Spectral clustering on protein-protein interaction networks via constructing affinity matrix using attributed graph embedding

, Nasiri, Elahe, Pir mohammadiani, Rojiar, & (2021) Spectral clustering on protein-protein interaction networks via constructing affinity matrix using attributed graph embedding. Computers in Biology and Medicine, 138, Article number: 104933.

View at publisher

Description

The identification of protein complexes in protein-protein interaction networks is the most fundamental and essential problem for revealing the underlying mechanism of biological processes. However, most existing protein complexes identification methods only consider a network's topology structures, and in doing so, these methods miss the advantage of using nodes' feature information. In protein-protein interaction, both topological structure and node features are essential ingredients for protein complexes. The spectral clustering method utilizes the eigenvalues of the affinity matrix of the data to map to a low-dimensional space. It has attracted much attention in recent years as one of the most efficient algorithms in the subcategory of dimensionality reduction. In this paper, a new version of spectral clustering, named text-associated DeepWalk-Spectral Clustering (TADW-SC), is proposed for attributed networks in which the identified protein complexes have structural cohesiveness and attribute homogeneity. Since the performance of spectral clustering heavily depends on the effectiveness of the affinity matrix, our proposed method will use the text-associated DeepWalk (TADW) to calculate the embedding vectors of proteins. In the following, the affinity matrix will be computed by utilizing the cosine similarity between the two low dimensional vectors, which will be considerable to improve the accuracy of the affinity matrix. Experimental results show that our method performs unexpectedly well in comparison to existing state-of-the-art methods in both real protein network datasets and synthetic networks.

Impact and interest:

77 citations in Scopus
56 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 233322
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Li, Yuefengorcid.org/0000-0002-3594-8980
Measurements or Duration: 9 pages
Keywords: Affinity matrix, Graph embedding, Protein complexes identification, Protein-protein interaction network, Spectral clustering
DOI: 10.1016/j.compbiomed.2021.104933
ISSN: 0010-4825
Pure ID: 112558456
Divisions: Current > QUT Faculties and Divisions > Faculty of Science
Current > Schools > School of Computer Science
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 06 Jul 2022 00:38
Last Modified: 25 Jul 2024 18:57