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Abstract

Competing endogenous RNAs (ceRNAs) have become an emerging topic in

cancer research due to their role in gene regulatory networks. To date,

traditional ceRNA bioinformatic studies have investigated microRNAs as the

only factor regulating gene expression. Growing evidence suggests that

genomic (e.g., copy number alteration [CNA]), transcriptomic (e.g., transcrip-

tion factors [TFs]), and epigenomic (e.g., DNA methylation [DM]) factors can

influence ceRNA regulatory networks. Herein, we used the Least absolute

shrinkage and selection operator regression, a machine learning approach, to

integrate DM, CNA, and TFs data with RNA expression to infer ceRNA

networks in cancer risk. The gene‐regulating factors‐mediated ceRNA

networks were identified in four hormone‐dependent (HD) cancer types:

prostate, breast, colorectal, and endometrial. The shared ceRNAs across HD

cancer types were further investigated using survival analysis, functional

enrichment analysis, and protein–protein interaction network analysis. We

found two (BUB1 and EXO1) and one (RRM2) survival‐significant ceRNA(s)
shared across breast‐colorectal‐endometrial and prostate–colorectal–
endometrial combinations, respectively. Both BUB1 and BUB1B genes were

identified as shared ceRNAs across more than two HD cancers of interest.

These genes play a critical role in cell division, spindle‐assembly checkpoint

signalling, and correct chromosome alignment. Furthermore, shared ceRNAs

across multiple HD cancers have been involved in essential cancer pathways

such as cell cycle, p53 signalling, and chromosome segregation. Identifying

ceRNAs' roles across multiple related cancers will improve our understanding

of their shared disease biology. Moreover, it contributes to the knowledge of

RNA‐mediated cancer pathogenesis.
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1 | INTRODUCTION

Historically, the role of protein‐coding genes has been
studied extensively in the development and occurrence of
cancer. However, in recent years, the investigation of
noncoding RNAs (ncRNAs) has increased attention. For
example, long noncoding RNAs (lncRNAs) and micro-
RNAs (miRNAs) are two types of ncRNAs that play
crucial roles in transcriptional and posttranscriptional
gene regulation.1 miRNAs are one of the most‐studied
regulating factors on gene networks, and their aberrant
expression link with the development of several diseases,
including cancer.2–4 The competing endogenous RNA
(ceRNA) hypothesis postulates that messenger RNAs
(mRNAs) and other RNA transcripts, such as lncRNAs
and pseudogenes, can act as natural miRNA sponges.5

These RNAs influence each other's expression levels by
competing for the same pool of miRNAs through miRNA
response elements (MREs) on their target transcripts,
thereby modulating gene expression and protein
activity.6 Crosstalk between ceRNAs through shared
MREs represents a novel layer of gene regulation that
plays an important role in the physiology and develop-
ment of complex human diseases such as cancers.

Existing ceRNA network analyses have described
many risk‐associated ceRNAs in common cancers.7–11

Nevertheless, these bioinformatic analyses have consid-
ered miRNAs the only factor regulating gene expression.
Additional gene‐regulating factors, namely DNA methyl-
ation (DM), transcription factors (TFs), and copy number
alteration (CNA), also affect ceRNA regulatory net-
works.12 DM plays a critical role in regulating gene
expression through epigenetic control of various biologi-
cal processes and diseases, including cancer. TFs are
commonly deregulated in the pathogenesis of human
cancer and are a significant class of cancer cell
dependencies.13 The CNAs are somatic changes to
chromosome structure that results in gain or loss in
copies of sections of DNA and are prevalent in many
types of cancers. Therefore, current ceRNA‐based com-
putational analyses should be accountable for these
genetic and epigenetic effects.12

Herein, we used a supervised machine learning
approach, ‘Cancerin (Cancer‐associated ceRNA interac-
tion networks)’,12 to identify regulation factors‐mediated
ceRNA networks in a group of genetically related
hormone‐dependent (HD) cancers, using genetic data
derived from The Cancer Genome Atlas (TCGA).
Cancerin follows three main steps to infer genome‐
wide ceRNAs in cancer risk as follows: (i) retrieving
putative miRNA–mRNAs and miRNA–lncRNA interac-
tions; (ii) selecting miRNAs that contribute to the RNA
expression level; and (iii) inferring ceRNA associations

through the hypergeometric test, Pearson correlation
analysis and the sparse partial correlation analysis. We
identified common ceRNA pairs (mRNA–mRNA or
lncRNA–mRNA pairs that have shared the same
miRNA[s]) across multiple HD cancers. All cross‐
cancer ceRNA pairs obtained from the analysis were
involved in survival analysis, functional enrichment
analysis, and protein–protein interaction (PPI) network
analysis. Identification of the function and mechanism of
ceRNAs improves our understanding of RNA‐mediated
cancer pathogenesis. Moreover, finding common ceRNAs
across HD cancers will significantly contribute to our
understanding of the shared biology of HD cancers.

2 | MATERIALS AND METHODS

2.1 | Data sets

The genomic and clinical data of five HD cancer types
(reposited in TCGA were extracted using the Genomic
Data Commons data portal (https://gdc.cancer.gov/
access‐data/gdc-data-portal).14 Cancer types considered
in this study were breast invasive carcinoma (BRCA),
prostate adenocarcinoma (PRAD), colon adenocarci-
noma (COAD), rectum adenocarcinoma (READ) and
uterine corpus endometrial carcinoma (UCEC). The
PRAD, BRCA, COAD, READ and UCEC consist of
499/52 (cases/controls), 1109/113, 480/41, 167/10 and
552/35, respectively. We retrieved HTSeq‐counts and
isoform quantification for RNA and miRNA expression
data. Putative miRNA–mRNA and miRNA–lncRNA
interactions were downloaded from the starBase
(https://starbase.sysu.edu.cn/) and miRcode (http://
www.mircode.org/) databases.15,16 The miRcode15 data-
base facilitates mRNA–miRNA and lncRNA–miRNA
target predictions using a broad searchable map that
contains 10,419 lncRNAs. The starBase16 includes
miRNA–mRNA interactions predicted by probing 108
CLIP‐seq data sets. The TF–gene associations were
extracted from the Dorothea R package,17 covering
1395 TFs and 20,244 genes with 486,676 interactions.

2.2 | Differential expression analysis

First, samples with duplicated IDs were removed from
the retrieved TCGA data set. Then, metastatic samples
were excluded as solid tumours and adjacent normal
groups were compared in the differential expression
analysis. The low‐expressed genes (log counts per
million < 1 in more than 50% of the samples) were
excluded to increase the sensitivity and precision of the
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differential expression analysis. After excluding low‐
expressed genes, RNA and miRNA raw counts data were
re‐normalized using the trimmed mean of M values
method implemented in the edgeR R package.18 Then
data were standardized using the voom method in the
linear modelling for microarrays (limma) R package.19

Differentially expressed (DE) mRNAs, lncRNAs and
miRNAs were identified using a linear modelling method
(lmFit function) followed by empirical Bayes (eBayes)
moderation. The eBayes method borrows information
across all the genes to obtain more precise estimates of
gene‐wise variability. According to linear modelling
results, |logFC| > 1 and false discovery rate < 0.01 were
considered thresholds to identify statistically significant
mRNAs, lncRNAs and miRNAs.20 The RNA and miRNA
expression levels of DE mRNAs, lncRNAs and miRNAs
were selected as independent (X)/dependent (Y) vari-
ables for machine learning models.

2.3 | CNA and DM

We obtained gene‐level copy number values and gene‐level
DM values on CpG sites (i.e., β values) using the Linked
Omics database (http://www.linkedomics.org/login.php),21

a publicly available resource for multi‐omics data from all
32 cancer types in TCGA. The β value was estimated as the
ratio of the methylated probe intensity to the overall
intensity (sum of methylated and unmethylated intensities).
Therefore, the β value ranges between 0 and 1, with 0 being
hypomethylated and 1 being hypermethylated. Linked
Omics21 combines COAD and READ copy number values
and methylation β values. Therefore, we integrated COAD
and READ RNA and miRNA expression samples into a
single analysis of colorectal cancer (COLCA). We use the
‘COLCA’ term to explain results in the combined analysis
of COAD and READ data.

2.4 | Cancerin: a supervised machine
learning approach to identify ceRNA
networks in cancer risk

We used a supervised machine learning approach,
Cancerin,12 to identify genome‐wide ceRNAs in cancer
risk. The Cancerin pipeline requires DE RNA expression
data, gene‐level copy number values, and gene‐level
methylation β values from tumour samples. The Cancer-
in pipeline consists of three main steps as follows:

1. Retrieving putative miRNA–mRNAs and miRNA–
lncRNA interactions.

The putative interactions between DE miRNA and
DE mRNA (obtained from the differential expression
analysis step) were retrieved from the starBase16

and miRcode15 databases, where DE miRNA and
DE lncRNA associations were extracted from the
miRcode.15

2. Selecting miRNAs that contribute to the RNA expres-
sion level.

We used a regularized regression method, the least
absolute shrinkage and selection operator (LASSO), to
evaluate the effect of miRNA regulators on RNA
expression levels.12 LASSO regression is a type of
linear regression that uses shrinkage where data
values are shrunk towards a central point such as
the mean. The mathematical equation of LASSO
regression is given in Equation 1.
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The blue‐coloured part implies the residual sum of
squares calculation, λ denotes the amount of shrinkage
and the green‐coloured section defines the sum of the
absolute value of the magnitude of coefficients. The
LASSO models are equivalent to the linear regression
models when λ= 0. Increasing/decreasing λ value cause
increased biasedness/increased variance, respectively.
We have used the 10‐fold cross‐validation approach to
find the optimal λ value for each LASSO model.

The LASSO models are constructed considering
transcription‐mediating factors such as DM, TF and
CNA. Two model types are fitted for DE mRNAs (see
Equation 2) and DE lncRNAs (see Equation 3).

mRNA expression ~ CNA + DM

+ miRNA expression + TF expression
(2)

lncRNA expression ~ miRNA expression (3)

We executed every LASSOmodel 100 times and non‐zero
coefficients more than 75 times were selected as LASSO
predictors. Unlike multiple linear regression models, LASSO‐
selected independent variables are not associated with any
statistical significance test. Therefore, we followed the
bootstrap procedure for constructing confidence intervals
for frequently selected predictors. The subsequent analysis
selected the statistically significant mRNA–miRNA and
lncRNA–miRNA pairs from LASSO models.
3. Inferring ceRNA associations through the hypergeo-

metric test, Pearson correlation analysis, and the
sparse partial correlation analysis.
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The Cancerin pipeline introduces three steps to infer
ceRNA associations as follows: (i) Pearson correlation
analysis to filter strongly positive correlated ceRNA
candidate pairs; (ii) hypergeometric test to identify
lncRNA–mRNA sharing the significant number of
miRNAs; (iii) using the bnlearn R package22 to calculate
sensitivity correlation (scor) for each candidate ceRNA
pair. The scor value in Step iii does not account for a
combinatorial effect of multiple miRNAs. Subsequently,
strong ceRNAs mediated by multiple moderate miRNA
regulators cannot be detected. Therefore, we utilized an
extension of scor, the multiple scor (mscor) method,
which has been implemented in the Sparse Partial
correlation ON Gene Expression R/Bioconductor pack-
age.23 We used three thresholds as follows: the hypergeo-
metric test p< 0.05, the Pearson correlation coefficient of
lncRNA–mRNA or mRNA–mRNA pairs > 0.40, and the
adjusted p of mscor < 0.05 to infer ceRNA candidates of
each HD cancer. We have extensively described these
methods in our previous conventional ceRNA network
analyses paper.6

Identifying ceRNAs common amongmultiple HD cancer
types may assist in understanding their shared molecular
pathogenesis and drug repositioning. Therefore, we
evaluated shared ceRNA pairs (lncRNA–mRNA or
mRNA–mRNA) among HD cancer types. The statistically
significant ceRNA pairs (RNA A–RNA B) in each HD cancer
were compiled into a single table. Then, we coded a new
variable combining ceRNA candidate pairs, such as ‘RNA A
ensemble ID_RNA B ensemble ID.’ Then, the one‐way table
was created to identify shared values of the derived variable
across all four HD cancer types. Suppose one‐way frequency
equals 4 for a given RNA A–RNA B combination. In that
case, a ceRNA association is classified into ‘the shared
ceRNA network of HD cancers.’ Similarly, if frequency
equals 2 or 3, these ceRNAs have been associated with two
or three cancer types, respectively.

Shared ceRNAs across multiple HD cancer types were
applied in survival analysis, functional enrichment
analysis, and PPI network analysis to evaluate their
predictive ability and biological functions in cancer. We
used survival24 and clusterprofiler25 R packages for
survival and functional enrichment analyses. The shared
ceRNAs among HD cancer combinations were checked
using the Kaplan–Meir (K‐M) survival curves in survival
analysis. We studied whether a given ceRNA exhibits
prognosis ability in individual cancers included in
combinations. For example, assume that Gene A is a
common ceRNA for BRCA and PRAD, then we check
whether Gene A is statistically significant from both
BRCA and PRAD survival analyses. The PPI network
analyses were conducted using the STRING version
11.5.26

3 | RESULTS

After the quality‐control process, we retrieved 495/52
(cases/controls), 1091/113, 456/41, 166/10, and 543/35
samples from PRAD, BRCA, COAD, READ, and UCEC.
In the differential expression analysis, we used 15,509,
15,244, 14,771, 14,866, and 15,197 genes from PRAD,
BRCA, COAD, READ, and UCEC after removing those
that were low‐expressed.

3.1 | Differential expression analysis
results

The number of DE RNAs, DE miRNAs, DM, CNA,
TF–target interactions and miRNA–lncRNA/mRNA in-
teractions used in each HD cancer‐specific ceRNA
analysis are given in Table 1.

In the next analytical steps (machine‐learning
approach and inferring ceRNAs), DE mRNA/miRNA
expression data of COAD and READ combined as
colorectal cancer (COLCA) analysis.

3.2 | Machine‐learning‐based ceRNA
network analyses results

In LASSO models, we used DE RNA expression data, DM
β estimates, CNA values, miRNA–lncRNA/mRNA and
TF–target interactions. The statistically significant
LASSO predictors (estimated by the bootstrap procedure)
were used to identify potential ceRNA pairs. After that,
we applied three user‐defined thresholds (see Section 2
for more details) to infer ceRNA interactions. Table 2
describes the number of significant ceRNA associations
found in each HD cancer and shared among more than
two cancer types. Please see the Supporting Information
file for ceRNAs in individual/shared HD cancer(s).

As shown in Table 2, most ceRNAs were unique for
individual cancer types. BRCA and UCEC have shared
the highest ceRNA candidates compared with other
cancers. All significant ceRNAs have been derived from
mRNA–mRNA pairs and none of the lncRNA–mRNA
pairs was observed across multiple HD cancers.

3.3 | Survival analysis

The ceRNAs common among HD cancer combina-
tions were checked for the prognosis in each cancer
(included in the combination). Table 3 describes
significant ceRNAs from each HD cancer combination
with their hazard ratios and p values. The hazard ratio
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is defined as the slope of the survival curve, which
measures how rapidly the event (death) has occurred.
The hazard ratio compares two groups, here low and
high expressed. The hazard ratios and p values in

blue/red fonts indicate that the gene's low/high
expressed level is associated with the survival of
cancer in interest. In Table 3, the significant ceRNAs
from COAD‐READ combined analysis (COLCA) were
checked for prognostic in COAD/READ.

As described in Table 3, most survival‐significant
ceRNAs have been shared among BRCA and UCEC.
Previous studies have also shown the shared genetic
susceptibility of BRCA and UCEC.14,27 Two ceRNAs
(BUB1 and EXO1) from the BRCA‐COAD‐UCEC and the
RRM2 from PRAD‐COAD‐UCEC were prognostic in all
three cancer types included in the combination of
interest.

The K‐M survival curves for BUB1 (in BRCA, COAD
and UCEC), EXO1 (BRCA, COAD and UCEC), and
RRM2 (PRAD, COAD and UCEC) are illustrated in
Figure 1.

In BRCA (A) and UCEC (C), low‐expressed BUB1 and
EXO1 show better survival. Nevertheless, high‐expressed
BUB1 and EXO1 are associated with a higher survival
probability in COAD (B). The low‐expressed RRM2 gene
has shown the highest survival probability (hazard
ratio = 9.13) in PRAD (A) compared with other cancers,
COAD (B) and UCEC (C).

3.4 | Functional enrichment analysis

We conducted the functional enrichment analysis for
shared ceRNAs in each HD cancer combination. The
genes shared across two/three HD cancers (listed in
Supporting Information) was used for the functional
enrichment analysis. Table 4 reports the top‐five compo-
nents of Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways for each two‐HD
cancer combination‐associated ceRNAs. Please see the
Supporting Information file for list of genes in each GO/
KEGG pathway.

TABLE 1 The count of DE RNAs and other regulator factors involved in the machine learning‐based ceRNA network analysis

Cancer RNA miRNA DM CNA
TFs–target
interactions

miRNA–lncRNA/
mRNA interactions

PRAD 1701 61 19,708 24,079 454,505 7,963,270

BRCA 2934 158 20,106 24,776 454,505 16,608,714

UCEC 3837 245 20,118 24,776 454,505 27,124,806

COLCA

COAD 3187 339 20,113 24,776 454,505 17,449,352

READ 3193 279 20,113 24,776 454,505 18,422,800

Abbreviations: BRCA, breast invasive carcinoma; ceRNA, competing endogenous RNA; CNA, copy number alteration; COAD, colon adenocarcinoma;
COLCA, colorectal cancer; DE, differentially expressed; DM, DNA methylation; lncRNA, long noncoding RNA; miRNA, microRNA; mRNA, messenger RNA;
PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; TFs, transcription factors; UCEC, uterine corpus endometrial carcinoma.

TABLE 2 The number of ceRNAs in individual HD cancer
networks/shared among cancer combinations

Cancer or cancer
combinations

Count of statistically
significant ceRNA
combinations (number
of unique ceRNAs)

PRAD 1802 (280)

BRCA 9340 (963)

COLCA (COAD ∪READ) 2858 (750)

UCEC 3165 (604)

PRAD ∩BRCA 37 (35)

PRAD ∩COLCA 5 (9)

PRAD ∩UCEC 15 (16)

BRCA ∩COLCA 70 (72)

BRCA ∩UCEC 202 (88)

COLCA ∩UCEC 77 (60)

PRAD ∩BRCA ∩COLCA 0

PRAD ∩BRCA ∩UCEC 2 (4)

BRCA ∩COLCA ∩UCEC 9 (16)

PRAD ∩COLCA ∩UCEC 2 (3)

PRAD ∩BRCA ∩
COLCA ∩UCEC

0

Note: ∩ denotes the intersection between given data sets. For instance,
PRAD∩BRCA implies the set of shared competing endogenous RNAs among
prostate and breast cancers.

Abbreviations: BRCA, breast invasive carcinoma; ceRNA, competing
endogenous RNA; COAD, colon adenocarcinoma; COLCA, colorectal
cancer; HD, hormone‐dependent; PRAD, prostate adenocarcinoma; READ,
rectum adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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TABLE 3 Survival significant ceRNAs in the combinations of HD cancers

(Continues)

JAYARATHNA ET AL. | 1399



TABLE 3 (Continued)

Note: The hazard ratios and p in blue/red fonts indicate that the gene's low/high expressed level is associated with the survival of cancer in interest.

Abbreviations: BRCA, breast invasive carcinoma; ceRNA, competing endogenous RNA; COAD, colon adenocarcinoma; COLCA, colorectal cancer; HD,
hormone‐dependent; PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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Enrichment analyses result of ceRNAs shared among
three‐HD cancers are illustrated in Figure 2.

3.5 | PPI network analysis results

PPI network analyses for ceRNAs shared among HD
cancer combinations were conducted using the STRING
online platform.26 The minimum required interaction
score of the PPI networks was adjusted to the highest
confidence level (0.900) to improve the strength of the
interaction network. Table 5 describes the PPI network
analyses results.

4 | DISCUSSION

The aetiology of complex diseases such as cancer is often
related to aberrant gene expression at the transcriptional
and posttranscriptional levels. Over the last decade,
ceRNAs have emerged as an important class of post-
transcriptional regulators that alter gene expression
through a miRNA‐mediated mechanism. This study has
extended the knowledge of ceRNA networks in HD
cancers (PRAD, BRCA, COLCA and UCEC) by integrat-
ing other molecular effects such as DM, TF and CNA,
which influence the ceRNA mechanism. Moreover, it
expands the knowledge of HD cancers shared biology by
investigating and comparing gene regulatory networks of
more than two HD cancer types.

First, we investigated regulating factors‐mediated
ceRNAs in individual HD cancers. After that, we
identified ceRNAs shared across two/three/four HD
cancers. However, none of the ceRNAs was shared
among the four cancers of interest. The shared ceRNAs
across two/three HD cancers were involved in survival
analysis and two downstream analyses, functional
enrichment analysis and PPI network analysis.

We found 16 ceRNAs shared across BRCA, COLCA,
and UCEC. Among them, BUB1 and EXO1 were
associated with patient survival of all three cancers of
interest. BUB1 gene encodes a serine/threonine‐protein
kinase that plays a central role in mitosis. It also involves
DNA damage response and cell cycle regulation.28 The
BUB1 gene has been previously reported in BRCA,
COLCA, and multiple digestive tract cancers but not in
UCEC.29 Herein, BUB1 appears for the first time in
UCEC risk. The BUB1 β (BUB1B) was recognized as a
shared ceRNA among PRAD, BRCA and UCEC. These
BUB1 and BUB1B genes are central components of
the mitotic checkpoint for spindle assembly (SAC).29 The
SAC plays a fundamental role in maintaining genome
stability by ensuring the timely segregation of the genetic

material at every cell division. Mistakes in the cell
division process can lead to rearrangement, loss or gain
of chromosomes, genome instability and cancers.30

Therefore, the molecular function of BUB1 and BUB1B
genes in HD cancers should be further examined. Several
experimental and bioinformatic studies have shown the
importance of EXO1 in replication, DNA repair path-
ways, cell cycle checkpoints, and its association to
cancer.31 Genome‐level studies have identified specific
mutations in the EXO1 gene as risk alleles for different
types of cancers.32,33

Three genes, DEPDC1B, BUB1 and RRM2, were
identified as shared ceRNAs among PRAD, COLCA
and UCEC. DEPDC1B has been identified as a prostate
cancer metastasis oncogene. It was positively correlated
with metastasis status, high Gleason score, advanced
tumour stage and poor prognosis. Moreover, mechanistic
investigations found that DEPDC1B induced epithelial–
mesenchymal transition (EMT) and enhanced prolifera-
tion by binding to Rac1 and enhancing the Rac1‐PAK1
pathway.34 EMT plays an important role in empowering
cancer cells to adapt and survive at the start of the
metastatic stage. The role of DEPDC1B in COLCA and
UCEC has not been described in previous bioinformatics
or functional studies. According to the survival analysis
result, the RRM2 gene was a prognostic biomarker in
PRAD, COLCA and UCEC. The well‐established role of
RRM2 is to maintain the balance of deoxynucleoside
triphosphate pools for DNA synthesis and DNA repair.35

The tumour‐promoting feature of RRM2 is associated
with inducing activities of various oncogenes, including
those encoding nuclear factor‐κB, Myc proto‐oncogene
protein, tyrosine‐protein kinase transforming protein
Fes and ornithine decarboxylase.36 The overexpression
of RRM2 correlates with cellular invasiveness, metastasis
and tumourigenesis of cervical37 and gastric38 cancers.
Aberrant RRM2 expression has also been described in
ovarian39 and prostate40 cancers. Liu et al.41 have
described that RRM2 serves as a prognostic biomarker
in colorectal cancer. None of the ceRNAs was shared
among PRAD, BRCA and COLCA, and hence common
ceRNAs were not found across four HD cancer types
(PRAD, BRCA, COLCA and UCEC) included in this
study.

The survival analyses of shared ceRNAs among two
HD cancer combinations have shown that 12 (KIF4A,
KPNA2, TPX2, TUBA1C, RAD54L, MTFR2, ANLN,
RACGAP1, FAM83D, KNSTRN, CCNE1 and DSCC1)
out 88 and 6 (KPNA2, CCNF, CKAP2L, TTK, DEPDC1B
and MCM2) out of 77 ceRNAs shared among BRCA‐
UCEC and COLCA‐UCEC pairs, respectively, have
exhibited the survival significance in both cancers
included in the combinations. These 18 genes have been
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FIGURE 1 Kaplan–Meier survival curves for the shared competing endogenous RNAs (ceRNAs) across three hormone‐dependent (HD)
cancers. The BUB1 (top) and EXO1 (middle) genes are prognostic in breast (A), colon (B) and endometrial (C) cancers. The RRM2 (bottom)
is survival significant in prostate (A), colon (B) and endometrial (C) cancers.
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TABLE 4 Functional enrichment analyses result for shared ceRNAs across two HD cancers combinations

Cancer combination Terms (GO/KEGG pathway) FDR

PRAD∩BRCA Mitotic sister chromatid segregation (GO) 1.44E− 19

Mitotic nuclear division (GO) 1.44E− 19

Chromosome segregation (GO) 7.54E− 19

Organelle fission (GO) 8.46E− 18

Regulation of chromosome segregation (GO) 4.41E− 15

Cell cycle (KEGG) 2.26E− 05

Oocyte meiosis (KEGG) 0.008609

PRAD∩COLCA Condensed chromosome (GO) 0.001566

Mitotic chromosome condensation (GO) 0.002994

Mitotic sister chromatid segregation (GO) 0.002994

Condensed nuclear chromosome (GO) 0.004676

DNA packaging complex (GO) 0.004676

PRAD∩UCEC Chromosome segregation (GO) 2.38E− 18

Sister chromatid segregation (GO) 7.4E− 17

Nuclear division (GO) 2.19E− 15

Mitotic nuclear division (GO) 2.21E− 15

Regulation of chromosome segregation (GO) 4.29E− 13

Cell cycle (KEGG) 0.042667

BRCA∩COLCA Nuclear division (GO) 4.61E− 20

Chromosome segregation (GO) 5.05E− 19

Mitotic nuclear division (GO) 5.54E− 19

Mitotic sister chromatid segregation (GO) 3.59E− 16

Chromosomal region (GO) 3.38E− 12

Cell cycle (KEGG) 1.97E− 12

Oocyte meiosis (KEGG) 2.05E− 05

Progesterone‐mediated oocyte
maturation (KEGG)

5.45E− 05

p53 signalling pathway (KEGG) 0.000205

Cellular senescence (KEGG) 0.00052

BRCA∩UCEC Chromosome segregation (GO) 2.41E− 27

Chromosomal region (GO) 5.22E− 26

DNA replication (GO) 1.5E− 22

Organelle fission (GO) 8.05E− 22

Nuclear division (GO) 8.05E− 22

Cell cycle (KEGG) 3.06E− 14

DNA replication (KEGG) 7.94E− 06

Mismatch repair (KEGG) 0.001704

p53 signalling pathway (KEGG) 0.002887

Cellular senescence (KEGG) 0.004181

(Continues)
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previously described in HD studies due to their tumour‐
suppressive/oncogenic/cancer‐driven nature.42

We conducted a functional enrichment analysis for
common ceRNAs across two/three HD cancers combina-
tions. The shared ceRNAs across HD cancers have mainly
been involved in mitosis (mitotic sister chromatid
segregation, mitotic nuclear division and mitotic chromo-
some condensation) and chromosome related GO path-
ways (chromosome segregation, regulation of chromo-
some segregation, condensed chromosome, condensed
nuclear chromosome and chromosomal region), which
play an important role in cancer. The shared ceRNAs
across PRAD, COLCA and UCEC were involved in five
unique KEGG pathways, drug metabolism‐other enzymes,
pyrimidine metabolism, glutathione metabolism, oxido-
reductase activity, acting on CH or CH2 groups, and ferric
iron‐binding. Experimental studies might be required to
investigate these KEGG pathways' involvement in the
shared biology of PRAD, COLCA and UCEC.

The PPI network describes the physical interaction
between identified shared ceRNAs in this study, mediating
the assembly of proteins into protein complexes, for example,
mediating signalling/regulation and transport events in the
cell. According to PPI network analysis results, ceRNAs lists
of each two/three HD cancer combinations have interacted
with stronger statistical evidence. Five out of nine HD cancer
combinations' PPI network enrichment p was <1.0E− 16.
Four and 16 ceRNAs shared among PRAD‐BRCA‐UCEC
(p=1.12E− 09) and BRCA‐COLCA‐UCEC (p=2.04E− 09)
exhibited strong PPI network connecting all the ceRNA
nodes. Therefore, these gene sets should be further studied to
evaluate their combined effect on HD cancers.

The major limitation of this study is restricting
miRNA–mRNA and miRNA–lncRNA selection (in Step
1). We have chosen both predicted and experimentally
validated miRNA–target interaction only from two
miRNA–mRNA/lncRNA databases, starBase and miR-
code. We followed this limitation to get a substantial set of
miRNA–mRNA/lncRNA interactions. Consideration of
more possible ceRNA associations will improve the
machine‐learning outcome by increasing the number of
predictors. Moreover, we have not included circRNAs and
pseudogenes in the ceRNA network analyses. This study
retrieved only a limited number of statistically significant
miRNAs from the differential expression analysis of
miRNA‐seq data in TCGA‐PRAD. Therefore, the number
of miRNAs (independent variables) involved in PRAD‐
LASSO models was comparatively lower. Nevertheless,
selections of TFs‐target interactions and CNAs were
independent of PRAD differential expression analyses.

Our previous bioinformatic study identified shared
ceRNAs (both lncRNAs and mRNAs) across PRAD,
BRCA, COLCA and UCEC, considering miRNAs as the
only gene regulator in the ceRNA network.6 This study
has integrated conventional ceRNA networks with DM,
TF and CNA data using a machine‐learning approach,
‘Cancerin.’ According to our results, DM, TF and CNA
significantly have cut‐off shared ceRNAs across HD
cancers found from the conventional methods. Accord-
ing to LASSO models, none of the lncRNAs was
identified as a shared ceRNA among two/three HD
cancers of interest. These results imply that other
regulating factors such as DM, TF and CNA play a vital
role in the ceRNA regulatory network apart from

Cancer combination Terms (GO/KEGG pathway) FDR

COLCA∩UCEC Chromosome segregation (GO) 8.31E− 18

Chromosomal region (GO) 1.12E− 16

Mitotic nuclear division (GO) 2.86E− 16

Nuclear division (GO) 5.24E− 16

DNA replication (GO) 1.42E− 15

Cell cycle (KEGG) 2.88E− 10

DNA replication (KEGG) 0.000148

p53 signalling pathway (KEGG) 0.001661

Fanconi anaemia pathway (KEGG) 0.007581

Oocyte meiosis (KEGG) 0.007581

Abbreviations: BRCA, breast invasive carcinoma; ceRNAs, competing endogenous RNAs; COAD, colon adenocarcinoma; COLCA, colorectal cancer; FDR,
false discovery rate; GO, Gene Ontology; HD, hormone‐dependent; KEGG, Kyoto Encyclopedia of Genes and Genomes; PRAD, prostate adenocarcinoma;
READ, rectum adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.

TABLE 4 (Continued)
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miRNAs. Therefore, existing statistical and computa-
tional methods should be improved to interpret these
gene‐regulating factors‐mediated ceRNAs in diseases of
interest.

Our machine learning‐based study of omics data
provides a set of pivotal ceRNAs associated with two or
three HD cancers of interest. According to functional
enrichment analyses, shared ceRNAs across two/three HD
cancers are involved in hallmarks of cancer, such as cell
cycle, DNA replication/repair, chromosomal segregation,
mitotic checkpoint, nuclear division, p53 signalling, gluta-
thione metabolism, pyrimidine metabolism and ferric iron

binding. Most of these pathways are directly/indirectly
associated with RNA‐processing steps that influence RNA
regulatory networks, including ceRNAs. A recent study
found the complex biology of glutamine (precursor of
glutathione) metabolism in driving BRCA growth.43 We
found glutathione metabolism as a shared pathway among
multiple HD cancers. Therefore, future functional studies
are required to investigate the biology of glutathione in HD
cancers. Dysfunction of pyrimidine metabolism is closely
related to cancer progression. Moreover, various drugs
targeting pyrimidine metabolism have been approved for
multiple cancer types, including BRCA.44 This study has

FIGURE 2 Top‐five Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genome
(KEGG) pathway components for shared
ceRNAs across prostate‐breast‐endometrial (A),
breast‐colorectal‐endometrial (C), and prostate‐
colorectal‐endometrial (C).
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introduced bioinformatics analyses into the mechanistic
understanding of HD cancers. A natural progression of this
study is to identify the link between shared ceRNAs and
respective molecular pathways. Nevertheless, these findings
will bring novel insights to explore the underlying shared
molecular mechanism of HD cancers.

5 | CONCLUSIONS

It is noteworthy that, to our knowledge, this is the first
study that integrates genomic (CNA), transcriptomic
(mRNA, lncRNA, miRNA and TF) and epigenetic (DM)
regulatory factors to infer genome‐wide ceRNA interac-
tions shared across a group of cancers. These cross‐HD
cancer ceRNAs have shown tumour‐suppressive/
tumour‐promoting and survival‐prognosis properties in
previous HD cancer studies. The main bottleneck of this
machine learning approach is the lack of RNA, DM and
CNA data from a single study, especially for other
diseases, except for cancers. Besides these limitations,
cross‐cancer shared ceRNAs may help identify potential
unexpected targets applied for a subset of cancers (e.g.,
HD). Furthermore, it will help to understand the shared
disease biology of HD cancers.
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result for each ceRNAs set shared among
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Cancer combinations Number of nodes Number of edges PPI enrichment p

PRAD∩BRCA 35 141 <1.0E− 16

PRAD∩COLCA 9 7 6.68E− 10

PRAD∩UCEC 16 67 <1.0E− 16

BRCA∩COLCA 72 193 <1.0E− 16

BRCA∩UCEC 88 332 <1.0E− 16

COLCA∩UCEC 60 150 <1.0E− 16

PRAD∩BRCA∩UCEC 4 6 1.12E− 09

BRCA∩COLCA∩UCEC 16 10 2.04E− 09

PRAD∩COLCA∩UCEC 3 1 0.0354

Abbreviations: BRCA, breast invasive carcinoma; ceRNAs, competing endogenous RNAs; COLCA,
colorectal cancer; HD, hormone‐dependent; PPI, protein–protein interaction; PRAD, prostate
adenocarcinoma; UCEC, uterine corpus endometrial carcinoma.
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