
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Howlader, Md Mohasin, Yasmin, Shamsunnahar, Bhaskar, Ashish, &
Haque, Shimul (Md. Mazharul)
(2023)
A before-after evaluation of protected right-turn signal phasings by apply-
ing Empirical Bayes and Full Bayes approaches with heterogenous count
data models.
Accident Analysis and Prevention, 179, Article number: 106882.

This file was downloaded from: https://eprints.qut.edu.au/236161/

c© 2022 Elsevier Ltd.

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial 4.0

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.aap.2022.106882

https://eprints.qut.edu.au/view/person/Howlader,_Md_Mohasin.html
https://eprints.qut.edu.au/view/person/Yasmin,_Shamsunnahar.html
https://eprints.qut.edu.au/view/person/Bhaskar,_Ashish.html
https://eprints.qut.edu.au/view/person/Haque,_Shimul_=28Md=2E_Mazharul=29.html
https://eprints.qut.edu.au/236161/
https://doi.org/10.1016/j.aap.2022.106882


1 
 

A before-after evaluation of protected right-turn signal phasings by applying 

Empirical Bayes and Full Bayes approaches with heterogenous count data models 

 

Md Mohasin Howlader 

Doctoral Candidate, Queensland University of Technology, 

School of Civil and Environmental Engineering, 

Brisbane, Australia 

E-mail: mdmohasin.howlader@hdr.qut.edu.au 

 

 

Shamsunnahar Yasmin 

Senior Research Fellow/Senior Lecturer, Queensland University of Technology, 

Centre for Accident Research and Road Safety-Queensland (CARRS-Q), 

Brisbane, Australia 

E-mail: shams.yasmin@qut.edu.au 

 

 

Ashish Bhaskar 

Associate Professor, Queensland University of Technology, 

School of Civil and Environmental Engineering, 

Brisbane, Australia 

E-mail: ashish.bhaskar@qut.edu.au 

 

 

Md Mazharul Haque  

(Corresponding author) 

Professor, Queensland University of Technology, 

School of Civil and Environmental Engineering, 

Address: 2 George Street, GPO Box 2434, Brisbane QLD 4001, Australia 

Phone: (07) 31387195 

E-mail: m1.haque@qut.edu.au 

 

 



2 
 

ABSTRACT 

Right-turn crashes (or left-turn crashes for the US or similar countries) represent over 40% of 

signalized intersection crashes in Queensland, Australia. Protected right-turn phasings are a 

widely used countermeasure for right-turn crashes, but the research findings on their effects 

across different crash types and intersection types are not consistent. Methodologically, the 

Empirical Bayes and Full Bayes techniques are generally applied for before-after evaluations, 

but the inclusion of heterogeneous models within these techniques has not been considered 

much. Addressing these research gaps,  the objective of this study is to evaluate the 

effectiveness of protected right-turn signal phasings at signalized intersections employing 

heterogeneous count data models with the Empirical Bayes and Full Bayes techniques. In 

particular, the Empirical Bayes approach based on random parameters Poisson-Gamma models 

(simulation-based Empirical Bayes), and the Full Bayes approach based on random parameters 

Poisson-Lognormal intervention models (simulation-based Full Bayes) are applied. A total of 

69 Cross intersections (with ten treated sites) and 47 T intersections (with six treated sites) 

from Southeast Queensland in Australia were included in the analysis to estimate the effects of 

protected right-turn signal phasings on various crash types. Results show that the change of 

signal phasing from a permissive right-turn phasing to the protected right-turn phasing at cross 

and T intersections reduces about 87% and 91% of right-turn crashes, respectively. In addition, 

the effect of protected right-turn phasings on rear-end crashes was not significant.  The 

heterogenous count data models significantly address extra Poisson variation, leading to 

efficient safety estimates in both simulation-based Empirical Bayes and simulation-based Full 

Bayes approaches. This study demonstrates the importance of accounting for unobserved 

heterogeneity for the before-after evaluation of engineering countermeasures.  

Keywords: Protected right-turn; Crash modification factor; Empirical Bayes; Full Bayes; 

Random parameters model 
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1. Introduction 

Turn opposite direction crash (right turn crash in right-hand driving and left-turn crash in left-

hand driving conditions) is one of the most serious and common crash types of signalized 

intersections. The right-turn crash risks at signalized intersections are associated with complex 

traffic maneuvers that involve opportunistic gap selection of the turning vehicles from the 

opposing traffic (Davis et al., 2007). Earlier studies suggest that the consequences of turn 

opposite-direction crashes1 are likely to be serious because of the relatively higher travel speeds 

of the vehicles and their angle of impact (Wang et al., 2008). For example, in the South-East 

Queensland region of Australia (right-hand drive traffic), right-turn crashes at signalized 

intersections account for more than 40% of all intersection crashes between 2001 and 2015. 

More alarmingly, 35% of these crashes are fatal and major injury crashes.  

The right-turn crash risks at signalized intersections can be minimized by providing protected 

right-turn signals, installing exclusive turning lanes, improving visibility, applying appropriate 

speed limits and control, and changing alignments or intersection geometry. Dedicated signal 

phasing (otherwise known as protected signal phasing) of turning movements can significantly 

improve safety among different countermeasures. Protected signal phasings remove the gap 

negotiation dilemma between the turning and the through traffic and thus improve safety. 

Signal phasing options for right-turn at signalized intersections can be permissive, protected, 

or partially protected (including lead protected-permissive and lag protected–permissive signal 

phasing) (Srinivasan et al., 2012; Islam et al., 2022). The permissive option provides no 

exclusive phasing for right-turning traffic but allows traffic to turn on a green signal phase after 

yielding to pedestrian and opposing traffic (if any). On the contrary, the protected signal design 

provides an exclusive window for right-turning traffic. It allows vehicles to make right turn 

only when a right-turn green arrow signal indication is displayed. Thus, a protected right-turn 

phase ensures safe passage for the turning movements by proving an exclusive right-of-way 

(Chen et al., 2015). The primary focus of this study is to evaluate the safety effectiveness of 

protected right turn phasing of signalized intersections. Specifically, we have applied Empirical 

Bayes and Full Bayes evaluation approaches for evaluating the effectiveness of protected right-

turn signal phasing compared to permissive right-turn signal phasings at signalized 

intersections. Unlike existing studies, this study explicitly accounts for unobserved 

heterogeneity in before-after evaluations building on the estimates from random parameters 

 
1 In the rest of the paper, turn opposite crashes are referred to as right-turn crashes since this study employed 
data from Australia where driving is on the left side of the road. 
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safety performance functions. Further, the study demonstrates the importance of considering 

the effects of unobserved heterogeneity (if present) in before-after study design for computing 

the safety effectiveness of  engineering countermeasures.  

1.1. Safety effectiveness of protected right-turn signal phasing 

In general, protected right-turn signal phasings are expected to have better safety effectiveness 

than permissible or partially-protected right-turn phasing due to the complete separation of 

right-turning traffic. Several studies have found such benefits of the protected right-turn 

phasing of signalized intersections specific to right-turn crash type (Davis et al., 2007; Harkey 

et al., 2008; Srinivasan et al., 2008). In contrast, a few studies reported no improvements in 

total injury crashes (Harwood et al., 2003; Davis et al., 2007; Srinivasan et al., 2008) and right-

turn crases (Perfater, 1983) from such treatment. Hauer  (2004) conducted a critical review of 

14 studies from several countries and concluded that the safety effectiveness of converting 

protected phasing from either permissive or partially protected phasing is approximately 70% 

for right-turn crashes, while the safety effectiveness for other crash types is not statistically 

significant. With regards to rear-end crashes, several studies found positive safety effects of 

protected right turn phasing (Gan et al., 2005), while others found insignificant or negative 

safety effects of such signal phasing (Davis et al., 2007; Srinivasan et al., 2012; De Pauw et 

al., 2015). 

Several studies suggested that permissive and partially-protected phasings are operationally 

more effective than protected right turn phasings (Lalani et al., 1986; Zhang et al., 2005). Chen 

et al.  (2015) further explained that protected right-turn phasings should not be treated as a 

universally better solution than the permissive control, and the choice of signal phasing should 

be driven by potential trade-offs among safety, delay, and other factors (such as geometry, 

traffic flows, and operations). Apart from these issues, the safety effectiveness measure of 

protected right-turn phasings is also found to vary geographically for right-turn crashes 

representing low effects (17% ~ 25%) for studies in Canada (Lyon et al., 2005; Srinivasan et 

al., 2012), moderate effects (58% in Belgium, 50% in Sweden) for studies in European 

countries (De Pauw et al., 2015; Elvik et al., 2009), and high effects (70% ~100%) for studies 

in the USA (Harkey et al., 2008; Srinivasan et al., 2008). 

1.2. Evaluation of engineering countermeasures 

Empirical Bayes and Full Bayes methods are widely adopted evaluation techniques for before-

after evaluation of engineering countermeasures. The Empirical Bayes evaluation approach 
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(Hauer, 1997) with negative binomial regression-based safety performance function remains 

the workhorse of before-after evaluation in existing literature. On the other hand, the Full Bayes 

evaluation approach is becoming popular over the last two decades. The Full Bayes approach 

has potential advantages of model specification flexibility, smaller data sample, and detailed 

inferencing capacity relative to the Empirical Bayes approach (Aul et al., 2006; Pawlovich et 

al., 2006). However, the Full Bayesian approach is computationally burdensome relative to 

Empirical Bayes approach. 

In the Empirical Bayes approach, the crash-causality relationship is first developed through a 

safety performance function using reference site data. The estimates from the safety 

performance function are then used for predictions on the treated sites to estimate the treatment 

effects (Hauer, 1997). With regards to the Full Bayes approach, two different study designs are 

considered. In the first study design within the Full Bayes approach, the safety performance 

function is developed by pooling data from reference sites (both before and after period data 

of treatment implementation) and before period treated sites (proposed by Aul et al.  (2006)). 

However, Lan et al.  (2009) and Persaud et al.  (2010) found that Empirical Bayes and such 

study design within the Full Bayes approach led to comparable results. On the other hand, in a 

different study setting for the application of the Full Bayes evaluation approach, the safety 

performance function is developed by pooling data for both reference and treated sites, 

including before and after period data of treatment implementation  (proposed by Pawlovich et 

al.  (2006)). Park et al.  (2010) showed that the safety effectiveness estimates from this study 

design of the Full Bayes approach could significantly differ from the results obtained from the 

Empirical Bayes approach, specifically in the absence of a reasonably large reference group 

data. 

It is beyond the scope of this study to present a comprehensive review of all safety studies 

employing Empirical Bayes and Full Bayes evaluation approaches. Please see Persaud et al.  

(2010) and Park et al.  (2010) for detailed reviews of these approaches. Several studies have 

compared the performance of safety effectiveness evaluation from Empirical Bayes, and Full 

Bayes approaches. A summary of these studies is presented in Table 1. Table 1 shows the study 

design, treatment, data, safety performance functions, and a comparison between the Empirical 

and Full Bayes approaches. Several studies found that the safety effectiveness estimates from 

the Full Bayesian approach are to be comparable  to those of Empirical Bayes approach (Lan 

et al., 2009; Persaud et al., 2010; Park et al., 2016).The mean safety estimates are mostly found 

to be similar, whereas the standard errors of the estimates are reported to vary, supporting the 
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favorable outcome of the Full Bayes approach. Most of these studies argued that the sample 

size played a significant role towards better estimates from the Full Bayes relative to the 

Empirical Bayes approach. On the other hand, Islam et al.  (2015) found the estimate from 

Empirical Bayes to be better than that of the Full Bayes approach. A number of other studies 

also compared the performance of the Empirical and Full Bayes approaches (Ahmed et al., 

2015; Sacchi et al., 2015; D’Agostino et al., 2019). Some studies found that uncertainty 

estimates for the Full Bayes are larger than that of the Empirical Bayes. Park et al.  (2010) 

argued that such larger uncertainty estimates may have resulted from the cumulative effect of 

incorporating parameter uncertainty into the final safety effectiveness estimates.  

The prediction performance of the safety performance functions2 also plays a significant role 

in safety effectiveness evaluation. For example, Park et al.  (2010) found that safety 

effectiveness estimates of countermeasures from higher-order (multivariate model accounting 

for correlation among crash types) safety performance function in a Full Bayes setting results 

in more precise results than those from traditional count data model-based Empirical Bayes 

and Full Bayes approaches. Studies also found that unobserved heterogeneity consideration in 

safety performance functions can significantly improve the precision of parameter estimates 

and model predictability. In developing crash prediction models, several studies employing the 

frequentist approach (Anastasopoulos et al., 2009; Russo et al., 2014; El-Basyouny et al., 2014) 

adopted random parameters count data models and demonstrated that the random parameters 

model outperforms the traditional fixed parameters model. The Bayesian inference-based 

approach has also been employed to estimate random parameter models for developing crash 

prediction models (Li et al., 2008; El-Basyouny et al., 2011; Barua et al., 2014, 2015, 2016)). 

However, the application of this advanced safety performance functions in evaluating treatment 

effectiveness has received little attention despite potential benefits.  

 
2 Table 1 describes the safety performance functions adopted for both Empirical and Full Bayes safety evaluation 
methods. Poisson-gamma models are used for Empirical Bayes while variants of both poison-gamma and poison-
lognormal models (linear, non-linear, multivariate, intervention) have been used for Full Bayes approaches. 
However, poisson-lognormal models have mostly been employed in the Full Bayes approach. 
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Table 1: Summary of studies comparing the performance between Empirical Bayes and Full Bayes approaches. 

Study Study design Treatment Data Crash types 
Safety 
performance 
functions  

Outcomes 

Lan et al.  
(2009) 

Empirical Bayes 
 
Full Bayes: Hybrid 
Bayesian 
framework  

Conversion from 
stop to signalized 
control 

Treated sites:  
Dataset 1: 47 
Dataset 2: 105 
Dataset 3: 229 
 
Reference/comparison 
sites:  
Dataset 1: 42 
Dataset 2: 111 
Dataset 3: 263 

1. Total 
injury 
crash  

2. Left-turn 
crash 

3. Right-
angle 
crash  

4. Rear-end 
crash 

Empirical Bayes: 
Poisson-Gamma 

i. Safety estimates by Full Bayes 
are consistent with the 
Empirical Bayes approach. 

ii. Standard errors of estimates  
from the full Bayes method are 
smaller (15%~60%) across 
different crash types)  than that 
of the empirical Bayes 
approach. 

Full Bayes: 
Both Poisson-
Gamma and 
Poisson-Lognormal 
models with site-
specific random 
effects 

 
 
Park et al.  
(2010) 

Empirical Bayes 
 
Full Bayes: Change-
point modeling 
framework  

Reduced posted 
speed limit 

Treated sites: 33 
 
Reference/comparison 
sites: two cases: one with 
44sites and the other 
with 126 sites 
 

1. Total 
injury 
crash 

2. Speed 
violation 
crash 

3. Fatal and 
major 
injury 
crash 

Empirical Bayes: 
Poisson-Gamma 

i. Comparable results are found 
for total injury crashes and fatal 
and injury crashes but highly 
different for speed violation 
crashes.  

ii. High differences in results are 
found for Empirical Bayes 
approach with a lesser number 
of reference sites. 

iii. In general, the uncertainty 
estimates for Full Bayes 
estimates are larger (33%~ 39% 
across different crash types) 
than Empirical Bayes estimates. 

Full Bayes: 
Multivariate 
Poisson-Lognormal 
intervention model 

Persaud et al.  
(2010) 
 
 

Empirical Bayes 
 
Full Bayes: Hybrid 
Bayesian 
framework 

Conversion of the 
four-lane road to a 
three-lane cross-
section with two-
way left-turn lanes 

Treated sites: 15 
 
Reference/comparison 
sites:  
1. 296 sites as used for 

Empirical Bayes and 
Full Bayes 

2. 15 matched 
comparison sites for 
Full Bayes 

Total injury 
crash 

Empirical Bayes: 
Poisson-Gamma 

i. The estimated safety effects and 
standard errors from the two 
approaches are comparable 
across crash types. 

ii. Recommends comparative 
study for treatments with 
smaller effects and larger 
standard errors to investigate 
the statistical significance of the 
effects. 
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Study Study design Treatment Data Crash types 
Safety 
performance 
functions  

Outcomes 

Ahmed et al.  
(2015) 

Empirical Bayes 
 
Full Bayes: Change-
point modeling 
framework 

Widening urban and 
rural two-lane to 
four-lane divided 
roads 

Treated sites:  
 
Urban two-lane to urban 
four-lane: 41 
Rural two-lane to urban 
four-lane: 43 
 
Reference/comparison 
sites:  
 
Urban two-lane to urban 
four-lane: 381 
Rural two-lane to urban 
four-lane: 370 

1. Total 
injury 
crash 

2. Fatal and 
major 
injury 
crash 

3. Property 
damage 
only crash 

Empirical Bayes: 
Poisson-Gamma 

i. The estimated safety effects and 
standard errors are comparable 
between the two approaches. 

ii. Findings suggest intensive data 
requirements for the Empirical 
Bayes approach. 
 Full Bayes: 

Poisson-Lognormal 
model 

Islam et al.  
(2015) 

Empirical Bayes 
 
Full Bayes: Hybrid 
Bayesian 
framework 

Reduced posted 
speed limit 

 
Treated sites: 27 
 
Reference/comparison 
sites: 287 
 

1. Fatal and 
major 
Injury 
crash 

2. Property 
damage 
only crash 

Empirical Bayes: 
Poisson-Gamma 

i. Empirical Bayes and Full Bayes 
approaches led to opposite 
conclusions when the safety 
effects were relatively small 
with high standard deviations. 

ii. Total injury and Property 
Damage Only crash reductions 
are statistically insignificant in 
the Empirical Bayes approach, 
while they are significant in 
both the univariate and 
multivariate Full Bayes 
approaches. 

iii. Full Bayes approach provides 
more precise estimates of safety 
effects. 

Full Bayes: 
Univriate and 
multivariate 
Poisson-Lognormal 
model 

Sacchi et al.  
(2015) 

Empirical Bayes 
 
Full Bayes: Change-
point modeling 
framework 

No treatment Treated sites: Randomly 
chosen 
 
Reference/comparison 
sites: 221 

Total injury 
crash 

Empirical Bayes: 
Poisson-Gamma 

i. Full Bayes approach provides 
higher consistency than naïve, 
comparison group, and 
Empirical Bayes approach 
among different sites.  

Full Bayes: 
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Study Study design Treatment Data Crash types 
Safety 
performance 
functions  

Outcomes 

 Non-linear Poisson-
Lognormal 
intervention models 

D’Agostino et 
al.  (2019) 

Empirical Bayes 
 
Full Bayes: Change-
point modeling 
framework 

Two-lane road 
sections retrofitted 
with alternate 
additional 
overtaking lanes. 

 
Treated sites: 16 
 
Reference/comparison 
sites: 104 
 

1. Total injury 
crash 

2. Target 
crashes: 
multiple 
vehicle 
collisions 
(head-on, 
rear-end, 
and 
sideswipe 
crash). 

Empirical Bayes: 
Poisson-Gamma 

i. Empirical Bayes approach 
produces lower crash 
modification factors and 
comparatively higher value 
(9.5%~44% across different 
crash types) of standard errors 
than the Full Bayes approach. 

Full Bayes: 
Poisson-Lognormal 
linear and non-
linear models 

Jin et al.  
(2021) 

Empirical Bayes 
 
Full Bayes: Hybrid 
Bayesian 
framework 

Adaptive Signal 
Control Systems 
(ASCS) 
 

Treated sites: Six ASCS 
corridors with 65 
intersections 
 
Reference/comparison 
sites: 11 ASCS corridors 
with 680 observations 
across different 
signalized intersections. 
Intersection count is not 
available. 

1. Total 
injury 
crash  

2. Fatal and 
major 
injury 
crash 

3. Angle 
crash  

4. Rear-end 
crash 
 

Empirical Bayes: 
Poisson-Gamma 

i. Full Bayes approach with safety 
performance function that 
accounts for spatial effect and 
year factor shows the best 
performance in reducing 
potential bias and variance of 
prediction and improving the 
accuracy of safety effect 
estimation. 

Full Bayes: 
Poisson-Lognormal 
spatial and non-
spatial models 
Full Bayes; 
Non-hierarchical 
and hierarchical 
Poisson-Lognormal 
intervention models 

 
Park et al.  
(2016) 
 

Empirical Bayes 
 
Full Bayes: Hybrid 
Bayesian 
framework 

Roadside barriers 

 
Treated sites: 147 
 
Reference/comparison 
sites: 328 
 

1. Total 
injury 
crash 

2. Run-off 
road crash 

Empirical Bayes: 
Poisson-Gamma 

i. Results from both the 
approaches are comparable.  

ii. Empirical Bayes method shows 
more reliable estimates when (a) 
a sufficient sample size is 
obtained and (b) enough crash 
frequencies for both treated and 
reference sites are available. 

Full Bayes: 
Poisson-Lognormal 
model 
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1.3. Research gap 

While the applications of random parameters models became popular among analysts for 

developing safety performance functions (crash prediction models), the application of such 

generalized variants of the regression models in safety effectiveness evaluation is far and few 

between. Most recently, Tahir et al.  (2022) proposed a simulation-based framework to 

accommodate the effects of unobserved heterogeneity in Empirical Bayes safety effectiveness 

evaluation. The study concluded that the proposed simulation-based Empirical Bayes approach 

using panel random parameters negative binomial safety performance function resulted in more 

precise estimates of crash modification factors for the wide centreline treatments along two-

lane two-way rural highways than those from the standard Empirical Bayes approach. To 

account for the unobserved heterogeneity within comparison-treatment pairs, El-Basyouny et 

al.  (2011) applied random parameters-based Poisson-Lognormal intervention models in the 

Full Bayes evaluation approach. The study found that the random parameters model improves 

the safety estimates of a group of engineering countermeasures at signalized intersections, 

including improvements in signal visibility, left turn phase improvement, and left-turn lane 

installation. As presented in Table 1, a number of studies developed the safety effectiveness 

measures by employing Empirical Bayes and Full Bayes approaches with the application of 

traditional count regression models. It is well established that heterogenous count data model 

provides superior statistical fits than the traditional count model (Mannering et al., 2016; Chang 

et al., 2021; Bhowmik et al., 2022). However, the effects of unobserved heterogeneity in 

computing safety effectiveness of engineering countermeasures to mitigate right-turn crash 

risks have not been studied.  

While many before-after evaluation studies have been conducted to evaluate the safety 

effectiveness of road infrastructure improvements like median treatments, reduction of the 

posted speed limit, overtaking lanes and roadside barriers (see Table 1), very little is known 

about the effects of a traffic signal phasing as a sole engineering treatment (everything else 

being the same).  Recently the safe system approach within Australian National Road Safety 

Strategy has listed protected right-turn phasing as a safe system solution to improve safety of 

signalized intersection. However, the effectiveness of protected right-turn signals in the 

Australian road traffic conditions has not been rigorously examined to date.  
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1.4. Objective and scope 

The objective of this study is to evaluate the effectiveness of protected right-turn signal 

phasings by applying heterogeneous count models within the Empirical Bayes and Full Bayes 

approaches3. Specifically, the safety performance function for Empirical Bayes is developed 

by employing random parameters Poisson-Gamma model. For the Full Bayes approach, the 

safety performance function is developed by employing random parameters Poisson-lognormal 

model. 

The rest of the paper is organized in the following manner. Section 2 describes the scope of the 

data, samples and variables formation for the study, Section 3 explains the econometric 

methodologies including model specifications, estimation approaches applied to develop the 

heterogenous safety performance functions for the proposed Empirical Bayes and Full Bayes 

approaches, Section 4 presents the empirical estimates and performances of the safety 

performance functions, and comparison of the crash modification factors developed by the 

proposed approaches, Section 5 discusses the significances and justifications of the developed 

crash modification factors for protected right-turn signal phase implementation, and finally, 

Section 6 concludes with recommendations for the future direction of the study.    

2. Data  

2.1. Study area 

The major focus of this study is to evaluate the effectiveness of protected right-turn signal 

phasings for Cross and T-signalized intersections located in Queensland, Australia. 

Specifically, ten Cross and six T signalized intersections are considered which were treated 

with the protected right-turn signal phasings from permissive right-turn phasings at least in one 

of the approaches between 2005 through 2012. For this research, a careful selection of 

reference sites is performed. Reference sites are selected with similar geometric and traffic 

characteristics to treated sites and, most importantly, with permissive right-turn signal phasings 

reflecting the before-condition of the treated sites. Following these criteria, a total of 59 Cross 

signalized intersections and 41 T signalized intersections are identified. The locations of these 

treated and reference intersection sites are shown in Figure 1. 

 
3 It is beyond the scope of this study to provide a detailed comparison of the performance in safety effectiveness 
between these Empirical and Full Bayes approaches. Our major focus is to accommodate for unobserved 
heterogeneity in the development of safety performance functions and accommodate the effects of such 
unobserved heterogeneity in computing safety effectiveness measures from both Empirical and Full Bayes 
approaches. However, we have provided with a brief comparison of these results across two evaluation approaches 
to generate insights for future research directions. 



12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Treated and reference signalized intersection locations. 

2.2. Sample formation 

The protected right-turn signal phasing treatment was implemented between 2005-2012. 

However, the implementation period varied across signalized intersections. In addressing the 

regression-to-mean (uncertainty) effect in evaluation, this study includes at least three years of 

before and three years of after period data for the treated sites. Thus, the treatments 

implemented have different spans in the before (after) periods for both Cross and T 

intersections. The data for the intervention periods of the treated sites are not considered in 

computing the safety effectiveness of those locations.  

Crash data for this study is sourced from the official crash database of Queensland for the years 

2002 through 2015. The official crash database of Queensland only contains casualty crashes 

but does not include ‘no injury’ crashes. The injury severity outcomes are recorded as a four-

point scale variable, including minor, moderate (medically treated), major (hospitalization 

injury), and fatal injury. Further, roadway geometry and traffic characteristics data are 

compiled from the ‘Australian Road Assessment Program’ and ‘A Road Management 

Information System’ databases for the years 2002 through 2015.  
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Crash prediction models for intersections are generally estimated at approach level (aggregate 

crash counts on individual approaches), roadway level (aggregate crash count along major and 

minor roads) and/or intersection level (aggregate crash counts within the influence area of 

intersection). Please see Wang et al.  (2007) for a detailed description of these approaches. 

Analysis at the approach and/or roadway level may lead to excess zeros and site correlation. 

Moreover, assigning traffic crashes at an approach or roadway level may generate an erroneous 

dataset due to the uncertainty involved in crash location recording and assignment. Therefore, 

this study considers an intersection-level analysis for treatment evaluation. Finally, crash 

records, roadway geometry, and traffic characteristics are aggregated at the intersection level. 

Table 2 presents descriptive statistics of the crash counts and other exogenous variables in the 

reference sites, and Table 3 presents descriptive statistics of the crash counts and other 

exogenous variables in the before and after periods of the treated sites. 
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Table 2: Descriptive statistics for the reference sites.  

Variables Description of Variables Cross-Intersection T-Intersection 
CRASH COUNTS Mean Std. Dev. Total Mean Std. 

 
Total 

Total injury crash Total injury crashes per intersection per year 1.07 1.50 883.00 0.72 1.14 415.00 

Fatal and major injury  crash 
 Fatal and major injury crashes per intersection per year 

0.39 0.76 319.00 0.22 0.53 129.00 

Right-turn crash Right-turn crashes per intersection per year 0.48 0.86 400.00 0.40 0.85 228.00 
Rear-end crash Rear-end crashes per intersection per year 0.21 0.54 175.00 0.15 0.45 86.00 
CONTINUOUS VARIABLES Mean Std. Dev. Freq. Mean Std. 

 
Freq. 

Modulus of AADT* 

Natural Logarithm of module of Annual Average Daily 
Traffic (AADT)  
[Ln(Sqrt(AADT for major approach2 + AADT on minor 
approach2)) ] 

9.10 0.68 -  9.11 0.46 -  

Product AADT 
Natural logarithm of product of major and minor AADT 
[(Ln(AADT on major approach ×AADT on minor 
approach)] 

17.11 1.56  - 16.91 1.24  - 

Number of lanes        
Major Road Average number of lanes of major road  3.05 0.76  - 2.59 0.49  - 
Minor Road Average number of lanes of minor road 2.09 0.69  - 2.22 0.68  - 
CATEGORICAL VARIABLES Frequency (Percentage) Frequency (Percentage) 

Median on major road Presence of median on at least one of the approaches of 
major road   

Yes 742 (89.83) 546 (95.13) 
No 84 (10.17) 28 (4.87) 

Median on minor road Presence of median on at least one of the approaches of 
minor road   

Yes  602 (72.88) 504 (87.8) 

No  224 (27.12) 70 (12.19) 

Exclusive right-turn lane on major road Presence of exclusive right-turn lane on at least one of the 
approaches of major road   

Yes  798 (96.61) 574 (100.00) 
No  28 (3.39) 0 (0.00) 

 

 



15 
 

Table 2: Descriptive statistics for the reference sites (Continued). 

Variables Description of Variables Cross-Intersection T-Intersection 
 Frequency (Percentage) Frequency (Percentage) 

Exclusive right-turn lane on minor road Presence of exclusive right-turn lane on at least one of the 
approaches of minor road   

Yes  546 (66.1) 462 (80.49) 
No  280 (33.89) 112 (19.51) 

Exclusive left-turn lane on major road Presence of exclusive left-turn lane on at least one of the 
approaches of major road   

Yes  490 (59.32) 322 (56.1) 
No  336 (40.68) 252 (43.90) 

Exclusive left-turn lane on minor road Presence of exclusive left-turn lane on at least one of the 
approaches of minor road   

Yes  616 (74.58) 490 (85.37) 
No  210 (25.42) 84 9 (14.63) 
Skewness level    

00 to 90 Indicator of maximum skewness between approaches from 
00 to 90   

Yes  350 (42.37) 392 (68.29) 
No  476 (57.63) 182 (31.71) 

100 to 190 
Indicator of maximum skewness between approaches from 
100 to 190   

Yes  140 (16.95) 98 (17.07) 
No  686 (83.05) 476 (82.93) 

200 to 290 
Indicator of maximum skewness between approaches from 
200 to 290   

Yes  168 (20.34) 70 (12.2) 
No  658 (79.66) 504 (87.81) 

Above 290 Indicator of maximum skewness between approaches above 
290   

Yes  42 (5.08) 14 (2.44) 
No 
 

 
784 (94.92) 560 (97.56) 

Posted speed limit of major road    
> 60 km/hr Indicator for major approaches with posted speed limit 

   
  

Yes  322 (38.98) 196 (34.15) 
No  504 (61.02) 378 (65.85) 



16 
 

Table 2: Descriptive statistics for the reference sites (Continued). 

Variables Description of Variables Cross-Intersection T-Intersection 
  Frequency (Percentage) Frequency (Percentage) 

> 70 km/hr Indicator for major approaches with posted speed limit 
above 70 km/hr   

Yes  42 (5.08) 84 (14.63) 
No 
 

 
784 (94.92) 490 (85.36) 

Posted speed limit on minor road    

> 50 km/hr Indicator for minor approaches with posted speed limit 
above 50 km/hr   

Yes  350 (42.37) 266 (46.34) 
No  476 (57.63) 308 (53.66) 

> 60 km/hr Indicator for minor approaches with posted speed limit 
above 60 km/hr   

Yes  42 (5.08) 14 (2.44) 
No 
 

 
784 (94.92) 560 (97.56) 

Rural intersections Intersection in rural area   
Yes  42 (7.32) 42 (7.32) 
No  784 (94.92) 532 (92.68) 
Abbreviations and definitions: 
AADT = Average annual daily traffic; Std. Dev. = Standard deviation;  
*Module of annual average daily traffic is basically the hypotenuse of a right triangle that has both major and minor road traffic counts as arms resulting in a weighted 
value. The  property of the module of annual average daily traffic is that its magnitude is mainly determined by the larger traffic count but still reflective of the smaller 
one.  
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Table 3: Descriptive statistics for the treated sites.  

Variables Description of Variables 
Cross intersections T intersections 

Before Period After Period Before Period After Period 
CRASH COUNTS Mean Std. 

 
Total Mean Std. 

 
Total Mean Std. 

 
Total Mean Std. 

 
Total 

Total injury crash Total injury crashes per intersection per 
year 2.41 1.72 140.00 1.02 0.94 57.00 2.17 1.34 91.00 0.63 0.85 19.00 

Fatal and major injury 
crash 

Fatal and major injury crashes per 
intersection per year 0.90 0.89 52.00 0.23 0.47 13.00 0.55 0.77 23.00 0.27 0.58 8.00 

Right-turn crash Right-turn crashes per intersection per 
year 1.19 1.22 69.00 0.25 0.58 14.00 0.93 1.11 39.00 0.07 0.25 2.00 

Rear-end crash Rear-end crashes per intersection per 
year 0.67 0.89 39.00 0.68 0.66 38.00 0.90 0.82 38.00 0.43 0.72 13.00 

CONTINUOUS VARIABLES Mean Std. 
 

Freq. Mean Std. 
 

Freq. Mean Std. 
 

Freq. Mean Std. 
 

Freq. 

Modulus of AADT* 
Natural Logarithm of module of AADT  
[Ln(Sqrt(AADT on major approach2 + 
AADT on minor approach2)) ] 

9.63 0.27 - 9.72 0.23 - 9.78 0.19 - 
- 9.79 0.19 - 

- 

Product of AADT 
Natural logarithm of product of major 
and minor AADT [(Ln(AADT on major 
approach ×AADT on minor approach)] 

18.41 0.60 - 18.62 0.46 - 18.35 0.53 - 
- 18.33 0.59 - 

- 

Lane number for 
Major Road 

Average number of lanes over the 
approaches of major road 3.30 0.77 - 3.38 0.73 - 2.90 0.37 - 

- 2.93 0.31 - 
- 

Lane number for 
Minor Road 

Average number of lanes over the 
approaches of minor road 2.87 0.79 - 2.63 0.70 - 2.19 0.40 - 

- 2.13 0.35 - 
- 

CATEGORICAL VARIABLES  Frequency 
(Percentage) 

Frequency 
(Percentage) 

Frequency 
(Percentage) 

Frequency 
(Percentage) 

Median on major road Presence of median on at least one of 
the approaches of major road     

Yes  45 (77.59) 45 (80.36) 42 (100.00) 30 (100.00) 
No  13 (22.41) 11 (19.64) 0 (0.00) 0 (0.00) 

Median of minor road Presence of median on at least one of 
the approaches of minor road     

Yes  45 (77.59) 45 (80.36) 30 (71.43) 18 (60.00) 
No 
 
 

 13 (22.41) 11 (19.64) 12 (28.57) 12 (40.00) 
Exclusive right-turn 
lane on major road 

Presence of exclusive right-turn lane on 
at least one approach of major road     

Yes  58 (100.00) 56 (100.00) 42 (100.00) 30 (100.00) 
No  0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 
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Table 3: Descriptive statistics for the treated sites (Continued).  

Variables Description of Variables Cross intersections T intersections 
Before Period After Period Before Period After Period 

  Frequency 
(Percentage) 

Frequency 
(Percentage) 

Frequency 
(Percentage) 

Frequency 
(Percentage) 

Exclusive right-turn 
lane on minor road 

Presence of exclusive right-turn lane on 
at least one of the approaches of minor 
road     

Yes  45 (77.59) 45 (80.36) 42 (100.00) 30 (100.00) 
No  13 (22.41) 11 (19.64) 0 (0.00) 0 (0.00) 
Exclusive left-turn lane 
on major road 

Presence of exclusive left-turn lane on at 
least one of the approaches of major road     

Yes  39 (67.24) 39 (69.64) 30 (71.43) 18 (60.00) 
No  19 (32.76) 17 (30.36) 12 (28.57) 12 (40.00) 

Exclusive left-turn lane 
on minor road 

Presence of exclusive left-turn lane on at 
least one of the approaches of minor 
road     

Yes  52 (89.66) 50 (89.29) 42 (100.00) 30 (100.00) 
No  6 (10.34) 6 (10.71) 0 (0.00) 0 (0.00) 
Skewness Level      

00 to 90 Indicator of maximum skewness 
between approaches from 00 to 90     

Yes  39 (67.24) 41 (73.21) 4 (9.52) 8 (26.67) 
No  19 (32.76) 15 (26.79) 38 (90.48) 22 (73.33) 

100 to 190 
Indicator of maximum skewness 
between approaches from 100 to 190     

Yes  19 (32.76) 15 (27.00) 14 (33.00) 10 (33.33) 
No  39 (67.24) 41 (73.00) 28 (67.00) 20 (66.67) 

200 to 290 
Indicator of maximum skewness 
between approaches from 200 to 290     

Yes  0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 
No  58 (100.00) 56 (100.00) 42 (100.00) 30 (100.00) 

Above 290 Indicator of maximum skewness 
between approaches above 290     

Yes  0 (0.00) 0 (0.00) 24 (57.14) 12 (40.00) 
No  58 (100.00) 56 (100.00) 18 (42.86) 18 (60.00) 
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Table 3: Descriptive statistics for the treated sites (Continued).  

Variables Description of Variables Cross intersections T intersections 
Before Period After Period Before Period After Period 

  Frequency 
(Percentage) 

Frequency 
(Percentage) 

Frequency 
(Percentage) 

Frequency 
(Percentage) 

Posted speed limit on 
major road  

 
    

> 60 km/hr Indicator for major approaches with 
posted speed limit above 60 km/hr     

Yes  26 (44.83) 30 (53.57) 22 (52.38) 14 (46.67) 
No  32 (55.17) 26 (46.43) 20 (47.62) 16 (53.33) 

> 70 km/hr Indicator for major approaches with 
posted speed limit above 70 km/hr     

Yes  11 (18.97) 11 (19.64) 0 (0.00) 0 (0.00) 
No  47 (81.03) 45 (80.36) 42 (100.00) 30 (100.00) 
      
Posted speed limit on 
minor road 

 
    

> 50 km/hr Indicator for major approaches with 
posted speed limit above 50 km/hr     

Yes  28 (48.28) 29 (51.79) 16 (38.09) 8 (26.67) 
No  30 (51.72) 27 (48.21) 26 (61.91) 22 (73.33) 

> 60 km/hr Indicator for major approaches with 
posted speed limit above 60 km/hr     

Yes  0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 
No  58 (100.00) 56 (100.00) 42 (100.00) 30 (100.00) 
Rural intersections Intersection in rural area     
Yes  0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 
No  58 (100.00) 56 (100.00) 42 (0.00) 30 (100.00) 
Abbreviations and definitions: 
AADT = Average annual daily traffic; Std. Dev. = Standard deviation; DCA : Definitions for coding accidents 
*Module of annual average daily traffic is basically the hypotenuse of a right triangle that has both major and minor road traffic counts as arms resulting in a weighted 
value. The  property of the module of annual average daily traffic is that its magnitude is mainly determined by the larger traffic count but still reflective of the smaller 
one. 
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3. Methodology 

In this study, the safety effectiveness of protected right-turn signal phasing has been examined 

by employing two different evaluation approaches (1) Empirical Bayes evaluation based on the 

panel random parameters Poisson-Gamma model and (2) Full Bayes evaluation based on the 

panel random parameters Poisson-Lognormal model. These evaluation approaches are 

discussed in the following sections.  

3.1. Empirical Bayes evaluation with panel random parameters Poisson-Gamma model 

For Empirical Bayes evaluation, The safety performance function is computed by employing 

the panel random effects Poisson-Gamma model (often referred to as grouped random 

parameters model (Mannering et al., 2016)). Separate safety performance functions are 

developed for each signalized intersection type (Cross and T-intersection) by different crash 

types (total injury, fatal and major injury, right-turn, rear-end crashes). The framework for the 

Empirical Bayes approach is briefly presented below. 

Random parameters Poisson-Gamma model framework: Let’s assume that i represents 

intersections and t represents years (t = 1, 2, …, T). The equation system for random parameters 

Poisson-Gamma model can be expressed as:      

log(λit) = Xit
'  βit + εit                

exp(εit) ~ gamma(φ, φ)              

βit=βi
�+ αit, αit ~ Normal(0, 𝝈𝝈𝒊𝒊  )                    (1) 

where,  βit(=β0,it,.......,βk,it)
' denotes a vector of unknown regression parameters specific to 

intersection i and year t, Xit(=1, X1,it ........., Xk,it )
' denotes the vector of k covariates, 

βi
� (=β0,i

����,.......,βk,i
����)' and 𝝈𝝈𝒊𝒊 (=σ0,i,.......,σk,i)

'are the mean and standard deviation of parameters 

across intersections, αit (=α0,it,.......,αk,it)
' is the randomly distributed terms with zero mean and 

variance 𝜎𝜎i2 assumed to a realization from normal distribution. The maximum simulated log-

likelihood estimation technique with Halton draws (Train, 2000; Bhat, 2003) is employed for 

the random parameters model estimation  

Simulation-based Empirical Bayes evaluation framework: In evaluating the safety 

effectiveness of the protected right-turn signal phasing by employing the Empirical Bayes 

approach, the predicted crash counts for the before and after periods of the treated sites are 
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generated by using the estimated parameters (βi
� , σi). In incorporating the effect of random 

parameters in evaluation, the predicted crash counts are computed as mean predictions 

generated using 1,000 random draws (generated as the realizations of normal distributions). 

Referring to Eq. (1), the random parameters of the safety performance function can be written 

as: 

βk
� ~ Normal (μk,ωk)            (2) 

where, μk and ωk are the means and standard deviations of the random regression parameters 

distributed across the intersections. Using the predicted crash counts, 1,000 crash modification 

factors are computed, and the overall crash modification factor is finally computed as an 

average measure of 1,000 crash modification factors. 

In employing the simulation-based empirical Bayes approach, the crash modification factor for 

each draw is computed following Hauer (1997). Assuming a and b represent before and after 

periods, respectively, the before period expected number of crashes without treatment for each 

draw is estimated using Eq. (3) to Eq. (5).  

Epb=wpMpb+�1-wp�Nb                                (3) 

wp= 1
1+O×Mpb

                                            (4) 

where, 

Epb  = expected crash counts per year in the before period of treated sites for pth draw, 

Epa  = expected crash counts per year in the after period of treated sites for pth draw, 

Mpb  = predicted crash count per year in the before period of treated sites (using safety   

performance function) for pth draw,  

Mpa  = predicted crash count per year in the after period of treated sites (using safety 

performance function) for pth draw, 

Nb  =  observed crash per year in the before period of treated sites, 

wp  = weight factor dependent on the over-dispersion parameter and predicted crash count    

obtained from the pth draw, and 

O  = overdispersion parameter. 

 
A correction factor is multiplied with Epb to generate the estimate of Epa to account for 

differences in traffic volumes and general trend from b to a as well as to account for the length 

of the after period relative to the before period. Notably, annual multipliers, as the ratio of 
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yearly observed crashes to the yearly estimated crashes from the reference group are applied 

to both  Epa  and Epb to account for the effect of temporal trends (weather, economy, 

demography) on safety. Hence, the estimate of Epa is given by, 

 
Epa=Epb ×  Rp= Epb ×   Mpa

 Mpb
                                            (5) 

 

where, Rp is the correction factor.  

Finally, the crash modification factor (θE) and crash reduction rate (CRRE) for simulation-

based empirical Bayes approach are calculated as, 

Crash modification factor, θE= 1
p
∑ θp

p
1 = 1

p
∑

Ap,sum
Ep,sum

1+�
Var�Ep,sum �

Ep,sum2  �

p
1                                                         (6)        

 
Crash reduction factors, CRRE = 1

p
∑ CRRp

p
1 = 1

p
∑ 100× (1- θp)p

1                                            (7) 
 
More details on the simulation-based empirical Bayes approach can be found in (Tahir et al., 
2022) 

3.2. Full Bayes evaluation with random parameters Poisson-Lognormal model 

The safety performance function for the Full Bayes approach is developed by employing the 

panel random parameters Poisson-Lognormal model by pooling data for both reference and 

treated sites (Pawlovich et al., 2006; Li et al., 2008; Park et al., 2010). The framework for the 

Full Bayes approach (Change point modeling framework) is presented below, followed by the 

mathematical formulation of the random parameters Poisson-Lognormal model.  

Random parameters Poisson-Lognormal model framework: Assuming j as intersection and 

t as an indicator for years (t = 1, 2, …, T), the equation system for random parameters Poisson-

Lognormal change point model (Li et al., 2008) can be expressed as: 

log �ϕjt�= γ0,jt+ γ1,jtτj+γ2,jtt + γ3,jt�t-t0j�Ijt + γ4,jtτjt + γ5,jtτj(t-t0) Ijt + Zjt
'  γjt + κjt             

κjt~ Normal(0,σκ2)                     

γjt= γj ��� + δjt   , δjt ~ Normal(0, ψj
2 )                                                                     (8) 

where, ϕjt is the Poisson mean, γ0 ~γ5 are the parameters of the interaction terms accounting 

for the changes in the intercept and slope with respect to time (both at treated and comparison 
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sites before and after periods of treatment implementation),  γjt(=γ6,jt,.......,γl,jt)
' denotes a vector 

of unknown regression parameters corresponding to Zit(=Z6,jt ........., Zl,jt )
' vector of 

explanatory variables, and κjt is the idiosyncratic error term. The extra-Poisson variation 

(represented by the error term κjt) is assumed to follow a normal distribution with zero mean 

and standard deviation ψj (=ψ0,j,.......,ψl,j)
'. The interaction terms in Eq. (8) are: 

τ = Indicator for treated sites (equals 1 for treated sites, zero otherwise),  

t = tth year in the study period (t = 1,2, ………,T=14),  

(t - t0j)Ijt = time trend after period for both treatment and comparison sites, 

τt = time trend on treated sites for both before and after period, and 

τ(t - t0j)Ijt= time trend on treated sites for after period. 

where, 

Ijt= Indicator for before and after period (1 if belongs to the after period and zero otherwise), 

and 

t0j = year in which the countermeasure was installed at site j (for the comparison group, it is 

defined as the same year as the corresponding treatment group).  

The above change point model is estimated in the Bayesian inference using the Markov chain 

Monte Carlo (MCMC) simulation method. The Deviance information criterion is used to 

determine the best set of regressors for each model.  

Simulation-based Full Bayes evaluation framework: For the Full Bayesian approach, the 

crash modification factor is estimated as the odds ratio from the expected crashes at before and 

after period of both treated and comparison groups. For each group of (1) comparison-after, (2) 

comparison-before, (3) treated-after, and (4) treated-before, the expected crashes are estimated 

from the Eq. (9) to Eq. (12) transformed from the change point model considered in Eq. (8). 

ln (ϕj,t )Comp,B= γ0,jt+ γ2,jtt + Zjt
'  γjt                                                                                     (9) 

ln (ϕj,t )Comp,A= (γ0,jt- γ3,jtt0i) + (γ2,jt+ γ3,jt)t + Zjt
'  γjt                                               (10) 

ln (ϕj,t )Trt,A= (γ0,jt+ γ1,jt) + (γ2,jt+ γ4,jt)t + Zjt
'  γjt                                                            (11) 

ln (ϕj,t )Trt,B= {(γ0,jt+ γ1,jt) -  (γ3,jt+ γ5,jt)t} + (γ2,jt+ γ3,jt+ γ4,jt+ γ5,jt)t + Zjt
'  γjt                                (12) 



24 
 

Referring to Eq. (9) to (12), the posterior distributions of crash frequencies for before and after 

period of the treated group and before and after period of comparison groups are obtained by 

taking the average for appropriate sites and years first. Then the crash modification factor, θF, 

is estimated from the following equations: 

θF=
∑ ϕTA(g)

G
g

∑ {ϕTB(g)Rc(g)}G
g

, g=1,….., G                                        (13) 

Rc(g)=
ϕCA(g)

ϕCB(g)
                                 (14)

     

where, 

G = number of groups of treated sites, 

ϕCB(g) = posterior distribution of expected average crash frequency at before periods for 

comparison groups, 

ϕCA(g) = posterior distribution of expected average crash frequency at after periods for 

comparison groups, 

ϕTB(g)= posterior distribution of expected average crash frequency at before periods for 

treatment groups, and 

ϕTA(g) = posterior distribution of expected average crash frequency after periods for treatment 

groups. 

4. Empirical results 

4.1. Estimation of safety performance functions  

The Empirical analysis of the current study involves the estimation of four sets of safety 

performance functions for four types of crashes (total injury crashes, fatal and major injury 

crashes, right-turn crashes, and rear-end crashes). Separate safety performance functions (SPF) 

are developed for Cross and T intersection groups. The SPFs are developed by employing – (1) 

fixed parameters Poisson-Gamma model, (2) random parameters Poisson-Gamma model, (3) 

fixed parameters Poisson-Lognormal model, and (4) random parameters Poisson-Lognormal 

model. The estimation results of Poisson-Gamma models for Cross and T intersections are 

presented in Tables 4 and 6, respectively. Further, the estimation results for Poisson-Lognormal 

models are presented in Tables 5 and 7, respectively. The Tables also include the data fit 

measures for all crash types. From the Tables, we can observe that the random parameters 

variant outperforms the fixed variant of the respective model across all crash types. The results 
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highlight the importance of accommodating unobserved heterogeneity in developing safety 

performance functions. The final models are developed based on the variables which are 

statistically significant (at 95% confidence level for the Poisson-Gamma models and within 

95% credible interval for the Poisson-Lognormal models). Parameter estimates from the 

developed safety performance functions are briefly discussed in the following section by crash 

types. 

4.2.1. Parameter estimates for Cross intersections 

The results for total injury, fatal and major injury, right-turn, and rear-end crashes for cross 

intersections are presented in the second, third, fourth and fifth column panels of Tables 4 and 

5, respectively. The exposure variable product of AADT  has a positive association with the 

expected crash frequency for all the evaluated crash types across all models. Other explanatory 

variables vary for the different crash types. For the random parameters specifications of both 

Poisson-Gamma and Poisson-Lognormal models, the constant terms (Intercept) for all crash 

types are normally distributed, implying the existence of unobserved heterogeneity or the 

intersection-specific variation of common unobserved attributes for Cross intersections in the 

dataset.  

Total injury crashes:  The presence of exclusive right-turn lane on minor road is positively 

associated with total injury crash risk across all models, perhaps reflecting the compound 

nature of permissive signal phases (Wang and Abdel-Aty, 2008, Miller et al., 2006). The 

intersections in rural areas are positively associated with total injury crashes. Further, a 

negative association between posted speed limit on major roads> 60 km/hr and a positive 

association with the posted speed limit on minor roads> 50 km/hr are found. In random 

parameters Poisson-Gamma model, the parameters for posted speed limit on minor roads > 50 

km/hr and rural intersections are found to be normally distributed, indicating the presence of 

unobserved heterogeneities around these variables.  

Fatal and major injury crashes: The presence of an exclusive right-turn lane on minor road 

is positively associated with the expected crash frequency for fatal and major injury crashes 

across all models. Similarly, rural intersections show positive association with fatal and major 

injury crashes across all the models. In random parameters Poisson-Gamma model, the 

parameter estimates for the product of AADT are found to be normally distributed. Further, in 

the random parameters Poisson-Lognormal model, the parameter estimates for an exclusive 

right-turn lane on minor road is also found to be random. 
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Right-turn crashes: The number of lanes on major roads is positively associated with right-

turn crash risk across all models. Similar to total injury and fatal and major injury crashes, the 

presence of an exclusive right-turn lane on minor roads is also positively associated with right-

turn crashes. Further, a negative association between right-turn crashes and posted speed limit 

on major roads > 60 km/hr and a positive association between right-turn crashes and  posted 

speed limit on minor roads > 50 km/hr are found across all model variants.  

Rear-end crashes: The number of lanes of minor roads is positively associated with the 

expected crash frequency for rear-end crashes across all models. Rural intersections are 

positively associated with rear-end crashes. Further, in random parameters Poisson-Gamma 

model, the parameter estimate for the product of AADT is found to be normally distributed. 

4.2.2. Parameter estimates for T intersections 

The results for total injury, fatal and major injury, right-turn, and rear-end crashes for T 

intersections are presented in the second, third, fourth and fifth column panels of Tables 6 and 

7, respectively. For the fixed and random parameters specifications of both Poisson-Gamma 

and Poisson-Lognormal models, the exposure variable modulus of AADT has a positive 

association with the crash risk across all crash types under consideration. It is worth mentioning 

that for T intersection, better model fits are found for the modulus of AADT over the product 

of AADT. Similar to Cross intersection models, in the random parameters specifications of both 

models, the constant terms (Intercept) for all the crash types are found to be normally 

distributed, implying the intersection-specific variation of common unobserved attributes for 

T intersections in the dataset.  

Total injury crashes:  Unlike Cross intersections, the presence of an exclusive right-turn lane 

on minor roads is negatively associated with the total injury crash risk across all models. Rural 

intersections are positively associated with total injury crashes. Further, a negative association 

between total injury crashes and posted speed limit on major roads > 60 km/hr is found. In 

random parameters Poisson-Gamma model, the parameter estimates for the modulus of AADT 

and an exclusive right-turn lane on minor roads, and in random parameters Poisson-Lognormal 

model, posted speed limit on major roads > 60 km/hr are found to be normally distributed.   

Fatal and major injury crashes: Rural intersections are positively associated with fatal and 

major injury crash across all models. In both Poisson-Gamma and Poisson-Lognormal models, 

none of the variables are found to be random.    
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Right-turn crashes: Posted speed limit on major roads > 60 km/hr is negatively associated 

with right-turn crashes. This result could be explained by the fact that the flow of vehicles is 

more stratified and harmonious at higher speed limits than at lower speed limits roadways. 

Similar to total injury crashes, the parameter estimates for the modulus of AADT and posted 

speed limit on major roads > 60 km/hr are found to be normally distributed in the Poisson-

Gamma model.  

Rear-end crashes: The presence of an exclusive left-turn lane on minor roads is positively 

associated with rear-end crashes. Rural intersections are positively associated with rear-end 

crashes similar to total injury and fatal and major injury crashes. Further, in the random 

parameters Poisson-Lognormal model, the parameter estimate for an exclusive left-turn lane 

on minor roads is found to be normally distributed. 
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Table 4: Poisson-Gamma safety performance function estimates for Cross intersections. 

Variables 

Total injury Fatal/major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 
Mean  

(Std. err.) 
p- 

value 
Mean  

(Std. err.) 
p- 

value 
Mean  

(Std. err.) 
p- 

value 
Mean  

(Std. err.) 
p-

value 
Mean 

 (Std. err.) 
p-

value 
Mean  

(Std. err.) 
p-

value 
Mean  

(Std. err.) 
p-

value 
Mean  

(Std. err.) 
p-

value 
Constant term 

Intercept a) -6.772 
(0.314) <0.001 -7.087 

(0.499) <0.001 -8.094 
(0.597) <0.001 -7.576 

(0.820) <0.001 -7.92 
(0.564) <0.001 -8.832 

(0.735) <0.001 -12.863 
(0.946) <0.001 -11.413 

(1.173) <0.001 

Std. Dev.  - - 0.571 
(0.043) <0.001 - - 0.346 

(0.064) <0.001 - - 0.664 
(0.062) <0.001 - - 0.319 

(0.080) <0.001 

Exposure variable 

Product of AADT a) 0.377 
(0.018) <0.001 0.390 

(0.029) <0.001 0.386 
(0.033) <0.001 0.354 

(0.047) <0.001 0.310 
(0.033) <0.001 0.358 

(0.043) <0.001 0.593 
(0.056) <0.001 0.513 

(0.069) <0.001 

Std. Dev. - - - - - - 0.023 
(0.004) <0.001 - - - - - - 0.025 

(0.005) <0.001 

Geometric characteristics 
Lane  numbers on major 
road - - - - - - - - 0.410 

(0.059) <0.001 0.382 
(0.087) <0.001 - - - - 

Lane  numbers on minor 
road - - - - - - - - - - - - 0.297 

(0.099) 0.003 0.227 
(0.129) 0.077 

Exclusive right-turn lane 
on minor road 

0.321 
(0.053) <0.001 0.245 

(0.086) 0.004 0.461 
(0.109) <0.001 0.345 

(0.141) 0.014 0.414 
(0.089) <0.001 0.373 

(0.129) 0.004 - - - - 

Traffic characteristics 
Posted speed limit on  
major road > 60 km/hr 

-0.366 
(0.048) <0.001 -0.289 

(0.079) 0.000 - - - - -0.368 
(0.075) <0.001 -0.247 

(0.108) 0.022 - - - - 

Posted speed limit on 
minor road > 50 km/hr a) 

0.283 
(0.052) 

 
<0.001 

0.188 
(0.082) 0.028 - - - -  

0.452 
 

 
<0.001 

0.375 
(0.112) <0.001 - - - - 

Std. Dev. - - 0.221 
(0.054) <0.001 - - - - - - - - - - - - 

Spatial characteristics 

Rural intersections a)  0.473 
(0.101) <0.001 0.305 

(0.155) 0.049 0.678 
(0.291) <0.001 0.689 

(0.231) 0.003 - - - - 1.153 
(0.199) <0.001 1.081 

(0.258) <0.001 

Std. Dev. - - 0.487 
(0.159) 0.002 - - - - - - - - - - - - 

Overdispersion Parameter 0.4147 <0.001 0.1107 0.011 0.619 0.004 0.2448 0.011 0.3889 <0.001 0.07 0.034 0.4023 0.077 0.0686 0.701 
No of parameters 5 5 3 3 5 5 3 3 
Loglikelihood -1098.85 -1048.93 -637.293 -624.781 -707.309 -684.182 -416.418 -408.366 
AIC 2211.7 2117.9 1284.6 1263.6 1428.6 1384.4 842.8 830.7 
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Variables 

Total injury Fatal/major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 
Mean  

(Std. err.) 
p- 

value 
Mean  

(Std. err.) 
p- 

value 
Mean  

(Std. err.) 
p- 

value 
Mean  

(Std. err.) 
p-

value 
Mean 

 (Std. err.) 
p-

value 
Mean  

(Std. err.) 
p-

value 
Mean  

(Std. err.) 
p-

value 
Mean  

(Std. err.) 
p-

value 
Notes: 
Number of observations: 826; a) Random parameters 
 
Table 5: Poisson-Lognormal safety performance function estimates for Cross intersections. 

Variables 

Total injury Fatal and major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 
Mean  

(Std. err.) 
95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean 
 (Std. 

 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Constant term                 

Intercept a) -7.203 
(0.514) 

[-8.215: 
-6.212] 

-7.859 
(1.023) 

[-9.899: 
-5.890] 

-8.494 
(0.936) 

[-10.37: 
-6.681] 

-7.875 
(1.274) 

[-10.310: 
-5.263] 

-8.034 
(0.786) 

[-9.501: 
-6.485] 

-9.138 
(1.630) 

[-10.050: 
-6.097] 

-13.100 
(1.315) 

[-15.650: 
-10.500] 

-11.870 
(1.662) 

[-15.110: 
-8.552] 

Std. Dev. - - 0.571 
(0.075) 

[0.437: 
0.730] - - 0.478 

(0.117) 
[0.209: 
0.694] - - 0.695 

(0.105) 
[0.623: 
0.926] - - 0.482 

(0.11) 
[0.283: 
0.714] 

Exposure variable                 

Product of AADT 0.388 
(0.029) 

[0.333: 
0.446] 

0.427 
(0.059) 

[0.315: 
0.543] 

0.383 
(0.052) 

[0.282: 
0.487] 

0.353 
(0.072) 

[0.203: 
0.490] 

0.320 
(0.046) 

[0.227: 
0.407] 

0.376 
(0.095) 

[0.314: 
0.584] 

0.617 
(0.074) 

[0.474: 
0.758] 

0.545 
(0.094) 

[0.356: 
0.726] 

Interaction terms                 

Tb) 0.822 
(0.220) 

[0.395: 
1.250] 

0.743 
(0.28) 

[0.195: 
1.300] 

0.981 
(0.330) 

[0.338: 
1.628] 

0.996 
(0.366) 

[0.27: 
1.709] 

1.098 
(0.291) 

[0.537: 
1.684] 

1.020 
(0.380) 

[0.767: 
1.774] 

0.770 
(0.330) 

[0.119: 
1.420] 

0.718 
(0.386) 

[-0.047: 
1.473] 

tb) 0.027 
(0.018) 

[-0.008: 
0.061] 

0.018 
(0.017) 

[-0.014: 
0.051] 

0.044 
(0.027) 

[-0.008: 
0.098] 

0.035 
(0.027) 

[-0.018: 
0.088] 

0.018 
(0.024) 

[-0.029: 
0.066] 

0.036 
(0.025) 

[0.02: 
0.085] 

0.0290 
(0.032) 

[-0.034: 
0.092] 

0.006 
(0.033) 

[-0.058: 
0.071] 

X4b) -0.068 
(0.025) 

[-0.116: 
-0.02] 

-0.055 
(0.024) 

[-0.103: 
-0.007] 

-0.056 
(0.036) 

[-0.126: 
0.014] 

-0.04 
(0.038) 

[-0.115: 
0.035] 

-0.022 
(0.034) 

[-0.087: 
0.045] 

-0.051 
(0.035) 

[-0.074: 
0.019] 

-0.097 
(0.045) 

[-0.186: 
-0.010] 

-0.053 
(0.049) 

[-0.149: 
0.044] 

X5b) -0.113 
(0.039) 

[-0.189: 
-0.037] 

-0.087 
(0.035) 

[-0.157: 
-0.019] 

-0.134 
(0.06) 

[-0.252: 
-0.019] 

-0.121 
(0.057) 

[-0.234: 
-0.01] 

-0.175 
(0.055) 

[-0.287: 
-0.070] 

-0.149 
(0.052) 

[-0.183: 
-0.049] 

-0.0530 
(0.055) 

[-0.162: 
0.055] 

-0.009 
(0.059) 

[-0.125: 
0.106] 

X6b) 0.023 
(0.061) 

[-0.097: 
0.143] 

-0.02 
(0.056) 

[-0.131: 
0.092] 

-0.081 
(0.1) 

[-0.279: 
0.114] 

-0.099 
(0.101) 

[-0.297: 
0.096] 

-0.048 
(0.092) 

[-0.232: 
0.131] 

-0.097 
(0.090) 

[-0.159: 
0.076] 

0.100 
(0.080) 

[-0.059: 
0.257] 

0.021 
(0.088) 

[-0.149: 
0.193] 

Geometric characteristics 
Lane  numbers on major 
road - - - - - - - - 0.325 

(0.086) 
[0.158: 
0.492] 

0.325 
(0.077) 

[0.273: 
0.474] - - - - 

Lane  numbers on minor  
road - - - - - - - - - - - - 0.216 

(0.083) 
[0.052: 
0.379] 

0.224 
(0.07) 

[0.085: 
0.36] 

Exclusive right-turn lane 
on minor road a) 

0.381 
(0.087) 

[0.209: 
0.555] 

0.368 
(0.078) 

[0.217: 
0.520] 

0.553 
(0.135) 

[0.29: 
0.822] 

0.46 
(0.192) 

[0.079: 
0.834] 

0.488 
(0.137) 

[0.220: 
0.757] 

0.478 
(0.118) 

[0.397: 
0.71] - - - - 
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Variables 

Total injury Fatal and major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 
Mean  

(Std. err.) 
95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean 
 (Std. 

 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Std. Dev. - - - - - - 0.174 
(0.134) 

[0.027: 
0.516] - - - - - - - - 

Traffic characteristics 
Posted speed limit on  
major road > 60 km/hr 

-0.344 
(0.076) 

[-0.494: 
-0.195] 

-0.339 
(0.069) 

[-0.475: 
-0.202] - - - - -0.398 

(0.106) 
[-0.607: 
-0.19] 

-0.372 
(0.095) 

[-0.436: 
-0.184] - - - - 

Posted speed limit on 
minor road > 50 km/hr  

0.230 
(0.078) 

[0.077: 
0.382] 

0.221 
(0.07) 

[0.083: 
0.357] - - - - 0.426 

(0.11) 
[0.210: 
0.640] 

0.413 
(0.097) 

[0.347: 
0.600] - - - - 

Spatial characteristics 

Rural intersections  0.529 
(0.155) 

[0.224: 
0.826] 

0.509 
(0.143) 

[0.226: 
0.791] 

0.676 
(0.223) 

[0.228: 
1.102] 

0.671 
(0.192) 

[0.29: 
1.05] - - - - 1.141 

(0.252) 
[0.624: 
1.620] 

1.126 
(0.211) 

[0.712: 
1.544] 

Number of parameters 
 

5 5 3 3 5 5 3 3 
DIC 2607.01 2487.49 1536.37 1503.41 1712.87 1626.90 1144.88 1113.69 
Notes: 
Number of observations: 966 

   
 
 

a) Random parameter 
b)  Interaction terms : generated as, T = Indicator for treated sites, t = tth year in the study period (t = 1,2, . . ., m), X4 = (t - t0i)I[t > t0i], X5 = T*t, X6 = T*(t - t0i)I[t > t0i]; I[t > t0i] = 1 if t 
belongs to the after period, 0 otherwise, t0i = year of countermeasure installation at site i (same imaginary construction period for the comparison group). 
95% credible limits are shown for all parameters. Insignificant parameters (Interaction variables only) are shown in italic. 
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Table 6: Poisson-Gamma crash frequency model estimates for T intersections. 

Variables 

Total injury Fatal and major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 

Mean  
(Std. err.) 

p- 
value 

Mean  
(Std. err.) 

p- 
value 

Mean  
(Std. err.) 

p- 
value 

Mean  
(Std. err.) 

p- 
value 

Mean 
 (Std. err.) 

p- 
valu

e 

Mean  
(Std. err.) 

p- 
value 

Mean  
(Std. err.) 

p- 
value 

Mean  
(Std. err.) 

p- 
value 

Constant term 

Intercept a) -8.302 
(0.984) <0.001 -8.875 

(1.198) <0.001 -7.491 
(1.988) <0.001 -7.462 

(2.033) <0.001 -5.998 
(2.213) <0.001 -5.834 

(1.601) <0.001 -12.851 
(2.737) <0.001 -12.699 

(2.851) <0.001 

Std. Dev. - - 0.150 
(0.054) 0.005 - - 0.694 

(0.103) <0.001 - - 0.254 
(0.076) <0.001 - - 0.613 

(0.128) <0.001 

Exposure variable 

Modulus of AADT a) 0.923 
(0.106) <0.001 0.954 

(0.131) <0.001 0.642 
(0.215) 0.003 0.615 

(0.219) 0.005 0.577 
(0.242) 0.017 0.509 

(0174) 0.003 0.997 
(0.308) 0.001 0.984 

(0.321) 0.002 

Std. Dev. - - 0.058 
(0.006) <0.001 - - - - - - 0.099 

(0.008) <0.001 - - - - 

Geometric characteristics 
Exclusive right-turn lane  
on minor road a) 

-0.423 
(0.079) <0.001 -0.287 

(0.147) 0.052 - - - - - - - - - - - - 

Std. Dev. - - 0.442 
(0.062) <0.001 - - - - - - - - - - - - 

Exclusive left-turn lane on 
minor road - - - - - - - - - - - - 1.678 

(0.677) 0.013 1.461 
(0.738) 0.048 

Traffic characteristics 
Posted speed limit on  
major road > 60 km/hr a) 

-0.923 
(0.117) <0.001 -0.957 

(0.154) <0.001 - - - - -0.743 
(0.197) <0.001 -0.814 

(0.189) <0.001 - - - - 

Std. Dev. -- -- - - - - - - - - 0.524 
(0.163) 0.001 - - -- - 

Spatial characteristics 

Rural intersections  1.420 
(0.134) <0.001 1.139 

(0.215) <0.001 0.969 
(0.262) <0.001 0.885 

(0.250) 
<0.00

1 
    1.490 

(0.213) <0.001 1.208 
(0.279) <0.001 

Overdispersion  Parameter 0.7303 <0.001 0.1305 0.016 0.621 0.004 0.1722 0.048 1.7724 <0.001 0.2422 0.027 0.964 0.180 0.3230 0.299 
 Number of parameters 4 4 2 2 3 3 3 3 
Loglikelihood -641.72 -606.05 -325.91 -317.45 -464.09 -423.35 -235.32 -231.06 
AIC 1295.40 1230.10 659.80 644.90 936.20 860.70 480.70 474.10 
Notes:         
Number of observations: 574; a) Random parameters      

 



32 
 

 
Table 7: Poisson-Lognormal crash frequency model estimates for T intersections. 

Variables 

Total injury Fatal and major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 
Mean  

(Std. err.) 
95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean 
 (Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. 

 

95% 
BCI 

 Constant term 

Intercept a) -8.076 
(1.339) 

[-10.940: 
-5.693] 

-9.098 
(2.553) 

[-14.430: 
-4.371] 

-7.47 
(1.918) 

[-11.410: 
-3.822] 

-7.516 
(3.29) 

[-14.72: 
-1.595] 

-5.783 
(1.812) 

[-9.131 
:-2.28] 

-6.310 
(3.537) 

[-12.9: 
1.856] 

-12.050 
(2.357) 

[-17.38: 
-7.616] 

-12.230 
(2.922) 

[-17.96: 
-6.225] 

Std. Dev. - - 0.664 
(0.108) 

[0.473: 
0.896] - - 0.685 

(0.156) 
[0.410: 
1.017] - - 1.066 

(0.169) 
[0.779: 
1.444] - - 0.378 

(0.231) 
[0.036: 
0.835] 

Exposure variable 

Modulus AADT 0.887 
(0.15) 

[0.617: 
1.204] 

1.032 
(0.284) 

[0.505: 
1.623] 

0.622 
(0.209) 

[0.224: 
1.048] 

0.621 
(0.361) 

[-0.029: 
1.413] 

0.481 
(0.198) 

[0.098: 
0.845] 

0.551 
(0.389) 

[-0.348: 
1.279] 

0.920 
(0.247) 

[0.442: 
1.476] 

0.957 
(0.319) 

[0.296: 
1.603] 

 Interaction terms                 

Tb) 1.154 
(0.326) 

[0.524: 
1.795] 

1.109 
(0.432) 

[0.273: 
1.964] 

0.810 
(0.498) 

[-0.194: 
1.767] 

0.796 
(0.612) 

[-0.417: 
1.978] 

0.849 
(0.536) 

[-0.224: 
1.892] 

0.755 
(0.67) 

[-0.566: 
2.043] 

1.377 
(0.422) 

[0.544: 
2.215] 

1.407 
(0.503) 

[0.432: 
2.399] 

tb) -0.014 
(0.024) 

[-0.061: 
0.032] 

-0.025 
(0.021) 

[-0.066: 
0.017] 

0.002 
(0.037) 

[-0.07: 
0.074] 

-0.004 
(0.037) 

[-0.076: 
0.069] 

0.037 
(0.035) 

[-0.031: 
0.106] 

0.008 
(0.029) 

[-0.048: 
0.066] 

-0.091 
(0.044) 

[-0.177: 
-0.007] 

-0.083 
(0.044) 

[-0.17: 
0.002] 

X4b) -0.076 
(0.045) 

[-0.165: 
0.013] 

-0.057 
(0.042) 

[-0.138: 
0.025] 

-0.038 
(0.067) 

[-0.171: 
0.093] 

-0.028 
(0.07) 

[-0.167: 
0.111] 

-0.15 
(0.065) 

[-0.279: 
-0.024] 

-0.080 
(0.058) 

[-0.196: 
0.033] 

0.092 
(0.082) 

[-0.071: 
0.251] 

0.071 
(0.084) 

[-0.095: 
0.234] 

X5b) -0.113 
(0.054) 

[-0.22: 
-0.008] 

-0.086 
(0.044) 

[-0.173: 
-0.001] 

-0.091 
(0.082) 

[-0.252: 
0.071] 

-0.058 
(0.083) 

[-0.219: 
0.103] 

-0.084 
(0.09) 

[-0.26: 
0.094] 

-0.063 
(0.068) 

[-0.198: 
0.07] 

-0.050 
(0.072) 

[-0.193: 
0.092] 

-0.034 
(0.071) 

[-0.174: 
0.104] 

X6b) 0.045 
(0.104) 

[-0.157: 
0.251] 

0.020 
(0.095) 

[-0.166: 
0.204] 

0.115 
(0.147) 

[-0.18: 
0.399] 

0.047 
(0.155) 

[-0.263: 
0.347] 

-0.364 
(0.25) 

[-0.886: 
0.09] 

-0.403 
(0.233) 

[-0.899: 
0.013] 

0.014 
(0.136) 

[-0.255: 
0.278] 

-0.018 
(0.139) 

[-0.291: 
0.254] 

Geometric characteristics 
Exclusive right-turn lane 
on minor road 

-0.376 
(0.168) 

[-0.704: 
-0.045] 

-0.843 
(0.27) 

[-1.384: 
-0.31] - - - - - - - - - - - - 

Exclusive left-turn lane 
on minor road a) - - - - - - - - - - - - 1.970 

(0.845) 
[0.603: 
3.985] 

1.699 
(0.847) 

[0.246: 
3.575] 

Std. Dev. - - - - - - - - - - - - - - 0.333 
(0.228) 

[0.034: 
0.804] 

Traffic characteristics 
Posted speed limit on  
major road > 60 km/hr a) 

-0.733 
(0.134) 

[-0.999: 
-0.478] 

-0.670 
(0.125) 

[-0.914: 
-0.424] - - - - -0.628 

(0.185) 
[-0.999: 
-0.273] 

-0.615 
(0.167) 

[-0.94: 
-0.289] - - - - 

Std. Dev. - - 0.325 
(0.279) 

[0.03: 
1.02] - - - - - - - - - - - - 

Spatial characteristics 
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Variables 

Total injury Fatal and major injury Right-turn Rear-end 
Models 

Fixed Random Fixed Random Fixed Random Fixed Random 
Mean  

(Std. err.) 
95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean 
 (Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. err.) 

95% 
BCI 

Mean  
(Std. 

 

95% 
BCI 

Rural intersections  1.195 
(0.23) 

[0.749: 
1.649] 

1.171 
(0.215) 

[0.750: 
1.587] 

0.927 
(0.272) 

[0.366: 
1.434] 

0.918 
(0.241) 

[0.440: 
1.388]     1.479 

(0.303) 
[0.873: 
2.056] 

1.261 
(0.534) 

[0.145 
:2.248] 

 Number of parameters 4 4 2 2 3 3 3 3 
 DIC 1512.300 1428.961 803.759 776.329 1028.050 952.735 662.241 647.709 
Notes:         
Number of observations: 658 

   
 

 

a) Random parameter         
b)  Interaction terms : generated as, T = Indicator for treated sites, t = tth year in the study period (t = 1,2, . . ., m), X4 = (t - t0i)I[t > t0i], X5 = T*t, X6 = T*(t - t0i)I[t > t0i]; I[t > t0i] = 1 if t 
belongs to the after period, 0 otherwise, t0i = year of countermeasure installation at site i (same imaginary construction period for the comparison group). 
95% credible limits are shown for all parameters. Insignificant parameters (Interaction variables only) are shown in italic. 
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4.3. Estimates of treatment effects from Empirical Bayes and Full Bayes approaches 

The safety effectiveness estimates are computed based on fixed and random parameters 

Poisson-Gamma models in Empirical Bayes approaches and fixed and random parameters 

Poisson-Lognormal models in Full Bayes approaches for four crash types (total injury, fatal 

and major injury, right-turn and rear-end crashes) and two intersection groups (Cross and T 

intersections). Thus, four sets of treatment effects for four types of crashes are computed for 

each intersection group. The estimates of treatment effects are presented in terms of crash 

modification factor (CMF) or crash reduction rate (CRR) (100*(1-crash modification factors)) 

in percentages, uncertainty estimates (standard errors), and 95% confidence intervals 

(CI)/Bayesian confidence intervals (BCI) of crash modification factors. Hereinafter, the 

evaluation approaches based on fixed and random parameters safety performance functions 

will be termed as traditional and simulation-based approaches, respectively4. 

4.3.1. Treatment effects for Cross intersections 

The protected right-turn phasing at cross intersections has been found to reduce about 63% of 

total injury crashes, as estimated by the simulation-based Empirical Bayes approach. As shown 

in Figure 2, the crash modification factors by both traditional and simulation-based Empirical 

Bayes approaches [CMF: 0.403, CI: 0.274-0.532 and CMF: 0.373, CI: 0.254-0.493] are found 

to be marginally lower than those of Full Bayes approaches [CMF: 0.435, BCI: 0.294-0.624 

and CMF: 0.434, BCI: 0.309-0.593]. However, for both evaluation approaches, standard 

deviations of crash modification factors based on the simulation-based approaches [Empirical 

Bayes: 6.10 and Full Bayes:7.27] are smaller than those estimated from the traditional 

approaches [Empirical Bayes: 6.59, Full Bayes: 8.40].  

The effect of protected right-turn phasings on fatal and major injury crashes at cross 

intersections was even higher, with a corresponding reduction of 80%.  Crash modification 

factors are slightly lower in traditional and simulation-based Empirical Bayes approaches 

[CMF: 0.228, CI: 0.090-0.365 and CMF: 0.200, CI: 0.078-1.322] than those of Full Bayes 

approaches [CMF: 0.243, BCI: 0.120-0.430 and CMF: 0.247, BCI: 0.126-0.426]. Similar to 

total injury crashes, uncertainties around crash modification factors for simulation-based 

 
4 Full Bayes approaches based on both fixed parameters and random parameters safety performance functions are 
estimated through MCMC simulation. However, the fixed parameters model based Full Bayes approach is termed 
as traditional Full Bayes approach and the random parameters model based Full Bayes approach is termed as 
simulation-based Full Bayes approach in this study to distinguish them similar to the corresponding Empirical 
Bayes approaches and to avoid verbosity.  



35 
 

approaches [Empirical Bayes: 6.23 and Full Bayes: 7.74] are smaller than those of the 

traditional approaches [Empirical Bayes: 7.01, Full Bayes: 7.99].  

The protected right-turn phasings at cross intersections are found to eliminate about 87% of 

right-turn crashes. Similar to total injury and fatal and major injury crashes, crash modifications 

for right-turn crashes are also lower in traditional and simulation-based Empirical Bayes 

approaches [CMF: 0.148, CI: 0.062-0.233 and 0.131, CI:  0.055-0.208] than those of the Full 

Bayes approaches [CMF: 0.202, BCI: 0.104-0.343 and CMF: 0.197, BCI: 0.109-0.318)]. The 

standard errors of crash modification factors are smaller for simulation-based approaches 

[Empirical Bayes: 3.89 and Full Bayes: 5.40] compared to the traditional approaches 

[Empirical Bayes: 4.35, Full Bayes: 6.14].  

Unlike the other three crash types studied, crash modification factors for rear-end crashes are 

not statistically significant across all four approaches, namely, traditional Empirical Bayes, 

simulation-based Empirical Bayes, traditional Full Bayes and simulation-based Full Bayes 

approaches (Figure 2).  

Overall, the results suggest that implementing a protected right-turn signal over a permissible 

right-turn signal is an effective treatment for reducing total injury crashes, fatal and serious 

injury crashes, and right-turn crashes. the treatment does not have any effect on rear-end 

crashes in the current study context. In general, uncertainty estimates from simulation-based 

evaluations are lower than traditional approaches supporting the hypothesis that random 

parameters model-based evaluations are likely to result in more precise estimates of 

countermeasure effectiveness. These precise estimates (lower standard errors) of crash 

modification factors in simulation-based evaluations lead to tighter confidence 

intervals/credible intervals than the corresponding traditional counterparts, as shown in Figure 

2. 

Among the variants of the Empirical Bayes and Full Bayes approaches, the simulation-based 

Empirical Bayes approach produces the most efficient results for total injury, fatal and major 

injury, right-turn, and rear-end crash types. Based on this approach, the  implementation of 

protected right-turn signal phasings contributes to substantial (statistically significant) 

reduction of total injury crashes by 62.66% (95% CI = 50.70 – 74.60%), fatal and major injury 

crashes by 80.01% (95% CI = 67.80 – 92.20%), and right-turn crashes by 86.86% (95% CI = 

79.20 – 94.50%) at Cross intersections.  



36 
 

 

 
Figure 2: Crash modification factors for different crash types at Cross intersections. 

 

4.3.2. Treatment effects for T intersections 

The protected right-turn signal at T-intersections has been found to reduce about 59% of total 

injury crashes. As shown in Figure 3, the crash modification factors based on traditional and 

simulation-based Empirical Bayes approaches [CMF: 0.436, CI: 0.216-0.655 and CMF: 0.406, 

CI: 0.206-0.607)] are comparable to those of the Full Bayes approaches [CMF: 0.386, BCI: 

0.206-0.659 and CMF: 0.430, BCI: 0.253-0.675]. Moreover, the estimates of the standard 

deviations of crash modification factors from simulation-based approaches [Empirical Bayes: 

10.26 and Full Bayes:10.86] are smaller than those of traditional approaches [Empirical Bayes: 

11.20, Full Bayes:11.73].  

For fatal and major injury crashes, crash modifications factors are significant in both the 

Empirical Bayes approaches [0.557 (95% CI: 0.120-0.994) and 0.477 (95% CI: 0.169-0.783)] 

whereas not significant in the Full Bayes approaches [0.619 (95% BCI: 0.239-1.301) and 0.592 

(95% BCI : 0.243-1.196)]. Similar to total injury crashes, uncertainties around crash 
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modification factors are lower for simulation-based approaches [Empirical Bayes: 6.23 and 

Full Bayes: 7.74] than those of traditional approaches [Empirical Bayes: 7.64, Full Bayes: 

9.02]. 

The protected right-turn signal at T intersections has been found to eliminate 91% of right-turn 

crashes. For right-turn crashes, crash modifications are  lower for both Empirical Bayes 

approaches [CMF: 0.108 (95% CI: 0.000-0.258) and 0.093 (95% CI: 0.000-0.221)] compared 

to those of Full Bayes approaches [0.139 (95% BCI: 0.030-0.370) and 0.137 (95% BCI: 0.033-

0.343)]. Like other crash types, the standard errors of crash modification factors are smaller for 

simulation-based evaluations [Empirical Bayes: 6.54 and Full Bayes: 8.15] than that of 

traditional evaluation approaches [EB: 6.49, FB: 9.00].  

For rear-end crashes,  mixed results on crash modification factors are observed for different 

approaches. Crash modifications factor is found significant from simulation-based Empirical 

Bayes approach [CMF: 0.607, CI: 0.236-0.978] whereas not significant for traditional 

counterpart [CMF: 0.759, CI: 0.296-1.222]. However, crash modification factors are not 

significant for both traditional and simulation-based Full Bayes approaches [CMF: 0.575, BCI: 

0.246-1.150 and CMF: 0.560, BCI: 0.332-1.479].  

Similar to Cross intersections, the simulation-based Empirical Bayes approach produces the 

most efficient estimates of crash modification factors. Following the approach, implementation 

of protected right-turn signal phasings at T intersections demonstrates substantial (statistically 

significant) reduction of total injury crashes by 59.37% (95% CI = 39.30 – 79.40%), fatal and 

major injury crashes by 52.40% (95% CI = 21.70 – 83.10%), and right-turn crashes by 90.75% 

(95% CI = 77.90 – 100.00%), whereas a comparatively low reduction of rear-end crashes by 

39.31% (95% CI = 2.20 – 76.40%). The spread of the crash modification factors at T 

intersections from the simulation-based Empirical Bayes approach compared to the rest of the 

approaches are shown in Figure 3. 
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Figure 3: Crash modification factors for different crash types at T intersections. 

4.4. Comparative distribution of treatment effects  

The comparative distributions of the crash reduction rates from simulation-based Empirical 

Bayes and simulation-based Full Bayes approaches for both Cross and T intersections are 

presented in Figure 4 and Figure 5, respectively. Simulation-based Empirical Bayes approach 

can demonstrate the distribution of safety effects instead of a point estimate by the traditional 

Empirical Bayes approach. On the contrary, the distribution of safety effects is inherently 

produced in the Full Bayes approach. As such, the distributions from these two different 

approaches now can be compared on a common platform that can generate additional 

information on the overall effectiveness of treatments.  

For the Empirical Bayes approach, 1,000 simulations are created from a random combination 

of parameters (section 3.1), whereas 1,000 simulations are systematically recorded from 

Markov chain Monte Carlo simulations of the Full Bayes approach. The comparative 

distributions depict the relative locations of mean, minimum, and maximum safety effects of 

the protected right-turn signal treatment by the two approaches. 

From Figures 4 and 5, it is observed that despite the lower standard errors, the maximum 

treatment effect from the simulation-based Empirical Bayes is higher than the respective 
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simulation-based Full Bayes maximum in multiple instances (e.g., total injury crashes and 

right-turn crashes at Cross intersections). In contrast, the minimum treatment effects are 

smaller in the simulation-based Full Bayes approach for all crash types in both Cross and T 

intersections. The higher spread of distribution is expected due to higher standard error 

estimates in the Full Bayes approach considered in the study. However, the comparative 

distributions show that the relative locations of mean, minimum, and maximum safety effects 

can randomly vary. Notably, for this study, though the mean crash reduction rates are 

predominantly lower in the simulation-based Full Bayes approach than in the simulation-based 

Empirical Bayes approach, it is not necessarily the same for minimum and maximum crash 

reduction rates.     

 

 

  

 

 

 

         

 

  

 

 

 

 

 

Figure 4: Distribution of crash reduction rates for Cross intersection. 
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Figure 5: Distribution of crash reduction rates for T intersections. 

5. Discussion 

This study evaluates the safety effectiveness of protected right-turn signal phasings for Cross 

and T intersections employing random parameters-based safety performance functions for both 

Empirical Bayes and Full Bayes approaches. In line with the prior studies (Barua et al., 2014; 

Rusli et al., 2017), the present study shows that all the random parameters-based safety 

performance functions outperform the fixed parameters-based safety performance functions 

based on improved model fit statistics (loglikelihood, AIC, and DIC). It is worth mentioning 

that the primary intention while predicting crashes in both Empirical Bayes and Full Bayes 

approaches is to take the best-fitted models irrespective of the model specifications. The 

underlying hypothesis is that the models with improved fit would also lead to improved safety 

estimates. The findings of this study support this hypothesis and show lower uncertainty 

estimates of crash modification factors leading to tighter confidence intervals for both 
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3). Thus, the simulation-based Empirical Bayes approach and simulation-based Full Bayes 

approach outperform their traditional counterparts for all crash types at both signalized Cross 

and T-intersections. Notably, in the current study context, the most efficient safety evaluation 

is demonstrated by the simulation-based Empirical Bayes approach in terms of the lowest 

standard error estimates. 

Protected right-turn signal phasing at intersections effectively reduce total injury crashes with 

a crash modification factor of 0.373 (95% CI: 0.254-0.493) and 0.406 (95% CI: 0.206-0.607) 

for Cross and T intersections, respectively. Protected right-turn phasing treatment is widely 

implemented for improving intersection safety among different possible variants of right-turn 

signal phasings, including permissive, permissive-protected, and protected phasing (refer to 

Islam et al. (2022) for a comprehensive list of right-turn phasings). Existing studies reported 

that protected right-turn signal phasings have greater safety benefits than the other variants. 

Davis et al.  (2007) reported a 41.9% reduction in all injury crashes for the change of permissive 

to protected right-turn signal phasings in comparison to a 14.7% reduction for the change of 

permissive to permissive-protected right-turn signal phasings. Gan et al.  (2005) also reported 

higher effectiveness of protected right-turn phasing (27% reduction) than protected-permissive 

phasing (10%). The elimination of the gap acceptance maneuver for right-turning traffic by the 

protected right-turn signal phasings can be attributed to this safety improvement. As reflected 

through the crash modification factors, protected right-turn signal phasings are more effective 

for Cross intersections than T-Intersections. It is expected because traffic movements at Cross 

intersections are generally more complex.  

The crash modification factors for right-turn crashes are 0.131 (95% CI: 0.055-0.208) and 

0.093 (95% CI: 0.000-0.221) at Cross and T intersections, respectively. The crash modification 

factors suggest that right-turn crashes are reduced by 86.86% at Cross intersections and 90.75%  

at T intersections, which are the highest among other crash types considered in the study. It is 

not surprising that protected right-turn signals almost eliminate all right-turn crashes by 

separating the right-turning and through movements in different phases of a signal cycle.  

The protected right-turn signal implementation also results in a high reduction of fatal and 

major injury crashes. The crash modification factors for fatal and major injury crashes are 0.200 

(95% CI: 0.078-0.322) and 0.476 (95% CI: 0.169-0.783), representing 80.01% and 52.40% 

crash reduction for Cross and T intersections, respectively.  In general, the severity of right-

turn crashes tends to be high because of the high speeds of through vehicles (Wang et al.  
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(2008)). Moreover, the crash victims are more prone to severe injury due to the angle-type 

collision involving right-turning vehicles. As mentioned elsewhere, protected right-turn 

phasing exclusively eliminates such conflicts between through and right-turning vehicles. 

Therefore, the risk of serious injuries or fatalities is likely to be lowered in a signalized 

intersection with protected right turn signal phasings.   

The safety effectiveness of protected right turn signal phasings for rear-end crash types varies 

across intersection types. A significant crash modification factor is found for T intersections 

[0.607 (95% CI: 0.236-0.978)] but not for Cross intersections [0.952 (95% CI: 0.518-1.386)]. 

The effects of protected right-turn signal phasings on rear-end crash types are mixed. Gan et 

al.  (2005) reported a significant reduction in rear-end crashes by 31%. On the other hand, 

Srinivasan et al.  (2012) reported an increase in rear-end crashes by 9.1%. Similarly, Davis et 

al.  (2007) reported an increase of 30.77% in rear-end crashes. Some other studies (Bahar et 

al., 2007; Shahdah et al., 2014; De Pauw et al., 2015) reported that the effects of protected 

right-turn signal on rear-end crash types are not statistically significant. It looks like a detailed 

investigation is needed on how protected right-turn signal influence the car-following or 

queuing behavior and the resultant crash risk. Right-turn and rear-end crash types are highly 

likely to be correlated as an additional right-turning phase leads to higher phase transitions over 

time and a shorter through phase that may increase the risk of rear-end crashes.  

While the protected right-turn signal decreases crash risks in general, the safety effectiveness 

of protected right-turn signal phasing varies across geographical contexts. The crash reduction 

rate for right-turn crashes for the current study in Australia is as high as 86%~90%. In 

comparison, a before-after study by  Lyon et al.  (2005) on 35 treated intersections in Toronto, 

Canada, showed only a 17% reduction in right-turn crashes. Another study by Srinivasan et al.  

(2012) on 59 treated junctions in Canada revealed a 23.8% decrease in right-turn crashes. A 

50% decrease in right-turn crashes was observed in a related study by De Pauw et al.  (2015), 

utilizing data from 103 modified junctions in Belgium. In contrast, based on 10 treated 

intersections in Minnesota, United States, Davis et al.  (2007) found a right-turn crash reduction 

of 99.99% by using a full Bayesian evaluation approach. Similar to the findings by Davis et al.  

(2007), other studies (Harkey et al., 2008; Srinivasan et al., 2008) also showed right-turn crash 

reduction as high as 98%~99% based on data from the United States. These differences in the 

safety effectiveness at different geographical locations might be attributed to the confounding 

factors related to the driving environments, safety standards and local driver behaviour. As 

such, the safety effectiveness of protected right-turn signal phasings may not be directly 
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transferrable and requires careful consideration for adopting the corresponding crash 

modification factors for a particular geographical context. 

Overall, the present study shows higher estimates of standard errors in the Full Bayes 

approaches than those of the Empirical Bayes approaches. The uncertainty estimates of safety 

performance function parameters simultaneously propagate into the crash modification factor 

estimates of the Full Bayes approach (Park et al., 2010). On the contrary, the Empirical Bayes 

approach does not directly transfer the parameter uncertainties to the estimates of crash 

modification factors. It estimates the parameters of the safety performance functions in one 

step and the crash modification factors in the next step, considering the safety performance 

function parameters as true estimates. However, in the change point model within the Poisson-

log normal approach, five interaction terms in the safety performance functions are retained 

irrespective of their insignificance. Though these interaction terms provide additional 

information on the intervention, these terms generated additional uncertainty along with the 

other explanatory variables in the safety performance functions. As such, the additional 

uncertainty induced by these interaction terms in the Full Bayes approach may have resulted 

in the higher uncertainty of the crash modification factors.  

Although simulation-based Empirical Bayes approaches show the lowest uncertainty estimates, 

some uncertainty estimates within this approach are still quite large (rear-end crash types in 

both intersections and fatal and major injury crashes in T intersections). Several studies have 

compared the performances of different distributional assumptions to deal with excess zeros in 

crash data. It has been found that different variants of Poisson-Gamma models (Negative 

Binomial Lindley, Negative Binomial-Generalized Exponential) can provide superior 

statistical fits (Lord et al., 2011; Rusli et al., 2018). It is also worth mentioning that the 

Empirical Bayes method is reported to produce reliable estimates when (a) a sufficient sample 

size is available and (b) enough crash frequencies for both treated and reference sites are 

available (Park et al., 2016). In this study, the observed crash counts for the aforementioned 

crash types with high uncertainty estimates are too low compared to the remaining cases 

(Tables 2 and 3). Due to this low crash counts, uncertainties around parameter estimates in the 

Empirical Bayes approaches may be large. A worthwhile research direction would be 

examining the performance of Lindley or Generalized Exponential models for before-after 

evaluation of low count crash types. 



44 
 

In addition to the mean safety estimate, the minimum and maximum safety effects can be 

critical to the selection of countermeasures. The distributions of crash modification factors 

provide better insights into safety assessment in addition to point estimates (mean) only. The 

simulation-based evaluation approaches allow the testing of statistical significance of safety 

effectiveness at any quantile within the simulation ranges.  The statistical significance of the 

maximum or minimum crash reductions can be tested using the corresponding standard error 

from simulations. Figures 6 and 7 depict the 95% CI of all the simulated safety estimates for 

total injury crashes at Cross intersections by the simulation-based Empirical Bayes and 

simulation-based Full Bayes approaches, respectively. For example, the confidence intervals 

for maximum crash reduction rate of total crashes by protected right-turn signal at Cross 

intersections are 0.707-0.855 and 0.605-0.889 from simulation-based Empirical Bayes and 

simulation-based Full Bayes distributions, respectively. This test on the maximum crash 

reduction rates reveals that protected right-turn signal phasing is an effective treatment even at 

its maximum crash reduction limit. Following this process, an informed decision can be made 

by testing the treatment effectiveness for various percentiles of crash modification factors or 

crash reduction rates. Similarly, the statistical significance of minimum and maximum 

treatment effectiveness can be vital for the decision-making on engineering countermeasures. 

 
Figure 6: Significance of minimum and maximum crash reduction rates from simulation-

based Empirical Bayes distribution. 
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Figure 7: Significance of minimum and maximum crash reduction rates from simulation-

based Full Bayes distribution. 

 

This study also underscores the effect of parameters’ heterogeneity on overdispersion of 

observed crash data while applying the simulation-based Empirical Bayes approach. The 

overdispersion parameter estimates in random parameters Poisson-Gamma models are 

exceptionally low compared to that of fixed parameters Poisson-Gamma models. This property 

is very typical of a random parameters model as some unobserved heterogeneities are now 

captured by the random parameters. On the other hand, the traditional Empirical Bayes 

approach requires crash data to be overdispersed since the overdispersion parameter is needed 

for estimating expected number of crashes. In this study, the overdispersion parameters of rear-

end crashes are not significant from the fixed parameters-based Poisson-Gamma models at both 

types of intersections (Cross intersections: 0.4023, p-value: 0.077, T intersections: 0.964, p-

value: 0.180). Despite this insignificance, the rear-end crash reduction rates (CRR) are 

estimated using the traditional Empirical Bayes approach to compare with the other 

approaches. Subsequently, the crash reduction rates for rear-end crashes by the traditional 

Empirical Bayes approach are found substantially low (Cross intersections: CRR = -8.18%, T 

intersection: CRR = 24.10%) compared to the simulation-based counterpart (Cross 

intersections: CRR = 4.82%, T intersection: CRR = 39.31%). More interestingly, highly 

comparable crash reduction rates are observed from simulation-based Empirical Bayes, 

traditional Full Bayes and simulation-based Full Bayes approaches (Cross intersections: CRR 

= 4.82%, CRR = 2.04%, CRR = 3.56% and T intersection: CRR = 39.31%, CRR = 42.52%, 

CRR = 43.98%). Several studies claim that the Full Bayes approach can produce reliable 

estimates even in the absence of overdispersion in the crash data (El-Basyouny et al., 2010). 
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Therefore, the similarity in results from simulation-based Empirical Bayes and Full Bayes 

approaches in the study suggest that the heterogenous count data model in the simulation-based 

Empirical Bayes approach can contribute in two ways: i) mitigating the overdispersion in 

crashes originating from the heterogeneity in the crash contributing factors and therefore 

increasing the reliance on other parameter estimates while predicting crashes, and ii) leading 

to reliable safety estimates even in the absence of overdispersed crash data.      

6. Conclusions 

This study focuses on investigating the safety effectiveness of protected right-turn signal 

phasing at signalized intersections in a before-after safety evaluation framework. The study 

applied random parameters Poisson-Gamma in the Empirical Bayes approach and random 

parameters Poisson-Lognormal models in the Full Bayes approach to examine the effects of 

protected right-turn signal phasing compared to permissive right-turn signal.  

Findings suggest that a protected right-turn signal at both cross and T intersections is an 

effective treatment in reducing right-turn crashes and fatal and major injury crashes, but it has 

no detrimental effects on rear-end crashes. A protected right-turn phasing treatment is primarily 

implemented to reduce right-turn crashes. The estimates of crash reduction rates for the right-

turn crashes were found to be 87% for Cross intersections and 91% for T intersections, 

respectively. The Protected right-turn signal was also found to reduce 63% and 59% of total 

injury crashes and 80% and 53% of fatal and major injury crashes for Cross and T intersections, 

respectively.  

Overall, uncertainty estimates from the simulation-based evaluation approaches were more 

precise than traditional approaches. These findings support the hypothesis that random 

parameters models result in a more precise estimate of safety due to the consideration of 

unobserved heterogeneity. Among different evaluation approaches, the estimates from the 

simulation-based Empirical Bayes approach were found to be the most efficient. 

The scope of this study is limited to evaluating the effectiveness of protected right-turn 

phasings in a before-after setting in which traffic signal phasings have been changed from a 

permissible right-turn signal to a protective right-turn signal. A worthwhile research direction 

would be studying the effects of different variants of right-turn signal phasing strategies like 

permissive-protected, protected-permissive, lag-protected, lead-protected, partially protected 

right-turn, split approach, and diamond overlap turn. It is quite challenging to identify treated 

sites where only right-turn traffic signal plans have been updated. In this research, extensive 
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efforts have been made with consultation with the corresponding road authority to identify the 

treatment sites.  It would be worth investigating the sensitivity of crash modification factors 

with respect to the sample sizes. In addition, the count models accounting for excess zeros (e.g., 

Lindley model, generalized exponential model) could be adopted with the simulation-based 

Empirical Bayes and Full Bayes approaches.   
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