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Abstract

This paper demonstrates that existing quantile regression models used for jointly forecasting

Value-at-Risk (VaR) and expected shortfall (ES) are sensitive to initial conditions. Given

the importance of these measures in financial systems, this sensitivity is a critical issue.

A new Bayesian quantile regression approach is proposed for estimating joint VaR and ES

models. By treating the initial values as unknown parameters, sensitivity issues can be dealt

with. Furthermore, new additive-type models are developed for the ES component that are

more robust to initial conditions. A novel approach using the open-faced sandwich (OFS)

method is proposed which improves uncertainty quantification in risk forecasts. Simulation

and empirical results highlight the improvements in risk forecasts ensuing from the proposed

methods.
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1 Introduction
Prudential regulation of the financial system is based on measures of financial risk. Therefore

accurate and reliable measures of financial risk are crucially important. Value-at-Risk (VaR) is the

most commonly used risk measure over the years since its introduction in RiskMetrics (Morgan,

1995) due to its conceptual simplicity and its importance of setting regulatory capital requirements

for financial institutions. VaR is a particular quantile of the conditional distribution of portfolio

returns, and it measures the loss of a certain portfolio within a given period at a given confidence

level (e.g. 95% or 99%). However, VaR does not indicate what the loss would be in the case that

returns exceed the quantile, a quantity captured by Expected Shortfall (ES). ES is the expected

loss conditional on returns beyond the VaR measure. The attractive properties of ES are discussed

in Acerbi and Tasche (2002). Even though ES has been widely employed by financial institutions,

it is not an elicitable measure, which means that there is no loss function that can be optimized

uniquely by the true ES (Gneiting, 2011). Although ES is not elicitable, Fissler and Ziegel (2016)

argued that VaR and ES are jointly elicitable. Taylor (2019) proposes new joint models of VaR

and ES and a new loss function for estimating VaR and ES simultaneously.

For the ES component, we demonstrate that the joint models of Taylor (2019) are sensitive to

the assumed starting values of the conditional VaR and ES series, particularly so for the additive-

type model. Since unreliable risk measures can influence the judgment of financial decision-makers,

such as less robust policymaking and capital allocation (see, for example, Danielsson et al., 2016

and Arismendi-Zambrano et al., 2022), it is crucial to address the sensitivity issue. Gerlach and

Wang (2020) demonstrated, for some indices the additive-type model provides the best forecasting

performance using realized measures. We show that the choice of the initial values can yield very

different estimation and forecasting results for the additive-type model. We propose to address the

sensitivity problem in two ways. Firstly, we argue that for both additive-type and multiplicative-

type joint models, the sensitivity issue can be largely addressed by treating these initial values as

unknown parameters and providing suitable prior settings accordingly. All parameters, including

the initial values, are estimated in a Bayesian framework which we show produces more robust VaR

and ES forecasts. Secondly, several new specifications of the additive-type model are developed in

this work, which are less sensitive to the initial conditions than the original one of Taylor (2019).

One of the newly proposed additive-type models is based on a link to a parametric GARCH model
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employed in Gerlach and Wang (2020), which allows for a simulation study for the additive-type

model. Previously, the simulation study of the joint VaR and ES model is restricted to the one

with a multiplicative-type ES component according to Gerlach and Wang (2020).

The forecasting models of tail risk measures enable joint estimation of conditional quantile

and ES based on an asymmetric Laplace (AL) working likelihood. We propose a Bayesian quantile

regression approach to estimating the joint models. Besides largely addressing the sensitivity issues

of the existing VaR and ES forecasting models, the Bayesian approach can provide uncertainty

estimates of the unknown parameters based on the posterior samples, and thus the uncertainty

associated with VaR and ES forecasts can be estimated. We explore the posterior coverage of

prediction intervals for VaR and ES, which provides insights into the ‘risks’ associated with the

tail risk measures. Estimating tail risk forecasting models via a Bayesian quantile regression

approach is not new. Gerlach et al. (2011) adapted a Bayesian approach based on the skewed-

Laplace distribution to estimate the Conditional Autoregressive VaR (CAViaR) models of Engle

and Manganelli (2004). Gerlach and Wang (2020) employed an adaptive Bayesian Markov chain

Monte Carlo method to estimate the joint VaR and ES models of Taylor (2019) and demonstrated

the Bayesian approach outperformed the maximum likelihood method in terms of point estimation.

To the best of our knowledge, however, the uncertainty estimates of the tail risk forecasting models

produced from the Bayesian quantile regression approach have not been explored in the literature.

Through the ubiquitous application of tail risk measures by financial institutions and regulators,

quantification of model risk for VaR and ES forecasts is gaining attention (see, for example,

Kerkhof et al., 2010; Alexander and Sarabia, 2012; Danielsson et al., 2016; Lazar and Zhang,

2019; and Farkas et al., 2020). As one source of model risk, an understanding of estimation

uncertainty highlights the extent with which decision-makers can rely on tail risk measures is

important. Kerkhof et al. (2010) and Farkas et al. (2020) addressed estimation risk by deriving

confidence intervals for tail risk measures under the context of financial capital requirements.

Patton et al. (2019) derived asymptotic distributions for the parameters of their proposed dynamic

semiparametric models for VaR and ES. In this work, we focus on the quantification of parameter

uncertainties via a Bayesian approach. We demonstrate that for VaR and ES forecasts, the

corresponding uncertainty intervals under the adopted Bayesian quantile regression approach can

be misleading, due to the misspecified AL working likelihood. To obtain more accurate uncertainty
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estimates for the tail risk measures, an adjustment is made to the original posterior samples. A

simulation study shows that significant improvements result from the adjustment.

VaR and ES not only quantify the risks taken by financial institutions individually, but they

are also important elements in systemic risk modelling (see Silva et al., 2017 for a general overview

of systemic risk models). Danielsson et al. (2016) provided empirical evidence of how the different

values of VaR and ES estimates from different models affect systemic risk measures. They showed

that the two popular systemic measures, conditional VaR (CoVaR) of Adrian and Brunnermeier

(2011) and the marginal ES (MES) of Acharya et al. (2017), which fundamentally depend on VaR,

can be influenced by the uncertainties in VaR estimates. In this work, we develop a procedure for

jointly estimating the CoVaR and CoES (Co-Expected-Shortfall) systemic risk measures proposed

by Adrian and Brunnermeier (2011) by following a similar approach taken for estimating joint

VaR and ES models. We empirically illustrate that unreliable VaR forecasts resulting from the

sensitivity issue can lead to unreliable CoVaR and CoES estimates. Such impact can be further

investigated in other applications based on CoVaR and CoES, such as the case of measuring

financial institutions’ resiliency proposed in Gehrig and Iannino (2021).

The rest of the article is organized as follows. Section 2 reviews the existing joint VaR and

ES models of Taylor (2019) and introduces the new additive-type models. The link between one

of the proposed models to a parametric GARCH model is described in this section. In Section

3, we provide the framework of quantile regression and the working likelihood for estimating the

joint VaR and ES models. An explanation of a Bayesian estimation and prediction approach for

the quantile regression model is discussed in Section 4. The prior settings of the initial values of

the conditional VaR and ES series are provided, and the method of posterior adjustment is also

described in this section. In Section 5, we conduct a simulation study to investigate the accuracy of

interval estimates of tail risk measures after employing the posterior adjustment method. Section

6 documents the empirical results and concluding comments are provided in Section 7.

2 Joint ES and VaR Models

2.1 Existing Models

Taylor (2019) proposed a semiparametric approach to model conditional VaR and ES jointly

based on the equivalence between the quantile regression estimator and a Maximum Likelihood
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Estimate (MLE) of an asymmetric Laplace (AL) density. For the VaR component, two specifications

of the Conditional Autoregressive VaR (CAViaR) framework (Engle and Manganelli, 2004) were

adopted. For the ES component, two models were proposed that ensure the corresponding two

quantities do not cross (i.e. the absolute value of ES is always larger than VaR). The specifications

of the two components are as follows:

Symmetric Absolute Value (SAV): Qt = β0 + β1|rt−1|+ β2Qt−1, (1)

Asymmetric Slope (AS): Qt = β0 + β1I(rt−1 > 0)|rt−1|+ β2I(rt−1 ≤ 0)|rt−1|+ β3Qt−1, (2)

where Qt is the conditional quantile of rt, I(·) is the indicator function, and rt−1 is a financial

return observed at t− 1.

Multiplicative: ESt = (1 + exp(γ0))Qt. (3)

Additive: ESt = Qt − xt,

xt =

γ0 + γ1(Qt−1 − rt−1) + γ2xt−1 if rt−1 ≤ Qt−1

xt−1 otherwise

, (4)

where γ0 ≥ 0, γ1 ≥ 0, and γ2 ≥ 0 in Eq (4) ensure that ES and VaR do not cross. Specifically, four

types of VaR-ES joint models are considered here, which are the combinations of the SAV CAViaR

model and the Multiplicative ES model (SAV-Mult), the SAV CAViaR model and the Additive

ES model (SAV-Add), the AS CAViaR model and the Multiplicative ES model (AS-Mult), and

the AS CAViaR model and the Additive ES model (AS-Add).

We demonstrate that the estimation and prediction results of the joint VaR and ES model

of Taylor (2019) can be sensitive to the choices of Q1 and ES1, especially for the additive-type

models. We argue that this sensitivity can be largely addressed by treating the initial values as

unknown parameters, whose posterior distributions can be approximated via the Bayesian approach

introduced in Section 4. The details on Bayesian settings of the unknown parameters Q1 and ES1

are discussed later in Section 4.2. Furthermore, several new specifications of the additive-type

model are proposed, which we demonstrate are less sensitive to the initial values of Q1 and ES1

compared to the SAV-Add and AS-Add models. Moreover, some of the new variations of the

additive-type models can provide superior forecasting performance.

5



2.2 New Additive-type models

The development of a new additive model is motivated by exploiting the link between an

additive-type VaR-ES joint model and a parametric GARCH-type model which allows a simulation

study to be conducted. According to Gerlach and Wang (2020), the simulation study is restricted to

the SAV-Mult model, as there is no direct link between the model with an additive ES component

and a GARCH model. Our newly proposed additive-type ES component takes the form of:

New Additive (NewAdd): ESt = Qt − xt,

xt = γ0 + γ1|rt−1|+ γ2xt−1, (5)

where γ0 ≥ 0, γ1 ≥ 0, and γ2 ≥ 0, as in the original additive-type model of Eq (4), to ensure that

ES and VaR are not crossing. Constraining γ2 to be equal to the autoregressive coefficient of the

conditional quantile Qt−1 in Eq 1, we demonstrate here that the VaR and ES under the newly

proposed additive-type model can be linked to the GARCH(1,1) model for the standard deviation

with the following specifications:

rt =
√
htεt, (6)√

ht = a0 + a1|rt−1|+ a2

√
ht−1,

εt
iid∼ N(0, 1),

where ht is the conditional variance of rt and εt is the error term.

Gerlach and Wang (2020) showed that the true parameters of the SAV-Mult model can be

obtained through a mapping from the above GARCH model to the SAV-Mult model. Specifically,

Qt =
√
htΦ

−1(α), ESt = −
√
ht

φ(Φ−1(α))
α

, where α is a chosen probability level of the quantile, φ(·)

and Φ(·) are the standard normal probability density function (PDF) and cumulative distribution

function (CDF), respectively. Thus, the true parameters of the Qt component model can be

obtained as follows:

β0 = a0Φ−1(α), β1 = a1Φ−1(α), β2 = a2.

For the ES component of the SAV-Mult model, the true value of the parameter γ0 can be calculated

through the fixed ratio between ESt and Qt,
ESt

Qt
= −φ(Φ−1(α))

αΦ−1(α)
= 1 + exp (γ0).
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For the new additive-type model of Eq (5), the additive difference xt can be defined as

xt = Qt − ESt

=
√
htΦ

−1(α)−
(
−
√
ht
φ(Φ−1(α))

α

)
=
√
htC, (7)

where C = Φ−1(α) + φ(Φ−1(α))
α

. Then
√
ht can be expressed in terms of xt as

√
ht = xt/C.

Substituting
√
ht in the GARCH model of Eq (6) with xt/C, the difference xt of the proposed

model in Eq (5) can be written as:

xt = a0C + a1C|rt−1|+ a2xt−1, (8)

where a2 = β2 which indicates that xt in Eq 5, and Qt modelled by the SAV CAViaR model,

share the same coefficient for their autoregressive terms xt−1 and Qt−1. Thus, the true parameter

values of the proposed additive model can be obtained. It is worth noting that the true parameter

values of the NewAdd model can only be identified when constraining γ2 in Eq (5) to be equal to

β2 in Eq (1). We consider both the constrained and unconstrained γ2 for the NewAdd model in

the empirical analysis. We denote the model with constrained γ2 as the NewAdd-C model, and

the one with unconstrained γ2 as the NewAdd-U model. As with the simple multiplicative-type

model structure, one appealing property of the constrained model is simplicity, which may incur

less estimation error. The constrained model can correctly capture the relationship between VaR

and ES for some DGPs, such as the GARCH model in Eq 6. The unconstrained model provides

more flexibility by allowing different dynamics between VaR and ES. However, the forecasting

performance of the multiplicative-type model, which shares the same dynamics for VaR and ES,

can outperform other more flexible models in terms of lower joint loss scores, as shown in Taylor

(2019). Therefore, we choose the constrained model as one candidate model in the empirical study,

and the results in Section 6 show that the constrained model can outperform the unconstrained

model for some financial time series.

Furthermore, we extend the NewAdd-C and NewAdd-U models to take the same form as the

AS CAViar model in Eq (2), so that the leverage effect can be captured. The expression for the
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variation of the NewAdd model is given by

NewAdd-AS: ESt = Qt − xt,

xt = γ0 + γ1I(rt−1 > 0)|rt−1|+ γ2I(rt−1 ≤ 0)|rt−1|+ γ3xt−1, (9)

where the parameters of xt are non-negative. As with the NewAdd model, the parameter γ3 can be

constrained to be equal to the autoregressive coefficients of the CAViar models of (1) and (2). We

denote the model with constrained γ3 as the NewAdd-AS-C model, and the unconstrained version

as the NewAdd-AS-U model.

It is worth mentioning that Gerlach and Wang (2020) proposed an additive model, called ‘ES-

X-CAViaR-X’ model, with the use of realized measures in place of the absolute lagged returns in

Eq (5). Even though the proposed model in Eq (5) has a similar structure to the ES-X-CAViaR-

X model, they stated that there is no direct or exact link between an additive-type model and

a parametric GARCH-type model. However, such a link can be identified for the new additive

model in Eq (5) due to the constraints on the autoregressive parameter. The proposed model

of Eq (5) is developed from the process of constructing a simulation design, but other merits of

the new additive-type models have been identified. Besides the feasibility of linking the NewAdd

model to the GARCH model as shown above, the proposed NewAdd model and its extensions are

relatively insensitive to the choices of Q1 and ES1, which is demonstrated in the empirical analysis

in Section 6.

The reduced sensitivity of the NewAdd model may be due to the independence between the

difference xt and conditional quantile Qt. The additive difference xt in the original additive-type

model is driven by the difference between past conditional quantiles and returns, Qt−1− rt−1, and

the dynamic of xt is only updated when the lagged return exceeds the lagged quantile. However,

xt in the newly proposed model is directly driven by lagged returns, which mitigates its sensitivity

to the initial value of conditional quantiles. Furthermore, as demonstrated in the empirical results

in Section 6.1, among the proposed specifications of the additive model, the versions that share

the same autoregressive coefficient with Qt generally show lower sensitivity to initial conditions.

The forecasting performance of the ES-X-CAViaR-X model of Gerlach and Wang (2020), which

incorporates the realized measures, is assessed together with other joint VaR and ES models. Under

the ES-X-CAViaR-X model, Qt and xt follow symmetric processes. We extend the ES-X-CAViaR-
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X model by developing asymmetries in both the Qt and xt processes. The extended models are

defined as follows:

AS-ES-X-CAViaR-X-AS: Qt = β0 + β1I(rt−1 > 0)Xt−1 + β2I(rt−1 ≤ 0)Xt−1 + β3Qt−1,

ESt = Qt − xt,

xt = γ0 + γ1Xt−1 + γ2I(rt−1 ≤ 0)Xt−1 + γ3xt−1. (10)

ES-X-CAViaR-X-AS: Qt = β0 + β1Xt−1 + β2Qt−1,

ESt = Qt − xt,

xt = γ0 + γ1Xt−1 + γ2I(rt−1 ≤ 0)Xt−1 + γ3xt−1, (11)

where Xt−1 is a realized measure on day t−1. The improvements in the forecasting performance by

allowing for asymmetries are observed in the empirical results shown in Section 6.1. The proposed

asymmetric model is less sensitive compared with the additive-type model of Taylor (2019), and

more consistent estimates can be obtained by treating the initial conditions as unknown parameters.

3 Quantile Regression with Asymmetric Laplace Likelihood

3.1 Quantile Regression Model

At a given quantile level α ∈ (0, 1), the quantile regression model of rt is given by

rt = Qt + εt = xᵀ
tβα + εt, t = 1, . . . , T, (12)

where Qt is the α-th quantile of rt, εt is the error term with zero mean and constant variance, xᵀ
t

is the transpose of a vector of covariates xt, and βα is the quantile parameter vector. Specifically,

the covariates here are Qt−1 and lagged returns rt−1. The α-th quantile, Qt, can be based on the

two CAViaR-type models, the SAV model and the AS model, in Eqs (1) and (2), respectively.

According to Koenker and Machado (1999), the quantile regression estimator is equivalent to the

maximum likelihood estimator of the AL density with the expression as shown below.

3.2 Working Likelihood

The parameters of the quantile regression model can be estimated using a working likelihood

based on the following AL density:

f(rt) =
α(1− α)

σ
exp(−(rt −Qt)(α− I(rt ≤ Qt))/σ), (13)
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where σ is a scale parameter, and Qt is the quantile with a chosen probability level α. Taylor

(2019) introduced a conditional AL scale σt and linked the time-varying scale σt to conditional

ES estimation. The conditional ES can be expressed in terms of σt as ESt = −σt/α, with the

assumption of a zero expected return of an asset. After incorporating the conditional ES into Eq

(13), the resulting AL density is:

f(rt) =
α− 1

ESt
exp

(
(rt −Qt)(α− I(rt ≤ Qt))

αESt

)
. (14)

Based on the AL density of Eq (14), the associated AL working likelihood for the observed data

r = {rt, t = 1, . . . , T} can be written as:

f(r|θ) =
T∏
t=1

f(rt), (15)

where θ is a set of parameters of the VaR-ES joint models believed to have generated the conditional

quantiles Q = {Qt, t = 1, . . . , T} and the corresponding expected shortfall ES = {ESt, t =

1, . . . , T} of r.

The observations r are not assumed to follow an AL distribution, whereas the AL working

likelihood allows us to conduct statistical inference within the quantile regression. Then the VaR

and ES joint models can be estimated with maximum likelihood based on the AL density in Eq

(14). Besides the likelihood maximization approach adopted by Taylor (2019), the parameters of

the proposed models can also be estimated through Bayesian approaches. Yu and Moyeed (2001)

introduced a Bayesian quantile regression approach based on the AL likelihood. The posterior of

the parameters can be generated via the Bayesian approach, as explained in Section 4, with the

use of the AL working likelihood of Eq (15), where Qt can be modeled by Eq (1) or (2) and ESt

can be modeled by Eq (3), (4), (5) or (9). Gerlach and Wang (2020) have employed an adaptive

Markov chain Monte Carlo (MCMC) method for estimation. In this work, we utilize sequential

Monte Carlo (SMC, Chopin, 2002, Del Moral et al., 2006) methods for estimation and prediction.

SMC is chosen here as it is more efficient for generating a full predictive density for VaR and ES

forecasts by reusing the intermediate samples created by the data-annealing SMC approach.

4 Bayesian Inference
Given the working AL likelihood of Eq (15), the Bayesian quantile regression approach (e.g., Yu

and Moyeed, 2001; Yu and Stander, 2007) can be employed, with the use of SMC (e.g., Chopin,
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2002) to sample from the joint posterior of the parameters of the proposed models. As a by-

product, the marginal posterior distribution of each parameter can be obtained. The posterior

distributions of parameters can easily produce interval estimates of interest, and the uncertainty

estimates of VaR and ES forecasts can be obtained based on the parameter posterior samples.

4.1 Bayesian Estimation

4.1.1 Bayesian Statistics

Based on the working AL likelihood function of Eq (15) for an observed sample r, the posterior

of parameters θ is given by

π(θ|r) =
f(r|θ)π(θ)

Z
, (16)

∝ f(r|θ)π(θ), (17)

where π(θ) is the prior and Z = f(r) =
∫
θ
f(r|θ)π(θ)dθ is the normalizing constant which is not

required by most algorithms for sampling the posterior. Since it is infeasible to directly sample

from the posterior π(θ|r) of the proposed models, the SMC sampling method is adopted.

4.1.2 Sequential Monte Carlo

In SMC, N weighted samples (called particles), {W i
t ,θ

i
t}
N
i=1, which represent a sequence of

distributions πt(θ|r) for t = 0, . . . , T , need to be constructed. The sequence starts from a simple

distribution that is easy to sample from and ultimately reaches the target posterior distribution.

The sequence of distributions can be constructed using either the likelihood annealing method or

the data-annealing method. The sequence formed by the likelihood annealing approach, with the

prior as the initial distribution, takes the form

πt(θ|r) ∝ f(r|θ)γtπ(θ),

where γt is a power parameter, and 0 = γ1 ≤ · · · ≤ γt ≤ · · · ≤ γT = 1. The final distribution in

the sequence is the posterior πT (θ|r) ≡ π(θ|r). Under the data-annealing strategy, the sequence

of distributions can be constructed as

πt(θ|r1:t) ∝ f(r1:t|θ)π(θ), (18)

where r1:t represents the observations available up to current time t. Li et al. (2021) argued that the

intermediate distributions πt(θ|r1:t) constructed by the data-annealing method can be efficiently
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reused for making predictions for GARCH-type models. As demonstrated in Section 4.4, such

efficiency brought from the data-annealing approach can also be useful in predicting VaR and ES.

Three main steps are iteratively applied in SMC to traverse the particles, which are re-

weighting, resampling, and moving (or mutation). The re-weighting step re-weights the sample for

target t−1,
{
W i
t−1,θ

i
t−1

}N
i=1

, to generate a new set of particles for target t. The new unnormalized

weights are given by

wit = W i
t−1

πt(θ
i
t−1|r1:t)

πt−1(θit−1|r1:t−1)
,

for i = 1, . . . , N . The normalized weights can be calculated as W i
t =

wi
t∑N

k=1 w
k
t

, and the new

particles remain unchanged as θit = θit−1. The re-weighting step usually reduces the effective sample

size (ESS), which measures the quality of the particle set, so the particles need to be resampled

to raise the ESS back to a desired level. The resampling process resamples the particle values

proportional to their weights, where particles with relatively high weights are duplicated, and those

with relatively small weights are dropped. Since the resampled particle set may contain duplicates

of those particles with relatively high weights before resampling, a moving step is required to

diversify the resampled particles. A moving step usually employs MCMC kernels of invariant

distribution πt to perturb the particles. Here, a Metropolis-Hastings (Hastings, 1970) kernel is

adopted, whose parameters can be adapted online in SMC (see, for example, Salomone et al.,

2018; Bon et al., 2021).

4.2 Settings of Unknown Parameters Q1 and ES1

As stated earlier, the joint models of Taylor (2019) are found to be sensitive to the initial

values assumed for Q1 and ES1. In the literature, Q1 and ES1 are initialized to the empirical

α-quantile of the early part of a financial time series and the corresponding mean of returns that

exceed the α-quantile, respectively. However, we show that different empirical initializations can

lead to different posterior distributions of the unknown parameters, and hence different predictive

distributions of VaR and ES forecasts may be generated.

We treat these initial values as unknown parameters to address this issue, and then the posterior

distributions of these parameters are generated through the Bayesian approach described above.

To undertake the Bayesian quantile regression, prior distributions need to be assigned to these

12



unknown parameters. The priors of Q1 and ES1 are chosen to be uniformly distributed as:

Q1 ∼ U(LQ, 0), and ES1 ∼ U(LE, 0),

where the upper bounds are zeros, and the choices of the lower bounds LQ and LE rely on the

probability levels of tail risks. Since the difference between Q1 and ES1 is generally not known

in advance, we suggest that to set the lower bounds of Q1 and ES1 at the same level for the

additive-type models. Moreover, we require Q1 to be larger than ES1. This condition can be

achieved by abandoning the draws from the prior of ES1, whose values are larger than the draws

from the prior of Q1.

In order to test if the joint models are sensitive to the choice of prior distribution, different

types of distributions other than the uniform distribution are adopted for priors. The exponential,

gamma and log-normal distributions are also considered. In a similar way to the uniform case, we

use negative values of realizations that are generated from the three distributions as prior samples

since Q1 and ES1 are always negative. To simulate values from the three distributions, we set

their mean parameter equal to absolute values of the empirical quantile and ES of the sample to

be analyzed. We suggest not setting too small standard deviation parameters for the priors as the

information about the dispersion is limited. For the sake of consistency, other prior distributions

mostly cover the range of the corresponding uniform prior and allocate lower densities for the

values out of the bounds of the uniform prior. It is worth noting that the multiplicative-type

models only require Q1 due to the models’ specifications of the ES component. Therefore, the

settings of the difference between Q1 and ES1 can be ignored for the multiplicative-type models.

The empirical analysis illustrates the issue and show how this issue can be largely addressed.

4.3 Posterior Adjustment

Generally, the working AL likelihood is not the true likelihood for generating data (Yang et al.,

2016). The assumption of the independent and identically distributed (i.i.d.) error term εt is

unlikely to hold with financial time series data. The posterior from the misspecified working

likelihood may yield wider or narrower credible intervals than the ones from the true likelihood.

Sriram et al. (2013) showed that the misspecified AL likelihood can still lead to consistent posterior

results for the model parameters. However, this does not imply that the uncertainty interval

estimates constructed from the posterior are automatically valid (Yang et al., 2016). Therefore,

13



the Bayesian quantile regression based on an AL likelihood cannot be considered a truly Bayesian

procedure (Benoit and Van den Poel, 2017), and we need to make corrections while constructing the

posterior distributions of parameters and the corresponding predictions. The issue of uncertainty

quantification has been considered in Liu et al. (2020), who applied a Bayesian quantile regression

framework to analyze mass spectrometry datasets. As far as we know, the posterior coverage issue,

which we aim to explore here, has not been considered for the quantile regression models of VaR

and ES in the literature.

To construct asymptotically valid credible intervals of the unknown parameters, and hence

the prediction intervals of the VaR and ES forecasts, we adopt an adjustment for the posterior

samples proposed by Shaby (2014), called the open-faced sandwich (OFS) adjustment. Due to

model misspecification, the asymptotic covariance matrix of the posterior distribution is different

from that of the asymptotic distribution of the Bayesian point estimator (Chernozhukov and Hong,

2003). The ultimate goal of the OFS adjustment is to match the limiting distribution of posterior

samples with the asymptotic distribution of the Bayesian point estimates, which are typically

the posterior mean or median, so that the uncertainty estimates of parameters can be calibrated

accordingly.

Denote the N weighted samples {W i
t ,θ

i
t}
N
i=1 as the SMC posterior samples of the unknown

parameters θ = (β,γ) based on observations r1:t, where β and γ represent parameters of the VaR

component model and the ES component model, respectively. The OFS adjustment to the weighted

samples requires an estimator Ω̂ of the matrix Ω = H−1P1/2H1/2, where H−1 is the covariance

matrix of the limiting posterior distribution, and J−1 = H−1PH−1 is the covariance matrix of the

asymptotic distribution of the Bayes estimator, θ̂. Both H and P need to be estimated to obtain

the estimator Ω̂. The matrix H−1 can be estimated by the sample covariance matrix of the SMC

samples, denoted as Ĥ−1. The matrix P is given by P = Eθ [∇θ`(r1:t|θ) (∇θ`(r1:t|θ))ᵀ], where

∇θ`(r1:t|θ) is the gradient of the log likelihood evaluated at the true parameter θ. An estimate of

the matrix P is given by

P̂ =
t∑

j=1

∇`(rj|θ̂)
(
∇`(rj|θ̂)

)ᵀ
, (19)

where θ̂ is the Bayes estimator. The adjusted samples can be obtained by pre-multiplying the
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unadjusted samples by Ω̂ as follows

θ̃it = θ̂ + Ω̂
(
θit − θ̂

)
, (20)

where θ̃it is the adjusted sample, and θit is the unadjusted sample. The covariance matrix of the

adjusted posterior samples
{
W i
t , θ̃

i
t

}N
i=1

is J−1 as desired.

It is relatively easy to estimate H−1 for the VaR-ES joint models, but some difficulties arise in

computing the estimated matrix P̂ for the SAV-Add and AS-Add models when treating Q1 and

ES1 as unknown parameters. For the two additive-type models, the partial derivatives of the log

likelihood `(r1:t|θ̂) with respect to the parameters Q1 and ES1 need to be calculated recursively.

The details of the recursive approach to find ∇`(r1:t|θ̂) are provided in the Appendix A. The AL

log likelihood of each data point rt for the VaR-ES joint models evaluated at the point estimates

θ̂ is given by

`(rt|θ̂) =

log(α− 1)− log(ESt) + (α−1)(rt−Qt)
αESt

, if rt ≤ Qt

log(α− 1)− log(ESt) + α(rt−Qt)
αESt

, otherwise

. (21)

To choose the correct expression of the above log likelihood, the value of Qt needs to be compared

with rt. By substituting the Bayesian point estimate θ̂ into the CAViaR-type models, the point

estimate of Qt can be obtained. Given the estimates of P and H, the adjusted posterior samples{
W i
t , θ̃

i
t

}N
i=1

can be obtained by following Eq (20), and thus Bayesian inference can be carried

out based on the adjusted samples. The improvements of the interval estimates of the adjusted

distributions is demonstrated in the simulation study.

4.4 Bayesian Prediction

Under the Bayesian approach, the posterior predictive distribution for VaR and ES forecasts

can be provided, which account for the uncertainty associated with the unknown parameters. The

one-step-ahead posterior predictions of the conditional quantile Q̂t+1 and expected shortfall ÊSt+1

are considered here, given their past values and observations up to time t.

As stated, it is relatively easy to produce the posterior predictive distribution by data-annealing

SMC. Under the data-annealing approach, the intermediate samples from the posterior π(θ|r1:t)

based on different subsets of observations r1:t are ready to be reused to make predictions, which

means there is no need to re-estimate the model again with different sample sizes. The posterior
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predictive distribution of Q̂t+1 based on the adjusted parameters θ̃ takes the following form:

p
(
Q̂t+1|r1:t, Q1:t

)
=

∫
θ̃

p
(
Q̂t+1|r1:t, Q1:t, θ̃

)
πt(θ̃|r1:t, Q1:t) dθ̃.

Based on the adjusted weighted samples
{
W i
t , θ̃

i
t

}N
i=1

from the posterior πt(θ̃|r1:t), the posterior

predictive distribution of Q̂t+1 and ÊSt+1 can be approximated by
{
W i
t , Q̂

i
t+1

}N
i=1

and
{
W i
t , ÊS

i

t+1

}N
i=1

,

respectively. Given the values of r1:t, Q1:t, and θ̃it for i = 1, . . . , N , Q̂i
t+1 and ÊS

i

t+1 are specified

according to the VaR-ES forecasting models described in Section 2. From the predictive distribution,

one-step-ahead forecasts and the associated uncertainty interval estimates can be easily obtained.

We use a family of joint loss functions developed by Fissler and Ziegel (2016) to jointly evaluate

VaR and ES forecasts from the VaR-ES models. As explained in Fissler and Ziegel (2016), the

joint loss functions taking the forms in Appendix B are strictly consistent, which means that the

loss function can be minimized uniquely by true VaR and ES. Three specifications of the loss scores

adopted in Taylor (2019) are considered here and provided in Appendix B. The weighted samples

from the posterior predictive distributions of VaR and ES forecasts are substituted into the three

loss functions, and we use the corresponding posterior median of the loss scores to undertake the

evaluation.

5 Simulation Study

In the simulation study, we evaluate the performance of the 95% credible intervals of the

unknown parameters and the 95% prediction intervals of the one-step ahead VaR and ES forecasts.

To the best of our knowledge, the uncertainties derived from a Bayesian approach for the jointly

estimated VaR and ES forecasts have not been explored in the literature, so the unadjusted interval

estimates from the Bayesian quantile regression are treated as the benchmark available before

making any adjustments.

As stated in Section 2.2, the true parameters of the SAV-Mult model and the SAV-NewAdd-C

model are known if simulating from the GARCH model of Eq (6). We simulated 40 return series

from the GARCH model with the following parameters that are used in Gerlach and Wang (2020):

a0 = 0.02, a1 = 0.10, a2 = 0.85.

Each simulated return series has a sample size of T = 2000. We set α = 1% in this study and
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the corresponding true values of the parameters of the SAV-Mult model and the SAV-NewAdd-C

model are given in Table 1 and 2, respectively.

Table 1: Coverage rates of interval estimates of the SAV-Mult model

95% Coverage Rate
True Unadjusted Adjusted

β0 -0.047 34.5% 45.8%
β1 -0.233 38.6% 70.3%
β2 0.850 39.5% 59.1%
γ0 -1.926 80.9% 96.1%

VaR1001:2000 - 38.5% 52.5%
ES1001:2000 - 56.1% 90.5%

1% Hit Rate - 1.06% 1.02%

Both the multiplicative- and the additive-type models are fitted to the 40 simulated datasets,

and we use N = 5000 particles in SMC to approximate posterior distributions. We calculated

one-step ahead VaR and ES forecasts for the final 1000 returns rt of each dataset from t = 1001 to

t = 2000 based on the returns r1:t−1 up to time t− 1. The coverage rate, which is the frequency of

the true values that fall within the interval estimates, of the 95% credible interval of the parameter

estimates is calculated based on 1000 in-sample periods for each dataset. Based on the estimates of

posterior predictive distributions, the coverage rate of the 95% prediction interval of the one-step

ahead forecasts is calculated for the final 1000 data points of each dataset. The average values of

the coverage rates over the 40 datasets are provided in Table 1 and 2.

Table 2: Coverage rates of interval estimates of the SAV-NewAdd-C model

95% Coverage Rate
True Unadjusted Adjusted

β0 -0.047 29.0% 41.3%
β1 -0.233 43.3% 73.8%

β2 = γ2 0.850 34.2% 56.4%
γ0 0.007 89.8% 70.2%
γ1 0.034 97.0% 73.9%

VaR1001:2000 - 37.4% 55.9%
ES1001:2000 - 61.0% 62.8%

1% Hit Rate - 1.06% 1.04%

The 1% hit rate in Table 1 and 2 refers to the percentage of observations falling below the
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1% quantile estimates, where the posterior median values of Qt are used as the point quantile

estimates. Both the multiplicative-type and additive-type models provide reasonable hit rates.

As the adjustments mainly change the curvature of the posterior, the median point estimates

do not change much. Although the SAV-Mult and SAV-NewAdd-C models have the same VaR

structure, their results for VaR may differ due to the restriction on β2 in the SAV-NewAdd-C

model. We can see that from Table 1 and 2, both the adjusted and unadjusted uncertainties of

VaR related parameters and one-step ahead forecasts for the two models are slightly different. The

original uncertainties of the quantile and ES forecasts and most of the parameter estimates of the

two models are underestimated, which leads to low coverage rates before the adjustment. It is

obvious that most of the coverage rates after adjustment are more accurate (i.e. closer to 95%)

than the unadjusted ones, especially for the ES forecasts from the SAV-Mult model. However, the

adjusted coverage rates are not perfect due to the imperfect estimates of the matrix Ω required

by the OFS adjustment. The approach of estimating matrix P, which is a component of Ω,

is designed for the case that multiple independent replicates can be produced from a stochastic

process. However, in our situation, only a single return series with T observations can be generated

per draw. Our adjusted results produce significantly more accurate uncertainty quantification than

the unadjusted ones, not only for the parameters but importantly for the VaR and ES forecasts.

However, our results also show that more research is required to improve the accuracy of the

uncertainty quantification further.

Furthermore, we suggest that the true parameters of these models can also be approximated

via the method of ordinary least squares for an overdetermined system (Anton and Rorres, 2013).

Suppose that a linear system Ax = b has m equations and n unknown variables, which implies

that A is an m × n matrix, x is a n × 1 vector and b is a m × 1 vector. If the number of

equations m is greater than the number of unknown variables n, such a system is referred to as an

overdetermined system. An approximate solution to the overdetermined system is given by

x = (AᵀA)−1Aᵀb. (22)

For the above simulation settings, since we know the true values of Qt and ESt, a system of

equations can be constructed for Qt and ESt with the corresponding unknown parameters β and

γ. Then the unknown parameters can be approximated by following Eq (22). We have used the
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overdetermined system method to calibrate the true values of the unknown parameters obtained

by mapping from the GARCH model to the joint VaR-ES model of this simulation settings, and

there is approximately no difference in the results from the two different methods.

6 Empirical Results

Daily S&P 500 returns are used for the following empirical analysis. The sample to be examined

spans 7 April 1986 - 2 September 2021, containing 8927 observations in total. The dataset covers

the crash of 1987, the Global Financial Crisis, and the 2020 stock market crash, which allows

estimation and prediction results under different market conditions. To investigate if the sensitivity

issue is affected by the length of the estimation period, an expanding window approach is employed

for estimating each model. The starting in-sample size is 2000, and 250 out-of-sample forecasts

are generated based on the in-sample estimation. Then the second estimation results are based on

2250 in-sample observations, and another 250 forecasts are generated. By expanding the in-sample

period in such a way, each model was estimated 28 times for the dataset, where the final estimation

in-sample includes 8750 observations. In total, 6927 out-of-sample forecasts are evaluated.

In addition to the S&P 500 data, another five financial time series of different asset classes and

markets are analyzed. Data for IBM, NIKKEI 225, NASDAQ and FTSE 100 indices consisting of

5000 daily returns ending on 31 December 2021 are used. We also include the returns of USO ETF

(US Oil Fund) from 10 April 2006 to 17 December 2021. These five datasets allow us to analyze the

ES-X-CAViaR-X model and its proposed extensions, given that the up-to-date high-frequency data

used for generating realized measures are available. The five-minute prices were downloaded from

Thomson Reuters Datascope. We use realized volatility (RV) that is computed by aggregating

five-minute high-frequency returns for a trading day. As with the S&P 500, the expanding window

approach is adopted to estimate each candidate model, and the starting in-sample size is 1000.

6.1 Sensitivity of the joint VaR and ES models

6.1.1 S&P 500 Sample

The sensitivity to initial conditions can be visually illustrated by the posterior distributions

of the parameters of the joint models. In this section, we present the estimation results based

on the initial 2250 observations. The sensitivity problem is severe enough to be easily visible as
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(b) AS-Add model with Q1 and ES1 treated as unknown parameters

Figure 1: Marginal posterior distributions of the parameters of the AS-Add model by using SMC.

shown in Figure 1a. The estimation results based on the in-sample size of 2250 also imply that

the sensitivity issue may not be mitigated with a long estimation period. Figure 1a presents the

posterior distributions of the parameters of the AS-Add model at α = 1% probability level with

different choices for the initial values of Q1 and ES1. The values of Q1 and ES1 are initialized at the

empirical α-quantile and the corresponding empirical ES of the first 300, 400, 500, 800, and 1000

observations, leading to the initial values as shown in the following figures. Strongly overlapping

marginal posterior distributions in the figures indicate more consistent results. We can see that with
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different fixed initial values, the posterior distributions can behave very differently. This issue can

be largely addressed by treating the initial Q and ES as unknown parameters, as shown in Figure

1b. The priors of Q1 and ES1 are set to be uniformly distributed over a range of (L, 0) for different

levels of tail risks, where L is the lower bound of the uniform distribution. Where applicable, the

choices of different lower bounds are given in the figures of marginal posterior distributions. In

addition to the uniform prior, the posteriors based on exponential, gamma, and log-normal priors

are presented in Figure 2. With different prior distributions for the initial parameters, consistent

marginal posteriors of parameters other than Q1 and ES1 can still be produced.
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Figure 2: Marginal posterior distributions of the parameters of the AS-Add model with Q1 and ES1 treated as
unknown parameters by using different prior distributions.

The marginal posterior distributions for the AS-Mult model and other additive-type models are

reported in Appendix C. From Figure 18a, we can see that the AS-Mult model also demonstrates

some degree of sensitivity to Q1, but less so than the AS-Add model. By treating Q1 as an

unknown parameter, as shown in Figure 18b, the resulting marginal posteriors based on different

priors of Q1 are more consistent than the ones in Figure 18a. The NewAdd model of Eq (5) is

much less sensitive to Q1 and ES1 compared to the AS-Add model. The posterior distributions of

the parameters of the AS-NewAdd-C model, a constrained version of Eq (5), are shown in Figure

19a. With the same choices of initial values of the AS-Add model, these posteriors are less sensitive
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to different values of Q1 and ES1. Nevertheless, the AS-NewAdd-C model still shows sensitivity

to some degree, which also can be addressed by treating the initial values as unknown parameters

as demonstrated in Figure 19b. Furthermore, the sensitivity of other variations of the proposed

additive-type models of Eq (5) and (9) are also less sensitive to the initial conditions compared

to the original additive-type model, leading to more consistent posteriors where initial conditions

are treated as unknown parameters. The marginal posterior distributions for these variations of

the additive-type model are presented in Appendix C. In addition, the benefit of the reduced

sensitivity will be demonstrated later by checking the standard deviations of each model’s forecast

evaluation results based on different initial conditions. Regarding the range of the uniform priors

for Q1 and ES1, we suggest setting their lower bounds at the same level as it is difficult to know

the difference between the initial quantile and ES in advance.

Moreover, for the original additive-type model, different posterior distributions caused by the

various choices of Q1 and ES1 can influence the prediction of tail risks. Figures 3a and 3b present

the first 50 prediction results of quantile and ES based on the posterior distributions in Figures

1a. It can be seen that different posteriors of parameters can lead to different forecasting results,

especially for the predicted ES. The sensitivity can be largely reduced in the case that the initial

values of Q and ES are treated as unknown parameters. Even with different choices of priors, the

posterior distributions and the corresponding forecasts of quantile and ES are similar, as shown in

Figures 3c and 3d. In addition, for the proposed additive-type model of the constrained version

of Eq (5), the forecasts resulting from using different initial values of the quantile and ES are

relatively consistent as shown in Figures 3e and 3f.

To illustrate the economic size of the sensitivity effect more clearly, we investigate the forecasting

results based on the parameter estimation with the initial 5250 observations. Figure 4a shows 100

one-step-ahead forecasts of ES from 21 Jun 2007 to 09 Nov 2017. We can see that different initial

values lead to different forecasting results for this period during the GFC. With an arbitrary choice

of initial conditions, a financial institution’s economic capital may not be efficiently allocated as

the amount required to hold for risk coverage is not accurately forecast. For instance, on 1 Oct

2007, the highest estimated ES is 10.43% larger than the lowest value. In this case, different values

of the initial inputs can result in wasted regulatory capital or insufficient capital for covering risk.

Especially for the highly volatile period, optimization of capital allocation plays a vital role. The
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(b) ES2251:2300: AS-Add model with choices of Q1 & ES1
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(d) ES2251:2300: AS-Add model with parameters Q1 & ES1
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(e) Q2251:2300: AS-NewAdd-C model with choices of Q1 & ES1
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(f) ES2251:2300: AS-NewAdd-C model with choices of Q1 & ES1

Figure 3: Posterior median of the first 50 out-of-sample quantile and ES forecasts

proposed approach largely addresses the sensitivity in forecasting results, as shown in Figure 4b,

minimizing the chance of inefficiently allocating capital against risky asset portions.

Figures 5 and 6 illustrate the standard deviations of the loss scores from the three loss functions

described in Section 4.4.2 for the original additive-type models, the proposed additive-type models,

and the multiplicative-type models. By treating Q1 and ES1 as unknown parameters, the loss

scores for all the candidate models are relatively consistent, and have lower standard deviations

for different selections of priors most of the time, stabilizing the performance of the forecasting
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Figure 4: Posterior median of 100 out-of-sample ES forecasts

scheme. In contrast, by not treating the initial conditions as parameters, the loss scores are more

variable and have larger standard deviations with different initial values, especially for the AS-

Add and SAV-Add models. It is worth emphasizing that the loss scores are computed based on

the posterior predictive distributions of VaR and ES. Therefore, loss scores with larger standard

deviations indicate higher sensitivity in the forecasts of VaR and ES. Moreover, the sensitivity issue

is prone to occur even with a large estimation sample. For instance, as shown in Figure 5, the

AS-Add model can be highly sensitive to the choices of Q1 and ES1 even when the in-sample size

is 8000 and 8500. Overall, the proposed variations of the additive-type models, whose standard

deviations of the loss scores are relatively low, are less sensitive to the initial conditions compared

with the original additive-type model.

Table 3: 1% VaR and 1% ES Joint Loss Scores

Out-of-sample Loss Score (Median)
Model L1 L2 L3

AS-Add 4740 1670 15421
AS-NewAdd-C 4715 1652 15317
AS-NewAdd-U 4722 1657 15346

AS-NewAdd-AS-C 4718 1643 15312
AS-NewAdd-AS-U 4703 1664 15320

AS-Mult 4720 1652 15326

L1 L2 L3
SAV-Add 4751 1712 15567

SAV-NewAdd-C 4741 1696 15504
SAV-NewAdd-U 4745 1782 15571

SAV-NewAdd-AS-C 4730 1689∗ 15463∗

SAV-NewAdd-AS-U 4726∗ 1783 15511
SAV-Mult 4741 1700 15508

Notes:
L1: Loss score from the joint loss function of Eq (33); L2: Loss score from the joint loss function of
Eq (34); L3: Loss score from the joint loss function of Eq (35).
Bold indicates lowest values of loss score for a model with an Asymmetric Slope-type VaR component.
* indicates lowest values of loss score for a model with a Symmetric Absolute Value-type VaR
component.
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(a) Sample standard deviations of the loss score from the joint loss function of Eq (33)

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2

2.5

3
AS-Add

Parameter

Predetermined

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.2

0.4

0.6

0.8

1
AS-Mult

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2

2.5

3
AS-NewAdd-AS-C

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2

2.5

3
AS-NewAdd-AS-U

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2

2.5

3
AS-NewAdd-C

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2

2.5

3
AS-NewAdd-U

(b) Sample standard deviations of the loss score from the joint loss function of Eq (34)
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(c) Sample standard deviations of the loss score from the joint loss function of Eq (35)

Figure 5: Sample standard deviations of joint loss scores for 1% VaR and 1% ES produced from models with an
asymmetric VaR component based on different in-sample sizes
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(a) Sample standard deviations of the loss score from the joint loss function of Eq (33)

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2

2.5
SAV-Add

Parameter

Predetermined

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SAV-Mult

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SAV-NewAdd-AS-C

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2
SAV-NewAdd-AS-U

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
SAV-NewAdd-C

2000 3000 4000 5000 6000 7000 8000

sample size

0

0.5

1

1.5

2
SAV-NewAdd-U

(b) Sample standard deviations of the loss score from the joint loss function of Eq (34)
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(c) Sample standard deviations of the loss score from the joint loss function of Eq (35)

Figure 6: Sample standard deviations of joint loss scores for 1% VaR and 1% ES produced from models with a
symmetric VaR component based on different in-sample sizes
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Table 3 provides the loss scores for jointly evaluating the out-of-sample forecasting performance

of the candidate models estimated by treating initial conditions as unknown parameters. The

presented loss scores are the averages over the ones based on different selections of priors of Q1

and ES1. As indicated by the joint loss scores L2 and L3, the proposed AS-NewAdd-AS-C model

provides the lowest losses, performing best for the S&P 500 dataset. Regarding the joint loss

score L1, the AS-NewAdd-AS-U model outperforms other candidates. Moreover, the joint VaR-

ES models whose VaR component is modelled by the AS CAViaR model, which can capture the

leverage effect, is always advantageous over the one modelled by the SAV CAViaR model as shown

in Table 3. It is worth mentioning that regardless of whether the VaR component is asymmetric

or symmetric, the models that perform best are from our newly proposed additive-type models.

Table 4: 1% VaR Coverage Test p-values

Model UC CC DQ

AS-Add 0.005 0.015 0.045
AS-NewAdd-C 0.085 0.155 0.125
AS-NewAdd-U 0.039 0.037 0.009

AS-NewAdd-AS-C 0.250 0.309 0.281
AS-NewAdd-AS-U 0.167 0.244 0.000

AS-Mult 0.085 0.061 0.010

SAV-Add 0.167 0.090 0.000
SAV-NewAdd-C 0.358 0.122 0.000
SAV-NewAdd-U 0.250 0.108 0.000

SAV-NewAdd-AS-C 0.571 0.133 0.000
SAV-NewAdd-AS-U 0.167 0.023 0.000

SAV-Mult 0.423 0.128 0.000

Notes:
All tests are conducted at the 5% significance level.
Bold indicates the model is not rejected by the test at a 5% level.

In addition to the joint loss functions, the performance of VaR forecasts is also examined via

backtesting procedures. Three standard tests are considered here: the unconditional coverage

(UC) test of Kupiec (1995), the conditional coverage test of Christoffersen (1998) and the dynamic

conditional quantile (DQ) test of Engle and Manganelli (2004). From the p-values of the backtests

reported in Table 4, the results of the UC and CC tests are reasonable for most of the models,

where the AS-Add model and the unconstrained AS-NewAdd model are rejected all the time. For

the DQ test, which is more powerful in rejecting a misspecified model than the other two tests,

most of the models are rejected except the constrained AS-NewAdd model and its asymmetric

version. The performance of ES forecasts is also assessed through backtests. The ES residual test

of McNeil and Frey (2000) is adopted, which tests if the average difference between the returns
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exceeding VaR and ES forecasts is approximately zero. The regression-based ES backtest of Bayer

and Dimitriadis (2022) is also conducted. The regression backtest regresses returns on the ES

forecasts and an intercept, and then it tests if the intercept is equal to 0 and the slope coefficient

is equal to 1. From Table 5, we can see that only the original additive-type models are rejected by

the ES residual test. It is worth mentioning that the adjusted results are not used here since the

sensitivity issue is irrelevant to the uncertainty adjustment. The main purpose of this section is to

demonstrate the sensitivity issue, and illustrate how the issue is largely addressed by the proposed

approach. Moreover, as discussed in Section 5, since the point estimates would not change much

with the uncertainty adjustment, the loss scores and backtesting results are reported based on

unadjusted posterior samples.

Table 5: 1% ES Backtest Rejection Count

Model ES Residual ES Regression

AS-Add 1 0
AS-NewAdd-C 0 0
AS-NewAdd-U 0 0

AS-NewAdd-AS-C 0 0
AS-NewAdd-AS-U 0 0

AS-Mult 0 0

SAV-Add 1 0
SAV-NewAdd-C 0 0
SAV-NewAdd-U 0 0

SAV-NewAdd-AS-C 0 0
SAV-NewAdd-AS-U 0 0

SAV-Mult 0 0

Notes:
All tests are conducted at the 5% significance level.
1 indicates the model is rejected by the test at a 5% level.

6.1.2 Out-of-sample VaR and ES Forecasts for Other Market Indices and Financial

Assets

The comprehensiveness of the empirical analysis is extended by analyzing different financial

datasets. The ES-X-CAViaR-X model of Gerlach and Wang (2020) and its extended specifications

in Eq (10) and (11) are included, where RV is used as the realized measure. Table 6 provides the

AL loss score ratios of candidate models to that of the AS-Add model to assess VaR and ES jointly.

The AL loss score of Eq (35) is just the negative of the AL log-likelihood which is a consistent

scoring function. We can see that the AS-ES-X-CAViaR-X-AS model, an extension of the ES-

X-CAViaR-X model of Gerlach and Wang (2020) results in the lowest joint loss scores for most
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Table 6: 1% VaR and 1% ES AL Loss Score Ratio

Model Oil IBM NIKKEI FTSE NASDAQ

AS-Add 1.000 1.000 1.000 1.000 1.000
AS-Mult 0.998 0.999 0.996 1.000 1.003

AS-NewAdd-C 0.998 0.999 0.996 0.999 0.995
AS-NewAdd-U 0.999 1.000 0.993 0.999 1.003

AS-NewAdd-AS-C 0.998 0.999 0.996 0.999 0.992
AS-NewAdd-AS-U 0.999 1.000 0.996 0.999 1.000

AS-ES-X-CAViaR-X-AS 1.020 0.972 0.999 0.993 0.945

SAV-Add 1.010 1.000 1.007 1.013 1.008
SAV-Mult 1.008 1.001 1.006 1.013 1.021

SAV-NewAdd-C 1.008 1.001 1.006 1.013 1.002
SAV-NewAdd-U 1.009 1.002 1.007 1.013 1.017

SAV-NewAdd-AS-C 1.007∗ 1.001 1.001 1.010 1.001
SAV-NewAdd-AS-U 1.007∗ 1.001 1.004 1.011 1.015

ES-X-CAViaR-X 1.016 0.973∗ 1.002 0.996 0.951∗

ES-X-CAViaR-X-AS 1.016 0.973∗ 0.998∗ 0.994∗ 0.952

Notes:
Ratios of different methods’ AL loss scores to that of the AS-Add model.
Bold indicates lowest values of loss score for a model with an Asymmetric Slope-type VaR component.
* indicates lowest values of loss score for a model with a Symmetric Absolute Value-type VaR component.

of the financial time series. In addition, Table 7 presents the counts of rejections of each model

for the VaR and ES forecasts backtests over five datasets. The AS-ES-X-CAViaR-X-AS model is

less likely to be rejected under all the tests relative to the other models. Overall, the backtest

results are consistent with that of the AL joint loss scores, where the AS-ES-X-CAViaR-X-AS

model outperforms other candidate models.

Table 7: 1% VaR and 1% ES Backtest Rejection Count

Model DQ ES Residual ES Regression

AS-Add 1 3 1
AS-Mult 2 3 2

AS-NewAdd-C 1 3 2
AS-NewAdd-U 1 3 2

AS-NewAdd-AS-C 1 2 1
AS-NewAdd-AS-U 1 2 2

AS-ES-X-CAViaR-X-AS 0 1 1

SAV-Add 2 3 1∗

SAV-Mult 2 3 1∗

SAV-NewAdd-C 2 3 1∗

SAV-NewAdd-U 2 2 1∗

SAV-NewAdd-AS-C 2 1∗ 1∗

SAV-NewAdd-AS-U 2 1∗ 1∗

ES-X-CAViaR-X 1∗ 2 1∗

ES-X-CAViaR-X-AS 1∗ 2 1∗

Notes:
Counts of 1% VaR rejections with the DQ test and 1% ES rejections with ES residual and regression
tests on five time series at a 5% significance level.
Bold indicates the fewest rejections for a model with an Asymmetric Slope-type VaR component.
* indicates the fewest rejections for a model with a Symmetric Absolute Value-type VaR
component.
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Figure 7: Marginal posterior distributions of the parameters of the AS-Add model based on 2000 USO daily returns.

The sensitivity issue is not unique to the S&P 500 but also appears under the other financial

time series. Figure 7a shows inconsistent posterior distributions of the parameters of the AS-Add

model based on a series of commodity returns. The issue can be addressed by treating initial

conditions as unknown parameters, as demonstrated in Figure 7b. From Figure 8a, we can see

that the AS-ES-X-CAViaR-X-AS model shows much less sensitivity to initial conditions than the

AS-Add model. As shown in Figure 8b, with different priors, the marginal posterior distributions

produced by treating the initial conditions as unknown parameters can become more consistent

than the ones in Figure 8a.
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(b) AS-ES-X-CAViaR-X-AS model with parameters Q1 & ES1

Figure 8: Marginal posterior distributions of the parameters of the AS-ES-X-CAViaR-X-AS model based on 2000
USO daily returns.

6.2 Adjustment Results

6.2.1 Adjusted Posteriors

As demonstrated in the simulation study, the accuracy of the uncertainty interval estimates

can be improved after adjusting the posterior samples. Before considering the interval estimates

of VaR and ES forecasts, the posterior distributions after adjustments are shown in this section.

The adjusted posterior distributions of the parameters of the models investigated in the simulation

study are presented. In the case of the 1% quantile level in the simulation study, the 95% interval

estimates for the quantile and ES forecasts and the parameters of the SAV-Mult model have low

coverage rates of the true values, which indicates that the intervals are underestimated due to

the misspecified working likelihood. In Section 5, we have demonstrated that the adjustment
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method improved the accuracy of interval estimates for the simulated data. The effectiveness of

the adjustment for the real data is discussed below.
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Figure 9: Adjusted marginal posterior distributions of the parameters of the SAV-Mult model based on 2250 S&P
500 daily returns. (α = 1%)
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Figure 10: Adjusted marginal posterior distributions of the parameters of the SAV-Mult model based on 2250 S&P
500 daily returns. (α = 2.5%)

Given the S&P 500 data, Figures 9, 10, and 11 illustrate the marginal posterior distributions

of the parameters of the SAV-Mult model before and after the adjustments. In the case of

the 1% quantile level, most of the adjusted distributions become more dispersed compared to

the unadjusted ones as desired, especially for the ES component related parameter. Since the

simulation study shows that unadjusted uncertainty intervals are underestimated, the inflated

variances after adjustments imply more accurate estimates of the uncertainty. The adjusted results

for the SAV-NewAdd-C are given in Appendix C, where the adjusted uncertainty intervals of most

parameters become wider. One parameter related to the ES component has a narrower uncertainty
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estimate after the adjustment, which leads to relatively small uncertainty improvements in ES

forecasts compared with the one from the SAV-Mult model, as discussed below.
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Figure 11: Adjusted marginal posterior distributions of the parameters of the SAV-Mult model based on 2250 S&P
500 daily returns. (α = 5%)

6.2.2 Adjusted Uncertainty

Based on the adjusted posterior distributions, we implement the Bayesian prediction approach

to make forecasts for the real data, where the uncertainty around predicted tail risks can be

obtained. The differences between adjusted and unadjusted widths of prediction interval (PI)

estimates of the tail risk forecasts with 1%, 2.5% and 5% quantile levels for the SAV-Mult

model are presented in Figures 12a, 12b and 12c. Positive differences indicate an increase in

the uncertainty width after adjustment. In the case of the 1% quantile level of the simulation

study, the unadjusted interval estimates from the SAV-Mult model are relatively narrow and

overconfident on the parameters and tail risks estimates. Therefore, interval estimates with higher

widths after the adjustment quantify the corresponding uncertainties more accurately. In the case

of the 1% quantile level of the real data, wider prediction intervals for the tail risks are expected

to be produced after the adjustment, as shown in Figure 12a. Meanwhile, as expected, the width

increment of 1% ES is higher than the one of 1% VaR, which implies that the adjustment effect is

larger on ES. This phenomenon is consistent with the simulation results, which demonstrate that,

after the adjustment, more accurate uncertainty intervals can be gained for 1% ES forecasts than

1% VaR.

For the predicted tail risks with probability levels of 2.5% and 5%, their adjusted interval

widths also become larger, which is consistent with their adjusted posterior distributions where
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Figure 12: Differences of 250 out-of-sample 95% prediction interval width, before and after the adjustment, of VaR
and ES forecasts, for the SAV-Mult model with the probability levels of α = 1%, 2.5%, 5% by using the Bayesian
approach.

most of the distributions’ variances increase. It is worth noting that for the case of the SAV-

NewAdd-C model in Figure 17 given in Appendix C, the adjustment effect of the interval width

of ES is relatively low from the SAV-Mult model since the adjusted marginal posterior of one ES

parameter in Figure 16 has smaller variances.

6.3 Forecasts of Systemic Risk Measures with Joint VaR and ES

Models

This section provides an empirical application of VaR and ES forecasts to estimate systemic

risks. VaR and ES are not only critical risk measures for an individual institution, but they are

also practically useful for systemic risk modelling. The systemic risk measures of CoVaR and

CoES proposed by Adrian and Brunnermeier (2011) are considered. Following a similar approach

taken earlier for jointly estimating VaR and ES, we forecast CoVaR and CoES jointly via quantile

regression. To the best of our knowledge this approach has not been used in the literature. CoVaR

is based on the concept of VaR and is defined as the VaR of a market index conditional on a

particular institution being in distress. With a probability level of α, the CoVaR of a system m
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conditional on an institution i is given by

Pr
(
rm ≤ CoVaRm|i

α |ri = VaRi
α

)
= α, (23)

where rm is return of a market index and ri is financial return of an individual institution i. CoES

is the ES of system m conditional on ri ≤ VaRi
α of institution i:

CoESm|iα = E
[
rm|rm ≤ CoVaRm|i

α

]
. (24)

Given the dependence between CoVaR and VaR, we demonstrate that the sensitivity and uncertainty

estimates issue discussed are translated to CoVaR and CoES forecasts.
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Figure 13: Sample data and posterior median of the last 100 out-of-sample CoVaR and CoES forecasts
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To estimate CoVaR, we first consider a quantile regression of the system m on institution i for

the quantile level α:

rmt = β
m|i
0 + β

m|i
1 rit + ε

m|i
t . (25)

After obtaining the estimated parameters from the quantile regression model of Eq (25), according

to Adrian and Brunnermeier (2011), the CoVaR
m|i
t is given by:

CoVaR
m|i
t = β̂

m|i
0 + β̂

m|i
1 VaRi

t. (26)

The CoVaR models in (25) and (26) of Adrian and Brunnermeier (2011) contain a set of lagged

state variables as covariates in order to generate time-varying risk estimates. Given the time-

varying nature of the VaR forecasts from the joint VaR and ES models, such lagged variables are

not included here. As we aim to explore how the robust approaches outlined earlier can be utilized

to improve point and uncertainty estimates for CoVaR and CoES, the existence of lagged state

variables in the models of Adrian and Brunnermeier (2011) do not affect the general results here.

In this study, we extend the model of Eq 25 by incorporating an asymmetric property as follows:

rmt = β
m|i
0 + β

m|i
1 I(rt > 0)|rit|+ β

m|i
2 I(rt ≤ 0)|rit|+ ε

m|i
t . (27)

The CoES is in a similar manner to the multiplicative formulation for ES:

ESmt = 1 + exp(γ0)rmt , (28)

where rmt is the quantile estimation in Eq (27). Then the CoES
m|i
t is given by:

CoES
m|i
t = 1 + exp(γ̂0)CoVaR

m|i
t . (29)

The models of Eq (27) and (28) can be jointly estimated by the proposed Bayesian quantile

regression approach described in Section 4. Based on the definition of CoVaR in Eq (26), we can

see that VaR is an important input. Therefore, the reliability of VaR forecasts become critical.

In the application, we use the Dow Jones index (DJI) as a market proxy, and Bank of America

(BAC) as an individual institution. The sample period is from 3 January 2000 to 8 June 2022.

Figures 13a and 13b present the daily log returns of the two time series. The first 1800 observations

are used for estimation, and 250 out-of-sample forecasts of VaR and ES are generated based on the

in-sample estimation. Figures 13c and 13d provide the point estimate of CoVaR and CoES based

on VaR and ES forecasts by treating initial conditions as parameters for the period of 13 Feb 2008
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to 10 Jul 2008. With different choices of priors, consistent forecasting results are generated. In

contrast, VaR and ES forecasts based on different predetermined values of initial conditions can

lead to more volatile CoVaR and CoES forecasts, as shown in Figures 13e and 13f. The inconsistent

outcomes indicate the lower reliability of the original additive-type models. Since the forecasts are

used to determine a financial institution’s regulatory capital, and thus can have real economic

impacts, it is important for decision-makers and regulators to base their decisions on reliable risk

estimates.
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Prediction Interval Width: 1% CoVaR
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Figure 14: Adjusted 95% prediction interval width of 250 out-of-sample CoVaR and CoES forecasts, with the
probability level of α = 1% by using the Bayesian approach.

Uncertainties around the forecasts can be provided by the Bayesian quantile regression approach.

However, the uncertainty interval estimates are inaccurate due to the adoption of a misspecified

likelihood. The accuracy of uncertainty estimates for CoVaR and CoES can be improved by the

proposed adjustment method discussed in detail in Section 4.3. Figure 14 shows the adjusted

95% prediction interval widths of the 250 out-of-sample forecasts of CoVaR and CoES. With the

increasing volatility from Jul 2007 to Jul 2008, the uncertainties around the systemic risk measures

become higher. Figure 15 presents the differences between adjusted and unadjusted widths of the

250 out-of-sample prediction interval estimates of CoVaR and CoES. We can see that their 95%

prediction intervals are underestimated before making any adjustments. As the crisis develops,

the differences between the adjusted and unadjusted interval widths increase, indicating a growing

underestimation of the systemic risk measures’ uncertainties.
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Figure 15: Differences of 250 out-of-sample 95% prediction interval width, before and after the adjustment, of
CoVaR and CoES forecasts, with the probability level of α = 1% by using the Bayesian approach.

7 Conclusion

This paper investigates problems with existing joint VaR and ES models. It demonstrates the

sensitivity of the joint models of Taylor (2019), especially prominent for the additive-type VaR and

ES models, and suggests approaches to address it. With different choices of starting values of the

conditional quantile and ES, the resulting forecasts of tail risks can be very different. Employing a

Bayesian quantile regression approach, the sensitivity issue can be largely addressed by treating the

initial values of Q1 and ES1 as unknown parameters, where the corresponding prior distributions’

ranges need to be wide enough. We argue that it is not appropriate to compare the performance of

the sensitive joint models with others given the sensitivity issues outlined, whereas the proposed

Bayesian approach allows such comparisons. In addition, new additive-type models are proposed,

which mitigate the sensitivity issue to some degree, which can be further improved upon using

our Bayesian approach. One of the proposed additive-type models can be linked to a parametric

GARCH model to enable a simulation study which previously is restricted to the multiplicative-

type models. Moreover, the paper extends the ES-X-CAViaR-X model of Gerlach and Wang

(2020) by developing asymmetric properties. The models proposed by Gerlach and Wang (2020)

incorporate different types of realized measures and demonstrate improved forecasting performance

over only using returns. In this paper, RV is adopted for the proposed AS-ES-X-CAViaR-X-AS

model. The performance of this proposed model can be further investigated by utilizing different

realized measures.

We explore the risks associated with the forecasts of tail risk measures from the joint VaR

and ES model by examining the corresponding posterior predictive distributions produced from
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a Bayesian inference approach, issues that have not been investigated in the literature. We

demonstrate that the interval estimates from the Bayesian quantile regression approach can be

misleading due to the misspecified AL working likelihood for the joint VaR and ES models. We

employ the OFS adjustment method to improve the estimation accuracy of risks of the tail risk

measures. However, the adjustment established here has limited efficacy for improving the accuracy

of interval estimates. Exploring more accurate adjustment methods is an interesting avenue for

future work.

Finally, to highlight the practical impact of using inconsistent forecasts of tail risk measures

for decision making, we conduct an empirical application to estimate systemic risk measures based

on VaR. The results show that the sensitivity issue and inaccurate uncertainty estimates of VaR

translate into systemic risk forecasts, highlighting the need for addressing these issues also in

this context. A process for jointly estimating systemic risk measures, CoVaR and CoES, is also

proposed. Comparing the forecasting performance of this approach with other systemic risk models

could be a possible extension for future work. Moreover, given the risk measures considered in

this work are important components for calculating regulatory capital requirements, the work can

be extended by investigating the direct impact of the sensitivity and uncertainty underestimation

issues within the regulatory environment.
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Appendix A Gradients of log-likelihood functions of the

SAV-Add and AS-Add models
As discussed in Section 4.3, the log-likelihood gradients of the additive-type models with

treating Q1 and ES1 as unknown parameters are derived by a recursive approach. For the SAV-Add

model, the conditional quantile at different time points i = 1, 2, . . . , t can be written as:

Qi=2 = β0 + β1|r1|+ β2Q1,

Qi=3 = β0 + β1|r2|+ β2(β0 + β1|r1|+ β2Q1),

Qi=4 = β0 + β1|r3|+ β2 [β0 + β1|r2|+ β2(β0 + β1|r1|+ β2Q1)]

= β0 + β1|r3|+ β2(β0 + β1|r2|) + β2
2(β0 + β1|r1|) + β3

2Q1,

...

Qi=t = β0 + β1|rt−1|+ β2(β0 + β1|rn−2|) + β2
2(β0 + β1|rn−3|) + · · ·+ βn−2

2 (β0 + β1|r1|) + βn−1
2 Q1

= β0(1 + β2 + β2
2 + · · ·+ βn−2

2 ) + β1(|rn−1|+ β2|rn−2|+ β2
2 |rn−3|+ · · ·+ βn−2

2 |r1|) + βn−1
2 Q1

= β0
1− βn−1

2

1− β2

+ β1(|rn−1|+ β2|rn−2|+ β2
2 |rn−3|+ · · ·+ βn−2

2 |r1|) + βn−1
2 Q1, (30)

where Qt is expressed in terms of Q1 which allows the computation of the derivative of a function

of Qt with respect to Q1. For the ES component model in Eq (4), the additive difference xt can be

rewritten in terms of Q1 by substituting Qt−1 that has an expression type of Eq (30). To express

xt in terms of ES1, x1 needs to be expressed as Q1 − ES1 first, and then similar to the recursive

approach of Qt in (30), xt at other time points based upon x1 can be obtained.
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Similarly, for the AS-Add model the conditional quantiles can be written as:

Qi=2 = β0 + β1I(r1 > 0)|r1|+ β2I(r1 ≤ 0)|r1|+ β3Q1,

Qi=3 = β0 + β1I(r2 > 0)|r2|+ β2I(r2 ≤ 0)|r2|+ β3(β0 + β1I(r1 > 0)|r1|+ β2I(r1 ≤ 0)|r1|+ β3Q1),

Qi=4 = β0 + β1I(r3 > 0)|r3|+ β2I(r3 ≤ 0)|r3|+
β3 [β0 + β1I(r2 > 0)|r2|+ β2I(r2 ≤ 0)|r2|+ β3(β0 + β1I(r1 > 0)|r1|+ β2I(r1 ≤ 0)|r1|+ β3Q1)]

= β0(1 + β3 + β2
3) + (β1I(r3 > 0) + β2I(r3 ≤ 0)) |r3|+ β3(β1I(r2 > 0) + β2I(r2 ≤ 0))|r2|+

β2
3(β1I(r1 > 0) + β2I(r1 ≤ 0))|r1|+ β3

3Q1,

...

Qi=t = β0(1 + β3 + β2
3 + · · ·+ βn−2

3 ) + (β1I(rt−1 > 0) + β2I(rt−1 ≤ 0))|rt−1|+
β3(β1I(rt−2 > 0) + β2I(rt−2 ≤ 0))|rt−2|+ · · ·+ βt−2

3 (β1I(r1 > 0) + β2I(r1 ≤ 0))|r1|+ βn−1
3 Q1

= β0
1− βn−1

3

1− β3

+ (β1I(rt−1 > 0) + β2I(rt−1 ≤ 0))|rt−1|+ β3(β1I(rt−2 > 0) + β2I(rt−2 ≤ 0))|rt−2|

+ · · ·+ βt−2
3 (β1I(r1 > 0) + β2I(r1 ≤ 0))|r1|+ βn−1

3 Q1. (31)

Once obtaining the expressions of Qt and ESt in terms of all the unknown parameters, the partial

derivatives of the log-likelihood function, which is a function of Qt and ESt, with respect to each

of the parameters can be derived.

Appendix B Loss functions for jointly evaluating VaR and

ES forecasts
The general expression of the loss function of Fissler and Ziegel (2016) is given by:

St(rt, Qt, ESt) =(I(rt ≤ Qt)− α)G1(Qt)− I(rt ≤ Qt)G1(rt)

+G2(ESt)

(
ESt −Qt +

I(rt ≤ Qt)(Qt − rt)
α

)
− ζ2(ESt) + a(rt), (32)

where G1 is an increasing function, ζ2 is increasing and convex, G2 = ζ
′
2, and a is a real-valued

integrable function for t = 1, . . . , T . A variety of functions G1, G2 and a can be selected to meet

these conditions. The loss score for a sample of size T is S =
∑T

t=1 St. Three specifications of 32

are employed in this work. The first loss function is the one used in Fissler et al. (2015), where

the functions G1 and G2 are set as G1(x) = x and G2(x) = exp (x)/(1 + exp(x)), and a = ln(2).

The expression of the first score function is given by

St(rt, Qt, ESt) =(I(rt ≤ Qt)− α)Qt − I(rt ≤ Qt)rt +
exp(ESt)

1 + exp(ESt)
×(

ESt −Qt +
I(rt ≤ Qt)× (Qt − rt)

α

)
+ ln

(
2

1 + exp(ESt)

)
. (33)
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The second loss function is initially proposed by Acerbi and Szekely (2014), and we set W = 4 in

the following expression to ensure WQt < ESt:

St(rt, Qt, ESt) =α
(
ES2

t /2 +WQ2
t/2−QtESt

)
+ I(rt ≤ Qt)×(

−ESt(rt −Qt) +W (r2
t −Q2

t )/2
)
. (34)

The third loss function is the negative of the AL log-likelihood function proposed by Taylor (2019),

and the expression is given by

St(rt, Qt, ESt) = − ln

(
α− 1

ESt

)
− (rt −Qt)(α− I(rt ≤ Qt))

αESt
. (35)

Appendix C

Adjusted posteriors:
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Figure 16: Adjusted marginal posterior distributions of the parameters of the SAV-NewAdd-C model based on 2250
S&P 500 daily returns. (α = 1%)

Adjusted uncertainty:

0 50 100 150 200 250
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1% VaR: Adjusted - Unadjusted

1% ES: Adjusted - Unadjusted

Figure 17: Differences of 250 out-of-sample 95% prediction interval width, before and after the adjustment, of
VaR and ES forecasts, for the SAV-NewAdd-C model with the probability level of α = 1% by using the Bayesian
approach.
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Marginal posterior distributions for the AS-Mult model and other variations

of additive models:
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Figure 18: Marginal posterior distributions of the parameters of the AS-Mult model by using SMC.
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Figure 19: Marginal posterior distributions of the parameters of the AS-NewAdd-C model by using SMC.
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Figure 20: Marginal posterior distributions of the parameters of the AS-NewAdd-U model by using SMC.
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(a) AS-NewAdd-AS-C with choices of Q1 & ES1
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Figure 21: Marginal posterior distributions of the parameters of the AS-NewAdd-AS-C model by using SMC.
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Figure 22: Marginal posterior distributions of the parameters of the AS-NewAdd-AS-U model by using SMC.
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