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Abstract: Precast concrete sandwich panels (PCSPs) are utilized for the external cladding of structures
(i.e., residential, and commercial) due to their high thermal efficiency and adequate composite action
that resist applied loads. PCSPs are composed of an insulating layer with high thermal resistance that
is mechanically connected to the concrete. In the recent decades, PCSPs have been a viable alternative
for the fast deployment of structures due to the low fabrication and maintenance cost. Furthermore,
the construction of light and thin concrete wythes that can transfer and resist shear loads has been
achieved with the utilization of high-performance cementitious composites. As a result, engineers
prefer PCSPs for building construction. PCSP design and use have been examined to guarantee that a
building is energy efficient, has structural integrity, is sustainable, is comfortable, and is safe. Hence,
this paper reviews the expanding knowledge regarding the current development of the mechanical
and thermal properties of the PCSPs components; subsequently, future potential research directions
are suggested.

Keywords: precast concrete sandwich panel; shear connection; insulation; concrete wythes; load-bearing
composite wall

1. Introduction

Insulated wall panels, also known as precast concrete sandwich panels (PCSPs) or
integrally insulated wall panels, are being utilized extensively in structures and building en-
velope systems. The panels have superior thermal and acoustic insulation and load-bearing
capacity [1]. The panels (wythes) are composed of rigid foam insulation sandwiched
between two layers of concrete and held together using shear connectors (as illustrated
in Figure 1) [2]. The panels can be prefabricated to ensure quality control, elimination of
construction delays, and fast deployment [3]. The panels can be fabricated to consist of
partial or complete composite action depending on the degree of shear force transmitted
and the arrangement of shear connections [4]. Steel, fibre-reinforced polymers (FRPs), and
plastics are the most common materials used for shear connectors [4]. However, steel shear
connectors are preferred due to their mechanical properties. FRP connectors can provide
both structural and thermal performance as they possess low heat conductivity [5]. On the
other hand, plastic has a very poor thermal conductivity and consists of weak mechanical
properties (i.e., low rigidity) limiting their use in panels [6,7].

In recent years, to enhance the stiffness of the concrete panels, basalt fibre-reinforced
polymers (BFRPs) have been used as reinforcement and shear connectors [8–10]. BFRPs have
similar strength and thermal conductivity to glass fibre-reinforced polymers (GFRPs) [11,12].
Moreover, BFRPs have a larger stiffness and are more durable than GFRPs [11–13]. Furthermore,
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BFRPs are easy to manufacture; they are also high thermal insulators that resist freezing and
thawing environments [9,12]. In general, BFRPs have a manufacturing cost that is lower than
that of carbon fibre-reinforced polymers but higher than that of GFRPs [9,11]. However, the
long-term performance of BFRPs in rapid weathering and alkali environments has not been not
fully investigated [14]. Researchers have illustrated that BFRPs have outperformed GFRPs and
CFRPs in terms of thermal resistance and simplicity of production [15].
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Figure 1. A precast concrete sandwich panel: (a) rear view, (b) shear connector (edited from [6,7]).

Woltman et al. (2013) illustrated that the panels have good thermal insulation; however,
the efficiency is reduced over time [1]. The panels are often restricted to a minimum
thickness of 51 mm due to cover and fire resistance requirements. Moreover, an efficient
thermal insulation layer can have a thickness ranging between 51 mm and 102 mm [4].
The insulating layer is usually fabricated from extruded polystyrene (XPS) and expanded
polystyrene (EPS). The XPS exhibits high shear strength when compared to EPS. This is
due to the smoothness of EPS, which results in a low shear strength [4]. Moreover, EPS has
a weak bond strength when subjected to freezing and thawing conditions due to their high
moisture absorption rate [5].

Researchers are investigating the feasibility of reducing the thickness of PCSPs to save
resources and materials and improve efficiency [14–16]. A crucial aspect in reducing the
thickness of the panels is maintaining the thermal effectiveness and strength capacity of
the cladding components [17]. Therefore, the utilization of partial/full-composite action
alongside with anticorrosive reinforcement and shear connectors can be a feasible solution.
Several researchers have concluded that a concrete layer with a minimum thickness of
80 mm is required to provide adequate cover for steel reinforcement in a typical concrete
wythe [18]. Researchers found that two concrete panels could be attached together to
provide composite action in resisting flexural loads [19]. This design mechanism resulted
in enhancing the structural capacity while allowing for a small overall composite to be
implemented [19]. However, the shear connectors need to be optimized to minimize the
impact of thermal transfer (i.e., heat bypass) and structural rigidity [20]. Moreover, to reduce
the overall thickness, a smaller cover needs to be implemented. In general, the concrete
cover is specified based on the fabrication, transfer, and fire protection requirements and
standards [20]. A minimum diameter and development length are required for the bolts
used during the deployment of the panels (i.e., the assembling of the panels) [21]. On the
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other hand, fire protection is provided by the concrete cover in accordance with the design
code [22,23]. It is worth noting that the cover requirement for non-structural cladding
panels is less than those for structural cladding panels [24].

This review summarizes the expanding knowledge regarding the structural perfor-
mance of precast concrete sandwich panels (PCSPs). Furthermore, the properties of the
components of PCSPs consisting of the concrete wythes, insulation core, and mechanical
connectors are discussed.

2. Sandwich Panels Behaviour

Sandwich panels made of precast and prestressed concrete are often utilised for
various buildings’ outside and interior walls [24]. These panels may be quickly and easily
mounted to any structural frame, including ones made of steel, reinforced concrete, pre-
engineered metal, and precast or prestressed concrete [25]. The panels are prefabricated
in a facility, brought to the project site, and erected by cranes. The panels reach vertically
between foundations and floors or roofs to produce permanent walls but may also span
horizontally between columns [26]. Sandwich panels are comparable to other precast or
post-tensioned concrete members in design, detailing, manufacturing, handling, shipping,
and erection [27]. On the other hand, due to an intervening layer of insulation, sandwich
panels display behaviours and characteristics distinct from those of other precast or post-
tensioned concrete members [28].

The panels can be classified as composite, partially composite, or non-composite.
Composite panels are designed so that the two concrete wythes are fully bonded and work
cooperatively to withstand the applied load. The usual failure behaviour of a composite
panel is the crushing of concrete or the deterioration in steel reinforcement. It is worth
noting that composite panels have shear connectors that are designed to withstand higher
stresses than concrete or steel can resist. This is to minimize the possibility of a sudden
failure in shear connectors. Figure 2 illustrates the linear stress distribution over the
thickness of a sandwich panel that is (a) composite, (b) partially-composite, and (c) non-
composite. Figure 2d displays the stress distribution of a single panel. A partially composite
panel consists of connectors that can only transmit a percentage of the longitudinal shear.
For partially composite panels, the failure occurs in the shear connectors.
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Figure 2. Strain distribution of precast composite sandwich panels [29].

The behaviour of the PCSPs is complex due to its material nonlinearity, the percentage
composite action, and the interaction of the components. Researchers have developed
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models based on experimental results and a fundamental analytical approach. Moreover,
the flexural behaviour of the PCSPs has been investigated to understand the effectiveness
of the truss shear connectors to assure composite behaviour. However, there is a lack
of experimental data due to the expenses associated with conducting full-scale testing
and the difficulty associated with developing small-scale models. Furthermore, most
manufacturers in North America and Europe do not share detailed information about the
panel composition and design as they are protected under proprietary licenses [29].

3. Shear Connectors

Figure 3 illustrates the typical assembly of precast concrete sandwich panels consisting
of two outer layers of concrete and a core insulative layer. The layers are bonded using
shear connectors. The shear connectors act as a strong bridge between the outer and core
layers [30]. The shear connectors should have an adequate diameter (a minimum of 4 mm
is used) to improve the system’s overall structural integrity. It is critical to ensure that
the panels can transfer the applied forces from one outer layer to the other outer layer
without causing deterioration to the insulation core. Depending on the intended application
and customer need, a shear connection design configuration (i.e., one-way, or two-way
direction) and its orientation may vary.
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Table 1 presents the various types of shear connectors that have been investigated.
Zhang et al. [32] investigated the thermal performance of reinforced precast concrete sand-
wich panels with three different types of shear connections. Among the shear connectors
that have been investigated were steel truss connectors, nominal thermo-mass connectors,
and steel-pin connectors. The research illustrated that the nominal shear connectors have a
low heat transfer rate and are the most stable under various loading situations. Moreover,
truss shear connectors are comparable to the nominal shear connectors. It is worth noting
that steel pin connectors do not provide sufficient composite behaviour [32].
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Table 1. Typical design of shear connectors and materials used.

Study Connection Material/Type Design Insulative Materials Thickness (mm)

[33] Steel Truss-Shaped Shear Connector
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4. PCSPs Insulation

PCSPs can be categorized as either bulk (i.e., mass) or reflective insulators. The mass
insulation can reduce heat transfer by conduction, while reflective insulators reduce the
heat transfer by radiation [39].

4.1. Mass Insulation

High thermal mass insulators absorb and retain heat by delaying the rate transfer
through conduction. The use of external coatings with low thermal mass and conductivity
for structures are helpful in isolating heat transfer in hot climates boosting the insulation
efficiency. The efficacy of the mass insulators is dependent on the thickness of the material
used and the heat conduction behaviour. Moreover, the effectiveness of the thermal
insulator is dependent on the state of the subdivision and the density of the material [28].
Mass insulators are often composed of many small pockets filled with trapped air that
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significantly decrease the transmission of heat. Therefore, compressing mass insulators
have a negative impact on their efficiency to insulate heat [39].

4.2. Reflective Insulation

A reflective (i.e., low emittance) surface provides thermal insulation by reflecting
the heat radiation. This results in a reduction in the amount of heat transferred to a
building due to solar rays and decreases the indoor temperature while improving the
air quality within a structure. The effectiveness of a surface in emitting energy through
thermal radiation is defined as emissivity. As the emissivity of a surface increases for
a specific wavelength, the energy radiated at that wavelength also increases. Reflective
insulators are composed of several low-emittance surfaces that entrap air. They are often
employed in residential buildings such as attics, roofing, and wall systems [40,41]. Several
researchers have examined the effects of reflective insulators on the thermal performance
of the building envelopes [42–45].

5. Classification of Insulators
5.1. Classification Based on Form

The most prevalent forms of insulation include loose-fill spray foam, batts, blankets,
and rigid boards. The structure, rehabilitation plan, and building code requirements
must all be considered when choosing the insulation material [36,46]. Table 2 provides a
summary of the performance characteristics of insulative materials based on their shape.

Table 2. Performance characteristics for common insulators [47–49].

Form Material
Density
(kg/m3)

Thermal
Conductivity
(W/m−2K−1)

Maximum Service
Temp. (◦C) Durability

Blankets: Batts
or Rolls

Fiberglass (Sand and
Recycled Glass) 12–56 0.04–0.033 −4–260 Compression Reduces

R-Value

Rockwool
(Natural Rocks) 40–200 0.037 −240–800 Compression Reduces

R-Value

Polyethylene 35–40 0.041 −40–90 R-Value Decreases with
Time

Loose-Fill
Blown-in or
Poured-in

Open Cell Structure 10–48 0.038–0.030 −4–260 Compression and Moisture
Degrade R-Value

Rockwool (Open
Cell Structure) 24–36 0.040 −240–800 Compression and Moisture

Degrade R-Value

Cellulose
(Ground-up Wastepaper) 24–36 0.054–0.046 80 Compression and Moisture

Degrade R-Value

Perlite (Natural Glassy
Volcanic Rock) 32–176 0.06–0.04 760 Good

Vermiculite 64–130 0.068–0.063 1315 Good

Rigid Board

Fiberglass (Open
Cell Structure) 24–112 0.035–0.032 −4–350 More Rigid Than Batts

Expanded Polystyrene
(Closed Cell Foam) 16–35 0.038–0.037 100 R-Value Decreases with Time

Extruded Polystyrene
(Closed Cell Foam) 26–35 0.032–0.030 100 R-Value Decreases with Time

5.2. Classification Based on Composition

In general, the chemical and physical structure of a material determines the insulation
properties. Papadopoulos [50] classified the insulation materials into organic, inorganic,
mixed, and innovative technologies as illustrated in Figure 4.
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5.2.1. Inorganic and Organic Insulators

Inorganic insulators are composed from non-renewable resources such as mineral
wood, perlite, aerated concrete blocks, and foamy glass [51]. Organic insulators are com-
posed of natural flora, wood wool, cellulose, expanded rubber, wood fibre, and sheep
wool [52]. Organic insulators have numerous advantages such as being recyclable and
nontoxic, along with other environmental benefits. Furthermore, the organic materials use
less resources and energy for the manufacturing process compared to the inorganic insu-
lators [53]. However, inorganic insulators are less expensive to utilize and have superior
insulation properties [48]. Furthermore, inorganic insulators are resistant to fire and other
chemicals compared to organic insulators.

5.2.2. Combined and Innovative Technologies

The utilization of several materials in insulators can improve the overall thermal
performance and energy efficiency. Novel thermal insulators such as transparent insulative
materials have been developed and have good thermal insulation and solar gathering
properties [54]. Moreover, dynamic insulators that actively utilize ventilation systems have
been employed to increase insulation efficiency [55]. Currently, insulators are composed
of petrochemicals, fiberglass, mineral wool, polyurethane foam, and multiple foils [56].
Additionally, this material can be assembled in several configurations via simple installation
techniques. However, these materials are non-renewable, generate waste, and depend on
fossil fuels. Table 3 illustrates the material properties of the insulative materials that are
currently being used. The selection of insulative material depends on the cost, durability,
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climatic factors, availability, mode of heat transmission, simplicity of installation, and
structure orientation [14]. The following are examples of currently used insulative materials:
(1) mineral wool, (2) cellulose, (3) expanded polystyrene (EPS) [57], cork, polyurethane
(PUR) [58], extruded polystyrene (XPS) [57], and wood [59].

Table 3. Physical properties of the commonly used insulative materials [31,46].

Physical Property
Polystyrene Polyurethane

EPS XPS Unfaced Faced

Density (kg/m3) 11.2–14.4 17.6–22.4 28.8 20.8–25.6 28.8–35.2 48 32–96 32–96

Water Absorption (%) <4.0 <3.0 <2.0 <0.3 <3.0 1.0–2.0

Compressive Strength (kPa) 35–70 90–103 172 103–172 276–414 690 110–345 110

Tensile Strength (kPa) 124–172 172 345 724 310–965 348

Linear Coef. of Expansion
10−6 mm/mm/C 45–72 54–108 54–108

Shear Strength (kPa) 138–241 - 241 482 138–690 138–690

Flexural Strength (kPa) 69–172 207–276 345 276–345 414–517 695 345–1448 276–345

Thermal Conductivity
Wm/m2/C 0.043 0.037 0.033 0.029 0.026 0.014–0.022

Maximum Temperature ◦C 71 118

6. PCSPs Thermal Performance

Experimental characterization of conventional/typical PCSPs have revealed a thermal
transmittance value (U-value) between 1.2 Wm−2 K−1 and 2.0 Wm−2 K−1 in panels with
just 38 mm of expanded polystyrene (EPS) insulation core. Higher U-values have been
observed with panels that consist of closely spaced connections, as thermal bridges are
formed across the insulating layer. This results in increasing the number of heat loss
pathways. More recently, Zhai et al. developed a PCSP with a novel nylon shear connector;
the panel had an insulation core with a 100 mm thickness of polyurethane [60]. The panel
had a U-value of 0.66 Wm−2 K−1. Zhai et al. also investigated the use of expanded
polystyrene with the same configuration and had a U-value of 1.2 Wm−2 K−1 [60]. Based
on the observed results, Zhai et al. concluded that the developed panels were more
effective and cost efficient than PCSPs with fibre-reinforced polymer (FRP) connectors
that have a U-value of 0.41 Wm−2 K−1 [60]. Keenehan et al. [61] observed that a PCSP
with 120 mm of a phenolic foam (PF) insulative core had a U-value of 0.26 Wm−2 K−1

when using steel connectors and 0.15 Wm−2 K−1 when using fiberglass connectors. It is
worth noting that the shear connectors were determined based on the mechanical and
strength requirements. Woltman et al. [32] investigated panels with discrete 4-mm diameter
steel connectors, which had a U-value of 0.36 Wm−2 K−1, while the panels with the same
number of discrete 9.5mm diameter GFRP connectors and a 150 mm rigid XPS insulative
core had a U-value of 0.34 Wm−2 K−1. Several researchers have illustrated that PCSPs
with significant thicknesses ranging from 250 mm to 390 mm had a U-value less than
1.0 Wm−2 K−1 [61,62]. Panels with U-values that are much lower than those that have
been investigated are necessary for residential and commercial buildings. In Ireland, the
construction standard requires panels with a maximum of 0.21 Wm−2 K−1, and compliance
incentives are given for an additional reduction in the U-value [63].

Vacuum insulation panels (VIPs) are lightweight, flexible and provide a viable solution
for achieving thin PCSPs with high thermal resistance [63]. Currently, VIPs have low
conductivity ratings compared to other commercially available insulative materials. VIPs
are used to safeguard electronic equipment and are constructed of a hardcore using silica
fume and covered with aluminium foil to provide an airtight wrap [64]. VIPs have been
used for various applications [65]. In a recent publication, it was observed that the U-



Buildings 2022, 12, 1429 9 of 14

value was 0.007 Wm−2 K−1, which is three times lower than the U-value than common
foam insulators [66]. VIPs are manufactured in predetermined module sizes to ensure
their performance. VIPs that are custom designed have discontinuous layers of vacuum
insulation between the two insulation layers. Although the incorporation of VIP into a
PCSP is simple [18], there is a likelihood of delamination with the shear connectors (i.e.,
thermal bridging) [67].

Figure 5 shows the effects of overall panel thickness and insulation thickness on the
ultimate load of the panel. In general, insulation thickness has a negative effect on the
ultimate load of the panels, as a shorter shear-span between the loadings provides a higher
capacity of the shear connector in PCSP.
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Table 4 illustrates the research development that has occurred since 2007 in the area of
PCSP in terms of alternative materials for wythes and composite shear connectors. The table
presents the ultimate force applied in terms of the axial, bending, and shear characterization.
Conventional concrete and steel panels have an ultimate load of 1450 kN, while foamed
concrete has an ultimate load of 783 kN. Pantelides et al. observed a maximum bending load
of 117.3 kN for PCSPs with GFRP shear connectors in conventional steel and concrete [26].
A maximum bending load of 22 kN to 45 kN was observed for similar PCSPs with glass
fibre-reinforced plastic (GFRP) [26].
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Table 4. Summary of previous research conducted on PCSPs.

Study Wythe Material Shear Connector
Type

Shear
Connector Shapes Insulative Materials Composite

Action
Ultimate

Load (kN)
Insulation Core
Thickness (mm) # of Layers Loading Type Structural

System
Overall

Thickness (mm)

[68] Lightweight Concrete Steel Bar Non-Continuous Mineral Hydrated
Foamed Material Full 17.8 to 34.9 150 - Static Wind

and Axial Wall 350

[21] Lightweight Concrete Steel Truss Continuous EPS Full 31.4 to 47.1 30 Single Axial Wall 150

[69] Lightweight Concrete Steel Truss Continuous EPS Full 250 to 600 40 Single Axial Wall 125

[70] Lightweight Concrete Steel Truss (6-mm) Continuous EPS Full 188 to 355 - Double Axial Wall -

[71] Lightweight Concrete Steel-Encased
Concrete 18 to 44 Flexural Slab -

[20] Lightweight Concrete CFRP Grid Continuous Phenolic Foam Partial 90 Thermal Wall 150

[72] Normal Concrete Steel Truss Continuous EPS Full 20.04 to 26.00 100 Single Axial Wall 150

[73] Normal Concrete Steel Bar Non-Continuous EPS Full - 100 - Axial Wall 150

[74] Normal Concrete Steel Truss Continuous EPS Full 401 to 783 80 Single Axial and
Flexural Wall 150

[75] Normal Concrete Steel Truss Continuous Polystyrene Foam Full 1250 to 1450 30 Single Axial Wall 130

[76] Normal Concrete Steel Truss Continuous EPS Full 1050 30 Single Axial Wall 130

[69] Normal
Concrete GFRP Bar Continuous EPS, XPS and VIP Full 100 Flexural Wall 220

[77] Normal Concrete GFRP Shear Grid Continuous EPS and XPS Foam Full 23 to 75 100 Single Flexural Wall 220

[78] Normal Concrete BFRP Bar Non-Continuous EPS Partial 38 to 41 100 Flexural Wall 270

[79] Normal Concrete GFRP Stud Non-Continuous Rigid Foam Partial 17 to 95 100 Flexural Wall 270

[80] Normal Concrete GFRP Truss Continuous XPS 44 to 90 102 Single Flexural Slab and Roof 164

[4] Normal Concrete GFRP-Grid Continuous XPS and EPS Full 45 to 90 102 Single Flexural Wall 203

[26] Normal Concrete GFRP Shell Continuous EPS Full 25 to 45 76 Single Flexural Wall and Slab 200

[81] Normal Concrete Steel M-Tie Non-Continuous Partial 30 to 36 50 Flexural Wall 203

[81] Normal Concrete Steel Truss Continuous Polystyrene Full 117.3 40 Single Flexural Wall 120

[79] Normal Concrete Steel Truss Continuous EPS Full 14 to 21 50 Single Flexural Wall 200

[79] Normal Concrete
(Three Layers) Steel 25 to 50 Flexural Wall 200

[80] High-Performance
Concrete

BFRP and CFRP
Grid Continuous EPS, Kingspan Free

Rigid Phenolic Partial 12 to 14 290 Single Flexural Beam 350

[82] Textile-Reinforced
Concrete Pin Connector Non-Continuous Polymeric

Rigid Foam Full 160 Flexural - 280
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7. Future Development

According to this review, the vast majority of studies have focused on PCSP with
heavy concrete materials. However, the impact of lightweight concrete on PCSP has not
been investigated fully. Future research is necessary to develop low cost PCSPs with
high thermal insulation and fire resistance. Furthermore, research should be conducted
to achieve a high degree of adaptation (i.e., different geometry and sizes) and flexibility
to install PCSPs. In addition, it is necessary to emphasize the mechanical strength and to
evaluate the environmental impacts of the deployment of building insulators.

8. Conclusions

Initially, PCSPs were developed and manufactured as stressed-skin panels for struc-
tures. Rigid polystyrene foams, such as EPS or XPS, were used as the core material, while
the outside layers of PCSP were constructed using concrete, plywood, and thin metal
laminations (wythes). Concrete sandwich panels consist of two layers of structural concrete
sandwiched between two layers of a low-strength and low-density insulative material.
Horizontal mechanical shear connectors made of steel, carbon fibre-reinforced plastic, and
glass fibre-reinforced plastic link the three layers. The design arrangement of shear connec-
tions affects the precast panels’ structural efficiency and capacity. The shear connectors and
concrete wythes of a structure are typically reinforced with the same materials. The most
challenging obstacle researchers must overcome is ensuring a secure connection between
the wythes and the core material. PCSPs can be designed as non-composite, partially
composite, or fully composite.

The mechanical and thermal behaviour of the sandwich panels depends on the material
quality, quantity, diameter, spacing, and arrangement of the horizontal shear connections,
the thermal concrete bridges, and the strength of the concrete wythes. Fully-composite
panels are PCSPs that have achieved a full integration of strain and displacement compati-
bility. If a PCSP panel fails due to a shear connector before the concrete crushing and steel
reinforcement yielding, then the panel cannot be considered a composite panel. Therefore,
a prospective study on sandwich panels may investigate the following topics:

1. Development of PCSP samples using lightweight concrete suitable for use in both
wall and flooring systems.

2. Enhancement of composite PCSP by providing more shear connectors in a smaller
area while retaining optimum orientation and arrangement.

3. Investigation and development of PCSP specimens with alternative shapes of shear
connectors that are functional for walls and floors.
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