
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Beighton, Matthew, Bartlett, Harry, Simpson, Leonie, & Wong, Kenneth
(2023)
Key Recovery Attacks on Grain-like Keystream Generators with Key Injec-
tion.
In Simpson, Leonie & Rezazadeh Baee, Mir Ali (Eds.) Information Security
and Privacy: 28th Australasian Conference, ACISP 2023, Brisbane, QLD,
Australia, July 5-7, 2023, Proceedings.
Springer, Cham, Switzerland, pp. 89-108.

This file was downloaded from: https://eprints.qut.edu.au/239392/

c© 2023 The Author(s), under exclusive license to Springer Nature
Switzerland AG

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial 4.0

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/978-3-031-35486-1_5

https://eprints.qut.edu.au/view/person/Beighton,_Matthew.html
https://eprints.qut.edu.au/view/person/Bartlett,_Harry.html
https://eprints.qut.edu.au/view/person/Simpson,_Leonie.html
https://eprints.qut.edu.au/view/person/Wong,_Kenneth.html
https://eprints.qut.edu.au/239392/
https://doi.org/10.1007/978-3-031-35486-1_5

Key Recovery Attacks on Grain-like Keystream
Generators with Key Injection

Matthew Beighton1[0000−0002−7772−757X], Harry
Bartlett*1[0000−0003−4347−0144], Leonie Simpson1[0000−0001−8434−9741], and

Kenneth Koon-Ho Wong1[0000−0003−1732−6149]

Queensland University of Technology: Brisbane, Queensland, AU
matthew.beighton@hdr.qut.edu.au, *h.bartlett@qut.edu.au, lr.simpson@qut.edu.au,

k45.wong@connect.qut.edu.au

Abstract. A common structure in stream ciphers makes use of linear
and nonlinear shift registers with a nonlinear output function drawing
from both registers. We refer to these as Grain-like keystream generators.
A recent development in lightweight ciphers is a modification of this
structure to include a non-volatile key register, which allows key bits
to be fed into the state update of the nonlinear register. Sprout and
Plantlet are examples of this modified structure. The authors of these
ciphers argue that including these key bits in the internal state update
provides increased security, enabling the use of reduced register sizes
below the commonly accepted rule of thumb that the state size should
be at least twice the key size.

In this paper, we analyse Plantlet and show that the security of this
design depends entirely on the choice of the output function. Specifically,
the contribution from the nonlinear register to the output function determines
whether a key recovery attack is possible. We make a minor modification
to Plantlet’s output function which allows the contents of the linear
register to be recovered using an algebraic attack during keystream generation.
This information then allows partial recovery of the contents of the
nonlinear register, after which the key bits and the remaining register
contents can be obtained using a guess and check approach, with a
complexity significantly lower than exhaustive key search.

Note that our attack is not successful on the existing version of Plantlet,
though it only requires minor modifications to the filter function in order
for the attack to succeed. However, our results clearly demonstrate that
including the key in the state update during keystream generation does
not increase the security of Plantlet. In fact, this feature was exploited
to recover the key during keystream generation without the need to
consider the initialisation process. This paper provides design guidelines
for choosing both suitable output functions and the register stages used
for inputs to these functions in order to resist the attacks we applied.

Keywords: Key recovery · algebraic attack · key injection · Plantlet ·

Grain-like structures · lightweight ciphers

2 Authors Suppressed Due to Excessive Length

1 Introduction

Symmetric stream ciphers are used to provide confidentiality for a range
of real-time applications. The most common type of stream cipher is
the binary additive stream cipher, where encryption and decryption are
performed by XORing a binary keystream with the plaintext or ciphertext
bitstream, respectively. The reciprocal nature of the XOR operation provides
high speed encryption and decryption processes. However, the security
provided depends on the properties of the keystream. The security of the
keystream generator is therefore crucial.

The importance of secure encryption is highlighted by the recent NIST
competition for AEAD algorithms suitable for lightweight applications.
These algorithms are intended for use in applications such as the ubiquitous
Internet of Things (IoT) and require high security levels with reduced
computational load and/or component size.

Many keystream generators are based on shift registers with either
a linear or nonlinear feedback function, denoted as linear feedback shift
registers (LFSRs) and nonlinear feedback shift registers (NFSRs), respectively.
However, previous work [3, 6, 7] has shown that shift register based ciphers
are vulnerable to algebraic attacks. In response, some contemporary keystream
generators use a combination of a NFSR and a LFSR, together with
a nonlinear filter function taking inputs from both registers. We refer
to these generators as “Grain-like structures”, as the well known Grain
family of stream ciphers [13–17] is designed in this way. The combination
of LFSRs and NFSRs in these structures was intended to prevent such
algebraic attacks; however, Berbain et al [4] and Beighton et al [2] have
demonstrated viable attacks against Grain-like structures with particular
forms of output function.

A further development, aimed at providing encryption for lightweight
devices, is to include a non-volatile key register in the cipher state. The
key bits stored in this register are then injected into the feedback of the
shift registers during operation. The ciphers Sprout [1] and Plantlet [22]
both use this technique. This introduction of key injection into Grain-like
ciphers was intended to increase the security of these ciphers, so that
lightweight ciphers with smaller registers could still provide acceptable
security levels. In particular, the internal state size in these ciphers is less
than twice the key size, contradictory to the rule of thumb from Hong
and Sarkar [18] in relation to generic time-memory trade-off attacks.

The authors of Sprout [1] invited further investigation of these designs
featuring key injection. In this paper, we therefore investigate the security

Title Suppressed Due to Excessive Length 3

provided by Grain-like keystream generators with key injection. Specifically,
we explore an algebraic key recovery attack on Plantlet and find that
it can be successfully performed with only a minor modification to the
output function and with the key injection feature left intact. Our attack
is based on the algebraic attack applied to Grain-like structures by Beighton
et al [2]; it is applied during keystream generation, so no knowledge of
the initialisation function is required.

This paper is organised as follows: Section 2 provides background
information on shift register based designs. Section 3 discusses current
algebraic attack techniques. Section 4 presents our algebraic attack technique
for application to Grain-like structures with key injection. We then apply
our attack technique to modified Plantlet in Section 5. Experimental
simulations for proof of concept are reported in Section 6 and discussed
in Section 7. Conclusions are drawn in Section 8.

2 Preliminaries and Notation

2.1 Feedback Shift Registers

A binary feedback shift register (FSR) of length n is a set of n storage
devices called stages (r0, r1, ..., rn−1), each containing one bit, together
with a Boolean update function g. The state at any time t is defined
to be St, where St = st, st+1, ..., st+(n−1), and the sequence of state bits
that passes through the register over time is denoted S; that is S =
s0, s1, .., sn−1, sn,

The shift registers used in the types of keystream generators we discuss
in this paper are regularly clocked Fibonacci style, as shown in Figure 1.
Thus, the state update function takes the form:

rt+1
i =

{
rti+1 i = 0, 1, . . . , n− 2

g(r0, r1, .., rn−1) i = n− 1

If g is linear, the register is said to be a linear feedback shift register
(LFSR) and if g is nonlinear, the register is said to be a nonlinear feedback
shift register (NFSR).

A binary sequence can be generated from a FSR by applying a Boolean
function f to the state St, as shown in Figure 1. Here, the output y =
f(St) can be a function of the contents of one or more register stages.

2.2 Filter Generators

Keystream generators where f is a function of the contents of multiple
stages are called filter generators. If f and g are both linear, the filter

4 Authors Suppressed Due to Excessive Length

rn−1r2

. . .

r1r0

g(r0, r1, r2, .., rn−1)

f(r0, r1, r2, .., rn−1)

y

Fig. 1. An n-stage FSR with update function g and filter function f .

generator is equivalent to another LFSR, which provides very little security
to the plaintext [20]. For this reason, LFSRs were traditionally filtered
using a nonlinear Boolean function [19].

A keystream generator consisting of a LFSR and a nonlinear filter
function f is known as a nonlinear filter generator (NLFG) [24]. These
designs have been extensively analysed and are susceptible to numerous
attacks, including correlation attacks [24, 10, 21, 12], algebraic attacks [7,
9, 6] and distinguishing attacks [8]. The underlying LFSR provides only
desirable statistical properties for the binary sequence, while the resistance
of the NLFG to cryptanalysis is determined by the properties of the
nonlinear filter function. As a single nonlinear Boolean function cannot
display high levels of all the desirable cryptographic properties [23], choosing
a filter function that resists one form of attack may leave the keystream
generator vulnerable to other attacks.

In response to the cryptanalysis of NLFGs, designs using NFSRs were
proposed. A linearly filtered nonlinear feedback shift register (LF-NFSR)
[11] has a nonlinear update function g and a linear filter function f , and
is the dual construction of the NLFG. Berbain et al. [3] showed that
LF-NFSRs are also susceptible to algebraic attacks, resulting in initial
state (and possibly secret key) recovery. From Berbain’s results, it is clear
that the properties of the filter function used in a LF-NFSR are critical
in providing resistance to a traditional algebraic attack.

2.3 Composite combiners and ‘Grain-like’ structures

Effective algebraic attacks have been proposed on both NLFG and LF-NFSR
keystream generators. A more complex design incorporates both a LFSR
and a NFSR, together with a nonlinear filter function taking inputs from

Title Suppressed Due to Excessive Length 5

both registers, as shown in Figure 2. Keystream generators using this
structure include Grain [15] and subsequent variants of Grain [13, 14, 16,
17]. We denote this general design as a “Grain-like” structure. Here we
consider the lengths of the NFSR and LFSR to be the same (n). However,
the approach outlined also applies in the case where register lengths differ.

Fig. 2. Grain-like structure.

We denote the states of the NFSR and the LFSR at any time t as Bt

and St. The sequences of state bits that pass through the registers over
time are denoted B and S; that is B = b0, b1, .., bn−1, bn, ... and S =
s0, s1, .., sn−1, sn, In the case of Grain-like structures, we denote the
nonlinear update function as g, the linear update function as ℓ and the
filter function as f . For a Grain-like structure, the LFSR is autonomous
when producing output as all of the inputs to ℓ are from the LFSR. The
NFSR is not autonomous, as the nonlinear update function g contains
one input from the LFSR.

The filter function f can be considered as the XOR sum (here denoted
’+’) of several different types of monomials. That is, we consider sub-functions
of f . We define the following sub-functions, each as a sum of the terms
indicated:

– LB - monomials with linear inputs from NFSR.

– LS - monomials with linear inputs from LFSR.

– fS - nonlinear monomials with inputs from LFSR only.

– fB - nonlinear monomials with inputs from NFSR only.

– fBS - nonlinear monomials with inputs from both NFSR and LFSR.

Thus, any filter function f in a Grain-like structure can be expressed as
follows:

f(B,S) = LB + LS + fB + fS + fBS . (1)

6 Authors Suppressed Due to Excessive Length

2.4 Grain-like structures using key injection

Newer contemporary designs have been proposed which use the general
Grain-like structure, but also incorporate the secret key in the state
update of the keystream generator, as in Figure 3. Keystream generators
such as those used in Sprout [1] and Plantlet [22] have this design. We
denote this general design as a “Grain-like structure with key injection”
and use the same notation as for a general Grain-like structure.

Fig. 3. Grain-like structure with key injection.

3 Current Algebraic Attacks

Algebraic attacks were first introduced by Courtois and Meier [7] on
ciphers with linear feedback. The goal of an algebraic attack is to create
a system of low degree equations that relates the initial state bits of the
cipher to some observed output bits and then to solve these equations to
recover the internal state values. For a binary additive stream cipher, the
output may be obtained using a known-plaintext attack.

These attacks are performed in two phases: pre-computation and
online. The pre-computation phase builds a system of equations relating
initial state bits and output bits. In the online phase, given an observed
output sequence {yt}∞t=0, the appropriate substitutions are performed, the
system is solved and the initial state recovered.

3.1 Algebraic attacks on NLFGs [7]

Each output bit of a NFSR satisfies the equation

yt = f(St) = f(st, . . . , st+n−1) (2)

Title Suppressed Due to Excessive Length 7

The linear update function g of the LFSR can then be used to replace
state bits st+n−1 with the corresponding linear combination of initial state
bits, keeping the equation system of a constant degree (deg(f)) while
maintaining the number of unknown variables in the system.

In many cases, each equation in the system may be multiplied through
by a low degree multivariate function h (of degree e) to reduce the overall
degree of the system of equations [7]. If fh = 0, then h is defined as an
annihilator of f . Each equation in the resulting system has the form

f(St)h(St) = yth(St).

The degree of this system will be equal to deg(fh) = d, where d < deg(f),
with n independent variables, where n is the length of the underlying
LFSR. For a more detailed explanation, the reader is referred to Courtois
and Meier’s paper [7]. Appendix A.1 provides an algorithm for this attack
and also discusses data requirements and computational complexity.

3.2 Fast algebraic attacks on NLFGs [6]

Fast algebraic attacks [6] significantly reduce the complexity of the online
phase by reducing the overall degree of the system of equations below
the degree of fh. This increases the complexity of the precomputation
phase; however, precomputation only needs to be performed once for a
particular cipher and the equation system may then be reused in multiple
online phases to recover the states of the cipher corresponding to multiple
different keystreams.

These attacks use a concept Courtois [6] described as “double-decker
equations”. These equations allow an attacker to equate an expression in
terms of initial state bits only to an expression in terms of initial state bits
and observed output bits. The technique targets monomials in initial state
bits only of degree from e = deg(h) to d = deg(fh): given approximately(
n
d

)
equations, these monomials will occur in multiple equations and can

be replaced by suitable linear combinations of those equations. These
linear combinations define a new system in n unknowns, of degree e < d.
This new system can be solved by linearisation, with less computational
complexity than for traditional algebraic attacks.

For a detailed explanation, the reader is referred to Courtois’ paper
[6]. Appendix A.2 provides an algorithm for this attack and also discusses
data requirements and computational complexity.

8 Authors Suppressed Due to Excessive Length

3.3 Algebraic attacks on LF-NFSRs

Initially, LF-NFSRs were considered resistant to algebraic attacks, due to
the use of a nonlinear state update function. Using the nonlinear feedback
function to derive equations for the update bits in terms of initial state
bits causes the degree of the system of equations to increase over time.
However, Berbain et al. [3] showed that it is possible to keep the degree of
the system of equations constant. This allows an algebraic attack which
can recover the initial state of the underlying NFSR (and possibly the
secret key).

Berbain et al. [3] noted that the equation for the first output bit

y0 = ℓ(s0, ..., sn−1) =

n−1∑
k=0

aksk,

(with ak ∈ {0, 1}) implies that

sj =

j−1∑
k=0

aksk + y0.

where j is the highest index in the original summation for which aj = 1.

Repeating this process for all subsequent time steps allows us to
express every bit, sj+t for t ≥ 0, as a linear combination of output bits
and initial state bits. This produces a set of equations of the form:

sj+t =

j−1∑
k=0

ak+tsk+t + yt,

for t ≥ 0. Note that if the latter summations contain any term for which
an equation already exists, the term can be replaced by the corresponding
linear combination of initial state bits and output bits.

Appendix A.3 provides an algorithm for this attack and also discusses
data requirements and computational complexity.

3.4 Algebraic attacks on Grain-like structures

After successfully applying algebraic attacks to LF-NFSRs, Berbain et
al. [4] proposed an algebraic attack on Grain-like structures where the
output function f is the XOR combination of a LF-NFSR and a NLFG.
That is, adopting the notation from Section 2.3, f(B,S) = LB+LS +fS .

Title Suppressed Due to Excessive Length 9

In this case the output of the keystream generator can be expressed
as

y0 = LB + LS + fS =
n−1∑
k=0

akbk + LS + fS . (3)

As discussed in Section 3.3, an equation of the form taken by Equation 3
can be rearranged as follows:

bj =

j−1∑
k=0

akbk + LS + fS + y0.

Repeating this for t > 0 allows for NFSR state bits of index j or higher
to be represented as the XOR sum of:

– a linear combination of NFSR initial state bits
– a linear and nonlinear combination of LFSR initial state bits
– a linear combination of observed output bits.

A second system of equations can then be built using the nonlinear
update function to the NFSR, making substitutions from the system
generated by Equation 3 where applicable. This system will be of degree
at most deg(g)deg(fS). Combining the two systems results in a system
of equations of degree deg(g)deg(fS) in n+ j unknown initial state bits,
where n is the size of LFSR and j is the index of the highest indexed
term in LB. The success of this attack in recovering the LFSR and NFSR
initial states demonstrated that using the contents of stages in the NFSR
linearly in the output function is not sufficient to provide resistance to
algebraic attacks; the NFSR contents must also be filtered nonlinearly in
some way.

Beighton et al. [2] proposed an algebraic attack on Grain-like structures
where the output function f is of the form f = LS + fS + fBS . They note
that, by using the idea of annihilators presented by Courtois and Meier
[7], f may be multiplied by a low degree function containing only LFSR
bits that will eliminate fBS . This function, denoted ABS , is considered
as a “partial annihilator”, in as much as ABS only annihilates certain
monomials.

Multiplying f by ABS leaves an equation of the form

zABS = ABS(LS + fS),

which is an equation containing only LFSR initial state bits. Fast algebraic
attack techniques can then be applied to recover the LFSR initial state,
from which the NFSR initial state can be partially recovered.

10 Authors Suppressed Due to Excessive Length

4 Our divide and conquer attack on Grain-like structures
with key injection

As highlighted in Beighton et al’s paper [2], if the filter function of a
Grain-like structure does not feature a monomial that takes inputs only
from the NFSR and does not divide any other monomial, the structure is
vulnerable to a divide and conquer attack which first targets the LFSR
in an algebraic attack and then determines the NFSR contents.

This idea extends to the case where the secret key is used to update
the NFSR, as the LFSR still runs autonomously.

4.1 Generalised algebraic attack algorithm

We present here the generalised algebraic attack for Grain-like structures
with key injection. This attack uses a divide and conquer strategy. We first
target the LFSR and recover the LFSR initial state. The NFSR is then
targeted, with partial NFSR intitial state recovery possible. From this
point, we can simultaneously determine the key bits and the remaining
NFSR bits.

Recovering the LFSR Consider a keystream generator that produces
an output bit at each time step by:

z = LS + fS + fBS . (4)

That is, NFSR state bits are only used nonlinearly and only in fBS . Every
monomial in fBS will contain both NFSR bits and LFSR bits. Thus, using
the idea of annihilators presented by Courtois and Meier [7], we may
multiply Equation 4 by a low degree function containing only LFSR bits
that will eliminate fBS . We denote this function as ABS , and consider it
to be a “partial annihilator” in as much as ABS only annihilates certain
monomials. Note that the degree of the NFSR bits in fBS does not affect
the ability to annihilate the monomials containing bits from the NFSR.

Therefore Equation 4 can be rewritten as

zABS = ABS(LS + fS), (5)

which is an equation containing only LFSR initial state bits. The degree of
the system of equations built using Equation 5 will be at most deg(ABS)+
deg(fS). Note, however, that the right hand side of Equation 5 contains
only initial state bits from the LFSR. This means that fast algebraic

Title Suppressed Due to Excessive Length 11

attack methods can be performed in the precomputation phase of the
attack to reduce the degree of unknown variables in the system from
deg(ABS) + deg(fS) to deg(ABS).

There are several other cases where the attack works. For convenience
we use only the simplest example here to illustrate the first phase of the
attack and refer the reader to Beighton et al’s paper [2] for a detailed
discussion of the other cases.

The structure of a system of equations built in this way allows for the
fast algebraic attack techniques highlighted in Section 3.2 to be applied.
That is, given access to approximately

(
n
d

)
bits of output (where n is the

size of the LFSR and d is the algebraic degree of the system relating LFSR
initial state bits to observable output bits), a precomputation phase can
be performed that allows a new system of equations to be built of degree
e < d, where e is the degree of ABS . This precomputation phase has a
complexity of O(

(
n
d

)
log

(
n
d

)
+n

(
n
d

)
). The initial state of the LFSR can then

be recovered in the online phase of the attack by observing approximately(
n
d

)
bits of output with complexity O(

(
n
d

)(
n
e

)
+

(
n
e

)ω
), where ω is the

Guassian elimination exponent ω ≈ 2.8.

Recovering the NFSR and the key Once the LFSR initial state is
recovered, every future LFSR state bit will be known, as the LFSR is
autonomous during keystream generation. The next stage is to recover
the NFSR initial state. In doing so, we will simultaneously recover the
key.

Since the key is used to update the state of the NFSR, recovering the
NFSR state at one point in time without knowing the key is not enough
to determine the NFSR state at other points in time. As a result, the key
must also be taken into account. To begin, however, we will consider the
idea of recovering the NFSR state by itself and then expand this approach
to recover both the NFSR state and the key.

Consider the example filter function used to produce the keystream
bit

z = x1 + x4x5 + x0x3 + x0x1x2 + x2x3x4x5, (6)

where x0, x1, x2, x3 are from the LFSR and x4, x5 are from the NFSR.
Since the LFSR is known, each output bit will have the form

z = αx4x5 + β,

where α and β may be 0 or 1, respectively.
Clearly, when α = 0 no information about the initial state of the

NFSR is leaked. We must therefore utilise the case where α = 1. If z =

12 Authors Suppressed Due to Excessive Length

x4x5 and z = 1, then we know x4 = x5 = 1. Likewise if z = x4x5 + 1
and z = 0, then we know x4 = x5 = 1. Once we have recovered these
state bits, we may then look to equations where z = x4x5 and z = 0,
but for which we know either x4 or x5 equals 1. We would then know
that the unknown state bit is equal to zero. Similarly for the case where
z = x4x5+1 and z = 1. Continuing in this way, we may be able to recover
n consecutive bits of the NFSR.

For certain filter functions it may not be possible to recover n consecutive
state bits. In this case, the partially recovered initial state reduces the
exhaustive search required to recover the correct initial state of the NFSR.
For instance, suppose m bits of the NFSR can be recovered. This leaves
2n−m possible candidates for the correct NFSR initial state which, for
m > 0, is better than exhaustively searching the entire register. Each
candidate can be used (together with the known LFSR initial state)
to produce output. The candidate which produces the correct output
sequence can be assumed to be the correct initial state.

As stated earlier, because the key is used to update the state of the
NFSR, recovering the state of the NFSR at a single point in time is not
sufficient to determine the state at any other point in time. However, as
we now show, the NFSR state recovery process discussed above may be
adapted to recover the NFSR state and the secret key simultaneously by
considering a longer sequence of NFSR bits. We consider the sequence of
bits that pass through the NFSR as the XOR of some NFSR feedback
bits and the key. We thus have,

bt+n = g(Bt) + kt mod |K|

= b′t+n + kt mod |K|.
(7)

Thus, given n + |K| consecutive NFSR state bits, the key can easily be
recovered.

The goal is therefore to recover n+ |K| consecutive bits of the NFSR,
or to recover as much as is possible and then exhaustively search the rest.
For instance, suppose m bits of the NFSR sequence can be recovered.
This leaves 2(n+|K|)−m possible candidates for the correct NFSR sequence
which, for m > n, is better than exhaustively searching the key. Each
candidate can be used (together with the known LFSR initial state)
to produce further NFSR states and thus output. The candidate which
produces the correct output sequence can be assumed to be the correct
sequence. From the sequence the key can quickly be recovered.

Title Suppressed Due to Excessive Length 13

5 Algebraic Attack on a Modified Version of Plantlet

We now mount an algebraic attack on adapted versions of the stream
cipher Plantlet with a modified filter function. We show that even with
the key bits used to update the NFSR state, the success of the attack is
determined only by the choice of filter function.

5.1 The Plantlet stream cipher

Plantlet is a contemporary stream cipher that uses a very small internal
state. The keystream generator for Plantlet consists of a LFSR and a
NFSR, together with a nonlinear Boolean function that takes inputs from
both registers.

Initialisation Plantlet takes as input a 80-bit secret key and 90-bit IV.
In initialisation, the NFSR and the LFSR are 40 bits and 60 bits in length.
The keystream generator is loaded by filling the NFSR with 40 IV bits.
The remaining 50 bits of the IV are loaded into the LFSR, which is then
padded with a constant.

At each time step the LFSR is updated using the linear update function
ℓ as follows

st+59 = ℓ(St) = zt + st + st+14 + st+20 + st+34 + st+43 + st+54. (8)

The NFSR is updated at each time step using the nonlinear update
function g as follows

bt+39 = g(Bt) = st + ztkt mod 80 + c4t + bt + bt+13 + bt+19 + bt+35 + bt+39

+ bt+2bt+25 + bt+3bt+5 + bt+7bt+8 + bt+14bt+21 + bt+16bt+18

+ bt+22bt+24 + bt+26bt+32 + bt+33bt+36bt+37bt+38

+ bt+10bt+11bt+12 + bt+27bt+30bt+31,

(9)

where c4t is the fourth least-significant-bit of the modulo 80 counter. This
counter is public so, for convenience, it is easier to combined the XOR of
the counter variable and the key variable into one variable as follows

k′t = kt mod 80 + c4t . (10)

Keystream is not produced in initialisation. Instead, the output of the
filter function is used to update the state. Output is produced using the

14 Authors Suppressed Due to Excessive Length

following filter function

zt = st+30 + bt+1 + bt+6 + bt+15 + bt+17 + bt+23 + bt+28 + bt+34 + bt+4st+6

+ st+8st+10 + st+32st+17 + st+19st+23 + bt+4st+32bt+38.

(11)

Keystream generation At the end of initialisation, the LFSR is increased
by one bit and the new stage is loaded with a one. Thus, in keystream
generation Plantlet consists of a 40-bit NFSR and a 61-bit LFSR. This
adjustment to the LFSR is made in order to avoid the possibility of the
LFSR being initialised to the all zero state.

The update functions used to update the state of the LFSR and
the NFSR during keystream generation are identical to those used in
initialisation; however, the output function is now used to generate keystream
and so it is not used to update the state.

5.2 Modified version of Plantlet

We introduce a modified version of the Plantlet stream cipher, where
we replace any independent linear term taken from the NFSR by the
corresponding term in the LFSR. That is, the filter function f(B,S)
remains the same, except that monomials appearing only in LB are replaced
by monomials in LS with the same indices. Note that we denote the
modified version of Plantlet by appending the suffix −m.
Table 1 highlights the differences between the original and modified versions.

Table 1. Modifications to linear combinations in Plantlet.

Original linear combination Modified linear combination

bt+1 + bt+6 + bt+15 + bt+17 + bt+23 + bt+28 + bt+34 st+1 + st+6 + st+15 + st+17 + st+23 + st+28 + st+34

5.3 Stage 1: LFSR recovery

In this section we apply the algorithm from Section 4. The theoretical data
and computational complexity requirements to recover the LFSR initial
state is summarised in Table 2. In Section 6, we provide experimental
results for the modified version of Plantlet.

At time t = 0 an output bit in Plantlet-m is produced as follows:

z0 =s1 + s6 + s15 + s17 + s23 + s28 + s34 + b4s6 + s8s10 + s32s17 + s19s23 + b4s32b38

Title Suppressed Due to Excessive Length 15

Multiplying this equation by (s6 + 1)(s32 + 1) gives

(s6 + 1)(s32 + 1)z0 = s1s6s32 + s1s6 + s1s32 + s1 + s6s15s32 + s6s15 + s6s17s32

+ s6s17 + s6s23s32s19 + s6s23s32 + s6s23s19 + s6s23

+ s6s28s32 + s6s28 + s6s34s32 + s6s34 + s6s8s10s32

+ s6s8s10 + s15s32 + s15 + s17s32 + s17 + s23s32s19

+ s23s32 + s23s19 + s23 + s28s32 + s28 + s34s32

+ s34 + s8s10s32 + s8s10
(12)

where the right hand side of the equation contains only LFSR initial state
bits and is of degree 4. Thus, by observing at least

(
61
4

)
keystream bits,

fast algebraic techniques may be applied in the precomputation phase of
the attack to reduce the overall degree of the system to the degree of the
left hand side (which is of degree 2 in the unknown LFSR initial state
bits) [6].

Table 2. Resource requirements for recovering the LFSR of modified Plantlet.

Precomputation phase

Degree before fast algebraic techniques 4

Complexity O(223)

Degree after fast algebraic techniques 2

Online phase

Data 219

Complexity O(232)

5.4 Stage 2: NFSR recovery and key recovery

Once the LFSR initial state is recovered, the output function will contain
only unknown state bits from the NFSR. As described in Section 4.1,
to be able to predict the NFSR state sequence we must know at least
|NFSR| + |K| consecutive bits of the NFSR sequence. For Plantlet, at
least 40 + 80 = 120 consecutive bits of NFSR sequence is required to
predict the NFSR sequence. Note that if 120 bits of NFSR sequence is
known, the key can easily be calculated. Thus, the goal is to recover 120
bits of consecutive NFSR bits.

The data requirement for this stage will utilise the data collected for
LFSR state recovery. The computational complexity to partially recover

16 Authors Suppressed Due to Excessive Length

the NFSR sequence is considered to be negligible [4]. The number of NFSR
sequence bits recovered over a 120-bit period through application of this
method is hard to estimate and will vary depending on the particular
key and IV used. However, some guidance based on experimental results
is provided in Section 6.2. Due to the low computational complexity of
partial NFSR sequence recovery we provide experimental results for this
in the next section.

At time t = 0 an output bit in Plantlet-m is produced by :

z0 = st+1 + st+6 + st+15 + st+17 + st+23 + st+28 + st+34 + bt+4st+6

+ st+8st+10 + st+32st+17 + st+19st+23 + bt+4st+32bt+38

This function is linear in the NFSR bit b4 and nonlinear in the NFSR
bits b4 and b38. At each time step we have:

zt = αb4+t + βb4b38 + ω,

where α, β and ω can be 0 or 1, respectively.
When α = 0, β = 1, and ω + z = 1, two NFSR sequence bit will

be recovered. When α = 1 and β = 0, an NFSR initial state bit will be
recovered. Finally, when α = 1, β = 1, and ω+z = 1, two NFSR sequence
bits will be recovered.

This can be used for simple partial state recovery of the NFSR.
The remaining stages of the 120 NFSR sequence can then be found
through exhaustive search. An estimate of the average exhaustive search
requirement for modified Plantlet is provided in Table 3 of Section 6.2.

6 Experimental simulations

We have performed computer simulations of our divide and conquer attack,
applying it to our modified version of Plantlet, to demonstrate proof of
concept. The details of the simulation setup and results are provided in
the following sections. We also provide experimental results in Section
6.2 for the partial NFSR sequence recovery of Plantlet; this is possible
because of the low time complexity required to partially recover. The
details for the structure of modified Plantlet are provided in Section 5.

6.1 Experimental approach

For each simulation, a random key together with random NFSR and
LFSR states were produced. Output from modified Plantlet was then

Title Suppressed Due to Excessive Length 17

produced. The attack from Section 4 was then applied. The remaining
NFSR sequence bits were then exhaustively searched. Each sequence
candidate was used to produce output, which was checked against the
correct output sequence. A candidate that produced the correct output
was considered the correct state sequence state. Using this sequence, the
key was recovered. The computed key, NFSR and LFSR was then checked
against the correct key, NFSR and LFSR.

The code used for the simulations was written using the SageMath
software package [25] and all calculations were performed using QUT’s
High Performance Computing facility. We used a single node from the
cluster with an Intel Xeon core capable of 271 TeraFlops.

6.2 Results on modified Plantlet

In precomputation, the initial system of equations was built, the linear
dependency was found and the reduced system of equations was built.
For modified Plantlet, approximately 220 bits of output were used. The
majority of the computational complexity required for the precomputation
comes from applying the linear dependency to produce the reduced system
of equations. On average, precomputation was completed in 10 hours.

A total of 10 simulations were performed. In every simulation the full
LFSR initial state was recovered. Each simulation for the modified version
required on average 30 seconds to recover the LFSR initial state.

For each trial, partially recovering the required 120-bit NFSR sequence
took approximately 2.5 hours. Table 3 provides a tally (across the 10
simulations) of how many times a certain number of state bits were
recovered from the NFSR sequence. For each simulation, the full available
keystream was used. That is, the NFSR sequence was partially recovered
using 219 bits of keystream. We see from Table 3 that on average, 67 bits
were recovered for the NFSR sequence.

The remaining 53 bits required to complete the 120-bit NFSR sequence
could then be recovered by exhaustive search and used to produce output.
Recovery of these remaining NFSR bits would then allow the key to be
determined. This portion of the simulation was not performed due to
limited resources.

7 Discussion

Our experimental simulations support the theoretical model for our key
recovery attack on modified Plantlet. The pre-computation stage of the

18 Authors Suppressed Due to Excessive Length

Table 3. Distribution table for NFSR sequence bits recovered over 120-bit windows
using 100 simulations for modified Plantlet.

No. bits
recovered

0 . . . 64 65 66 67 68 69 . . . 120

Frequency 0 . . . 0 1 4 2 2 1 . . . 0

algebraic attack is essential for recovery of the LFSR state and is the
most time-consuming part of the process, but only needs to be done
once. This took ten hours in our trial. In the online phase, a divide and
conquer approach targeting the LFSR achieved complete recovery of the
LFSR state in approximately 30 seconds with 100% success. Following
this, we used a 120-bit sliding window on the NFSR state and partially
recovered this window; on average we recovered 67 of these 120 bits.
Guessing the remaining 53 bits and checking for consistency with observed
keystream then allowed us to recover the key bits. The complexity of this
guess and determine stage dominates the attack complexity but is clearly
significantly less complex than exhaustive key search.

The use of key injection in the design made it possible to perform this
key recovery attack without requiring any consideration of the initialisation
process. That is, the initialisation is irrelevant to the security provision
against these algebraic attacks. In fact, security against these attacks
depends solely on the combination of the selected output function and the
positions of its input bits within the two registers. This answers the open
question from [1] of whether key injection provides increased security to
enable reduced register sizes for lightweight stream cipher designs. While
this approach may help avoid time-memory trade-off attacks, the generic
structure is not robust: other attacks are possible, as we have shown.

Based on the nature of our successful attack on modified Plantlet, the
following design guideline is seen to be important to the security of any
keystream generator which uses a Grain-like structure with key injection:

• The output function for any such cipher should contain multiple bits
taken linearly from the NFSR, with none of these bits involved in
nonlinear terms of the output function that also contain bits from the
LFSR.

Note that this is precisely the feature which protects the existing version
of Plantlet from our attack. This guideline may need to be expanded if
other types of attack on this structure are also found to be successful.

The output function of Sprout is identical to that of Plantlet, so the
published version of Sprout is also protected against our attack. However,

Title Suppressed Due to Excessive Length 19

a similar modification of this output function would again allow our attack
to recover the initial contents of Sprout’s LFSR. But recovering the NFSR
initial state and the key is more complex for Sprout, since the key bits of
Sprout are fed into the NFSR conditionally. A quick estimate based on
our experimental results for Plantlet suggests that the exhaustive search
cost after partial NFSR recovery in this case would exceed the cost of
exhaustively searching the key bits, making this attack unviable.

8 Conclusion

In this paper, we have considered the security of keystream generators
using a Grain-like structure with key injection. From the above discussion,
it is clear that the security of keystream generators using this design
depends critically on the choice of the output function during keystream
generation. Designers who employ this design approach should pay careful
attention to the combination of the function used and the location of the
input taps which feed it.

Ciphers of this type were designed specifically to avoid time-memory
trade-off attacks, but they are not necessarily secure against other emerging
attacks, such as the algebraic attack we have demonstrated here. In itself,
this structure cannot be considered to provide a robust generic design for
lightweight keystream generators. Indeed, the designer of a new cipher
must be cautious about security implications when adding components
to existing structures and should evaluate the modified design against all
possible types of attacks.

A Appendix: Algorithms

A.1 Algorithm for NLFG algebraic attack

Precomputation phase:

Step 1 Use f(S0) = y0 to relate initial state bits (s0, s1, . . . , sn−1) to
observed output bit y0.

Step 2 Multiply f by a function h (if applicable) to reduce overall degree
to d.

Step 3 Clock forward using f(St) = yt to build a system of equations of
constant algebraic degree, applying the linear update as required.

20 Authors Suppressed Due to Excessive Length

Online phase:

Step 4 Substitute observed output bits {yt}∞t=0 into the system of equations.

Step 5 Solve the system of equations by linearisation, to recover S0 =
s0, s1, . . . , sn−1.

In the online phase of this attack, the initial state of the LFSR can be
recovered if approximately

(
n
d

)
bits of output are known. The attack has

a computational complexity of O(n
(
n
d

)
+

(
n
d

)ω
), where d is the degree of

the system and ω is the Guassian elimination exponent ω ≈ 2.8 [7]. If
the output requirement cannot be met, it may be possible to solve the
system by applying other methods for solving simultaneous equations,
such as Gröbner bases or the XL algorithm [5].

A.2 Algorithm for Fast algebraic attack

The precomputation phase is similar to a regular algebraic attack, with
Step 3 replaced by three steps (3a, 3b and 3c) as follows.

Step 3a Identify the combination of equations that will eliminate monomials
of degree e to d in the initial state bits.

Step 3b Use this linear dependency to build a new general equation.

Step 3c Use this general equation to build a system of equations of degree
e in the initial state bits.

The online phase is identical to the online phase of a regular algebraic
attack (but with reduced complexity).

When the Berlekamp-Massey algorithm is used to find the linear dependency,
the pre-computation phase of the attack has a computational complexity
of O(

(
n
d

)
log(

(
n
d

)
)) [6]. The initial state of the LFSR can be recovered in

the online phase of the attack by observing approximately
(
n
d

)
bits of

output with a computational complexity of O(
(
n
d

)(
n
e

)
+
(
n
e

)ω
), where d is

the degree of fh, e is the degree of h and ω ≈ 2.8 [6].

Note that at first glance the online complexities for an algebraic
attack and a fast algebraic attack look similar. However, when n is much
larger than d, as is the case with registers used in practice,

(
n
d

)ω
is much

larger than
(
n
d

)(
n
e

)
and

(
n
e

)ω
. Thus, by reducing the degree from d to e,

the complexity of the online phase is drastically reduced for registers of
practical size.

Title Suppressed Due to Excessive Length 21

A.3 Algorithm for LF-NFSR algebraic attack

Precomputation phase:

Step 1 A system of equations is developed using the linear filter function
to represent every state bit as a linear combination of a subset of
the initial state bits and some output bits. We denote this system of
equation by system L.

Step 2 A second system of equations is developed using the nonlinear
update function g to represent update bits as a nonlinear combination
of a subset of initial state bits. We denote this system by system G.
Substitutions are made for state bits in system G using system L
where applicable to reduce the number of unknown state variables
while keeping the degree of system G constant.

Step 3 The two systems are combined by aligning the equations from
each system that represent the same state bit. The resulting system
contains only initial state bits and observed output bits. We denote
this system as system L+ G.

Online phase:

Step 4 Substitute observed output bits {yt}∞t=0 into the system of equations
Step 5 Solve the system of equations by linearisation.

For certain update functions a reduction function of g, say h, may be
used to reduce the overall degree of the system. If the degree of gh is d,
then the overall system will be of degree at most d. The initial state of the
LF-NFSR can be recovered in the online phase of the attack by observing
approximately

(
n
d

)
bits of output with a computational complexity of

O(n
(
n
d

)
+
(
n
d

)ω
), where d is the degree of the system and ω ≈ 2.8 [3]. Note

that fast algebraic techniques are not applicable to LF-NFSRs.

References

1. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: International Workshop on Fast Software Encryption. pp. 451–470.
Springer (2015)

2. Beighton, M., Bartlett, H., Simpson, L., Wong, K.K.H.: Algebraic attacks on
Grain-like keystream generators. In: International Conference of Information
Security and Cryptography – ICISC 2021. pp. 241–270. Springer, Cham (2022)

3. Berbain, C., Gilbert, H., Joux, A.: Algebraic and correlation attacks against
linearly filtered non linear feedback shift registers. In: International Workshop on
Selected Areas in Cryptography. pp. 184–198. Springer (2008)

4. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of Grain. In: International
Workshop on Fast Software Encryption. pp. 15–29. Springer (2006)

22 Authors Suppressed Due to Excessive Length

5. Courtois, N.T.: Higher order correlation attacks, XL algorithm and cryptanalysis of
Toyocrypt. In: International Conference on Information Security and Cryptology.
pp. 182–199. Springer (2002)

6. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Annual International Cryptology Conference. pp. 176–194. Springer (2003)

7. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear
feedback. In: International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 345–359. Springer (2003)

8. Englund, H., Johansson, T.: A new simple technique to attack filter generators and
related ciphers. In: International Workshop on Selected Areas in Cryptography. pp.
39–53. Springer (2004)

9. Faugere, J.C., Ars, G.: An algebraic cryptanalysis of nonlinear filter generators
using Gröbner bases. Report, INRIA (2003)

10. Forré, R.: A fast correlation attack on nonlinearly feedforward filtered shift-register
sequences. In: Workshop on the Theory and Application of of Cryptographic
Techniques. pp. 586–595. Springer (1989)

11. Gammel, B.M., Göttfert, R.: Linear filtering of nonlinear shift-register sequences.
In: International Workshop on Coding and Cryptography. pp. 354–370. Springer
(2005)

12. Golić, J.D., Salmasizadeh, M., Simpson, L., Dawson, E.: Fast correlation attacks
on nonlinear filter generators. Information Processing Letters 64(1), 37–42 (1997)

13. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream
ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Deisgns. vol. 4986,
pp. 179–190. LNCS (2006)

14. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal:
Grain-128. In: 2006 IEEE International Symposium on Information Theory. pp.
1614–1618. IEEE (2006)

15. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained
environments. International Journal of Wireless and Mobile Computing 2(1), 86–93
(2005)

16. Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with
optional authentication. International Journal of Wireless and Mobile Computing
5, 48–59 (2011)

17. Hell, M., Johansson, T., Meier, W., Sönnerup, J., Yoshida, H.: Grain-128AEAD -
a lightweight AEAD stream cipher. NIST Lightweight Cryptography Competition
(2019), https://csrc.nist.gov/Projects/lightweight-cryptography/finalists

18. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy, B.
(ed.) Advances in Cryptology - ASIACRYPT 2005 (LNCS vol. 3788). pp. 353–372.
Springer Berlin Heidelberg” (2005)

19. Katz, J., Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied
Cryptography. CRC press (1996)

20. Massey, J.: Shift-register synthesis and BCH decoding. IEEE Transactions on
Information Theory 15(1), 122–127 (1969)

21. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers.
Journal of Cryptology 1(3), 159–176 (1989)

22. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Transactions on Symmetric Cryptology pp. 52–79 (2016)

23. Millan, W.: Analysis and Design of Boolean Functions for Cryptographic
Applications. PhD Thesis, Queensland University of Technology (1997)

Title Suppressed Due to Excessive Length 23

24. Siegenthaler, T.: Cryptanalysts representation of nonlinearly filtered
ML-sequences. In: Workshop on the Theory and Application of of Cryptographic
Techniques. pp. 103–110. Springer (1985)

25. Stein, W., Joyner, D.: Sage: System for algebra and geometry experimentation.
ACM Bulletin 39(2), 61–64 (2005)

