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O

tribucion de las especies moviles en los sistemas dindmicos puede variar
enormemente tiempo y el espacio. Estimar el tamafio de la poblacion y la extension geografica
puede ser problematico y afecta la certeza de las valoraciones de conservacion. Los datos escasos
sobre las méviles y los recursos que necesitan también pueden limitar el tipo de estrategias

Resumen.

analiticas s para derivar dichos estimados. Cuantificamos el cambio en la disponibilidad y
el uso de los os ecologicos clave requeridos para la reproduccion en un especialista ndmada y
en peligro f extincion critico: el periquito migrador (Lathamus discolor). Comparamos los estimados

del habitat derivados de los modelos climaticos dindmicos de presencia-segundo plano (es

decir, dato ple-presencia) con los estimados derivados de los modelos de ocupaciéon dindmica
que incluygro medida directa de la disponibilidad de alimento. Después comparamos los
estimados (We rporan datos espaciales de alta resolucién sobre la disponibilidad de recursos
ecologi decir, los habitats funcionales) con estrategias mas comunes que se enfocan en

jtica mas general o en la cobertura vegetal (debido a la ausencia de datos de alta
resolucio modelos de ocupacion produjeron estimados mas pequefios significativamente
cretos espacialmente del area total ocupada que los modelos con base climatica.
La ubicacion espacial y la extension del area ocupada total fueron altamente variables entre afios
(131-1498 jgm”) con los modelos de ocupacion. Los estimados que representan el 4rea de los hébitats
funcionale mas pequefos significativamente (2-58% [DS 16]) que los estimados basados
solamente e

cion o calidad del habitat. Argumentamos que estos patrones son tipicos para los
especialista§,en recursos méviles pero son ignorados comiunmente debido a los datos limitados sobre
las escalas gspaciales y temporales relevantes y a la falta de datos espaciales sobre la disponibilidad
ntender los cambios en la disponibilidad relativa de los habitats funcionales es
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crucial para informar a la planeacion de la conservacion y valorar con certeza el riesgo de extincion de
los especialistas en recursos moviles.
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Abstract

The dist-ribution of mobile species in dynamic systems can vary greatly over time and space.
Estimatingwmlation size and geographic range can be problematic and affect the accuracy of
conservatigii assesSinents. Scarce data on mobile species and the resources they need can also limit
the type of analytical approaches available to derive such estimates. We quantified change in
availabilit of key ecological resources required for breeding for a critically endangered
nomadic he@cialis‘[, the Swift Parrot (Lathamus discolor). We compared estimates of occupied
habitat derived from dynamic presence-background (i.e., presence-only data) climatic models with
estimates d@gived from dynamic occupancy models that included a direct measure of food availability.

We then ¢ stimates that incorporate fine-resolution spatial data on the availability of key

ecological re8ouees (i.e., functional habitats) with more common approaches that focus on broader

climatic s or vegetation cover (due to the absence of fine-resolution data). The occupancy

models ionificantly (»<0.001) smaller (up to an order of magnitude) and more spatially
discrete estimates of the total occupied area than climate-based models. The spatial location and
extent of tlLea occupied with the occupancy models was highly variable between years (131-
1498 km?) @ s accounting for the area of functional habitats were significantly smaller (2—58%
[SD 16]) tha imates based only on the total area occupied. An increase or decrease in the area of
one funﬁt (foraging or nesting) did not necessarily correspond to an increase or decrease
in the otwn increase in the extent of occupied area may not equate to improved habitat
quality or functionfWe argue these patterns are typical for mobile resource specialists but often go
unnoticed beca f limited data over relevant spatial and temporal scales and lack of spatial data on

the avat f key resources. Understanding changes in the relative availability of functional
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habitats is crucial to informing conservation planning and accurately assessing extinction risk for

mobile resource specialists.

T

Introducti

H I

-

Predicting gite distfibution of nomadic migrants that respond to dynamic pulses in resource availability
by exploiting rich patches is a major challenge for conservation planners (Woinarski et al. 1992).
These spec a arkedly in life history-strategies, movement patterns, and settlement cues (Dean
2004; New, and their settlement patterns are poorly understood. They are often also resource
specialists, which can make them vulnerable to resource bottlenecks in time and space (Runge et al.
2014). Corgzation of nomadic migrants depends on understanding where and when resources are

available amopulations respond to resource configuration (Runge et al. 2015a). Ecologically

relevant andSp emporally explicit estimates of these species distributions are needed to guide

conserva ning (Gaston & Fuller 2009) and accurately assess exposure to threatening processes
(Runge .

L

Species di models (SDMs) are increasingly used to guide conservation planning by

characterizin ecies’ ecological requirements and projecting this over unsampled areas (Guisan &
Zimmerms 2000). The relative benefits of different modeling approaches have received considerable
attentioW ithian 2013; Guillera-Arroita et al. 2015). Models derived from systematically
collected d ecies’ presences and absences perform better in terms of avoiding false positive

and false n

=<

errors than those based on less robust sampling designs (Guillera-Arroita et al.

2015). , few nomadic migrants in dynamic environments have been studied using systematic

This article is protected by copyright. All rights reserved.
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sampling designs at ecologically relevant, large spatial scales, partly due to logistic or funding
constraints. Hence, limited data availability, especially the lack of absence records, can limit modeling
approac}Mess—accurate presence-background techniques (Phillips et al. 2006). Another common
limitation @ deling species distributions is that the resolution of spatial data layers used to
predict asspeeiesiadistribution may not reflect the resolution of the species’ habitat use. Most SDMs
are derivechroscale environmental characteristics (e.g. temperature, rainfall, vegetation

cover) (Gagton & Huller 2009) because continuous fine-scale data on specific resources (e.g., food)

C

are rarely ayail and often impractical to collect. If fine-scale habitat features determine species

S

occurrence edfter functional habitats), a species’ occupancy of the landscape is likely to be

overestimated in SBMs that do not account for them (Gaston & Fuller 2009). For habitat specialists

Ul

this effect i ifiied because broad-scale environmental data rarely capture higher-resolution

1

heterogenei ctional habitats (Jetz et al. 2008). Species also often require spatial and temporal

co-occurrefice ferent resources (e.g., food near nests [Brambilla & Saporetti 2014]).

d

Incorporating functional habitats and presence and absence data into SDMs is likely to improve model

estimates an rability of predictions to unsampled areas, but published examples are rare (e.g.,

7, Aratjo & Luoto 2007).

Despite thges, there is increasing demand for accurate and fine-scale distribution maps to
guide conseryati lanning for threatened species. We explored factors affecting accurate
distribuﬁg for a critically endangered nomadic migrant, the Swift Parrot (Lathamus
discolorw et al. 2015). Settlement patterns of Swift Parrots are determined by local pulses

of food availabilit%ver a large potential range (Webb et al. 2014). This dynamic and unpredictable
system has proy major challenge for implementing effective conservation action (Allchin et al.
2013)t nts for spatial variation in the location and availability of breeding habitat, as well as

This article is protected by copyright. All rights reserved.
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likely changes in the relative availability of functional habitats. Deforestation of Swift Parrot breeding
habitat continues (Supporting Information) without a clear understanding of the implications of the

loss of pa*ular sites and the effect on local habitat quality. Information about the spatial ecology of

b

Swift Parrd @ flamental to their conservation because managing anthropogenic and predator
impactsu(S tejamemie ct al. 2014; Heinsohn et al. 2015) on their population depends on understanding
how Swift L‘xove through their large range. In this context, the implications of using different

modeling approach@s to estimate dynamic distributional changes in occupied functional habitats is

C

crucial to cgms ion planning (Jetz et al. 2008).

Uus

We used data from a unique multiyear Swift Parrot monitoring program to quantify change in the use

and availa nctional habitats over the breeding range. Using data sampled from each

]

functional ¢ aimed to compare estimates of occupied habitat derived from presence-

d

background thodefing that incorporated climatic predictors with estimates from occupancy modeling

that incorp bsence data and a direct measure of food; quantify changes in the relative

availabi ent functional habitats over time; and determine whether variation in occupancy

Y

rates in one functional habitat is associated with changes in the other. We considered our results in the

1

context of e gaps for mobile species that exploit rich patches of food in dynamic systems

and the pot @ prtcomings for conservation planning when data on functional habitats are limited.

Methods

N

Study S ecies

!

Swift Parrots are n€ctarivorous, nomadic migrants that move between their wintering range on

J

mainland Au o the island of Tasmania to breed during the austral summer (Higgins 1999).

Breeding rrots need the flower of eucalyptus trees for food (Webb et al. 2014) and tree

A
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cavities for nesting (Webb et al. 2012). Variable but spatially structured flowering events of blue

(Eucalyptus globulus) and black gum (E. ovata) determine settlement patterns of nesting Swift Parrots

L

(Webb et a , meaning that nesting locations change annually and can be separated by up to

hundreds o T

rip

Standardizéd survdys in potential foraging habitat were carried out for Swift Parrots over their entire

C

core breeding range (Natural Values Atlas 2015) between 2009 and 2014. Survey methods are

outlined b al. (2014). Briefly, several hundred sites (range 771-1034) were surveyed in

&

eastern Tasmania @approximately 10,000 km?) during October each year (i.e. the early breeding

U

season) to collect presence-absence data through repeated 5-minute counts. Survey sites were in

q

potential fofagi bitat (i.e. >1 food tree within 200 m of the site centroid). Food trees were
surveyed fmng and scored on a scale of 0 to 4 (0, none ; 1, light; 2, moderate; 3, heavy; 4,
very heavy).

M

Comparison of Distribution-Estimate Approaches

Dr

To derive t bution of Swift Parrots with a standard presence-background-data approach, we

fitted annu@l models of habitat suitability with Maxent version 3.3.3 (Phillips et al. 2006). We built

g

annual timesslicedg@istribution maps for November 2009 to November 2012. We matched species

{

occurrence ih site-specific environmental conditions over the preceding 12 months before each

U

observatio eather data were unavailable for 2013 and 2014, and these years could therefore

not be i n this component of the analysis. This resulted in four annual distribution maps. (See

A
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Runge et al. [2015b] for further details of the modeling approach.) A 12-month time lag was chosen
because this lag had the strongest predictive power (3-, 6-, 9-, and 12-month lags were compared

using the a!a un&er the curve [AUC]). We used annual time-sliced models because we suspected the

P

use of an a @ ear was independent of habitat use in previous years (i.e. no site fidelity), a

charactemistiesefmmany mobile species that rely on fluctuating resources.

[

different w riables for each 100 x 100 m grid cell in Tasmania over the preceding 12 months:

The annual djstribution maps were created by first populating fine-resolution monthly rasters with six
1,
total rainfall, average rainfall, maximum temperature, minimum temperature, average maximum daily

temperature, average minimum daily temperature (Xu & Hutchinson 2011). A spatial layer of
eucalypt foﬁalso converted to a 100 x 100 m resolution raster to represent potential habitat

(TASVEijIPWE 2013). All variables were checked for correlations. We considered other

weather variable8% but they correlated with at least one of the above variables. Next, a global model
of Swift Pa onses to environmental conditions based on all Swift Parrot occurrences from
2009 to =477) was created using Maxent. Ten percent of records were reserved for model

validation. We projected the global model across the environmental conditions in the study region

over the 1

season). O
We use& e a; sengitivity and specificity threshold values for each year to reclassify the Maxent

logistic ou[ﬁredictions of presence or absence (Liu et al. 2013). This resulted in a map of

receding November each year (approximate midpoint of the Swift Parrot nesting

predicted r absence for each year from 2009 to 2012.

<
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To estimate species distribution based on presence-absence data and food availability, we used
occupancy models published by Webb et al. (2014). We updated these models to include 2 additional
years ofmmg in a time series from 2009 to 2014). Using data from each year we modeled
annual occ @ obabilities (%) and incorporated imperfect detection (p) in zero-inflated binomial
models @ IBymmithmthe EM Algorithm to allow the inclusion of a generalized additive model (GAM)
in the occuhmponent of the ZIB (Webb et al. 2014). Flower score and a bivariate smoothed

spatial terngl(latitude, longitude) were used as covariates in the ¥ component; flower score was the

C

single covamhe p component. Model predictions were interpolated across the study area with

kriging at 0°92” r&olution (approximately 1.6 x 1.6 km) and a neighborhood search radius of 0.05°

approximately 5 ki) (Webb et al. 2014). We considered these scales ecologically relevant based on

the degree tyautocorrelation in each year (Webb et al. 2014). Again, we assumed the species’

B

distributio ear was resource driven and therefore independent of other years.

To produc map of Swift Parrot occurrence, we reclassified ¥ into predictions of presence or
absenc imum threshold value for each annual model that represented the midpoint
between average ¥ values for occupied and unoccupied sites from our monitoring data (Fielding &

Estimating 1 Change in Occupied Habitat

Haworth 1

-

Using specﬁbution outputs from the habitat suitability and occupancy models, we derived

annual esti occupied habitat based on two scenarios that reflected different underlying

assumpﬁqlabitat availability : total area (area of all cells identified as suitable or occupied)

This article is protected by copyright. All rights reserved.
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and forest (area of all eucalypt forest and woodland in cells identified as suitable or occupied). Areas

outside the Swift Parrot breeding range (Natural Values Atlas 2015) were excluded from estimates.

T

QO

To bette‘ aWr Swift Parrot habitat specialization, we estimated occupied habitat within the
species’ tvchtional habitats: foraging habitat containing blue or black gums, and nesting
habitat con@ature cavity-bearing trees (i.e. functional habitat area). For these analyses, we
used two different spatial layers that identified each functional habitat. For foraging habitat, we used a
spatial pol lager that categorizes the contribution of blue or black gum to forest canopy cover
(DPIPWE @r nesting habitat, we used a spatial polygon layer of mature forest that reflects the
probability of the presence of tree cavities (Forest Practices Authority 2011). To reduce uncertainty,
we exclude ing- habitat polygons with <5% blue or black gum and polygons where tree

diameter a ight was <40 cm (young trees produce few flowers and rarely provide an
esou

attractive r Brereton et al. 2004]). Polygons of the mature forest layer were included in the
analysis 1 re categorized as low (5-20%), medium (20-40%), or high (>40%) density of

mature Stone 1998). The mature-forest-cover layer was updated using the 30 x 30 m

remotely sensed Global Forest Change Layer (Hansen et al. 2013) to account for recent deforestation

(also see Sh Information).

nctional habitat area were derived from both the habitat suitability models and

the occupancy models. We intersected the final output of each model in each year with the foraging-

habitat layﬁ:ature—forest layer to derive estimates of foraging habitat and nesting habitat

respectivel e derived another estimate of nesting habitat, adjusted nesting habitat, to account
for variatigagififffic density of mature trees and thus the likely density of tree cavities. To do this, we

reclassified n cover category for each polygon of the mature forest layer by dividing the area

This article is protected by copyright. All rights reserved.
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of each polygon by the median value of its crown cover (12.5%, 30%, and 60% respectively). Total
functional habitat area was then calculated by summing foraging habitat and adjusted nesting habitat.

T

We compa @ ent estimates of occupied habitat derived from habitat maps versus occupancy

P

maps with Reassemis product-moment correlations. To determine whether these estimates followed the
same trendhqe when derived from different models, we used analysis of covariance

(ANCOVA) to comipare trends in the slopes of regressions of the estimates from different modeling

¢

approaches

Estimating cy Rates in Nesting Habitat

To validate els and estimate occupancy rates in nesting habitat, we also surveyed potential

[US

nesting ha ift Parrots annually from November through December from 2009 through 2014

d

(i.e. after the'su of foraging habitat described above and timed to coincide with the middle of the
nesting pe mpling locations were established in the nearest potential nesting habitat (i.e.

mature aging sites where Swift Parrots were detected. After marking an initial sampling

M

location, the observer moved >200 m away on a random compass bearing to mark the next site.

I

Sampling 1 ad at least one potential nest tree (described in Webb et al. [2012]). Swift Parrot

presence-a @ ta were recorded within a 100-m radius around each sampling location.

Provisionin ift Parrots forage mostly within a 5-km radius of their nests (D.S., personal

n

observagi included nesting survey sites if they were within 5 km of the boundary of each

[

occupan ith the threshold applied).

AU
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For each year, we estimated Swift Parrot occupancy (¥,) and detectability (p,) (MacKenzie et al.
2002) in nesting habitat captured by the respective threshold occupancy model in PRESENCE (Hines
2012). We tichieved spatial replication (with replacement) by placing a 1-km” grid over sampled
areas. Eac w g location was treated as a repeat visit to each grid cell. The mean number of 1-
km’ cells sampledsgach year was 128 (SD 45), and the mean number of sampling locations per cell
was 3.6 (Sh:pporting Information). The number of sampling locations per cell was primarily

influenced By the gécurrence of potential nesting trees and access. Estimates of ¥, are conditional on

C

the presencmntial nest trees because no surveys were conducted where likely nest trees were

absent.

Results C

PresencEnd versus Presence-Absence Approaches

Habitat sui!bility models produced substantially different distribution maps relative to the occupancy
models in t he locations predicted to be suitable or occupied over time (Figs. 1 & 2).
Distributio ased on habitat suitability models also captured significantly larger areas of the

landscape !an those based on occupancy models (i.e. 2 — 12 times larger depending on the measure

of habitat) gl'able Ig Fig. 3). There was no significant correlation between habitat extent estimates

based on t:ferent modeling approaches (Pearson's product-moment correlation p>0.05

[Supportin, ation]). Model summaries and the location of Swift Parrot detections are in

Supporti ation.
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Habitat suiibility ']odels captured 16-30% more occupied sites than the occupancy models in the

four years cli ata were available (Supporting Information), but they also predicted large areas
(2618 —48 suitable in locations where the occupancy models provided strong evidence
that Swift Rarrots were either absent or present in only very low numbers. Mean occupancy

probability gutsidg areas captured by the occupancy models from 2009 to 2012 was 0.109 (SD 0.099)

(Supportin ation). Occupancy models had a high degree of overlap with the habitat suitability

models (mWSD 8.7]) (Supporting Information) but identified more spatially discrete regions

of occupie that reflected patterns of flowering in each year (Fig. 2).

Temporal gn Occupied Habitat

There were ia%‘ ferences in the location of occupied habitat estimated using the occupancy models
in each i . Habitat extent derived from the occupancy models also varied dramatically
between some years, particularly for functional habitats (up to three orders of magnitude) (Fig. 3;

individual es es in Supporting Information ), although there was no significant trend over time

(»>0.05) (ompared with the occupancy models, annual estimates of habitat extent derived

from harty models varied less (Fig. 1, Supporting Information). Estimates of functional

habitat nsistently and substantially smaller than other estimates for both modeling
approaches; often by several orders of magnitude (Fig. 3). For the occupancy models, an increase or

decrease in total ag@a or forest did not correspond to a significant respective increase or decrease in
foraging habi 0.05, Supporting Information). Furthermore, an increase or decrease in
availabili functional habitat did not necessarily correspond to a significant increase or
This article is protected by copyright. All rights reserved.
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decrease in the other (p>0.05) (Fig. 3, Supporting Information). Poor flowering conditions in 2014
resulted in only small isolated patches of foraging habitat being available and a dramatic reduction in
all estimmpied habitat (Figs. 2 & 3). At a handful of sites (<10) captured by the 2014
occupancy @ usually high abundances of Swift Parrots (estimated >300 individuals) appeared

to be comstamthympmesent while local flowering persisted.

Occupancy%’ Nesting Habitat

Predicted got occupancy (¥, ) in nesting habitat was high in all years (0.69-0.94) except

Cr

2014, and detectability (p,) remained relatively constant (0.49 [SD 0.09]) (Table 2). Large annual

fl

variations i umates of nesting habitat and adjusted nesting habitat (Fig. 3) were not reflected in the
respective mgmges in ¥, (Pearson’s  =-0.33, p = 0.58; Pearson’s r =-0.45, p = 0.45,
respecti though the very restricted functional habitat areas identified by the 2014 occupancy

model ociated with very high densities of birds in a small area of foraging habitat (see

M

above), this did not translate into high ¥, (or p,) in nearby nesting habitat.

Oor

Discussion

h

{

By linking of geographic range size to changing availability of functional habitats for a

U

nomadic mj e have provided a means to better understand the consequences of dynamic

variation i s geographic distributions. The method we used to derive functional habitat area

A

from dynam ancy models can be used to identify where and when resource bottlenecks may
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occur. For example, although Swift Parrot breeding had previously been recorded at several locations
we identified, we found that in some years most of the population is forced to rely on small areas of
habitat. Mproach provides a sound basis for targeting conservation resources and allows spatially
explicit th @ 0 be set for functional habitats in the context of ongoing habitat loss and dynamic
pulses imrcsemmeesay ailability that can result in very small areas of breeding habitat. We also found
that assessh)atiotemporal variation in exposure to other threats (e.g., nest predation) may be

improved With modeling approaches that account for ecologically relevant information (i.e., presence

C

and absencegof, t species and functional habitats).

UusS

By modeling change in species occupancy and selecting only the functional habitat from annual

1

distributio ected dynamic variation in ecologically relevant habitats that was not detected by

more comrmlied habitat suitability models (Fig. 3). Significant differences between estimates
of occupied Tabat depended on the type and function of habitat considered and the modeling

trated how the method used to calculate geographic range size can in itself cause

technique
nd uncertainty in occupancy estimates of potential habitat (Jiménez-Valverde et
al. 2008). This may have important implications for assessing extinction risk of nomadic migrants
because sch often limit modeling approaches that can be used to achieve conservation-

planning ament objectives (Jetz et al. 2008; Runge et al. 2015b; Tulloch et al. 2016). In

particular, t ate of type I errors (i.e. false positives) inherent in our habitat suitability models

jon to conservation planning in a landscape with multiple competing land uses
(e.g. indw logging) and to detection of trends over time. There will always be trade-offs
between theraEype I and type II errors (Field et al. 2007); however, our occupancy models

provide strong exadence on which to base conservation planning in an environment where habitat

protecti has considerable economic implications for competing interests. Furthermore, our

This article is protected by copyright. All rights reserved.
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results demonstrate the importance of incorporating direct measures of resource availability into

species distribution predictions, as well as distinguishing functional habitats in the environmental

matrix. I

Q.

Readily av: esence-only data may be sufficient to understand the distributions of well-studied

species, prdviding @ccurrence records cover important environmental gradients (Lentini & Wintle

CF

2015). Howeveﬁe found this may not be the case for specialized species with dynamic

distributio esence-background models were based on occurrence data collected in a spatially
stratified, systematic sampling design but yielded much larger estimates of Swift Parrot distribution
over time relative to occupancy models. Sensitivity analyses revealed that these differences remained
even when old assigning species’ presence or absence to the occupancy model results was
reduced by&pporﬁng Information). The strong overprediction (i.e., higher type I error rate) of

the presence=back€round models occurred because they did not explicitly account for food availability

or spatial and hence spatial structuring of the population each year (Estrada et al. 2016).

Becaus ing s also typically spatially structured (Webb et al. 2014) and is likely influenced by
climatic variability, explicitly modeling flowering patterns (Giles et al. 2016) rather than birds may be

an interesti&f future research to predict changes in food availability and the occurrence of

Swift Parrarski et al. 2000).

We suther percentage of occupied sites captured by these models is a reflection of the

species realizc e (while breeding) being greater than its fundamental niche (Pulliam 2000), likely
resulting from [imitation of one or both functional habitats. Alternatively, this may also be attributable
to reco@aﬂms that had not yet settled to breed. Unfortunately, most data for species with

This article is protected by copyright. All rights reserved.

16



similarly variable distributions consist of presence-only records that have not been collected in a
structured sampling design (Runge et al. 2015b). Our study highlights the value of investing in the
acquisithuality (i.e. repeated, standardized) presence-absence data for threatened nomadic
migrants.

rip

The small ¢gtimatc§ of functional habitat area represent a sobering reality for a species experiencing
widespread ant ogenic landscape change (Supporting Information) and spatially heterogeneous
threats like ation. Although the spatial location and extent of functional habitat areas varied

considerably betw8en years (Fig. 3), nesting occupancy remained consistently high until 2013 (up to

U

94%). This suggests either the abundance-occupancy relationship in nesting habitat varied between

years or SO irds did not breed due to nesting-site limitation, particularly in 2014 (Table 2).

Fl

Moreover, detailed estimates of functional habitat area are likely to overestimate occupied

d

habitat (e.g., Stofafiovic et al. 2012, 2014b). Accurately quantifying resources at such fine resolutions
is often no ible, but it is important to consider irrespective of the sophistication of modeling

approa ier et al. 2012).

[

ability and spatial configuration of functional habitats for mobile species has

ations for the fitness of individuals and carrying capacity within occupied areas
(Brambillag Saporretti 2014; Olsson & Bolen 2014). The fitness of Swift Parrots is improved by
breedinMst patch of food available in the landscape (Stojanovic et al. 2015), but nest-site
availability wi rmine how many birds will be able to breed in a given patch. For example, as

Swift Parrot settlement patterns changed over time, an increase or decrease in one functional habitat

s

did not ily correspond to an increase or decrease in the other (Fig. 3). For species that
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experience dynamic change in geographic distribution, an increase in the extent of occupied area may
not equate to improved habitat quality or function. Rather, habitat quality is contingent on the relative
availabiMrlap of key functional habitats. Our results indicated that the temporal availability
of one fund @ bitat (e.g., nesting sites) can be restricted due to the absence of another key
resourcen(crgmmfenaging resources). When the availability of one or both functional habitats for the
Swift Parrhlow an (as yet undefined) threshold it may restrict settlement options and limit

breeding patticipatibn. We argue that many nomadic migrants experience resource bottlenecks due to

C

limitation Mmore functional habitats, but these bottlenecks go unmeasured due to data
a

deficiency of rigorous research (Newton 2012).

By incorpomdirect measure of food availability and high-resolution mapping of functional

habitat fea derived ecologically relevant and mechanistically informed estimates of occupied
Swift Parrot'breedihg habitat. Even when a species appears to occupy a large area, resource
dependenc ean only a small fraction of that area can actually be exploited (e.g., Jetz et al.
2008). ss of small areas of one (or both) functional habitats can have profound effects on
the population and negate potential benefits from conservation actions elsewhere (Runge et al. 2015a).
Given the hd temporal scale at which habitat loss and disturbance are occurring in the Swift
Parrot bree @ ve (Supporting Information), we argue that spatially discrete regions should be
managed in at reflects the availability of functional habitats at ecologically relevant scales
and theﬂ to the population in a given year. For example, the foraging range of Swift
Parrots Wsite is one relevant scale to consider. Similarly, the scale (and location) at which

breeding aggregati@ns occur, such as those we identified, is important at the population level. The
availability of fi onal habitats at these 2 scales, in combination with changing flowering
conditi mined the carrying capacity of the breeding range in a given year, particularly during
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resource bottlenecks. Therefore, habitat management that does not consider the spatial location, scale,

and relative availability of specific habitats is likely to be relatively less effective.

Nomadiﬁ Wre a chronically understudied species guild but represent an important component

of animal

[

t strategies (Dingle 1996). Many nomadic species require urgent conservation
attention (Haaborg\t al. 2010), but a lack of robust data can be a serious impediment to conservation
assessment g ective conservation actions. We encourage conservation agencies to recognize the
limitations ipg/distribution models derived from incomplete data (see also Tulloch et al. 2016)
and to develop cofigervation plans that account for functional habitats where possible. Integrating

but critical

temporal change in resource availability into conservation planning for mobile species is challenging
m{ying key locations, dependencies among habitats and sites, and exposure to other

threats (Rum 2016). To address this challenge, investing in the collection of both high-quality

occupancy and ronmental data to estimate species distributions should be a priority. In the

absence o information, many knowledge gaps for nomads will continue to go unaddressed and

will res ion or poorly directed resources that provide little conservation benefit.
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Supportindon

Map of @rWd disturbance from 1997 to 2013 (Appendix S1); occupancy models showing
sites whereSSwi rrots were observed in each of the six years (Appendix S2); occupancy model and

Maxent mgglel sumiinaries; information on number of sampling locations for surveys in nesting

GE

habitat; compar of estimates from different modeling approaches; percentage of occupied sites
captured bw:uitabilityand occupancy models; mean occupancy probabilities outside areas

captured by occupancy models; annual estimates of occupied habitat from each modeling approach

Ul

(Appendix S3): sensitivity analysis examining the effect of reducing the threshold assigning species’

q:

presence 0O to the occupancy models (Appendix S4) are available online. The authors are

solely resp r the content and functionality of these materials. Queries (other than absence of

d

the material}sh be directed to the corresponding author.
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Table 1 Re nalysis of covariance testing for the effect of modeling approach and year on

estimates abitalloccupied by the Swift Parrot (habitat suitability model versus occupancy model).

USE

Me@abitat Variable F p

Totm model 46.5 0.006
year 1.2 0.48

E model 36.4 0.009
year 2.0 0.31

-

Neso model 36.1 0.009
year 2.1 0.29

W;Etensﬁng habitat model 29.9 0.012
year 23 0.26

Fora itat model 74.1 0.003

AU
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year 1.1 0.51

pt

Table 25\Et occupancy (¥,) and detectability (p,) rates in surveyed nesting habitat.

O Year
Parm 2009 2010 2011 2012 2013 2014
Naija 0.66 066 051 059 065 029
7, 0.74 083 069 094 074 b
SE C 0.07 0.05 0.06 007 0.05 -
Pa m 0.4 057 055 049 057 035
0.03 0.03 004 003 003 004

M

*Observed occupancy.

®Could no ated due to poor model fit.

or

Figure legénds

f

Figure 1. E&imates of areas occupied by Swift Parrots (gray) in eastern Tasmania, Australia, in (a)

2009, (b) 2010, (c)2011, and (d) 2012 based on habitat suitability models implemented in Maxent

9

with equal scasif#ty and specificity thresholds applied (gray line, Swift Parrot breeding range
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[Natural Values Atlas 2015]). Threshold values for each year are 0.1557, 0.2070, 0.2481, 0.1670,

respectively.

(a) ] (b)

(d}

Figure 2. Esta of areas of functional habitat occupied by Swift Parrots based on occupancy
models (re habitat; blue, foraging habitat) in eastern Tasmania, Australia, from (a) 2009, (b)

2010, (c) 2011, (d) 2012, (e) 2013, and (f) 2014. Threshold values for each year are 0.3637, 0.3904,

0.4305, 0.132, 0.?35, 0.2926, respectively.

<
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Figure imates of occupied Swift Parrot habitat from suitability models (dashed lines) and

occupancy mo solid lines) in the species’ breeding range over 6 years (plus sign, total area;

diamonds Bffangle, nesting habitat; square, adjusted nesting habitat; circle, foraging habitat;

short horizgntal bar, total functional habitat area).
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