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Abstract 

 
Titanium metals are biocompatible and commonly utilised in the dentistry sector to create 

dental implants though are prone to deterioration, due to the increased risk of periimplant 

infection and the acidic nature of saliva, resulting in implant failure. Several approaches 

including multifunctional coating can be used to change the material, where two or more 

components are integrated simultaneously to modify the surface. In this research the surface of 

titanium (Ti) sheet was modified using cold atmospheric plasma (CAP), polydopamine 

(PDAM), and copper (Cu). Three distinct plasma gases, argon (Ar), nitrogen (N), and 

atmosphere (Atm), were used in the investigation, which was reduced down to atmosphere 

Atm. Atm-modified titanium samples showed increased surface modification, hydrophilicity, 

and changes in polydopamine particle size and distribution. It was possible to deduce the study 

from the results of Xray diffraction (XRD) and inductively coupled plasma optical emission 

spectrometry (ICP-OES) data that Ti treated with Atm plasma, PDAM, and Cu demonstrated 

reduced Ti surface degradation and increased cell survival. This study will have great 

significance in dentistry by decreasing the degradation of dental implants thereby increasing 

longevity. 
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Chapter 1 Introduction 
 

1.1 Background 
 

Titanium has excellent osseointegration properties and strong biocompatibility1-3 for 

orthopaedic and dental implants and with a  reasonable success rate, failures are still being 

reported.4 One contributing factor for dental implant failure is the degradation or corrosion of 

titanium,5 which in implants can result in mechanical and biological consequences.6 It is the 

confluence of the three factors of infections, rusting or corrosion, and mechanical forces that 

can cause peri-implantitis, the  damaging inflammatory condition occurring around the dental 

implants, leading to implant failure.7, 8 (Figure 1.1). The microenvironment in infectious 

implants may be further conducive to the wear of titanium surfaces.  

 

Figure 1.1 Progression of peri-implantitis.8 This work is licensed under a Creative 

Commons Attribution-Non-commercial-NoDerivatives 4.0 International (CC BY-NC-ND 

4.0) 

 Bacterial endotoxin and stimuli to inflammatory cells surrounding the implants results in 

dental implant diseases involving bone resorption, such as osseointegration failure and peri-

implantitis.9 When a foreign material enters or is introduced into the human body because of 

corrosion, the tissue around it responds in several ways, often undesired and cause persistent 

inflammation and, or hypersensitivity. On the titanium samples, gram-negative bacteria like 

Streptococcus sanguinis and Porphyromonas gingivalis can generate stable biofilms.10 

Bacterial corrosion by endotoxin lipopolysaccharide (LPS) triggers titanium ion release11, 12 

from these titanium plates, which was significantly greater on pure titanium under aerobic 

circumstances. Corrosion, in general, is the slow degradation of metals that occurs as a result 

of air, humidity, or a chemical reaction such as an acid on their surface.13 Corrosion processes 

cause alterations in the structure of the implanted material, reducing its integrity and resulting 
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in material discontinuities and the release of ions that destroy the protective titanium dioxide 

(TiO2) layer.14 

Titanium and titanium alloys are very reactive, and when exposed to air or liquid fluid media, 

immediately form a coating of TiO2.
15, 16 This layer of oxide establishes a barrier between the 

biological medium and the metal structure. An improvement in properties of titanium may also 

be noticed in the case of thick oxide coatings.14 The top sublayer of the titanium oxide layer 

suppresses any metal ion release and promotes osseointegration and bone attachment. The 

titanium oxide layer dissolves as a result of ion diffusion into the layer from the saliva, 

extracellular body fluid and blood. Protein and amino acids also  accelerate the corrosion 

process.16 

Tribocorrosion and microbiologically induced corrosion (MIC) have been identified as the key 

degradation processes causing dental implant failure.17 Material deterioration occurring from 

the combination of wear and corrosion is called tribocorrosion18 whereas, MIC is degradation 

caused by the action of microorganisms.19 In the presence of metal particles and ions, pro-

inflammatory cytokines, inflammatory cell infiltration, and osteoclast activation are all 

promoted in peri-implant tissues. Degenerative alterations have also been observed in 

macrophages and neutrophils that phagocytose titanium microparticles, leading to an increased 

release of the tumour necrosis factor (TNF-α), a proinflammatory cytokine in human peri-

implant tissues (Figure 1.2).5, 20 Dental implant debris has the potential to be cytotoxic and 

genotoxic to the tissues around the implants which means the extent of the adverse effect on 

peri-implant tissues is determined by the number and physicochemical qualities of the 

degradation products. As a result of these effects it is critical to increase the service life of 

dental implants by minimising the tribocorrosion effects and MIC by developing new dental 

implant materials containing hybrid or composite metals and altering the surface of the 

implants.21 
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Figure 1.2 Corrosion process of dental implants. Permission to reuse received from Springer 

Nature Switzerland AG5. 

 

Since the surface of the titanium implants are initially effected by tribocorrosion and MIC the 

primary aim of this research was to modify the titanium surface to improve its property to resist 

degradation by these factors. Surface modification helps increase the osseointegration of 

titanium implants22, 23 and with a combination of diverse materials24 currently utilised as a 

multifunctional coating material, aids in improving titanium characteristics. However, these 

techniques have several challenges, including rapid release, toxic to cell, a short half-life, and 

low stability.24  

Many studies are underway to solve these issues by coating with controlled release qualities 

and a synergetic impact between the surface. Similarly, this project endeavours to modify the 

titanium surfaces with CAP, a non-thermal plasma technique followed by coating with PDAM 

and Cu. CAP therapy increases the hydrophilicity of dental implants while also removing 

contaminants,25 in an environmentally friendly way of material modification that has no 

negative side effects. CAP treatment is a beneficial procedure for priming surfaces for 

improved secondary modification, which can create carbonyl, hydroxyl, and other groups to 

improve surface adhesion.26 Since CAP helps reduce the initial contamination of the titanium 

surface the chance of MIC-induced degradation also decreases. The CAP treatment helps to 

improve the dispersion and stability of nanoparticles and helps to modify the particle size.27-30 
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PDAM is a nature-inspired biopolymer that increases the wettability of the titanium surface, 

helps in cell growth, and has corrosion resistance ability,31 and has a universal adhesion 

property.32 Along with these advantages, it does have some key limitations which should be 

considered. For example, the increased concentration results in toxicity, agglomeration, non-

uniform particle size and above all, PDAM is not mechanically stable although it is adhesive. 

Since CAP treatment helps in uniform dispersion of the biopolymers and enhancing their 

properties, it is postulated that CAP application can overcome these main drawbacks. 

A study to optimise the PDAM coating recommended that to produce a better surface 

modification using the PDAM layer, a second layer of Cu or silver (Ag) could be applied.33 

Incorporating certain metals, such as Cu or Ag, into the polymer structure may be beneficial 

for a variety of biological applications. To avoid nosocomial infections, materials that resist or 

impede bacterial adhesion, establishment, and multiplication must be developed. 

Polydopamine's flexible chemical characteristics facilitate the modification of titanium 

implants with both passive and active agents that inhibit the development of microbiological 

biofilms. Polydopamine films exhibit reductive properties, enabling direct metal film 

deposition when exposed to a noble metal salt solution and therefore serving as a foundation 

layer for Ag or Cu. Adding extra metals to the surface helps resist corrosion and abrasion with 

a lower coefficient of friction.34 It is feasible to produce a hybrid coating with antibacterial 

characteristics and corrosion protection by mixing PDA and copper coatings.  

The PDA coating can serve as a priming layer, enhancing the copper coating's adherence to the 

titanium substrate. The copper covering can therefore operate as a sacrificial anode, corroding 

before the titanium and thus shielding the titanium from corrosion. This simple and low-cost 

technique of surface modification may be applied to a wide range of instruments, including 

medical equipment. In this case, the antibacterial characteristic of the Cu aids in reducing the 

deterioration caused by MIC.33 

 

1.2 Purposes and Aims 
 

Protecting the TiO2 layer from the degradation process and maintaining the biocompatibility of 

the titanium implants will reduce the chance of implant failure and increase the longevity of 

titanium implants. The metallic implant corrosion can have three effects on the surrounding 

tissues:  1) electrical current can impact cell behaviour; 2) the corrosion process can modify 
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the chemical environment; and 3) metal ions can effect cellular metabolism. Reduction of 

corrosion by modifying the implant will help achieve optimal tissue healing. Therefore this 

research aims to develop a cost-effective approach to modify the titanium surfaces with a less 

corrosive effect for better osseointegration.35 

The aims of this research therefore are to: 

• characterise the titanium surface treated with different plasma treatment. 

• characterise plasma modified titanium coated with polydopamine and copper. 

• investigate the impact of modified titanium substrates on the cell viability. 

• investigate the degradation of the titanium substrates modified with plasma, 

polydopamine and copper. 

Chapter 2 Literature Review 
 

2.1 The notable accomplishments and failures in implant applications  
 

Studies have reported36-38 that microorganism covered implant surfaces corrode more quickly 

due to the acidic surroundings created by bacterial cellular metabolism and the by-products.21 

The MIC accelerates surface deterioration, resulting in many changes like staining, splitting, 

cracking, abrasion, and increases surface roughness. As a result of microbial deterioration, 

metallic ions or nanoparticles are released from the titanium surface, causing inflammation and 

bone resorption surrounding the peri-implant area.21 Ex vivo investigations have shown that 

the presence of degraded Ti particles in the peri-implant regions is highly linked to the failure 

of implants,39, 40 with microbial corrosion identified as a critical indicator of whether or not the 

implant will survive. 

Similarly, a study on the impact of LPS on the tribocorrosive behaviour of titanium 

demonstrated that LPS negatively effected the titanium surfaces and increased corrosion41 That 

study looked at two distinct titanium substrates, pure titanium, and titanium alloy (TiAlV), and 

found the presence of LPS increased the roughness of the worn surfaces of both titanium 

substrates. The clinical findings of this study suggested that patients with oral infections (e.g., 

with the presence of LPS) were more likely to have their dental implants deteriorate with 

increased bacterial biofilm development, which might have a negative influence on implant 

prognosis.42 In an another study, the pure titanium surface was coated with titanium nitride and 

silicon carbide, less corrosion was observed on the coated titanium discs compared to uncoated 
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ones, emphasising the fact that surface modification of titanium surfaces with other materials 

helps in corrosion prevention. However, this alteration was only effective against 

Porphyromonas gingivalis in vitro.10 

Research was carried out using silicon carbide (SiC) as the coating to evaluate the coating's 

stability to decrease corrosion and its influence on titanium durability under stimulated settings, 

using plasma-enhanced chemical vapour deposition to coat the titanium surface using SiC. The 

coated titanium implants were placed in a polymethyl methacrylate (PMMA) block to replicate 

clinical implant insertion and assessed the coating's integrity using energy dispersive 

spectroscopy. Even after the stimuli, the coating remained intact. Despite these promising 

findings more research is needed before SiC can be applied as a suitable covering for implant 

placement in the clinic.43,10 

Scientists have attempted to leverage the deterioration of implant coating in a better way for 

drug delivery using antibiotic-loaded polyhydroxyalkanoates (PHAs) coatings on titanium 

implants, and the Dip-coating process for surface modification33. Dip-coating is the process of 

immersing substrate material in conformal coating, then removing it and allowing it to drip 

dry.44 The use of coatings with varying medication concentrations per layer can result in more 

regulated and uniform drug release.  

 

2.2 Plasma and its application in material modifications 
 

Plasma, along with solid, liquid, and gas is commonly referred to as the “fourth state of 

matter”45-47 which occurs naturally and can also be artificially made. In nature 99% of matter 

is made of plasma48, 49 where for instance, energetic electromagnetic radiation from the sun and 

stars are made of plasma, and  artificially formed plasmas are plasma TV, fluorescent lighting, 

and plasma-assisted coating50, 51 Plasma, like gases, does not have a fixed shape or volume and 

is less dense than solid and liquid.52 Unlike gases, plasma can conduct electricity and respond 

to the magnetic field.52, 53 The neutral gas is ionized when heat or energy is added to it and this 

process of conversion of gas to plasma by ionization is called the breakdown process.54, 55 

During the ionization of gas, it starts to lose its electrons and become positively charged ions. 

The plasma breakdown depends on how strong the energy or electrical field is given between 

the two electrodes. Friedrich Paschen in 1889 established a law that indicates that the gas 

breakdown voltage (VB) relies on the product of the gas pressure (p) and the gap length (d) 
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between the electrodes (VB= f(pd)).55-57 Paschen created graphs for the different gases, called 

a Paschen curve (Figure 2.1). As pd grows, a minimum breakdown voltage is attained, which 

is typically in the region of 100-500 V for pd values of around 1 Pa m. This pd value indicates 

that under atmospheric pressure, the electrode gap at which the lowest breakdown voltage 

occurs is around 10 µm. The Paschen curve helps predict the very high breakdown voltage for 

the low pd values.58 

 

Figure 2.1 Paschen curves produced for helium, neon, argon, hydrogen, and nitrogen using the 

breakdown voltage equation.59 Reproduced with permission from creative commons. 

                         

The three main types of artificial plasma are cold  or non-thermal , hot  or thermal, and warm 

plasma.60 There are several types of cold plasma generating systems utilised in industries for 

diverse applications61 including corona discharges, microwave plasma, inductively coupled 

plasma, electron cyclotron resonance plasma, and dielectric barrier discharge plasma.62, 63 The 

most common are dielectric barrier discharge (DBD) and jet plasma63, 64,65 due to their 

straightforward design and adaptability to a wide range of targets and treatment requirements.65  

DBD plasma treatment is a modification technology known as ‘silent discharge’49 since the 

current limiting dielectric controls the gas ionisation rate. DBD plasma is excellent for 

producing enormous volumes of non-equilibrium air pressure diffuse plasma.66 DBDs cover at 

least one electrode with a dielectric substance such as glass or alumina.67 The electrodes are 

powered by high alternating current voltages in the kV range and frequencies in the kHz 

range.68  DBD plasmas have been applied in the creation of ozone, the alteration of material 

surfaces, flow control actuators, and other applications. The capacity of cold atmospheric 
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plasma to inactivate bacteria is been the focus of recent interest69, 70 to address modern society's 

multiple serious healthcare difficulties, such as multidrug-resistant infections and biofilms.71, 

72 Plasma can be applied in either direct or indirect exposures73 with "direct" exposure referring 

to the plasma directly touching the biological target; all plasma-produced chemicals that act on 

the cells/tissues directly.68 The "indirect" exposure refers to the plasma applied to activate a 

liquid medium before being applied to cells/tissues.68, 74  

Cold plasma is used in various fields such as  agriculture and packaging, and75 in the medical 

field, atmospheric plasma is widely used for purposes such as promoting wound healing68, 76, 

77, inducing haemostasis, and curing cancer76-78. Antibiotic-resistant bacteria, including 

Clostridium difficile and methicillin-resistant Staphylococcus aureus (MRSA), are common 

causes of nosocomial pathogens, which can be lethal in patients with impaired immune 

systems. Similarly, diabetic ulcers are chronic sores that may not heal quickly or at all and may 

be harmed by an increased risk of bacterial infection. Cold atmospheric plasma has been 

demonstrated to successfully restrain the growth of bacteria such as MRSA while also 

dramatically reducing the microbial load in infected chronic wounds and providing long-lasting 

antiseptic efficacy.68, 79 These favourable CAP wound healing benefits were demonstrated in 

randomised clinical trials to treat diabetic foot ulcers, where plasma therapy was able to 

minimise wound area and time required for wound healing.80-82 

Plasma may cause reactive nitrogen species (RNS) and oxygen species (ROS)63 in cells, both 

of which have major effects on cellular function, and many illnesses have been linked to 

elevated levels of oxidative stress.83 This oxidative stress is beneficial in treating cancer-

causing cells since the excessive release of ROS damages the cancer cells and can lead to 

subsequent cell death.  

CAP is used to modify many materials, allowing them to change their surface morphology, 

wettability and other properties. Plasma treatment helps modify the medical and dental 

implants which enhances the material properties. Surface modification can help improve the 

dental implant osseointegration allowing for better cell attachment to the implant surface,84 

resulting in a stable fixation.14 Titanium dental implants may be surface-modified using cold 

plasma.85 Titanium surfaces treated with plasma showed increased wettability, enhanced 

mesenchymal stem cells-to-osteoblast differentiation, decreased pro-inflammatory cytokine 

production and increased osteoblast activity.85 Increasing the hydrophilicity of an implant's 

surface can improve the interaction between the implant and the surrounding environment86-88. 

Plasma treatment also aids the adhesion of cells and proteins, which facilitates both soft and 
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hard tissue attachment to implant surfaces.89 Cell attachment is very important for the 

osseointegration and longevity of the dental implants. Despite having adequate mechanical and 

biocompatible qualities, titanium-based implants may fail to achieve adequate osseointegration 

due to their intrinsic surface bio-inertness and inadequate surface osteoconductivity.90 So many 

researchers have tried to modify the titanium by adding one or more organic or inorganic 

components (hybrid or composite) into titanium. Integrating CAP and materials with different 

properties has become a promising tool for many medical and dental applications91 including 

CAP treatment along with arginine–glycine–aspartic acid (RGD) peptide coating to enhance 

cell attachment and proliferation over Ti surfaces, and significantly enhancing cell adhesion 

and proliferation compared to the untreated ones.92 Similarly, cell adhesion and proliferation 

are all closely connected to biomaterial surface qualities including roughness and 

wettability.93,90. In contrast, extensive research claims that surface roughness results in 

increased deterioration of titanium surfaces94-97 since the TiO2 layer formed on the higher 

surface can be easily damaged.94  Plasma treatment is used for TiO2 deposition in many 

electrical devices and also as a photocatalytic agent.98, 99 However, there has been very limited 

research to investigate the impact of CAP on implant surface deterioration. 

 

CAP is also used to modify organic materials such as polysaccharides, proteins as well as 

polysaccharide/protein composite-based films, which help change the structure and properties 

of these materials.100 For example, CAP has been used to improve the adhesion property of 

polylactic acid to increase surface wettability, surface energy and surface roughness.101 

Similarly in another study, poly (L-lactide acid) (PLLA) and poly-4-methyl-1-pentene (PMP) 

were treated with CAP to increase surface wettability, alter the morphology, chemical structure 

of the surface and electrokinetic (zeta) potential of the materials, which in turn helped improve 

cell adhesion and proliferation.102 CAP treatment can also help reduce the agglomeration of 

nanoparticles and improve material properties. For instance, it has been demonstrated that an 

increased concentration of polydopamine particles resulted in the agglomeration of 

nanoparticles, thereby leading to decreased tensile strength and visible defect in the matrix and 

subsequent breakage,103 CAP helps convert these agglomerates into coatings that are less 

thick104-106 and helps achieve excellent cell adhesion.107 Research has shown that cold plasma 

may reduce agglomeration and uniformly disperse nanoparticles, as in an experiment for the 

deposition of silver nanoparticles on titanium nanotubes utilising the plasma approach. By the 

experiment they were determined to accomplish correctly distributed and non-agglomerative 

nanoparticle distribution on the surface of titanium nanotubes. The use of cold plasma 
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treatment assisted achieving the desired result of optimum dispersion and size of silver 

nanoparticles.106 

 

 

2.3 The application of polydopamine in dental implants 
 

Polydopamine, a mussel-inspired biopolymer with exceptional properties, is frequently 

employed in biomedical applications as a possible chemical for attachment or as a sticky layer 

of various biological and synthetic molecules.108, 109 Mussels have a high adhesive 

characteristic that enables them to endure severe shear stress caused by water movement. In 

the many mussel foot proteins secreted during the sticky growth of the mussel byssus adhesive 

plaque The presence of 3,4-dihydroxy-L-phenylalanine (DOPA) and lysine amino acids in 

these foot proteins raises the possibility that the combination of catechol (DOPA) and amine 

(lysine) groups is essential for robust interaction. Polydopamine (PDA) (Figure 2.2),109-111 

which contains both catechol and amine groups is used to modify various implant surfaces.  

 

 

Figure 2.2 Chemical structure of polydopamine formed from dopamine after 

polymerisation.110 Reproduced with permission from creative commons. 

 

PDAM coatings are widely used in many studies to increase the properties of dental implants 

making them capable of fighting off bacteria,112, 113 acting as drug carriers,114 resisting 

corrosion,115 promoting osseointegration,116, 117 and being ecofriendly.118 While PDAM has a 

number of key advantages, it must be utilised correctly particularly when increasing the 

concentrations and sizes of PDAM particles can cause cytotoxicity.119 The agglomerative 

character of PDAM effects the material characteristics such as weaken the antibacterial 
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effect.120 A recent study on the antibacterial and biological effect of PDAM-coated titanium 

substrate subjected with metal ions like Sr2+ Cu2+, Ag+, or Zn2+, demonstrated that while Cu 

and Ag showed a significant antibacterial effect by inhibiting the adhesion of Escherichia coli 

and Staphylococcus aureus strains, they decreased the cell function, as evidenced by 

suboptimal cell viability and differentiation.113 It would therefore be of value to know if the 

plasma treatment can improve the biological characteristics of a Cu-PDAM composite 

materials. 

2.4 The antimicrobial action of copper 
 

Cu is a well-known alloying element in metals and an essential trace element in the human 

body,121 where it is involved in glucose and lipid metabolism as well as the creation of several 

enzymes in vivo. The unique structure, large surface area, exceptional mechanical and thermal 

durability, and optimal optical, magnetic, and catalytic capabilities122 of these copper 

nanoparticles have contributed to their broad applications. These nanoparticles can be made at 

a reasonable cost, easily at room temperature, utilising environmentally friendly technologies 

with no or little synthetic ingredients. The applications of Cu nanoparticles are increasing 

substantially in numerous science and technology domains, including health, biotechnology, 

electronics, energy, and the environment. For example, Cu nanoparticles are widely used in the 

medical field to treat ailments such as diabetes, cancer, osteoporosis, and osteoarthritis.122 

Similarly, Cu nanoparticles have been used in the dentistry profession to improve the physical 

and chemical characteristics of numerous restorative dentistry such as dental amalgam, 

corrective cements, obturation materials, dental implants, as well as orthodontic arch wires and 

brackets.123 Apart from having good mechanical and chemical properties, Cu nanoparticles are 

effective antibacterial, antiviral, anti-inflammatory and antifouling agents. The antibacterial 

effect of Cu against microbes has been studied extensively to show the aggregation of Cu 

nanoparticles alters the permeability of bacterial cell membranes which eliminates LPS, 

membrane proteins, and proteins in the bacterial cell membrane, and results in the dispersion 

of proton-motive energy on the membrane. The post-oxidative damage to cell structure occurs 

as a result of the activity of oxygen species such as nanoparticles or ions. The absorption of 

ions created by nanoparticles in the cell reduces the formation of intracellular adenosine 

triphosphate and deoxyribonucleic acid (DNA) replication.124, 125 (Figure 2.3).126  
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Figure 2.3 The antibacterial mechanism of copper nanoparticles.126 Reproduced with 

permission from Elsevier and Copyright Clearance Centre. 

 

Many studies have examined the antibacterial properties of Cu nanoparticles (Table 1). 

Zhuang. Y et al., for example created a copper-containing titanium alloy that released Cu2+ in 

a continuous and steady manner. Ti6Al4V-Cu was shown to efficiently destroy MRSA and 

limit biofilm formation in vitro.127 Similarly, another study examined the osteoconductive and 

antibacterial characteristics of a titanium-copper-nitride (TiCuN) film and demonstrated the 

TiCuN film could prevent bacterial biofilm development on orthopaedic implants and increase 

osteoblast activity,128 identifying that copper helps in protecting the surface from microbial 

action.35 
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Table 1 Studies using Cu as an antibacterial agent 

Type of copper used Bacteria Method Outcome  

[Cu(bitpy)(dmp)] 

(NO3)2 - Complex 1 

 [Cu(bitpy)2] (ClO4)2 -

Complex 2 

Staphylococcus 

aureus 

 Both Complex 1 and 

Complex 2 have inhibitory 

effect on Staphylococcus 

aureus, whereas complex 2 

has higher anti-

staphylococcus activity.129 

Different copper (Cu) 

sources, e.g., copper 

acetate (CuAc), copper 

sulfate (CuS), and 

copper oxide (CuO) 

Streptococcus 

sanguinis 

Using bioactive 

components 

(calcium and 

phosphorus) and 

various copper, 

plasma electrolytic 

oxidation creates 

antibacterial 

coatings on 

titanium 

Coating with CuAc 

displayed ideal 

hydrophilicity, pore 

density, and minimal 

surface roughness among 

the different copper 

complexes, resulting in the 

most potent antibacterial 

activity paired with suitable 

responses of human primary 

stem cells and angiogenic 

cells.130 

Copper-containing 

titanium alloy 

(Ti6Al4V-Cu) 

methicillin-

resistant 

Staphylococcus 

aureus 

Released Cu2+ to 

break the cell 

membrane of 

bacteria 

Limited biofilm 

formation.127 

 

Cu nanoparticles can also target the viral genome, specifically the genes that cause viral 

infections. Viruses are particularly prone to Cu nanoparticle-induced damage because, unlike 

bacteria and fungi, they lack a repair mechanism, resulting in immediate cell death, often 

known as "contact killing." Several investigations revealed a similar reactive oxygen species 

mechanism in the viral envelope or capsid, which is comparable to antibacterial action. Many 

researchers are attempting to create materials coupled with Cu to increase antiviral properties 
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for various viral illnesses such as dengue virus,131 influenza virus,132 and the most recent 

SARS-CoV-2.133-135 

Copper, in addition to antibacterial and antiviral activity, is a good source for promoting wound 

healing, found to induce new blood vessel creation and improve wound healing. A recent study 

conducted by Li et al found that copper-containing alloys Ti6Al4V-1.5Cu promote 

angiogenesis in both normal and irradiated macrophages,136 with many other studies conducted 

to demonstrate the effectiveness of copper in wound healing.137-139 

As listed above, many studies use different techniques to reduce the deterioration and increase 

the osseointegration of dental implants. But limited studies showed the application of CAP to 

mitigate the degradation of titanium along with Cu and PDAM. Despite the usefulness of 

PDAM and CU being established several years ago, they do have many limitations. To 

overcome these limitations and to increase the life span of dental implants, the modification of 

titanium was used as a strategy in this study using CAP, PDAM, and Cu.  
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Chapter 3 Project Design 
 

3.1 Plasma treatment 

Commercially pure titanium plates 1 cm ×1 cm (Ti, 0.1mm thickness, Grade Ⅱ) is used in this 

study. A plasma reactor made from quartz was used for a non-thermal atmospheric dielectric 

barrier discharge plasma (DBD) treatment, powered by a high-frequency AC power supply 

(CTP-2000K/L plasma generator Nanjing Suman electronic Co., Ltd., China) with input 

voltage of about 35 kV and frequency of the power supply ranging from 1-3 kHz.140 Pure 

titanium sheets were treated in the reactor chamber placed between the electrode connected to 

the DBD plasma device with discharge gas air introduced into the quartz reactor at the flow 

rate of 1 L min-1. Initially three different gases, including argon (Ar), nitrogen (N), and 

atmospheric (Atm) were used to observe the effect of the plasma.   

 

3.2 Preparation of PDAM and Cu coating 

 

Plasma-treated titanium plates were coated with PDAM and PDAM with Cu solution which 

was created by combining 1 mg/mL dopamine hydrochloride (DA, Sigma-Aldrich, USA) with 

copper in Tris buffer (1.2 mg/mL, pH 8.5). CuCl2 at a concentration of 50 μg/mL was used for 

preparing PDAM@Cu coating.8 Titanium plates were submerged in various solutions to 

facilitate polymerisation. The samples were taken from the solution after 24 hours, rinsed three 

times with distilled water, and air dried. All the plasma treated titanium samples were sterilized 

with 80% ethanol and subjected to ultraviolet light for 20 minutes before the cell viability 

assay. 

 

3.3 Surface characterisation 

3.3.1 Particle analysis 

A TESCAN MIRA scanning electron microscope (SEM) was used to examine the surface 

morphology of samples before and after coating. The SEM images were collected at 5.0 kV 

voltage with a beam intensity of 12.0 and a view field of 100 μ *100 μ. Image J software was 

used to measure the particles before and after coating. The particle size was compared using 
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GraphPad, and outliers were removed using the prism programme ROUT technique with 

Q=0.1%. 

3.3.2 Hydrophilicity measurement 

The hydrophilicity was measured after the atmospheric plasma treatment and prior to coating 

using a Biolin Theta Flex drop shape analyser. Three different samples were used to take the 

average value of the water contact angle and ImageJ software was used to measure the angles 

of the different samples. 

3.3.3 X-ray photoelectron spectroscopy 

The chemical contents of the samples before and after coating were determined using X-ray 

photoelectron spectroscopy (XPS, Kratos Axis Supra, UK). The XPS device used a 

monochromatic Al Kα (1486.6 eV) X-ray source that ran at 12 kV×15 mA at a pressure of 

2×10−7 Pa with charge compensation.141  

3.3.4 Atomic force microscopy 

Surface roughness was assessed in contact mode using Bruker Dimension Icon Atomic Force 

Microscopy (AFM). The AFM images were generated by scanning three 5 μm × 5μm regions 

in the sample and analysing them after adjusting for plane tilt to determine Ra values for 

average roughness before and after coating. 

 

3.4 Cell proliferation   

Human gingival fibroblasts (HGFs) cell line was routinely passaged, and passage number 7  

was used for the experiments as follows.8 The MTT test was used to examine the coating's 

direct effects on HGFs. The cells were seeded on the titanium surface at a density of 2 × 

104/mL.  On days 1, 3, and 5, following cell seeding, a 1:9 solution of 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) was added and incubated at 37 ºC for 4 hours 

before adding DMSO and measuring absorbance at 490 nm. 

 

3.5 Coating degradation 

3.5.1 Inductively coupled plasma optical emission spectrometry 

Samples were exposed to various CAP gases (Ar, N, and ATM) and submerged in saline and 

LPS solutions during 5 and 10 days, respectively. 1mL of solution was collected after 5 and 10 
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days and utilised for further testing. After overnight evaporation at 80 ˚C, the solution was 

diluted to 2% and analysed using PerkinElmer Optima 8300 ICPOES. The quantity of copper 

in 4 cm2 was estimated using the copper removed from the coating. 

3.5.2 X-ray diffraction 

Samples for XRD were prepared using Ti of 2 cm × 2 cm size. After plasma treatment and 

coating with PDAM@Cu, the Ti plates were immersed in saline and LPS for 10 days. A Rigaku 

SmartLab XRD was used to detect the different crystalline materials in the surface coating. 

 

3.6 Statistical analysis  

The results were reported as the ± mean standard deviation. P values were computed for 

statistical assessment using one-way analysis of variance (ANOVA). p<0.05 is regarded as 

statistically significant. 
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Chapter 4 Results 
 

4.1 Surface characterisation of cold plasma modified titanium   

 

XPS measures the elemental composition as well as the chemical and electronic state of atoms 

within the titanium. The XPS data revealed that Ti, oxygen (O), carbon (C) and nitrogen (N) 

exist in the coatings treated with the different plasmas (Figure 4.1 a). Binding energy shifts in 

the samples treated with atmospheric plasma are seen in the Ti core level (Figure 4.1 b) which 

indicates changes in the surface chemistry. Peak shifts in XP spectra are associated with 

chemical states of elements with differing formal oxidation states.106 The Ti 2p 3/2 peak for 

Atm plasma was seen at approximately 457.8 eV which indicates that it originates from the 

Ti4+ oxidation state.142 Of the different oxidation states of titanium, Ti4+ is the most stable 

state.143 The titanium oxidation state in titanium dioxide, which helps in corrosion resistance, 

is +4. Supporting the data it is evident that there is a peak shift for the O1s (Figure 4.1 c)after 

ATM treatment which is in the range of 530.4 eV which indicated the presence of metal oxide 

layer of TiO2.144 

An increase of surface roughness of the titanium samples after different plasma treatments is 

visible in the AFM images (Figure 4.1 d) and substantiated by quantitative root mean square 

average (Rq)values (Figure 4.1 h) for the roughness. Of the four different cold plasma 

treatments used, the titanium surface modified with atmospheric plasma exhibits the greatest 

surface roughness with Rq values ranging from 40.4 nm to 79.3 nm. The Rq values of samples 

with nitrogen range from 44.9 nm to 59.2 nm, with argon from 32.9 nm to 41.8 nm, and 

untreated titanium ranging from 25.7 nm to 31 nm. Based on the hydrophilicity measurement 

using water contact angle, this study revealed the increase in surface roughness correlates with 

an increase of the wettability of material. Specifically, the atmospheric plasma and nitrogen-

treated samples have increased wettability compared to the other two cold plasma treatments 

evidenced by a decrease in the water contact angle (Figure 4.1 e f) from 105.95—111.84 (Ti) 

to 63.45˚ - 71.38˚ (Atm), and 65.43˚ - 69.26˚ (N). Surface wettability increases with decreasing 

contact angle, and a surface is considered hydrophilic with the angle less than 90.145 The argon-

treated surfaces exhibited water contact angles ranging from 74.47˚ to 78.82˚ which, compared 

to the control titanium, showed an increased wettability. This result establishes that different 
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plasma exhibited different values in surface wettability, and that they all help in increasing 

surface wettability. 

The sample morphologies were detected by SEM (Figure 4.1 g). Representative SEM images 

of the samples treated with atmospheric plasma reveal the most prominent changes in the 

surface morphology.  

 

 

 

 

 

Figure 4.1 Surface characterisation of titanium surfaces after different plasma treatments 

showed changes in surface chemistry with atmospheric plasma treatment. (a) XPS wide spectra 

with relevant peaks of Ti, O, C and N annotated, (b) magnified peaks of Ti, and (c) O1s peaks 

revealed peak shift in sample treated with atmospheric plasma indicating changes in surface 

chemistry. (d) AFM images and (h) quantification with Rq values for surface roughness showed 

an increase in surface roughness on samples treated with atmospheric plasma. (f) Images and, 
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(e) quantitative measurements of water contact angle showed significantly increased 

hydrophilicity in samples treated with nitrogen and atmospheric plasma. (g) SEM images 

showing changes in surface morphology. *p<0.05, **p<0.01, ***p<0.005, ****p<0.001. 

 

 

4.2 Surface characterisation of cold plasma modified titanium after coating with 

PDAM and Cu. 
 

The morphology of samples treated with different plasmas and followed by PDAM and 

PDAM@Cu coating was characterised with SEM (Figure 4.2 a b). The images revealed 

changes in the coatings after plasma treatment. The The particle size difference can be seen in 

samples treated with different plasma before and after coating with copper in Figure 4.2 c and 

Figure 4.2 d. The atmospheric plasma treated surfaces had larger particles occupying larger 

areas of surfaces in both Figure 4.2 e and Figure 4.2 f which show the PDAM and PDAM@Cu 

coated surfaces, respectively. The surface roughness of different samples after coating with 

PDAM was identified using the AFM (Figure 4.2 g). Changes are noted on the sample surface 

after coating, as evidenced by higher roughness compared with the non-coated ones (Figure 

4.2 h). The surface roughness is more visible on titanium surfaces treated with nitrogen and 

PDAM followed by those treated with argon and Atm. These results signify that different 

plasma treatments have different effects on the particle size of PDAM. Supplementary Figure 

1 shows the EDS data and XPS of samples after the coating. Atm treatment has changed the 

particle size and the particles were able to cover the roughened surface of  the samples, making 

the surface less roughened.146 
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Figure 4.2 Surface characterisation of plasma modified titanium after coating with PDAM and 

Cu. SEM and backscatter images of (a) PDAM and, (b) PDAM@Cu coatings deposited on 

various plasma treated surfaces. 1 mm2 (left) and 0.1 mm2 (right) area scans revealed changes 

in coating deposition after plasma treatment. Arrows point to aggregated particles seen on 

surfaces that were not treated with plasma before coating. Particle size analysis in (c) PDAM 

coatings and, (d) PDAM@Cu coatings revealed that atmospheric plasma treated surfaces had 

larger particles occupying larger areas of surfaces in both (e) PDAM and, (f) PDAM@Cu 

coated surfaces. In (c) and, (d) each scatter dot represents area of particles analysed from at 

least 3 different images with outliers removed (q=0.1). In (e) and (f), values are mean 

percentages from 4 areas of 500 μm2 analysed. AFM images (g), and the Rq roughness value 

(h) indicating reduced surface roughness in Atm plasma treated samples. *p<0.05, **p<0.01, 

***p<0.005, ****p<0.001. 
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Supplementary Figure 1 Supplementary data of (a) EDS spectra, (b) at%, (c) XPS wide 

spectra and, (d) magnified Cu peaks of PDAM@Cu coatings. 
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4.3 Cell proliferation on coating 
 

Ti samples treated with Atm and coated with the PDMA, and copper (PDAM@Cu+Atm) 

showed a small increase in cell proliferation and cell attachment relative to the control (Ti) 

samples. This pattern was visible from day 1 to day 5 (Figure 4.3). Followed by PDAM@ 

Cu+Atm, samples treated with PDAM Atm showed more cell viability than the control group 

Ti. This result confirms the fact that plasma modification helps to increase cell viability of the 

samples.147, 148  Therefore, the surface modification with CAP and PDAM@ Cu did not 

negatively effect the viability of HGFs. 
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Figure 4.3 Results from the MTT assay showing Atm+PDAM @ Cu samples promoted cell 

proliferation in a time-dependant manner. 

 

 

4.4 Coating degradation 
 

4.4.1 ICP-OES 

ICP-OES is an analytical method used to determine the atomic composition of a material and 

effectively detects the type and relative amount of each element within a compound by using 
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the unique photophysical signals of each element. This project focused on the presence of Ti 

and Cu. 

The presence of Ti and Cu were analysed after immersion of samples in saline and LPS for 5 

days and 10 days using the ICP-OES (Figure 4.4). The concentration of Ti in the degraded 

solution was below the detection limit in the samples coated with copper whereas Cu 

concentration was seen in different samples coated with Cu. On day 5, the PDAM@Cu coated 

samples immersed in saline showed the highest release of Cu whereas the lowest release value 

was seen in the samples pre-treated with Atm. Similar findings were shown when the samples 

were immersed in an inflammatory microenvironment. Similarly, it is visible that Ti peaks are 

reduced in the coated samples compared with the control, indicating that copper helps less to 

expose the titanium surface for corrosion (Supplementary Figure 2). All these results suggests 

that Atm plasma may help to reduce the degradation of the titanium samples. These results 

guided this study to focus only on the atmospheric plasma. 
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Figure 4.4 Quantitative measurement of ICP-OES data for samples immersed in saline (a, c) 

and LPS (b, d) for 5 and 10 days showing reduced copper release from atmospheric plasma-

coated samples. 

 



 

26 
 

 

Supplementary Figure 2 EDS data and SEM images after degradation 

 

 

4.4.2 XRD data 

Figure 4.5 shows XRD patterns collected from the Ti samples after degradation for 10 days. 

The Ti and TiO2 phases are the major phases evident in the four different samples. Peaks that 

are sharp in the XRD pattern indicate the crystalline materials, whereas short and broad-

bumped peaks indicate amorphous material. The results suggest that apart from the crystal 

phases, the amorphous phase of polydopamine coating was present in all samples. 

In both uncoated PDAM samples treated with ATM plasma, immersed in saline (Figure 4.5 a) 

and (Figure 4.5 c) immersed in LPS solution showed the Ti peak (101) with maximum 

intensity at a 2θ angle of 40˚, although there is a decrease in the peak of the copper coated 

PDAM samples (Figure 4.5 b d) compared with the non-coated ones. In these samples there is 

a stronger Ti signal in untreated samples because the Ti signal is not attenuated by the coating. 

Similarly, the change is visible in the peaks of TiO2. The formation of the TiO2 peak indicates 

the surface has entered a passive condition of titanium.  Passivation thickens the TiO2 layer, 

increasing the material's resistance to corrosion.149 The presence of this thin passive layer 

converts modified Ti into a physiologically inert metal. Overall, the coated and uncoated 
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samples show a change in the broadening peaks of the XRD patterns. The degraded coated 

samples show a decrease in peak intensity and sharpness in both the Ti peaks (100, 002, 101, 

110, and 103) and the TiO2 peaks (111, 200, 220 and 311). The coated samples have visible 

Cu peaks corresponding to 111, 200, 220, 222, 400, 420 and 422, showing the cubic nature of 

Cu particles. These results suggest that modified Ti samples have a greater degradation 

resistance in both physical (saline) and inflammatory microenvironment (LPS). 

 

 

 

 

Figure 4.5 shows the XRD patterns formed on the samples after degradation. (a) Uncoated Ti 

immersed in saline, (b) coated samples immersed in saline, (c) uncoated sample immersed in 

LPS and, (d) coated samples immersed in LPS. 
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Chapter 5 Discussion 
 

Titanium is a popular material for medical and dental implants because to its 

biocompatibility, strength, and longevity.150Although titanium is recognised for its 

remarkable corrosion resistance, it is not totally impervious to deterioration over time.151 

When a titanium implant is implanted in the body, LPS can be generated by any bacteria 

present in the surrounding tissues, causing an inflammatory reaction that can compromise the 

device's integration and success152, 153 by accelerating the degradation process.20 Several 

research are being conducted to decrease titanium deterioration, one of which is surface 

modification.5, 154 This study found that modifying titanium surfaces using CAP, PDAM and 

Cu helped reduce titanium degradation under the action of LPS in vitro, and increased cell 

viability was also visible. Similar to prior investigations,8, 155-157 the results show that this 

multifunctional surface modification strategy improves the performance of titanium surfaces.  

The multifunctional technique of modifying the titanium surfaces helped to elevate the 

hydrophilicity and surface roughness and reduce the particle agglomeration to achieve a 

uniform dispersion of the PDAM particles. Improving implant surface roughness and 

hydrophilicity can increase biocompatibility and osseointegration158 while also improving 

antibacterial characteristics.159 Surface roughness in the range of 10-100 nm has been proven 

in studies to increase cell adhesion and proliferation.160, 161 It was evident throughout this study 

that different gases used in CAP treatment showed better outcomes when compared with the 

untreated titanium surface. Of the three different gases Ar, N and Atm, the Atm treatment 

showed a better result. Titanium coated with Atm showed increased surface roughness, which 

is within the limits of 100nm, increased surface wettability and a more stable TiO2 layer, with 

all these properties being essential for better osseointegration and implant success. 

Cold plasma treatment helped to modify the PDAM which is a universal adhesive material. 

This modification using plasma reduced the agglomerative character of PDAM. Polydopamine 

particle agglomeration can have a substantial impact on their adhesion capabilities and capacity 

to enhance adhesion between diverse materials. Agglomerated particles can result in uneven 

and non-uniform coatings, which reduce adherence and performance.162 Additionally, the 

modified PDAM, with the aid of CAP, helped increased the binding of the copper ions to the 

titanium surface. The controlled and optimised coating of copper can assist in striking a balance 

between the favourable and harmful effects of copper coatings on titanium surfaces.163 The 
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higher concentration of copper ions can result in toxicity. Following earlier research, the lower 

concertation of copper was chosen in this investigation.8 Thus, the cell viability on the modified 

samples showed significant differences compared with other studies where increased copper 

concentrations lead to reduced cell viability. With the help of the plasma treatment and use of 

an ideal Cu concentration, there was an increase in cell viability of HGFs on the 

PDAM@Cu+Atm sample. The addition of Cu helped reduce the corrosion of the titanium 

surface. However, the antibacterial efficiency of this modified surface is yet to be studied along 

with the copper ion release.  

Finally, the TiO2 layer formed on the surface helped to build greater corrosion resistance to the 

titanium surface even with the presence of LPS. The existence of a stable and well-formed 

titanium oxide layer is vital for the prevention of corrosion of titanium.164 The plasma treatment 

helped reduce the copper release from the surface, which highlights the potential wider 

applications of the coating in the manufacturing of highly corrosion-resistant implants. Ions 

released by the coatings into the surrounding tissues can have therapeutic effects such as 

encouraging bone formation and lowering inflammation.165 The surface degradation study can 

be extended for a longer period to evaluate the maximum duration of coating protection along 

with the action on lowering inflammation and bone formation as well. It is an in vivo study that 

is also required to investigate the osseointegration and function of the modified titanium 

implants. 

  



 

30 
 

Chapter 6 Conclusion 
 

This research demonstrated that a Ti surface modified with CAP, PDAM-Cu helped to 

successfully control the degradation of the Ti surface with no negative impact on cell viability. 

The cold plasma treatment on titanium surface has the potential to significantly improve the 

characteristics and performance of polydopamine and copper coatings. The adherence, surface 

characteristics, degradation, and release of the coating may be adjusted to individual 

applications and demands by modifying the plasma treatment settings. This approach can be 

translated to prevent the dental implant failure followed by the degradation by the bacterial 

action which remains a significant problem in clinical dentistry. This novel method can be 

developed further to incorporate biofilm dispersion and decontaminating from bacteria in a 

multifunctional coating. This strategy can be applied to prevent peri-implantitis and increase 

the successful rate and longevity of dental implants. The CAP treatment helped to reduce 

PDAM particle agglomeration, and its use can be expanded to new fields where it has not 

previously been employed owing to this drawback. As previously indicated, the antibacterial, 

osseointegration and long-term copper release properties of this modified material should be 

investigated. 
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Appendices 
 

1.1 Publication 

 

1. Vijay, R., Mendhi, J., Prasad, K., Xiao, Y., MacLeod, J., Ostrikov, K., & Zhou, Y. 

(2021). Carbon nanomaterials modified biomimetic dental implants for diabetic 

patients. Nanomaterials, 11(11), 2977. 
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