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This article extends the combinatorial approach to support the determination of

contextuality amidst causal influences. Contextuality is an active field of study in Quantum

Cognition, in systems relating to mental phenomena, such as concepts in human

memory. In the cognitive field of study, a contemporary challenge facing the determination

of whether a phenomenon is contextual has been the identification and management

of disturbances. Whether or not said disturbances are identified through the modeling

approach, constitute causal influences, or are disregardableas as noise is important,

as contextuality cannot be adequately determined in the presence of causal influences.

To address this challenge, we first provide a formalization of necessary elements of

the combinatorial approach within the language of canonical causal models. Through

this formalization, we extend the combinatorial approach to support a measurement

and treatment of disturbance, and offer techniques to separately distinguish noise and

causal influences. Thereafter, we develop a protocol through which these elements

may be represented within a cognitive experiment. As human cognition seems rife with

causal influences, cognitive modelers may apply the extended combinatorial approach

to practically determine the contextuality of cognitive phenomena.

Keywords: contextuality, combinatorics, cognition, disturbance, causality

1. INTRODUCTION

Under the assumption that the properties of a system have well-established, pre-existing values
prior to measurement, contextuality is when the result of a property’s measurement is not
independent of the co-properties that are measured along with it (Peres, 1991). However, a
key characteristic of contextuality is its inability to be explained by any causal relationship.
Consequently, any experiment that declares the presence of contextuality must remove all doubt
that the phenomenon is the result of some causal influence. In Quantum Information Science,
this requirement is solely fulfilled by the “No-Disturbance” (ND) condition (Ramanathan et al.,
2012), which can be experimentally verified by measurement of consistent marginal probabilities,
correspondent to the necessary properties. The ND condition was first described in the work of
Gleason (1957), who determined the basis of the condition from the physical nature of quantum
states. Based on Gleason’s work, Kochen and Specker (1975) were able to prove a hypothetical
system of orthonormal bases in which no deterministic model of outcomes could be realized that
was non-contextual.
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It cannot be as easily claimed that the ND condition, let alone
“quantum-like” contextuality is inherent to cognitive processes
studied within Quantum Cognition. This is because unlike in
Quantum Physics, the emergent theories in which the field
is grounded do not have any immediate basis in physical
properties (i.e., the necessary measurements are mapped to
the cognitive experiment by interpretation). For this reason,
cognitive modelers have resorted directly to the examination of
the associated probabilistic model, for which numerous works
have suggested possible frameworks (Aerts et al., 2013; Asano
et al., 2014a; Bruza et al., 2015). What has been consistently
demonstrated is that disturbance is unavoidably inherent in the
probabilistic outcomes of cognitive experiments, and this causes
the failure of the ND condition (Dzhafarov et al., 2016). This is
not to say that quantum-like contextuality does not appear within
cognitive experiments1, as only causal influences falsify the
determination of contextuality, and disturbances are not always
reduced to causal influences (Atmanspacher and Filk, 2019).
But rather, cognitive modelers require a method to adequately
distinguish disturbances that are due to causal influences from
those that are due to noise, which constitutes the first challenge
of this article.

The second challenge addressed in this article is that the
vast majority of literature published on the determination
of quantum-like contextuality does not consider the convex
decomposition of an associated probabilistic model into a set
of deterministic models. In turn, this prevents the identification
of causal influences within deterministic models that cancel
each other out when aggregated into the combined probabilistic
model, as articulated in Yearsley and Halliwell (2019)’s criticism
of Cervantes and Dzhafarov (2018).

This article develops an experimental protocol that addresses
both of the forementioned challenges by the combinatorial
approach of Acín et al. (2015). This is realized by two theoretical
elements: the Foulis Randall (F-R) product, and the Weighted
Fractional Packing Number (WFPN).

Specifically, the F-R product is relevant to the first challenge,
as it expresses all causal constraints of the ND condition. Here
it is combined with a method developed by Chaves et al. (2015)
for assessing the exact amount of causal influence observed in
any causal relationship between two observables. In doing so, we
realize a process for determining all the disturbances that are
only due to causal influences (and not noise) within arbitrary
experimental settings, which in turn addresses the first challenge
of the article.

With regard to the WFPN, this directly concerns how
(non) contextuality is determined in terms of the combinatorial
approach, as the cliques enumerated on its graph structure
correspond to the deterministic models of the necessary
probabilistic model. Acín et al. (2015) relate constraints by
Shannon (1956) to said cliques, ensuring that their definition of
contextuality remains faithful to the convex decomposition of
the relative experiment’s probabilistic model, and this overcomes
the previously mentioned criticisms of Yearsley and Halliwell
(2019). However so, this definition does not yet anticipate

1See the experimental results of Basieva et al. (2019).

the determination of contextuality under the pretense of
disturbances, for which it is here adapted, and this addresses the
second challenge.

In addressing both of the forementioned challenges, this
article produces a novel experimental protocol within the
combinatorial approach, for the adequate determination of
quantum-like contextuality given the presence of disturbances.

The article proceeds with the following structure: in Section
2, we discuss related work; in Section 3, we relate the EPR
framework, a seminal example for modeling contextuality that
will assist in the understanding of proceeding sections. In
Section 4, we detail relevant definitions of the combinatorial
approach; in particular, this section motivates the graph structure
of the Weighted Fractional Packing Number (WFPN) as the
solution to the previously mentioned challenge concerning
convex decompositions of probabilistic models. In Section 5,
we introduce key aspects of causal models and diagrams, and
substantiate that the ND condition is highly restrictive, as
well as that Chaves et al. (2015)’s method is necessary for its
relaxation in determining quantum-like contextuality. In Section
6, we declare the necessary mappings to integrate the previously
mentioned causal modeling techniques with the combinatorial
approach. In Section 7, we prove the main result of the article:
a theorem necessary to determine contextuality in the presence
of experimental disturbances.

2. RELATED WORK

Within the study of contextuality, there are numerous modeling
approaches that stem from distinct interpretations and
formalisms of the phenomenon (Isham and Butterfield,
1998; Spekkens, 2005; Asano et al., 2014b; Cabello et al., 2014;
Acín et al., 2015; Dzhafarov and Kujala, 2016; Khrennikov,
2021). This work continues upon previous research undertaken
by Obeid (2021) in the manner of the combinatorial approach of
Acín et al. (2015), for determining quantum-like contextuality
amidst causal influences. To the best of our knowledge, the only
other line of research that has addressed the forementioned
issues for determining of quantum-like contextuality is that
of Jones (2019). We perceive that our work is similar in that
we consider causal modeling techniques to remedy the issues
concerning disturbance, and assume the “no-hidden-influence”
principle, as has been articulated in Jones (2021). However, we
distinguish our work in that our approach is based within the
combinatorial approach of Acín et al. (2015), while the approach
of Jones (2019) is based on the probabilistic causal models which
are shown to be equivalent to the “Contextuality-by-Default”
framework (Dzhafarov and Kujala, 2016).

3. THE “EINSTEIN-PODOLSKY-ROSEN”
FRAMEWORK

In Quantum Cognition, the Einstein-Podolsky-Rosen (EPR)
framework (Clauser et al., 1969) is one that is largely applied
among cognitive modelers in investigations of quantum-like
contextuality; for this reason, the framework will be used to
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convey the results of this paper. The framework involves a
system of two parties (A and B), in which each have an input
measurement that may be configured to one of two settings
(iptA = +1 and iptA = −1 for party A; iptB = +1 and
iptB = −1 for party B). In either setting, an outcome is observed
as optA = +1 or optA = −1 for party A, or optB = +1 or
optB = −1 for party B,. Thereafter, a series of experimental trials
are sampled to produce four pair-wise distributions (defined
by the input measurements) that communicate the probabilistic
outcomes of the experiment:

Definition 1. Four pair-wise joint distributions generated by the
EPR experimental framework:

P( iptA =+ 1, iptB = +1 ),

P( iptA =+ 1, iptB = −1 ),

P( iptA =− 1, iptB = +1 ),

P( iptA =− 1, iptB = −1 )

In the adaption of Bruza et al. (2015), the systems corresponded
to concepts in a bi-ambiguous conceptual combination, such
as “APPLE CHIP”. Each concept would have two senses e.g.,
“APPLE” has a “fruit” or “computer” sense. Measurements
corresponded to priming words given to human subjects who
then had to interpret the sense of the associated concept: +1
would indicate that the interpretation aligns with the prime.
For instance, if the prime was “banana”, the human subject
interpreted “APPLE” in the “fruit” sense. Conversely, −1 would
denote the dis-alignment between prime and interpretation (as
shown in Table 1).

Contextuality could be determined by a set of inequalities
known as the “Bell-CHSH inequalities”, that had been previously
conceived by Bell (1964). The inequalities summated the
statistical correlations of the pair-wise joint distributions.

Equation 1. The Bell-CHSH inequalities define a violation of
the linear system of constraints on the correlations of a
probabilistic model:

0 − corr iptA = +1
iptB = +1

+ corr iptA = −1
iptB = +1

+ corr iptA = +1
iptB = −1

+ corr iptA = −1
iptB = −1

≤ 2

0 + corr iptA = +1
iptB = +1

− corr iptA = −1
iptB = +1

+ corr iptA = +1
iptB = −1

+ corr iptA = −1
iptB = −1

≤ 2

0 + corr iptA = +1
iptB = +1

+ corr iptA = −1
iptB = +1

− corr iptA = +1
iptB = −1

+ corr iptA = −1
iptB = −1

≤ 2

0 + corr iptA = +1
iptB = +1

+ corr iptA = −1
iptB = +1

+ corr iptA = +1
iptB = −1

− corr iptA = −1
iptB = −1

≤ 2

Note: While there are many expressions of the Bell-CHSH
inequalities, the version provided here most closely resembles that
taken from Fine (1982).

In the literature, it is common for the maximal statistical
correlation of the Bell inequalities to be referred to as the
“Bell parameter”, and is typically denoted as B. For the EPR
framework, the Bell parameter would simply be largest L.H.S.
value of any of the lines of Equation (1).

TABLE 1 | Pair-wise joint distributions of conceptual combination “APPLE CHIP”

(Bruza et al., 2015).

CHIP

iptB = +1 iptB = −1

( potato ) ( circuit )

+1 −1 +1 −1

A
P
P
L
E iptA = +1 +1

(banana) −1

iptA = −1 +1

(computer) −1















0.94 0.06 0.00 0.75

0.00 0.00 0.25 0.00

0.00 0.35 0.47 0.00

0.65 0.00 0.00 0.53















Definition 2. For the EPR framework, the Bell parameter B is
defined as the maximal statistical correlation recorded for all
pair-wise joint distributions of its input measurements.

B= max
a ∈ {+1, −1 }

b ∈ {+1, −1 }

| corriptA = +1
iptB = +1

+ corriptA = +1
iptB = −1

+ corriptA = −1
iptB = +1

+ corriptA = −1
iptB = −1

− 2corriptA = a
iptB = b |

Furthermore, the R.H.S. of Equation (1) (which is 2 for the EPR
framework) is known as the classical bound on the statistical
correlations of the Bell inequalities. It is the largest value
that can be obtained without violating non-contextual hidden
variable theories.

Definition 3. The value B0 is defined as the maximal Bell
parameter that can be obtained without violating non-contextual
hidden variable theories.

Then, Equation (1) can be simplified to the
following expression.

Equation 2. A simplification of Equation (1) that integrates the
usage of the Bell parameter.

B ≤ B0

For the previously mentioned experiment of Bruza et al. (2015), a
violation of any of the Bell inequalities would constitute evidence
that the concepts are “quantum-like” contextual. While true in
principle, this depth of analysis did not identify if the violation
of the inequalities was the effect of some causal influence, as
pointed out by Dzhafarov et al. (2016); later in this article, a set of
techniques will be introduced in the manner of the combinatorial
approach to remediate this challenge. Nevertheless, the elements
described in the EPR framework demonstrate an experimental
specification necessary to investigate quantum-like contextuality,
and will consequently be recalled when introducing various
preliminaries used to communicate the findings.

4. THE COMBINATORIAL APPROACH

The combinatorial approach of Acín et al. (2015) introduces
contextuality scenarios as a hypergraph-based abstraction of a
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TABLE 2 | Conventional shorthands applied within the combinatorial approach of

Acín et al. (2015).

Outcomes and measurements Shorthand

optA = +1 0 |

optA = −1 1 |

iptA = +1 | 0

iptA = −1 | 1

optA = +1 | iptA = +1 0 | 0

optA = −1, optB = +1 | iptA = +1, iptB = +1 1, 0 | 0, 0

optA = −1, optB = +1 | iptA = −1, iptB = +1 1, 0 | 1, 0

given experiment. The Weighted Fractional Packing Number
(WFPN) constitutes the method for determining contextuality
within the approach, and it is demonstrated here that the WFPN
must be extended in order to support experimental results that
exchange disturbances.

4.1. Contextuality Scenarios
For any experiment involving the determination of contextuality,
contextuality scenarios offer a hypergraph-based abstraction on
which all further procedures are conducted.

Definition 4. For an experiment of n parties, H denotes a system
of contextuality scenarios that correspond to the experiment. The
relative contextuality scenario of any party i is then a hypergraph
Hi, in which its measurements are hyperedges E(Hi), and the
possible outcomes of said measurements are vertices V(Hi).

H = {H1, . . . ,Hn}, such that E(Hi) ⊂ 2V(Hi) and
⋃

e∈E(Hi)

e = V(Hi)

Furthermore, for a hyperedge e ∈ E(HA), a vertex v ∈ e describes
an outcome for the measurement, and is notated as v|e. For
any party, all outcomes and measurements are conventionally
reduced to numerical shorthands, which is reflected within their
vertices and edges—the same also applies for joint outcomes
among arbitrary parties. Some shorthands relative to the EPR
framework are communicated in Table 2.

Then, the contextuality scenarios of the parties A and B are
hypergraphs HA and HB.

Definition 5. The contextuality scenarios HA and HB for the
parties A and B.

HA = { ( v0|0, v1|0 ), ( v0|1, v1|1 ) }

HB = { ( v0|0, v1|0 ), ( v0|1, v1|1 ) }

4.2. Probabilistic Models
Probabilistic models define the probabilities of experimental
outcomes taking place, and correspond directly to the vertices of
the relative contextuality scenarios.

Definition 6. For any party i, all possible outcomes that can be
generated have weightings attributed to a probabilistic model p that

FIGURE 1 | Cartesian product of contextuality scenarios HA and HB.

coincides with the relative contextuality scenario Hi: Formally, the
probabilistic model of any hypergraph Hi is an assignment of a
probability to each vertex v ∈ V(Hi).

p :V(Hi) → [0, 1] such that ∀e∈E(Hi)

∑

v∈ e

p(v) = 1

4.3. Compositional Products
Compositional products are operations executed on the
hypergraphs of one or more contextuality scenarios, in order
to assist the determination of contextuality. Further to this
detail, the outcome of a compositional product is also a
contextuality scenario.

4.3.1. The Cartesian Product
The first compositional product detailed here is the
Cartesian product.

Definition 7. For any system of n contextuality scenarios H, the
Cartesian product×n

i=1Hi is defined as having the following
vertices and hyperedges.

×n
i=1 V(Hi) = V(H1)× . . . × V(Hn)

×n
i=1 E(Hi) = E(H1)× . . . × E(Hn)

It follows that any edge of the Cartesian product represents one
of the possible combinations of joint measurements that can be
conducted between the respective parties of the system. In the
EPR experiment, the Cartesian product HA × HB is visualized in
Figure 1.
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FIGURE 2 | Measurement protocol EHA→HB .

4.3.2. Measurement Protocols
In certain cases, it may be necessary to describe the
measurements of a given party j as the result of the outcomes of
another party i. For this purpose, the combinatorial approach
defines measurement protocols.

Definition 8. A measurement protocol EHi→Hj is a hypergraph
generated from a function that maps one or more measurements
(as hyperedges) of a contextuality scenario Hi to all the
measurements (as hyperedges) of another contextuality
scenario Hj.

EHi →Hj
: =

{

⋃

v∈ e

{v} × f (v) : e ∈ E(Hi), f : e → E(Hj)

}

In terms of an experiment, this is taken to mean that for
any outcomes associated with a measurement in E(Hi), that
a measurement from E(Hj) is consequently chosen. Recalling
the EPR experiment, it is possible that the party B may
choose their measurements as a function of A’s outcomes. The
resulting measurement protocol EHA→HB visualizes this relation
in Figure 2.

4.3.3. The Foulis-Randall Product
By combining the hyperedges that correspond to all
measurement protocols of all parties mapped to all other
parties, one is able to describe the measurement of any party as
the result of any other party’s outcome. These are conveyed by
hyperedges of the relative contextuality scenarios, whose vertices
correspond to the specific outcomes of such events taking place.

This comprises the Foulis-Randall (F-R) product, which is yet
another compositional product of the combinatorial approach.
For a system of n contextuality scenarios H, the F-R product is
expressed as both a hypergraph and a contextuality scenario,
and has numerous variations, all of which containing the same
vertices as the Cartesian product (see Definition 7). This article
is concerned with the common F-R product, which is denoted
as comm

⊗n
i=1Hi.

Definition 9. The hyperedges E( comm
⊗n

i=1Hi ) of the common
F-R product are defined as the union of all possible orderings of
the commutative, non-associative “⊗” operator on all contextuality
scenarios of a system H.

E( comm
n
⊗

i=1

Hi ) : =

{

e : e ∈

{

n
⊗

i=1

Hi

} }

where Hi ⊗Hj : =
{

EHi →Hj ∪ EHj →Hi

}

For the EPR framework, the common F-R product would be
equivalent to HA ⊗HB, which is visualized in Figure 3.

4.3.4. The No Disturbance Condition
As a widely tested prerequisite for determining contextuality,
the No Disturbance (ND) condition ensures that absolutely
no causal influences are mutually exchanged between the
parties of the given experiment. This satisfies the requirement
that contextuality cannot be due to causal influences. The
ND condition is achieved by imposing constraints on the
probabilistic weightings of the parties. In terms of the EPR
framework, the condition is calculated as follows.
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FIGURE 3 | F-R product of contextuality scenarios HA and HB.

Definition 10. For an EPR experiment involving two parties,
A and B, the ND condition requires that given any input
measurement by either party, that the probabilistic outcomes must
be invariant with respect the outcomes of all other parties.

Pr( optA | iptA ) = Pr( optA | iptA, iptB = +1 )

= Pr( optA | iptA, iptB = −1 )

Pr( optB | iptB ) = Pr( optB | iptB, iptA = +1 )

= Pr( optB | iptB, iptA = −1 )

Within the combinatorial approach, the vertices of the
corresponding contextuality scenarios HA and HB convey
the outcomes for the respective marginal probabilities of all
parties. As such, the probabilities of their joint observation with
the edges of all other parties restore the necessary expressions of
the ND condition.

Definition 11. For any outcome corresponding to a vertex
v of given party HA jointly observed with a measurement
corresponding to a hyperedge e of a given party HB, the probability
is equivalent to that of the same outcome observed with any other
measurement corresponding to a hyperedge e′ of HB. The same
applies with respect to all HB’s outcomes when jointly observed with
measurements of HA.

∑

w∈ e

p(v,w) =
∑

w∈ e′

p(v,w) ∀v ∈ V(HA), e, e′ ∈ E(HB)

∑

w∈ e

p(v,w) =
∑

w∈ e′

p(v,w) ∀v ∈ V(HB), e, e′ ∈ E(HA)

Furthermore, as the F-R product previously defined
each of its hyperedges as corresponding to any party’s
outcome as a function of another party, it follows that
the summated probabilities of said hyperedges would
need to be collectively equivalent in order to motivate the
assumption that no single causal influence is more probable
than another.

Corollary 1. For all hyperedges of the F-R product that
corresponds to the EPR framework E(HA ⊗ HB ), the summation
of all probabilities of any single hyperedge are equivalent to those
of any other hyperedge.

∀e, e′ ∈E(HA ⊗HB )

∑

v∈ e

p(v) =
∑

v′ ∈ e′

p(v′)

4.3.5. Non-Orthogonality Graphs and The Weighted

Fractional Packing Number
The WFPN is central to determining contextuality within the
combinatorial approach. In order to calculate the Weighted
Fractional Packing Number (WFPN), one must first calculate the
Non-Orthogonality (NO) graph.

Definition 12. The Non-Orthogonality (NO) graph is defined as a
simple graphNO(H ) of the same vertices as an input contextuality
scenario H, and has hyperedges for vertices that are not within the
input’s common hyperedges.

V( NO(H ) ) : = V(H )

E( NO(H ) ) : =
{

e : u ∼ v ⇔ 6 ∃e ∈ E(H ) such that { u, v } ⊆ e
}

Of significance is the NO graph of the F-R product,
NO( comm

⊗n
i=1 Hi ), for which all maximal cliques C

are enumerated.

Definition 13. Let C denote all maximal cliques enumerated
upon the NO graph NO( comm

⊗n
i=1 Hi ).

c ∈ C ⊆ NO( comm
n
⊗

i=1

Hi )

Definition 14. The enumeration of the maximal cliques C
exemplify all non-contextual deterministic models, and are
indexed by a set of weightings q. Then, for any clique c, the
corresponding model is attributed the weight qc, which is derived
from the total number of times that the model occurs within
experimentation, as a percentage of the observation of all possible
deterministic models.

∀qi ∈ q qi ∈ [ 0, 1 ]

In this respect, the WFPN is calculated by constraint of the
summation of the weightings q.
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TABLE 3 | Pair-Wise joint distributions of two individual experimental trials.

(a) Pair-wise joint distributions of individual experimental trial 1

iptB = +1 iptB = −1

+1 −1 +1 −1

iptA = +1 +1

−1

iptA = −1 +1

−1















1.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00

0.00 0.00 0.00 1.00















(b) Pair-wise joint distributions of individual experimental trial 2

iptB = +1 iptB = −1

+1 −1 +1 −1

iptA = +1 +1

−1

iptA = −1 +1

−1















0.00 0.00 0.00 0.00

0.00 1.00 1.00 0.00

0.00 0.00 1.00 0.00

0.00 1.00 0.00 0.00















Definition 15. The WFPN α
∗ of the F-R product

NO( comm
⊗n

i=1Hi ) is equivalent to the summation of all
weightings of the set q, as indexed by the cliques C.

∑

c∈C

qc = α
∗( NO( comm

n
⊗

i=1

Hi ) ) = 1

Finally, the probabilistic model p of the system is recovered by
summation of the deterministic models.

Definition 16. For a system of contextuality scenarios H, the
probability p(v) of observing any outcome associated with a vertex
v ∈ V(H) is equivalent to the sum of the deterministic weightings
corresponding to the cliques of C that intersect v.

∀v∈V(H) p(v) =
∑

c ∈ C

∑

c ∩ v

qc

While theWFPN determines the (non) contextuality of a system,
it does so with the assumption that no disturbances are in
the experimental results; for this reason, the WFPN must be
extended. To do so, we refer to the clique enumeration. As
mentioned, this corresponds to all non-contextual deterministic
models of the system.

Previous attempts to classify quantum-like contextuality have
not taken into account the deterministic decompositions
that form their respective probabilistic models: as an
implication, experimental disturbances may have influenced
the determination of contextuality, despite being overlooked
within probabilistic outcomes. Consider an implementation of
the EPR framework in which two experimental trials are firstly
conducted. Their deterministic models are conveyed by the
pair-wise joint distributions in Table 3.

After both experimental trials, the probabilistic model is
derived from the normalization of their summated results, as
given in Table 4.

TABLE 4 | Pair-wise joint distributions of combined experimental trials from

Table 3.

iptB = +1 iptB = −1

+1 −1 +1 −1

iptA = +1 +1

−1

iptA = −1 +1

−1















0.50 0.00 0.00 0.50

0.00 0.50 0.50 0.00

0.50 0.00 0.50 0.00

0.00 0.50 0.00 0.50















While evaluating the ND condition (Definition 10) on the
probabilistic model of Table 4 does not reveal any disturbances,
the same does not hold for the deterministic models in Table 3.
This is not to say that the observed disturbances in Table 3

constitute causal influences (as Section 5.2.1 will detail that the
ND condition is incorrectly provisioned for this task), but that
a significant aspect of the determination of contextuality within
cognitive experiments has been so far overlooked. This claim
has already been made by Yearsley and Halliwell (2019) and
Atmanspacher and Filk (2019) for experimentation conducted
by Cervantes and Dzhafarov (2018), however a generalization
of the method to retrieve all deterministic models has not yet
been considered for cognitive experiments. In fact, this can
only be achieved by anticipating all deterministic models (such
as those of Table 3) for any arbitrary experiment. Only then
can a sensitive treatment of the possible disturbances within
the corresponding experimental trials be realized. As detailed
in Definition 15, all deterministic models of an experiment
are retrieved by the enumerated cliques of the WFPN. And
this holds for any experiment in which the corresponding
contextuality scenarios realize an NO graph, demonstrating
where the extension of the combinatorial approach should
be realized.

For usage later in later sections of this paper, the following
definitions are introduced.

Definition 17. Let all cliques enumerated by the F-R product of
a system of contextuality scenarios H be denoted as NCC, as they
correspond to the outcomes of all non-contextual deterministic
models of the relative system.

NCC ⊆ NO( comm
n
⊗

i=1

Hi )

Definition 18. Let all possible deterministic models for a system
H correspond to the cliques ALLC enumerated on the NO graph of
the Cartesian product of the system.

ALLC ⊆ NO(×n
i=1Hi )

Note: For a system of contextuality scenarios, all its possible
deterministic models correspond to the cliques enumerated on the
NO graph of its Cartesian product.

By subtracting the cliques NCC from ALLC, we derive the
cliques that correspond to the deterministic models that are not

Frontiers in Psychology | www.frontiersin.org 7 May 2022 | Volume 13 | Article 871028

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Obeid et al. Extending Combinatorial Contextual Cognitive Protocols

non-contextual (i.e., either derived from causal influences or
noise). The result will be hereafter denoted as��NCC.

Definition 19. The set of cliques ��NCC that correspond to the
deterministic models that are not non-contextual are defined as the
difference of the set of cliques ALLC and NCC.

��NCC : = ALLC \ NCC

Note: Here it is assumed that all cliques derive from operations on
the same system of contextuality scenarios.

5. CAUSAL MODELING TECHNIQUES

In this section, we detail causal models and diagrams, and
argue the failure of the ND condition to distinguish between
causal influences and noise for the adequate determination of
contextuality amidst causal influences. Furthermore, we relate
the work of Chaves et al. (2015) for correctly quantifying
causal influences.

5.1. Causal Models and Diagrams
In certain cases, cognitive experiments may appear to determine
contextuality by probabilistic weightings, but are in fact non-
contextual due to hidden causal influences. To identify said
causal influences, one must apply causal modeling techniques,
and as such, causal models are here established as necessary. Pearl
(2009) defines any causal model as follows.

Definition 20. A causal model M is an ordered triple, in which
U represent the set of exogenous random variables, V represent
the set of endogenous random variables, and E is the set of causal
influences: formally the expressions of the values of V as functions
of the values within U and V.

M = 〈U,V, E 〉

For use in further equations, the set of exogenous and
endogenous variables will be unified into a single set.

Definition 21. The set X denotes the union of the sets U and V.

X : = {U ∪ V }

Furthermore, causal models described here assume a canonical
probabilistic model (distinct from Section 4.2) attributes
weightings to all nmembers of the set X.

Definition 22. A canonical probabilistic model assigns
probabilistic weightings to all random variables X of a causal
model.

∀x∈X Pr( x ) → [ 0, 1 ] such that Pr( X1, . . . , Xn ) = 1

Causal diagrams provide a visual abstraction of causal models, by
ascribing the random variables to a simple graph.

Definition 23. A causal diagram ascribes the random variables
within the set X to nodes of a directed acyclic graph G. Therein,
the directed edges E correspond to the causal influences established
by the set of expressions E.

G = ( X, E )

Definition 24. The function fpnt defines the causal influences, for
which any fpnt( x ) of a variable x returns the parent vertex of x
within the causal diagram. This defines the set of directed edges E .

fpnt( x ) ⊂ X ∪ {∅ } such that ∀x′ ∈ fpnt( x ) ∃( x′, x ) ∈ E

Equation 3. The joint distribution factors of the random variables
within the set X are defined as the product of all probabilities, given
observation of the variables associated with their parent nodes in
the corresponding causal diagram.

Pr( X ) =
∏

i

Pr( Xi | fpnt( Xi ) )

Definition 25. Let the set of all exogenous variables be collected
into a latent variable 3.

3 : = { x : x ∈ X and fpnt( x ) = {∅ } }

5.2. Determining Causal Influences
5.2.1. Association
Failures of purely probabilistic attempts to classify cognitive
experiments as determining contextuality are due to modelers
relying upon the lowest level, association, of Pearl and Mackenzie
(2018)’s ladder of causation in order to identify causal influences.

Equation 4. Association proposes a causal influence from a
variable Z to another variable Y by fulfilment of the following
probabilistic expression.

Pr( Y |Z ) > Pr( Y | ¬Z )

This expression can be evaluated by probabilistic weightings
alone. At best, association only proves that Y could be caused by
Z, vice versa, that both are caused by some other variable, or may
be due to noise within experimental results.

It is important to note that while association does not
prove any cause for either Y and Z, that it nevertheless is the
primary clue that causation may be at play. It follows that
imposing constraints upon associations between variables not
only restrict all forms of causation, but the experimental noise
that is necessary to determine contextuality. Such constraints
happen to form the basis of the ND condition.

Proposition 1. The ND condition constitutes a system of
expressions that substitute the operator of Equation (4).
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Proof: Replace the observation of Y with optA, the observation of Z
with iptA, iptB = −1, and the observation of ¬Z with iptA, iptB =

+1 in Equation (4). Then substitute the operator with that of
equivalence (i.e., “=”) to recover an expression of Definition 10. The
same is achieved for any other operation within the ND condition
for any combination of inputs. �

5.2.2. Intervention
In order to determine contextuality for cognitive experiments
that may be due to noise, it is necessary to restrict only
causal influences. As such, one must refer to the second level,
intervention, of Pearl andMackenzie (2018)’s ladder of causation.

Equation 5. Intervention for a causal influence from some
variable Z to another variable Y requires that the experimenter
deliberately fixes the protocols that both exhibit and inhibit Z, as
denoted by the do operator on a probabilistic expression.

Pr(Y | do(Z)) > Pr(Y | do(¬Z))

This expression clearly determines whether Y is caused by Z,
and cannot be conceptualized by probabilistic weightings alone.
Intervention has been detailed in the framework of Chaves
et al. (2015), as the necessary technique to differentiate causal
influences from noise. And so two equations from the framework
are here recalled:

Equation 6. Given intervention on all n variables X of a causal
model that are observed under pretense of their parent nodes, the
do operator redefines the joint distribution factors as follows.

Pr( X | do( Xi = k ) ) =

{

∏n
j 6= i Pr( Xj | fpnt( Xj ) ) if Xi 6= k

0 otherwise

The second equation2 simply augments Equation (5) with respect
to the latent variable 3, to determine the degree to which Z
causally influences Y . In this paper, the expression is generalized.

Definition 26. The expression C
Xi=k, Xj=k′

concerns two variables,

Xi and Xj respectively, and returns the direct causal influence that

some outcome Xi = k has upon some other outcome Xj = k′.

C
Xi=k, Xj=k′

= sup
Xj = k′,

fpnt(Xj),

Xi = k, Xi 6= k

∑

λ∈3

Pr( λ )|Pr( Xj = k′ | do( Xi = k ), fpnt(Xj), λ )

− Pr( Xj = k′ | do( Xi 6= k ), fpnt(Xj), λ )|

6. MAPPING THE COMBINATORIAL
APPROACH TO CAUSAL MODELS

In order for the combinatorial approach to determine
contextuality in the presence of experimental disturbances,

2Refer to Equation 4 of Chaves et al. (2015).

this section formalizes the necessary causal modeling
techniques described in the previous section within the
combinatorial approach.

6.1. Contextuality Scenarios
Contextuality scenarios are the fundamental element of the
combinatorial approach, and so require a consistent mapping
to the random variables of causal models in order to leverage
causal modeling techniques. This is no trivial task, as there is no
single mapping between them. To demonstrate this point, two
separate alternatives will be detailed here in the manner of the
EPR framework. The first alternative is motivated from hidden
variable theories that precede the discovery of contextuality.

Recalling the EPR framework’s experimental settings, consider
that each configuration of both parties’ input measurements
(iptA = +1 and iptA = −1 for party A; iptB = +1 and
iptB = −1 for party B) within the experiment maps to the
states of two distinct random variables X1 and X3. Thereafter,
the outcomes observed (as either optA = +1 or optA = −1
for party A, or optB = +1 or optB = −1 for party B) for either
measurement are also distinct random variables X2 andX4. where
fpnt( X2 ) = {X1 } and fpnt( X4 ) = {X3 }. This alternative assumes
that the outcomes observed by either party are functionally
assigned by the configuration of the measurements, and has a
causal probabilistic model that is visualized in Figure 4.

The second alternative does not assume functional
assignments between random variables, meaning that all causal
influences extend from exogenous influences. It implicates a
separate interpretation of the experiment: that each dichotomous
outcome pertains to its own random variable. In turn, it generates
an entirely different system of contextuality scenarios, in which
each element of the Cartesian product (which was previously
given in Figure 1) has its own random variable.

While both of the forementioned alternatives are entirely
possible, the selection depends upon the researcher’s own
preferences for how physical measurements and outcomes
should map to random variables. As measurements and
outcomes constitute the edges and vertices of contextuality
scenarios, it follows that this will determine the mapping from
random variables to contextuality scenarios.

Definition 27. For a system of the contextuality scenarios H, the
function fvtc defines a mapping from an outcome Xi = k to the set
of vertices e′ that define it within H.

fvtc( Xi = k ) : ( Xi = k ) → w where w ⊆ V(H)

6.2. Causal Influences
As mentioned in Definition 24, causal influences are formalized
in causal diagrams as directed edges between random variables.

In terms of contextuality scenarios (and following on from
the specification of Section 6.1), the definition corresponds to
a relation between two disjoint subsets of the set of vertices
V(H) for a system of contextuality scenarios H. This is further
specified by the nature of the relation within the causal diagram,
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FIGURE 4 | Alternative mapping of causal model to contextuality scenarios with functional assignments. (A) Causal diagram. (B) Mapping from causal model to

contextuality scenarios.

FIGURE 5 | Alternative causal influences. (A) HA measurement to HA outcome. (B) HA measurement to HB outcome. (C) HA outcome to HB outcome.

for which some possibilities are visualized in the manner of the
EPR framework, as shown in Figure 5.

Considering that Figure 5C conveys the choice of a
measurement of one party influencing some outcomes on
another party, the combinatorial approach defines these as edges
and vertices respectively. Following Figure 5C, suppose one
wishes to interrogate whether the highlighted causal influence
(i.e., that X1 influences X4), given that X3 = −1. The relation
is visualized within the necessary contextuality scenarios in
Figure 6.

In this respect, the full set of causal influences will hereafter
be attributed a set R, in which each member details the pair of
disjoint vertices that correspond to it.

Definition 28. For a causal diagram G = {X, E }, and a system of
contextuality scenarios H, let an edge e ∈ E have the source vertex
Xi, and the destination vertex Xj. Then the outcomes Xi = k and

Xj = k′ defines a member r ∈ R.

∀r ∈R r : = { ( fvtc( Xi = k ), fvtc( Xj = k′ ) ) }

6.3. Probabilities
As both contextuality scenarios and random variables can share
probabilistic assignments, their respective interpretations of
probabilistic models are related here.

Equation 7. Any outcome p(v) of the probabilistic model p
associated with a system of contextuality scenarios H has an
equivalence to the probability of observing one or more of the set
of n random variables X.

∀Hi ∈H ∀e∈E(Hi ) ∀v∈ e

p( v ) = Pr( Xj, . . . , Xk |Xl, . . . , Xm ) where

j, k, l,m ∈ [ 1, n ]

Frontiers in Psychology | www.frontiersin.org 10 May 2022 | Volume 13 | Article 871028

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Obeid et al. Extending Combinatorial Contextual Cognitive Protocols

FIGURE 6 | Visualization of relation within Figure 5C, given that X3 = −1. The

relation produced by the causal influence (and its derivative hyperedges) are

highlighted in red.

By Definition 27 and Equation (7), it is possible to
recover the probability of observing any single outcome
Xi = k.

Equation 8. The probability of observing any single outcomeXi =

k is equivalent to the summation of the probabilities of all vertices
within the set returned by the function fvtc( Xi = k )

Pr( Xi = k ) =
∑

v∈ fvtc( Xi = k )

p( v )

Similarly, the probability of observing any outcome Xi = k,
given the observation of any other outcome Xj = k′ is given
as follows.

Equation 9. The probability of observing any outcome Xi = k,
given the observation of any other outcome Xj = k′ is equivalent
to the summation of the probabilities of all vertices within the
set returned by the product of the functions, fvtc( Xi = k ) and
fvtc( Xj = k′ ).

Pr(Xi = k|Xj = k′) =
∑

p(v)

v∈{fvtc(Xi=k)×fvtc(Xj=k′)}

Furthermore, the joint distribution factors are also
formalized, relative to the system of contextuality scenario
as follows.

Equation 10. Given a variable Xi that has been fixed to the
outcome k, the joint distribution factors are expressed in terms
of the relative system of contextuality scenarios H. Specifically,
the joint distribution only calculates the product over any vertices
within V(H) that intersect the corresponding vertices of the
outcome fvtc( Xi = k ).

Pr( X | do( Xi = k ) )

=

{

∏

v∈V(H) p( v ) if { v ∩ fvtc( Xi = k ) } 6= {∅ }

0 otherwise

7. DETERMINING QUANTUM-LIKE
CONTEXTUALITY

In this section, we integrate the elements of the combinatorial
approach. and related causal modeling techniques in order to
declare the main result of the article: a theorem for determining
contextuality within experiments that exchange causal influences.

7.1. Disturbances in Deterministic Models
For any deterministic model that corresponds to a clique c, any
edge e of the F-R product always intersects it at exactly one vertex
if any only if the model is non-contextual.

Lemma 1. For any deterministic model on a system of
contextuality scenarios H whose corresponding clique c is of
the set of cliques NCC, the cardinality of the set defined by the
intersection of the clique and any edge of the F-R product is always
equivalent to 1.

∀c∈NCC ∀e∈E(
⊗n

i=1 Hi ) |{ c ∩ e }| = 1

Proof: Firstly, it is known that all hyperedges of the Cartesian
product of a system of contextuality scenarios correspond to joint
distributions of outcomes. Since any deterministic model only
records a single deterministic weighting in any joint distribution
of outcomes, it follows that any hyperedge within the Cartesian
product will only intersect the clique of the correspondent
deterministic model once. Secondly, by Corollary 1 the summated
probabilities corresponding to the vertices of any one hyperedge of
the F-R product are exactly equivalent to one another. As the F-R
product is a superset of the Cartesian product, it follows that any
hyperedge of the F-R product will also intersect any clique once,
in order to remain consistent with the subset of hyperedges that
form the Cartesian product. Furthermore, to prove that Lemma
1 only holds for non-contextual deterministic models, recall that
deterministic models that are not non-contextual must violate
the ND condition, which imbalances the equality of Corollary 1
by the F-R product. Therefore, it holds that only non-contextual
deterministic models can record a single deterministic weighting of
1 in any hyperedge of the F-R product. �

Then, Lemma 1 can be integrated into the calculation
of disturbance for all deterministic models that are not
non-contextual, by summating the weightings of q that fail
the equality.
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FIGURE 7 | Intersection of a relation, two edges of the F-R product, and a

clique. As shown above, the clique c ∈�NCC (deep red) intersects one edge of

the F-R product (light blue) twice, and the other not once. Integrated into the

expression |{ c ∩ e }| − 1, both edges produce the values +1 and −1,

respectively.

Lemma 2. Consider a system of contextuality scenarios H, and
the set of weightings q that correspond to all deterministic models
indexed by the set of cliques��NCC. For any single clique c ∈ ��NCC,
its integration with Lemma 1 defines the deterministic weight that
constitutes its disturbance. Furthermore, the summation of all
such weightings define the absolute total disturbance for exchanged
within the system.

∑

c∈�NCC

∑

e∈E(
⊗n

i=1 Hi )

qc ||{ c ∩ e }| − 1|

Proof: It is known already from Lemma 1 that for a system of
contextuality scenarios H, that any member c ∈ NCC intersects
any hyperedge of the F-R product in one vertex. Naturally, it
follows that ∀c∈NCC that |{ c ∩ e }| − 1 must always equal zero.

In fact, irrespective of all other elements of Lemma 2, if ��NCC
were substituted with NCC, its clear by the previous point that
the entire expression would resolve to zero, validating the fact that
deterministic models corresponding to the set NCC do not exchange
disturbance. The same should not hold for��NCC, which is supported
by the fact that |{ c ∩ e }| − 1 does not equal zero for members of
��NCC. In a simple case, such as the system that corresponds to the
EPR framework, |{ c ∩ e }| − 1 can be either +1 or −1 for any
member of��NCC, which is visualized in Figure 7.

If the expression (|{ c ∩ e }| − 1) = ±1 were true for arbitrary
systems beyond the EPR framework, the expression

∑

c∈�NCC
1

would detail the total disturbance. However there exist cases
where (|{ c ∩ e }| − 1) > 1, specifically for deterministic models

that exchange disturbance for multiple measurements. Suppose
for the EPR framework that the second party were to have three
measurements instead of two. A clique c ∈ ��NCC could violate the
ND condition for two separate outcomes. This would mean that
there are two outcomes that exchange disturbance for this model,
as visualized in Figure 8.

In saying this, the assumption that the disturbance
(corresponding to any c ∈ ��NCC) is equivalent to 1 would
no longer hold. Instead, to correctly quantify disturbances for
both outcomes, the ND condition would need to be applied. This
is handled by the F-R product, and so Lemma 2 accounts for the
total disturbance exchanged within a system. �

While Lemma 2 defines the expression necessary to calculate
the total disturbance exchanged within a system, consider
isolating the disturbance for only a single set of measurements
from one party onto a set of outcomes of another party. By
specification of relations in Section 6.2 and Corollary 1, this is
achieved by firstly articulating the edges of the F-R product that
capture disturbance for any single relation.

Definition 29. For any relation r ∈ R that corresponds to any
causal influence for a system of contextuality scenarios H, the
edges of the F-R product necessary for quantifying disturbances on
said relation are defined as Er , and are exactly those edges within
the necessary measurement protocol that intersect the Cartesian
product of the relation.

Er : =
{

e : e ∈ EHi →Hj where x ⊆ Hj, y ⊆ Hi,

r : = { (x, y)}, and
{

e ∩ ×
|r|
i=1r

}

6= {∅}
}

Then by Definition 29, one can augment Lemma 2 to only
quantify weightings that intersect the relation that correspond
to the measurements and outcomes in question. Specifically for
any probabilistic model, the disturbance on any hyperedge of
the F-R product can be evaluated and quantified for whether it
corresponds to a relation by the following function.

Lemma 3. Consider a probabilistic model p, a relation r ∈ R,
and an edge e ∈ E(⊗n

i=1 ). Let it be such that all deterministic
weightings of the set q form part of the convex decomposition
of p, as articulated in Definition 16. Then the total disturbance
exchanged between the measurements and outcomes of the relation
quantified on the said edge within the probabilistic model are
returned by the following function.

fdtb( r, e, p ) : =

{

∑

c∈�NCC
qc||{ c ∩ e }| − 1| if e ∈ Er

0 otherwise

Proof: It is known that the Cartesian product of any relation
r contains all vertices of its corresponding measurements and
outcomes. As any disturbances recorded on said measurements
and outcomes can only occur for weightings of q attributed to
their respective vertices, it holds that imposing the intersection

of ×
|r|
i=1r by the set Er on the expression of Lemma 2 isolates
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FIGURE 8 | Intersection of a relation, an edges of the F-R product, and a clique within a system that contains three measurements. As shown above, the clique

intersects the edge of the F-R product thrice, which evaluates the expression |{ c ∩ e }| − 1 to the value +2.

only the disturbances for said measurements and outcomes. Note
that this may include disturbances both to and from the intended
parties, as the Cartesian product is agnostic to causal influences.
As such, the evaluating hyperedges are fixed to a subset of the F-R
product, specifically only those which fit the measurement protocol
of the intended source party to the intended destination party. This
ensures that only the intended disturbances are captured. �

7.2. Quantifying Causal Influences
After calculating the total disturbance on a relation, it
is possible to finally formalize Definition 26 within the
combinatorial approach.

Definition 30. Consider two relations r′ and r′′ which correspond
to the observation of the outcome Xi = k over another outcome
Xj = k′. Let it be such that when Xi = k, that the relative
probabilistic model is p′, and that when Xi 6= k, that the relative
probabilistic model is p′′. Then the direct causal influence from Xi

to Xj is equivalent to the total disturbance observed when Xi = k
is fixed minus the total disturbance observed when Xi 6= k is fixed.

C
Xi = k, Xj = k′

=
∑

e∈E(
⊗n

i=1 Hi )

∣

∣ fdtb( r
′, e, p′ )− fdtb( r

′′, e, p′′ )
∣

∣

given r′ = { ( fvtc( do( Xi = k ) ), fvtc( Xj = k′ ) ) }

and r′′ = { ( fvtc( do( Xi 6= k ) ), fvtc( Xj = k′ ) ) }

Furthermore, as there is a direct correspondence between the
measurements and outcomes, Xi = k and Xj = k′, within

C
Xi = k, Xj = k′

and the relation r′, it holds that the shorthand Cr′ can

be used to denote it. Generally, the direct causal influence for any
relation r can be denoted by Cr .

Cr = C
Xi = k, Xj = k′

where

r : = { ( fvtc( Xi = k ), fvtc( Xj = k′ ) ) }

Having formalized the direct causal influence for any relation
within the combinatorial approach, it is then possible to
derive for any experiment the total disturbance that constitutes
causal influences.

Lemma 4. For any relation r ∈ R that corresponds to any
causal influence for a system of contextuality scenarios, the total
direct causal influences that constitute all or part thereof the total
disturbances are equivalent to the following expression.

∑

r ∈R

Dr −max { 0, Dr − Cr } where Dr =
∑

e∈E(
⊗n

i=1 Hi )

fdtb( r, e, p )

Proof: Firstly, for any relation r, the expression Cr determines
(for the general case), the direct causal influence exchanged by
the relation. When subtracted from the total disturbance Dr of a
given experiment,Dr−Cr quantifies the total noise. This is known
because all disturbances that are not the result of causal influences
are inevitably the result of noise. In some cases, this may be a
negative value (i.e., when there is no disturbance on a relation that
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anticipates disturbance comprised of causal influence), and so the
value is integrated into the expression max { 0, Dr − Cr }. Finally,
the value is again subtracted fromDr to determine the direct causal
influences in the experiment itself. It follows that the summation
for all relations quantifies the total direct causal influences for the
entire experiment. �

7.3. Determining Contextuality by Causal
Influences
At this stage, it is possible to redefine the equation used
to determine quantum-like contextuality. Prior to this work,
Pironio (2003) states that for any Bell parameter B that violates
the Bell inequalities by means of causal influences only, that the
amount by which the violation is observed is exactly equivalent
to the exchanged causal influences.

Corollary 2. For an experiment that determines contextuality,
let the Bell parameter B generate its statistical correlation by
means of causal influences only (i.e., in the full absence of noise
among experimental results). Also, let the weightings of said causal
influences be totalled to the value Call. Then it is known by Pironio
(2003) that the amount B violates the statistical bound B0 is
equivalent to Call.

|B − B0| = Call

Finally, by rearrangement of Corollary 2 and integration
of Lemma 4, we obtain an expression that can determine
contextuality in the presence of causal influences.

Theorem 1. For any given experiment, let the Bell parameter B
generate its statistical correlation against a statistical bound B0.
Then, if the total disturbances for the experiment that constitute
causal influences subtracted from the Bell parameter are greater
than B0, the experiment determines contextuality.

B −

(

∑

r ∈R

Dr −max { 0, Dr − Cr }

)

> B0

By Theorem 1, we can determine contextuality in the presence
of causal influences. More importantly, this result allows
us to correctly determine quantum-like contextuality within
cognitive experiments.

8. AN EXAMPLE SCENARIO

In this section, an example is provided to convey how
the extension of the combinatorial approach determines
contextuality in the presence of causal influences. The example
again considers the EPR framework, however with a separate
probabilistic model that has the pair-wise joint distributions in
Table 4.

In the literature, the example is widely known as a “Popescu-
Rohrlich” (P-R) box (Popescu and Rohrlich, 1998), and is known

FIGURE 9 | The cliques c and c′ visualized on Cartesian product of

contextuality scenarios HA and HB.

to be maximally contextual due to the degree that it’s Bell
parameter B violates the bound B0 of non-contextual hidden
variable theories.

Equation 11. The Bell parameter of Table 4 violates the bound of
non-contextual hidden variable theories.

B0 6≥ B

2 6≥ max
a ∈ {+1, −1 }

b ∈ {+1, −1 }

| corriptA = +1
iptB = +1

+ corriptA = +1
iptB = −1

+ corriptA = −1
iptB = +1

+ corriptA = −1
iptB = −1

− 2corriptA = a
iptB = b |

2 6≥
∣

∣1− 1+ 1+ 1− 2(−1)
∣

∣ given a = +1 b = −1

2 6≥ 4

Earlier in this article, it was mentioned that results such as the
above may be due to causal influences, and may not be truly
contextual in nature. By the relevant techniques, an experimental
protocol is now detailed.

Let it be such that the experimental trials that inform
the probabilistic model of Table 4 have two equally likely
deterministic models, which correspond to the cliques seen in
Figure 9.

Specifically, the cliques would each be attributed equal
weightings by the set q.

Definition 31. The set q, conveyed by the two comprising weights
that correspond to the cliques in Figure 9:

qc = 0.5, qc′ = 0.5
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From either clique, it can be speculated that the outcomes are
not invariant with respect to the measurements, and are thus
dependent upon their selections. This is evaluated by means
of mapping the measurements to a causal model, as previously
visualized in Figure 4.

Next, all relations upon the causal model are evaluated;
as mentioned in Section 6.2, these correspond to the causal
influences that may be present in the model. Of interest, the
following relations are considered.

Definition 32. Four relations of set R that are of significance to
possible causal influences within the example’s causal model:

r = { ( fvtc( do(X1 = +1, X2 = +1 ) ), fvtc( X3 = −1, X4 = +1 ) ) }

r′ = { ( fvtc( do(X1 = +1, X2 = −1 ) ), fvtc( X3 = −1, X4 = +1 ) ) }

r′′ = { ( fvtc( do(X1 = −1, X2 = +1 ) ), fvtc( X3 = −1, X4 = +1 ) ) }

r′′′ = { ( fvtc( do(X1 = −1, X2 = −1 ) ), fvtc( X3 = −1, X4 = +1 ) ) }

For the first relation r, we wish to determine the causal influence
of observing X3 = −1, given that X1 and X2 are both fixed to
the outcomes +1. To do this, we firstly calculate the edges that
correspond to relation r by Definition 29.

Definition 33. For relation r from Definition 32, the calculation
of edges from the necessary measurement protocol that correspond
to the set Er :

Er : =
{

e : e ∈ EHi→Hj where x ⊆ Hj, y ⊆ Hi,

r : = {(x, y)}, and
{

e ∩ ×
|r|
i=1r

}

6= {∅}
}

: = {e : e ∈ EHA→HB where {(v0|0)} ⊆ HA, {(v0|1)} ⊆ HB,

r : = {(v0|0, v0|1)}, and
{

e ∩ v0,0|0,1
}

6= {∅}}

: =
{

(v0,0|0,1, v1,0|0,1, v0,1|1,1, v1,1|1,1)
}

Note: In calculating set Er , the comprising values of x and y have
been derived by the following additional equations:

x : = fvtc( do(X1 = +1, X2 = +1 ) )

x : = {( v0|0 )}

y : = fvtc( X4 = +1, X3 = −1 )

y : = {( v0|1 )}

Having determined Er in Definition 33, only a single edge of the
measurement protocol EHA→HB within the F-R product has been
returned. This is visualized in Figure 10.

Now it is possible to calculate the causal influence variable Cr

by Definition 30. As specified, there is a requirement that two
separate experimental tests are conducted prior to its calculation,
to derive the necessary probabilistic models that correspond to
fixing the causal variables to the outcomes of relation r [i.e.,
Pr( X4 = +1 | do( X1 = +1, X2 = +1 ), X3 = −1 )], as
well as fixing the causal variables not to the outcomes of relation

FIGURE 10 | Intersection of cliques, a hyperedge of the F-R product, and a

relation. The hyperedge returned by Definition 33 is highlighted in blue; the

relation r is highlighted in light red.

TABLE 5 | Probabilistic distributions corresponding to observation of X4 under

causal intervention.

X4 = +1 X4 = −1

(0.00 1.00)

X4, given

do(X1 = +1, X2 = +1 ) and

X3 = −1

X4 = +1 X4 = −1

(.00 0.00)

X4, given

do(X1 = +1, X2 = −1 ) and

X3 = −1

r [i.e., Pr( X4 = +1 | do( X1 = +1, X2 = −1 ), X3 =

−1 )]. Coincidentally, the latter case is exactly r′, as detailed
in Definition 32. For both relations, the causal variables are
significantly fixed, and have separate probabilistic models (p
for r, and p′ for r′) informed by their respective experiments.
The results, as sampled under the causal interventions are given
in Table 5.

With knowledge of p and p′, Cr is calculated by determining
the difference in disturbance between the relations r and r′, given
their respective probabilistic models. It is known that the F-R
product calculates said disturbance, and that by relation r, the
edge given in Figure 10 is the only edge that qualifies for the
relation; this is the same for the relation r′. What differs between
them is that clique c′ does not intersect relation r, which then
influences the result of Cr .

Definition 34. The causal influence Cr determined for the
relation r, specifically for the causal influence that the configuration
of X1 = +1 and X2 = +1 exert upon X4 when X3 = −1.

Cr =
∑

e∈E(
⊗n

i=1 Hi )

∣

∣ fdtb( r, e, p )− fdtb( r
′, e, p′ )

∣

∣

=
∣

∣ 0 − qc′
∣

∣

∣

∣

{

c′ ∩ e
}
∣

∣− 1
∣

∣

∣

∣

= | 0 − 0.5|

= 0.5
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The same calculation is obtained for all other relations, which for
the example reveals the following values:

Definition 35. The causal influence variables, as calculated for all
relations of the example:

Cr = 0.5, Cr′ = 0.5, Cr′′ = 0.5, Cr′′′ = 0.5

By Equation (11), the Bell parameter B is known to equal 4; also
by Equation (1), the statistical bound on non-contextual hidden
variables B0 is known to equal 2. In Theorem 1, the value Dr is
known to calculate the causal influence of each relation r under
the pretense of no causal intervention. For the example, this so
happens to be equivalent to the value of causal variable (i.e.,
Dr = Cr). It follows that the cancelation of values is reflected
in the calculation of the theorem below:

Equation 12. The calculation of Theorem 1 for the example
scenario given in this section.

B − (
∑

r ∈R

Dr −max { 0, Dr − Cr }) 6> B0

4− ((Dr −max { 0, Dr − Cr })+ (Dr′ −max { 0, Dr′ − Cr′ })

+(Dr′′ −max { 0, Dr′′ − Cr′′ })+ (Dr′′′ −max { 0, Dr′′′ − Cr′′′ })) 6> 2

4− ((0.5− 0)+ (0.5− 0)+ (0.5− 0)+ (0.5− 0)) 6> 2

2 6> 2

As can be seen from the result of Equation (12), the causal
influences exchanged between the measurements and outcomes
of the respective parties cancel out any indication that the
Bell parameter is quantum-like contextual. This concludes the
example scenario of how the techniques developed in this
article may be applied to more adequately determine quantum-
like contextuality.

9. CONCLUSION

This article has developed and integrated a set of modeling
techniques to address the challenges of determining quantum-
like contextuality in the presence of causal influences. It has
achieved this by firstly addressing the challenge of providing
meaningful results to experimentation when disturbances are
present, by combination of the F-R product of Acín et al.
(2015)’s combinatorial approach and Chaves et al. (2015)’s causal
influence formula. The results of this article have also addressed
the second challenge of providing a sensitive treatment to the
convex decomposition of the probabilistic model associated with
an experiment by means of the combinatorial approach’s WFPN.
This further ensures that hidden causal influences are accounted
for within experimental results, as previously recommended by
Atmanspacher and Filk (2019). In addressing these challenges, it
has furthermore become possible to derive a novel theorem (see
Theorem 1) that reasonably adjusts the statistical bound of non-
contextual hidden variable theories, allowing for a theoretically
consistent determination of contextuality.

Beyond themain objectives of the article, we have also clarified
incorrect causal assumptions introduced by the usage of the ND
condition within experimentation for determining contextuality.
As detailed in Section 5.2.1, it was found that the ND condition
can incorrectly classify noise within experimental results as
causal influences, which inhibits a meaningful interpretation of
experimental results. The article also details how measurements
and outcomes (as they are formalized in the combinatorial
approach) may be related to canonical causal models. This
has been achieved by the necessary mapping functions of
causal variables and effects to contextuality scenarios and
relations respectively, as detailed in Section 6. Lastly, the
article has provided a comprehensive example of how the
theoretical contributions may be applied. A protocol detailing
the experimental steps has been developed, such that a cognitive
modeler may apply them to arrive at a meaningful result.
While the example is communicated in the manner of the EPR
framework, the theory is generally distilled to be applicable
within systems of arbitrarily many outcomes, measurements
or parties.

In terms of limitations, it is perceived that this work has
only considered integrating the absolutely necessary causal
modeling techniques required to produce viable experimental
results. We recognize that contemporary approaches to modeling
contextuality do not include rigorous causal analyses by nature,
and this was evident by the absence of such techniques within
the combinatorial approach. However it seems necessary to
interrogate causal approaches to study contextuality, which we
perceive will further our understanding of the phenomenon.
Aside from this, we believe it would also be necessary to
adapt Theorem 1 to a linear program that can more generally
calculate the statistical bound for any experimental protocol,
given the presence of causal influences. It is known in the
literature that the statistical bound of the Bell inequalities form
a convex polytope of all probabilistic models that adhere to
non-contextual hidden variable theories. In saying this, while
the methods described in this paper have served the derivation
of the statistical bounds necessary to achieve Theorem 1, it is
nevertheless possible to extend the findings even further to a
more straightforward solution.
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