018) discuss whether brain size is a proxy for neuron
number and what compensatory mechanisms may be responsible for
individual differences in intellectual ability (S. Cox et al., 2019; Deary
et al., 2007). The identification of regional heterogeneity associated with
EA in this study adds weight to the hypothesis of compensatory mecha-
nisms accounting for individual variation in intellectual ability
over-and-above the effect of total brain size. Another consideration
regarding the generalizability of our findings is the demographics rep-
resented in our cohorts. The cohorts in this study were filtered to
represent homogenous European populations due to the poor predictive
power of current PGSs in non-European populations. These samples were
also over-representative of people of higher SES and educational
attainment and therefore our results may not extend to individuals of
different ethnic backgrounds, as well as in population with increased
rates of inequality. Lastly, as discussed by Nave et al. (2019), the positive
relationship between brain size and intelligence becomes substantially
weaker when examining individuals at either end of the cognitive ability
spectrum. Thus, the results found in this study reflect associations for
individuals within the normal range of cognitive ability and may not
generalize to individuals with cognitive impairment or neurodegenera-
tive diseases or those of extremely high-functioning cognitive ability.

Together, these findings expand on several previous twin and
genomic studies that have identified a significant association between
general cognitive ability and increased TSA. Additionally, these findings
robustly replicate the positive association between EA-PGS and increased
surface area, and a negative association with average thickness, in
cortical regions related to memory and language in two independent
cohorts. However, some limitations must be acknowledged. First, these
results do not give any indication of the causality of the relationship.
Individuals with a genetic predisposition for higher cognitive ability may
have larger cortical regions; however, the causal directionmay operate in
reverse—whereby the (genetically influenced) larger brain regions may
allow individuals to achieve higher educational attainment. Secondly,

Table 3
Mediation model testing the significance of identified ROIs SA as mediators of the EA-PGS and FIQ association.

ROI Model Std β 95% CI P-value % Mediation Sobel P sobel

C 0.251 0.192–0.310 <2e-16
A 0.113 0.050–0.176 5.54E-04

Fusiform B 0.197 0.140–0.254 9.29E-12
C0 0.225 0.168–0.282 3.29E-14 2.6% 3.100 0.002
A 0.121 0.056–0.186 2.15E-04

Bankssts B 0.151 0.098–0.204 5.49E-08
C0 0.228 0.169–0.287 2.86E-14 2.3% 3.089 0.002
A 0.113 0.048–0.178 5.87E-04

Entorhinal B 0.100 0.047–0.153 2.28E-04
C0 0.240 0.181–0.299 2.12E-15 1.1% 2.423 0.015
A 0.126 0.061–0.191 1.49E-04

Pars Opercularis B 0.156 0.101–0.211 3.97E-08
C0 0.230 0.171–0.289 1.60E-14 2.1% 3.276 0.001
A 0.080 0.017–0.143 1.23E-02

Pars Orbitalis B 0.130 0.077–0.183 1.88E-06
C0 0.236 0.177–0.295 3.49E-15 1.3% 2.360 0.018
A 0.088 0.023–0.153 8.06E-03

Pars Triangularis B 0.165 0.112–0.218 1.00E-09
C0 0.238 0.181–0.295 1.04E-15 1.3% 2.432 0.015
A 0.068 �0.016–0.152 1.06E-03

Medial Orbitofrontal B 0.123 0.072–0.174 1.00E-09
C0 0.243 0.200–0.286 1.04E-15 0.8% 3.240 0.012
A 0.110 0.049–0.171 4.58E-04

TSA B 0.257 0.198–0.316 <2e-16
C0 0.226 0.169–0.283 1.66E-14 2.5% 3.252 0.001

All ROI C0 0.217 0.160–0.274 3.26E-13 3.4%
All ROI þ TSA C0 0.219 0.162–0.276 1.90E-13 3.2%

* Mediation models including sex, age, height, 10 PCs and a genetic relationship matrix as covariates.
Note: β ¼ Beta, CI ¼ Confidence Intervals, % ¼ percentage.
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the use of two geographically diverse cohorts provides confidence in the
robustness of the observed associations, but also resulted in some mea-
sures being either quantified or temporally assessed differently between
cohorts. For instance, in the QTIM cohort, the IQ and SES scores were
obtained from an earlier wave of data collection that was conducted 0–14
(mean 4.4) years prior to MRI scanning. Although IQ is a relatively stable
measure from the age of 16 onwards, giving the growth trajectories
during this age period, it is possible that these measures may not be
entirely representative of an individual’s current cognitive ability at the
time of MRI. Additionally, the measures of SES between cohorts were
calculated according to different indices that may also contribute to
additional variation between cohorts. Thirdly, in this study regions were
averaged across hemispheres using the Desikan-Killiany atlas for ROI
delineation because it results in large regions with consistent borders
between studies. Thus we are unable to test for differences in laterality
between hemispheres (specifically in the language regions). It would be
interesting to conduct similar analyses using vertex-wide measures or
genetically informative parcellations examining differences in laterality
with larger cohorts that can handle the increase in testing burden.
Another important factor to be cognisant of is that EA has a correlation of
0.6 with IQ, and that as a proxy measure this indicates a portion of
variance in this phenotype that is also distinct from intelligence. Given
the small effect sizes of genetic variants known to influence IQ (Savage
et al., 2018), we need much larger sample sizes to be have comparable
power to the EA results in order to conduct a reliable comparison be-
tween EA-PRS and IQ-PRS. Future studies would benefit from the com-
parison of the prediction between EA- and IQ- PGS as sample sizes grow.
Lastly, further statistical, molecular and functional studies are needed to
uncover the specific genes and pathways that underlie both these traits
and dissect the observed genetic overlap.

5. Conclusions

In this study, a significant, positive association was identified be-
tween the genetic influences on educational attainment and total cortical
surface area. Additionally, this study is the first to extend the focus
beyond the established proxy of global brain volume to regional-specific
associations with the genetics of general cognitive ability. Several iden-
tified regions showed a positive association between EA-PGS and SA,
while average thickness was negatively associated in these areas. These
regions, which include Broca’s area, have been implicated in language,
memory, visual recognition and cognitive processing. We also provide
evidence that these brain regions may partially mediate the association
between the genetic predisposition to educational attainment and IQ
scores. However, much research is still required to understand the
combined relationship between structure and function. This study pro-
vides focus points for future research to examine causal links between
brain characteristics and cognitive performance.
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