
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Lehmann, Timothy H.
(2023)
Using algorithmic thinking to design algorithms: The case of critical path
analysis.
The Journal of Mathematical Behavior, 71, Article number: 101079.

This file was downloaded from: https://eprints.qut.edu.au/240800/

c© Crown Copyright c© 2023

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

License: Creative Commons: Attribution-Noncommercial-No Derivative
Works 2.5

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1016/j.jmathb.2023.101079

https://eprints.qut.edu.au/view/person/Lehmann,_Timothy.html
https://eprints.qut.edu.au/240800/
https://doi.org/10.1016/j.jmathb.2023.101079

 1

Using Algorithmic Thinking to Design Algorithms: The Case of Critical Path Analysis

Algorithmic thinking is emerging as an important competence in mathematics education, yet

research appears to be lagging this shift in curricular focus. The aim of this generative study

is to examine how students use the cognitive skills of algorithmic thinking to design

algorithms. Task-based interviews were conducted with four pairs of Year 12 students (n = 8)

to analyze how they used decomposition and abstraction to specify the projects, designed

algorithms to solve scheduling problems by first devising fundamental operations and then

using algorithmic concepts to account for complex and special cases of the problems, and

tested and debugged their algorithms. A deductive-inductive analytical process was used to

classify students’ responses according to the four cognitive skills to develop sets of subskills

to describe how the students engaged these cognitive skills.

Keywords: algorithmic thinking; algorithm; critical path analysis; discrete mathematics;

graph theory

 2

Introduction

The integration of algorithmic thinking into mathematics curriculums at all levels is

becoming increasingly important (Stephens, 2018) as students prepare for a society that is

heavily reliant on digital technologies and complex systems (Wing, 2006). The shift towards

integrating algorithmic thinking is in line with the recognition that computational thinking—

which some argue encompasses algorithmic thinking among other key practices—is a

fundamental competence that students should develop in order to meet the current and future

demands of the STEM workforce (Weintrop et al., 2016; Wing, 2006). Efforts to integrate

algorithmic thinking in school curriculums is well underway in many countries, including

Australia, France, Japan, and the United Kingdom (Stephens, 2018). In Australia, recent

revisions to the F–10 mathematics curriculum now explicitly include algorithmic thinking

content across the domains of number (Years 3–5), algebra (Year 6), and space (Years 8–9)

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2022).

Mathematics education researchers have long proposed that mathematics curriculums

should include graph theory topics because they offer students many opportunities to engage

in algorithmic thinking (Hart, 1998; Rosenstein, 2018). This proposition is reflected in the

revised Australian mathematics curriculum, which requires Year 10 students to use graph

theory to model real-world networks using vertex-edge graphs, and then design, test, and

refine algorithms to solve problems related to these networks (ACARA, 2022). In

Queensland (the state where this study was conducted), Year 12 students studying General

Mathematics1 (Queensland Curriculum & Assessment Authority [QCAA], 2019) are

1General Mathematics is a course for senior students whose intended future study or work does not require a

knowledge of calculus and is based on the ACARA Senior Secondary curriculum. In addition to graph theory

topics, it includes bivariate and time series analysis, growth and decay in sequences, Earth geometry and time

zones, and loans, investments and annuities.

 3

introduced to a range of graph theory topics, such as critical path analysis, and learn how to

use standard algorithms to solve problems in an unplugged environment. However, the

integration of algorithmic thinking into mathematics curriculums in this way is progressing at

a time when there is a lack of research into ways that mathematics teachers might develop

students’ algorithmic thinking.

The literature about algorithmic thinking in relation to graph theory topics largely

consists of proposed instructional tasks, or approaches, that invite students to design

algorithms to solve common graph problems (Hart, 1998; Hart et al., 2008; Maurer &

Ralston, 1991); however, empirical research into students’ responses to such algorithmatising

tasks is only just emerging (Moala, 2021; Moala et al., 2019; Tupouniua, 2020b). For

example, Moala (2021) observed a mechanism that he called “accounting for features of a

solution” (p. 264) to describe how a group of novice students developed the rules for a

Hamiltonian path algorithm based on the numerical attributes of their solution. Similarly,

Moala et al. (2019) introduced two practices—localized considerations and patching—to

describe how novice students approached the revision and validation of the algorithms they

designed to solve a series of friendship network optimization problems based on their initial

solutions. They used the term localized considerations to refer to instances in which students

adjusted the rules of an algorithm to fix an error that occurred at a particular vertex in a

counterexample for which the initial algorithm was incorrect. Patching refers to the practice

of retaining the overall structure of an algorithm but adding or removing rules in response to

counterexamples. Accounting for features of a solution, localized considerations, and

patching offer much needed insights into how students design algorithms in response to graph

algorithmatizing tasks, but it remains unclear whether these mechanisms and practices apply

beyond the tasks posed to the students in these studies or if they are used by students with

more experience in graph theory.

 4

The aim of the present study was to build on the emerging literature about the

mechanisms and practices that students might use to design graph algorithms by examining

how student-invented algorithms emerged across a sequence of graph algorithmatizing tasks

of increasing complexity. To achieve this aim, I conducted an analysis of the algorithmic

thinking of four pairs of Year 12 students as they developed viable algorithms to solve

common scheduling problems in the context of critical path analysis (described further

below). Critical path analysis was chosen as a graph theory topic in which to study students’

algorithmic thinking because it involves multiple graph algorithms as well as opportunities

for students to use algorithmic concepts including loops, branching statements, and variables.

I found that the students devised a method for solving the scheduling problems in relation to

the first problem, which I termed a fundamental operation, and then adjusted their

fundamental operations using loops, branching statements, and variables in response to

complex and special cases of the problems.

Review of Related Literature

One potential obstacle to this type of research is that the construct of algorithmic

thinking is ambiguous because the term has been interpreted and applied inconsistently

throughout the mathematics education literature (Lockwood et al., 2022). This ambiguity is

further exacerbated by the use of the term throughout computer science education and

computational thinking education literature, where the connection between computational and

algorithmic thinking remains unresolved. Further research is needed to better understand the

contemporary meaning of algorithmic thinking to promote consistency across empirical

studies and support curriculum reforms. In this section, I first address definitions of

algorithmic thinking and then examine the cognitive skills that comprise algorithmic

thinking. Finally, I examine the literature related to graph theory in mathematics education.

 5

Defining Algorithmic Thinking

Mathematics education researchers have occasionally used the term algorithmic

thinking in reference to the construction of algorithms, although the term has not been

defined consistently (Abramovich, 2015; Knuth, 1985; Petosa, 1985; Schwank, 1993).

Mingus and Grassl (1998) proposed the following definition in the 1998 NCTM yearbook

about the teaching and learning of algorithms in school mathematics:

Algorithmic thinking is a method of thinking and guiding thought processes that uses

step-by-step procedures, requires inputs and produces outputs, requires decisions

about the quality and appropriateness of information coming in and information going

out, and monitors the thought processes as a means of controlling and directing the

thinking process. In essence, algorithmic thinking is simultaneously a method of

thinking and a means for thinking about one’s thinking. (p. 34)

More recently, Lockwood et al. (2016) interviewed five mathematicians about how they use

computation and used their findings to formulate a working definition of algorithmic

thinking: “A logical, organized way of thinking used to break down a complicated goal into a

series of (ordered) steps using available tools” (p. 1591). Both definitions specify that

algorithmic thinking is a way of thinking that results in a set of steps although do not describe

this proposed way of thinking.

In contrast, Stephens (2018) proposes that algorithmic thinking is a form of

mathematical reasoning comprised of a subset of computational thinking skills including,

“decomposition (breaking a complex problem down into component sub-problems and sub-

tasks), pattern recognition, generalization and abstraction” (p. 1). Stephens and Kadijevich

(2020) also define algorithmic thinking as a form of mathematical reasoning that “is required

whenever one has to comprehend, test, improve, or design an algorithm” (p. 2) and suggest

that algorithmic thinking involves decomposition, abstraction, and algorithmization (or

algorithm design). They exclude pattern recognition from their definition because they

 6

assume that it is an instance of abstraction and generalization. They also exclude

generalization from their definition but do not explain why. The notion that algorithmic

thinking is defined by a set of cognitive skills is consistent with definitions in computer

science education literature. From this perspective, cognitive skills include analyzing and

understanding problems, specifying a problem precisely so that it can be solved, formulating

basic actions that will solve the problem, constructing an algorithm comprised of those basic

actions, considering normal/special and simple/complex cases of the problem, and evaluating

and improving the efficiency of the algorithm by considering alternative methods (Doleck et

al., 2017; Futschek, 2006; Kanaki et al., 2020).

There are clearly diverse definitions of algorithmic thinking throughout education

literature although the notion that a set of cognitive skills—drawn from models of

computational thinking—is required to understand, construct, or evaluate algorithms is

emerging as a common theme. There appears to be agreement, however, that algorithmic

thinking refers to the creation of an algorithm independent of the coding language involved in

programming a machine to process it, and this is the perspective adopted in this study. In the

next section, I review each of the cognitive skills before describing how these abilities relate

to the algorithmic thinking process.

Cognitive Skills

Decomposition

In mathematics education, heuristics such as decomposing and recombining (Pólya,

1945) and establishing subgoals (Schoenfeld, 1985) have long been taught to students to

solve problems across domains of mathematics. These heuristics involve solving simpler

problems that partially fulfil the conditions of the problem, and then recombining those

solutions to solve the initial problem. Indeed, Hart et al. (2008) proposed a festival planning

project for teaching students critical path analysis and envisage that students will first break

down the project into many individual activities. Stephens and Kadijevich (2020) define

 7

decomposition in relation to algorithmic thinking in a similar way, “breaking a problem down

into subproblems” (p. 117). Blannin and Symons (2019) provide an example of

decomposition in a middle-years algorithmic thinking project about the busyness of

playground areas in the school. The students broke down the playground into five locations,

and then focused their analysis on each location and playground activity one at a time before

combining their findings to determine which noisy activities disrupted the quiet areas.

From a computer science education perspective, decomposition appears to align with

the ability to analyze a problem by splitting the main problem up into smaller problems

(Futschek & Moschitz, 2010), such as identify the subtasks required to create and code a

game in Scratch (Kwon & Cheon, 2019). However, from a computational thinking

perspective, Shute et al. (2017) propose a broader definition:“[d]issect a complex

problem/system into manageable parts. The divided parts are not random pieces, but

functional elements that collectively comprise the whole system/problem.” (p. 153), which

reflects Wing’s (2006) perspective that computational thinking is about both solving

problems and designing systems. Examples of decomposition from a computational thinking

perspective are the ability to decompose the modeling process used to build models of an

ecological system in Year 6 science (Basu et al., 2017) and decomposing the research design

process in undergraduate psychology into smaller issues such as the choice of research

design, demographics of participants, and type of stimuli used in the experiment (Anderson,

2016). There appears to be consistency across the definitions and examples of decomposition

through the education literature; however, there appears to be limited empirical research into

how students use decomposition in algorithmic thinking contexts.

Abstraction

Stephens and Kadijevich (2020) define abstraction in relation to algorithmic thinking

as “making general statements summarizing particular examples regarding underlying

concepts, procedures, relationships, and models” (p. 118). In the computational thinking

 8

literature, abstraction refers to the ability to express a complex problem or system in terms of

its essential elements. This ability involves distinguishing between relevant and irrelevant

information or data (Wing, 2008), recognizing patterns and generalizing from particular

instances (Wing, 2010), and building models that show how the problem or systems works by

using the essential elements (Shute et al., 2017) using an appropriate representation to make

the problem tractable (Wing, 2006). For example, Lee et al. (2011) describe how a group of

middle school students used abstraction to represent the spread of disease throughout their

school by identifying relevant factors, such as the layout of the school, the number of

students, and the virulence of the disease, and then represented these factors using a virtual

3D model that showed the layout of the school and students. By using these abstractions, the

students were able to simplify the complexity of the real-world scenario and focus on the key

factors that were important in determining if a disease would spread throughout their school.

This example highlights how the purpose of abstraction is to simplify a complex problem so

that it can be solved (Grover & Pea, 2013; Standl, 2017), which aligns with the second skill

in Futschek’s (2006) model of algorithmic thinking from a computer science perspective:

precisely specifying the problem. Despite the consistency in definitions throughout the

literature, there are very few examples of how students use abstraction in algorithmic

thinking.

Algorithmization

Algorithmization refers to the ability to construct a sequence of ordered steps for

solving a problem (Maurer, 1992; Shute et al., 2017), or algorithm. To be effective, the rules

specifying the algorithm must be precise and satisfy certain criteria (Maurer, 1992, 1998).

First, the algorithm must be determinate, meaning that the first action is uniquely determined

for each allowed input, and the next action is uniquely determined for each action in the

sequence. Second, an algorithm must be finite, that is, it must stop after a finite set of actions

for any allowed input. Finally, an algorithm must be conclusive, which means that when it

 9

terminates, it must either output a solution to the problem or indicate that it cannot solve the

problem.

Algorithmization is the ability to write a series of steps that transform inputs into

outputs, as outlined in the definition of algorithmic thinking by Mingus and Grassl (1998)

above. These steps are comprised of basic actions devised to solve the given problem

(Futschek, 2006), which may include algorithmic concepts such as branching (if/then/else

conditions), iteration (loops or repeating steps), or the use of a variable to store intermediate

results (Knuth, 1985; Modeste, 2016; Peel et al., 2019). For example, Peel et al. (2019)

analyzed the handwritten algorithms constructed by secondary biology students to describe

the natural selection process and found that the students used algorithmic concepts including

branching, iteration, and variables. However, their study did not consider the process by

which the students arrived at their sequence of steps as written, a gap that is common

throughout literature about algorithmic thinking.

Debugging

Debugging is the ability to evaluate an algorithm, and find and fix errors in an

algorithm to ensure that it solves the problem as intended (Shute et al., 2017). From a

computer science education perspective, algorithmic thinking involves evaluating algorithms

for correctness, particularly in relation to normal/special or simple/complex cases of the

problem (Futschek, 2006; Kanaki et al., 2020) or efficiency (Futschek, 2006; Futschek &

Moschitz, 2010). Evaluating algorithms may involve considering alternative actions or

approaches, particularly when an algorithm is incorrect (Ginat, 2008). These skills are similar

to those suggested by mathematics education researchers in relation to the design of

algorithms. In the mathematics education literature, Maurer (1992) uses the term algorithm

verification to describe the process of confirming or proving that an algorithm solves the

problem, which can be achieved through mathematical induction. He also uses the term

algorithm analysis to describe the process of evaluating the efficiency or complexity of an

 10

algorithm, which might also form part of algorithm evaluation. Again, there appears to be

some consistency in the literature about the construct of debugging, but there are very few

studies that examine how students use this ability.

Algorithmic Thinking Process

Researchers propose that the process of constructing an algorithm is similar to a

problem-solving process, and that the cognitive skills outlined above are used at each stage of

that process (Futschek & Moschitz, 2010; Mingus & Grassl, 1998; Ritter & Standl, 2023). In

mathematics education, Mingus and Grassl (1998) compared the algorithmic thinking process

to Pólya’s (1945) four-stage problem-solving model (understand the problem; devise a plan,

possibly an algorithm; carrying out the plan; looking back) and in computer science, Futschek

and Moschitz (2010) proposed an iterative process involving five stages (analyze problem;

find idea; formulate algorithm; play algorithm; reflect algorithm). From a computational

thinking perspective, Ritter and Standl (2023) recently proposed a three-stage process that

makes the links to the cognitive skills clear: “1. Describe, abstract and decompose the

problem, 2. Design the algorithm, 3. Test the solution” (p. 4). I used these three stages to

structure the comparison of the cognitive skills from each of the three perspectives discussed

above, summarized in Table 1, to understand how they are used to construct an algorithm.

 11

Table 1

Perspectives on Cognitive Skills Involved in Constructing an Algorithm

Algorithmic Thinking

Process (Ritter & Standl,

2023)

Mathematics Education Computer Science Education Computational Thinking

Describe, abstract and

decompose problem
• break down a problem into

subproblems (Stephens &

Kadijevich, 2020)

• analyze a problem by splitting it up

into smaller problems

• decomposition: break down a

problem/system into smaller parts

 • abstraction (Stephens &

Kadijevich, 2020)

• specify problem precisely • abstraction: determine the essential

components of a system

Design algorithm • break down a goal into a sequence

of steps using available tools

(Lockwood et al., 2016)

• algorithmization (Stephens &

Kadijevich, 2020)

• define basic actions that will solve

the problem

• develop a sequence of steps

comprised of basic actions

• algorithms/algorithm design: create

a sequence of steps to solve the

problem

Test the solution • confirm or prove that the algorithm

solves the problem (Maurer, 1992)

• compare algorithm with others that

solve the same problem (Hart,

1998)

• improve or consider alternative

actions (Doleck et al., 2017; Ginat,

2008)

• optimize efficiency

• debugging: detect and fix errors

 • test and refine the algorithm using

problems of the same type (Moala

et al., 2019)

• consider normal and special cases;

simple and complex (Kanaki et al.,

2020)

• iteration: repeat algorithm design

process

 12

I drew three conclusions from this comparison of the cognitive skills from each

perspective. First, decomposition and abstraction are complementary skills involved in

understanding a problem, simplifying it, and specifying it precisely so that it can be solved

using an algorithm. Second, algorithmization is the ability to design basic actions, which may

include algorithmic concepts such as branching, iteration, and variables, and put these actions

into a sequence that transforms inputs into the desired outputs. Finally, debugging not only

refers to the ability to detect and fix errors in an algorithm to ensure that it solved the problem

accurately, but also ensuring that the algorithm solves all problems of a particular type,

improving the algorithm by considering alternative actions or entirely new approaches, or

optimizing the efficiency of the algorithm. In the next section, I use this algorithmic thinking

process to structure a review of the graph theory literature to illustrate its close relationship

with algorithmic thinking.

Graph Theory in Mathematics Education

Researchers who advocate for the inclusion of graph theory in mathematics education

describe a problem-solving process similar to the one described in Table 1 (Hart, 1998; Hart

et al., 2008). Students should begin by understanding a real-world problem and then construct

a vertex-edge graph to describe the relationships between the elements in the problem.

Researchers provide examples to describe how they envisage students would represent graph

problems with vertex edge graphs, including finding Eulerian circuits (Ferrarello &

Mammana, 2018; Hart, 1998), minimal spanning trees (Hart, 1998), the travelling salesperson

problem (Mingus & Grassl, 1998), optimizing traffic lights (Hart, 2008), and compatibility of

radio station locations (Hart & Martin, 2018). Several researchers argue that constructing a

vertex-edge graph is closely related to mathematical modelling (Greefrath et al., 2022; Hart,

2008; Medová et al., 2019). For example, Greefrath et al. (2022) showed how Year 9

mathematics students with no prior experience in graph theory were able to draw on their

 13

mathematical modeling competencies to successfully construct a vertex-edge graph to

represent a road network and solve an Eulerian circuit problem using the graph. The authors

argue that their findings highlight the reciprocity between developing students’ knowledge of

vertex-edge graph concepts and mathematical modeling competences. From a computational

thinking perspective, Wetzel et al. (2020) conducted a similar case study in which they

showed three novice 17-year-old students a road network and asked them to find the fastest

route between two cities. The students were asked to simplify the map to solve the problem,

but the researchers found that the students struggled to disregard irrelevant information from

the map, with one student attempting to draw a vertex-edge graph in direct proportion to the

source map. However, it appears that students in both these studies used their abstract

representations of the road maps to solve the problems by graph traversal, which is the

process of systematically examining and updating each vertex in a graph.

The second stage of solving graph theory problems is to use the vertex-edge graph to

develop an algorithm to solve the problem (Hart, 1998). Again, researchers describe

anecdotal evidence that students can create rudimentary algorithms to solve various graph

problems including finding shortest paths (Gibson, 2012), optimal assignments (Hart &

Martin, 2018), and Eulerian cycles (Ferrarello & Mammana, 2018), although there is little

analysis of the steps that the students devised. In contrast, Moala (2021) analyzed the

instructions in the algorithms written in the form a letter by two groups of students to find the

optimal seating arrangement from a given graph. The analysis showed that the students first

identified the optimal arrangement and then developed rules based on the contents of their

solution. The students in the aforementioned study by Wetzel et al. (2020) found the fastest

route between two towns using a brute-force approach, but realized that this was an

inefficient approach and began looking for a more efficient, general algorithm. Studies that

analyze students’ approaches to writing basic actions or overall approaches to structuring an

 14

algorithm, such as a brute-force approach, provide long-overdue insights into

algorithmization, and more research of this kind is needed.

Finally, Hart (1998) suggests that the final stage in solving graph theory problems is

for students to check that their algorithm will always work, and compare their algorithms

with other students’ or standard algorithms. Researchers have begun to study how students

revise their algorithms and try to adapt them to solve similar problems (Moala, 2021; Moala

et al., 2019; Tupouniua, 2020a, 2020b). For instance, Moala et al. (2019) asked a group of

pre-degree students to design an algorithm that could solve a friendship optimization problem

represented by a vertex-edge graph, and then asked them to ensure that their algorithm could

apply to two additional friendship graphs. The researchers found that the students retained

certain parts of their algorithm that they thought were appropriate for some of the networks

(local considerations) and added or removed instructions (patching) when the algorithm did

not yield the correct solution. The students were initially able to solve the problem but were

ultimately unsuccessful in constructing a correct algorithm. Nevertheless, the study provides

insights into how novice students might approach debugging in the context of graph theory.

The existing literature about how mathematics students solve graph theory problems

is largely speculative, involving mostly novice students in order to show how this topic

would be easily accessible and engaging for students if it were included in school curriculums

(Greefrath et al., 2022; Hart & Martin, 2018). Researchers also argue that graph theory

provides opportunities for students to develop general mathematical processes, such as

mathematical modelling and problem solving (Goldin, 2010; Greefrath et al., 2022), and, as

in the case of the present study, algorithmic thinking. The aim of the present study, therefore,

is to build on this foundational research by examining how more experienced Year 12

mathematics students, in a context where graph theory is included in the curriculum, engage

algorithmic thinking as they are introduced to critical path analysis. Critical path analysis was

 15

used to examine students’ algorithmic thinking in involves the design of multiple algorithms

that include opportunities for using loops, branching, and variables. The following research

question guided this study:

How do students use the cognitive skills of algorithmic thinking to develop algorithms?

Conceptual Framework

In this section, I outline a working conceptual framework for algorithmic thinking that

I developed throughout this study. I began constructing this framework by assuming that

algorithmic thinking is defined by a subset of cognitive skills as defined in the literature.

There are conflicting perspectives about which cognitive skills constitute algorithmic

thinking, so I turned to the algorithmic thinking process outlined in Table 1 and determined

that algorithmic thinking involves decomposition, abstraction, algorithmization, and

debugging. Finally, I developed elaborations for each of the cognitive skills based on my

review of mathematics, computer science, and computational thinking education literature.

The resultant conceptual framework for algorithmic thinking, contained in Table 2, is a

working framework because I acknowledge that discussions about definitions are ongoing

and unlikely to be resolved in a single paper such as this.

Table 2

Framework for Algorithmic Thinking

Cognitive Skills Elaboration

Decomposition Break down a problem or system into subproblems or smaller parts

(Shute et al., 2017; Stephens & Kadijevich, 2020)

Abstraction Determine the essential components of a problem or system, which

involves:

• collecting relevant information/data and disregarding irrelevant

information/data (Shute et al., 2017; Wetzel et al., 2020)

• building representations using the essential components that show

how the problem or system works using an appropriate

representation (Hart, 1998; Shute et al., 2017; Wing, 2006).

 16

Algorithmization Design a set of ordered steps to produce a solution or achieve a goal

(Lockwood et al., 2016; Shute et al., 2017). Steps include algorithmic

concepts such as:

• inputs (Mingus & Grassl, 1998)

• basic actions (Futschek, 2006; Moala, 2021)

• outputs (Mingus & Grassl, 1998)

• branching (if/then/else) (Peel et al., 2019)

• iteration/loops (Peel et al., 2019)

• variables/intermediate results (Mingus & Grassl, 1998; Peel et al.,

2019).

Debugging Test that the algorithm solves the problem or other problems of the

same type, which involves:

• detecting and fixing errors (Moala et al., 2019; Shute et al., 2017)

• considering alternative approaches (Ginat, 2008; Moala et al.,

2019)

• improve efficiency of algorithm (Futschek & Moschitz, 2010; Hart,

1998).

As will become apparent in the sections that following, I found it necessary to

develop a secondary construct to explain the ways that students used the cognitive skills,

which I called subskills. By way of example, the accounting for features of the solution

mechanism (Moala, 2021) outlined above would be a subskill of the basic actions elaboration

of the algorithmization cognitive skill because it explains one way that students might

develop instructions for an algorithm. Similarly, the practice of patching (Moala et al., 2019)

would be a subskill of the detecting and fixing errors elaboration of the debugging cognitive

skill because it explains one way that students might debug their algorithm. I used the

construct of a subskill to operationalize the working framework to answer the research

question.

Critical Path Analysis

Before describing the methodology, I will first provide a brief analysis of critical path

analysis, which was the topic used in this study used to examine students’ algorithmic

thinking. Critical path analysis (or critical path method) is a widely-used project modeling

tool developed during the 1950s to analyze and manage the scheduling of large engineering

 17

and military projects comprised of many interdependent activities (Kelley & Walker, 1959).

The goal of critical path analysis is to build a model of a project and develop a schedule to

ensure that a project is completed on time. Schedules typically include the following

information:

(1) Earliest Start Time (EST): the earliest time the activity must start without delaying the

entire project.

(2) Latest Finishing Time (LFT): the latest possible time the activity can finish without

delaying the entire project.

(3) Float time: the duration that an activity can be delayed without delaying the

completion of the project.

(4) Critical path: The critical path of a project is the path(s) from start to finish in the

graph comprised of the sequence of activities that cannot be delayed without delaying

the entire project. The minimum time required to complete the project is equal to the

sum of the durations of the activities that comprise the critical path.

The purpose of critical path analysis for project managers is to identify the activities that

cannot be delayed without delaying the entire project as well as activities with positive float

time so that resources can be temporarily diverted from these activities to activities without

float time, when necessary, to ensure the project is completed on time. I will use the

preparation of the Waffle Breakfast, pictured in Figure 1, as an example project to explain the

purpose of each step in critical path analysis in terms of the algorithmic thinking skills.

 18

Figure 1

Waffle Breakfast Project* and Precedence Table

Activity Description
Immediate

Predecessor(s)
Duration

(seconds)

A Heat stove – 5

B Cook sausage A 30

C Cook waffle A 20

D Wash raspberries C 5

E Plate raspberries D 3

F Load cream C 8

G Plate waffle and sausages B, C 10

H Add ketchup and cream F, G 20

*Project is shown as a picture of a meal made with playdough, which is discussed in the methodology section.

Decomposition

The first step in critical path analysis is to decompose the project into a list of all the

activities required to complete the project, the duration of each of these activities, and the

dependent relationships between the activities. This information can be summarized in a

precedence table, as shown in Figure 1, which also shows that each activity has been

assigned a letter. The immediate predecessor(s) column shows the activity or activities that

must occur directly before an activity can start. For example, the plate waffle and sausages

 19

activity (𝐺) can only commence after both cook sausage (𝐵) and cook waffle (𝐶) activities

are completed.

Abstraction

The second step in critical path analysis is to construct a visual representation of the

project using a vertex-edge graph, also referred to as a PERT (Program Evaluation and

Review Technique) chart (Hart, 2008). Figure 2 shows such a graph for the Waffle Breakfast

project. The first and last vertices represent the start and completion of the project

respectively, and the vertices in between represent the end of an activity and the beginning of

the next activity. The edges represent the duration of the activity in between the start and end

of that activity. The purpose of constructing a vertex-edge graph is to make the precedence

relationships between the activities more apparent than in the precedence table, particularly

for activities that occur concurrently but have different durations.

Figure 2

Waffle Breakfast Vertex-Edge Graph

The vertices in Figure 2 are drawn as a box with two cells, which display the schedule

for the project in terms of the EST and LFT for the activities. The EST for an activity is

written in the left-hand cell and the LFT is written in the right-hand cell of the subsequent

vertex. The durations of each activity are written on the edge that represents that activity,

with an arrow facing towards the end of the project representing the passage of time. For

example, the cook sausage activity (𝐵) can only start after the heat stove activity (𝐴) is

finished, hence the EST for 𝐵 is 5 seconds, which is written in the left-hand cell of the vertex

 20

at the start of Activity 𝐵. The duration of 𝐵 is 30 seconds, so 30 seconds is added to the EST

resulting in a LFT of 35 seconds, which is written in the right-hand cell of the vertex at the

end of Activity 𝐵.

The cook waffle activity (𝐶) also starts at 5 seconds and the duration of this activity is

20 seconds. However, as noted above, the plate waffle and sausage activity (𝐺) can only start

once both activities 𝐵 and 𝐶 are finished. Therefore, Activity 𝐶 must also have a LFT of 35

seconds otherwise the schedule would indicate that 𝐺 can start before activity 𝐵 is finished.

The earliest 𝐵 can start is 5 seconds and the latest it can finish is 35 seconds, but its duration

is 20 seconds, therefore it has a float time of 10 seconds. In other words, the cook waffle

activity can be delayed up to 10 seconds without delaying the start of activity 𝐺. The vertex-

edge graph makes these precedence relationships easier to follow than the precedence table

(Kelley & Walker, 1959).

Activity 𝐶 is an immediate predecessor for activities 𝐷 and 𝐹 in addition to activity 𝐺,

however, activity 𝐵 is not an immediate predecessor for these activities. To represent this

arrangement, a dummy activity with a duration of 0 is drawn as a dotted edge, as shown in

Figure 2, to separate activity 𝐵 from activities 𝐷 and 𝐹.

Algorithms

The third step in critical path analysis is to analyze the graph to plan a schedule for

the project using three graph algorithms, which use the graph as inputs. Forward scanning is

used to determine the EST for each activity and the minimum time required to complete the

project. Forward scanning begins by assigning a 0 to the EST at the first vertex. The duration

of the subsequent activity is added to the EST, which becomes the EST for the next activity.

For example, the EST for 𝐴 is 0, the EST for 𝐵 is 0 + 5 = 5, the EST for G is 5 + 30 = 35.

This fundamental operation is repeated from the start of the graph until the end of the graph,

and therefore requires the user to traverse the graph activity-by-activity because the EST of

 21

one activity becomes an input for the subsequent activity. An exception is needed for parallel

activities with different durations, such as activities 𝐵 and 𝐶 outlined above, and the highest

EST is used in these instances. The minimum time required to complete the entire project is

the value of the EST at the final vertex (65).

The second algorithm is backwards scanning and is used to determine the LFT for

each activity. Backwards scanning begins by assigning the minimum time required to

complete the project to the LFT at the last vertex because this is the latest finishing time for

the entire project. The duration of each preceding activity is then subtracted from the LFT,

which becomes the LFT for the preceding activity. For example, 65 is written in the LFT at

the final vertex and then 20 and 3 are subtracted from 65 to determine the LFT for activities

𝐻 and 𝐸 respectively. This fundamental operation is repeated from the end of the graph back

to the start, activity-by-activity, and each LFT becomes an input for the next iteration. The

smallest difference between LFT and duration is used for vertices that are preceded by more

than one activity, otherwise the preceding activity will be scheduled too late, and the project

will be delayed. For example, the LFT for both 𝐵 and 𝐶 is 35; however, the LFT for 𝐴 must

be 35 − 30 = 5 rather than 35 − 20 = 15 because if 𝐴 is scheduled any later than 5, it will

delay the start of 𝐺 and hence the whole project.

As outlined above, this gives rise to float time for activity 𝐶, which can be calculated

as 𝐿𝐹𝑇 − 𝐸𝑆𝑇 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 35 − 20 − 5 = 10. An algorithm for float time is to repeat this

calculation for each activity in the project.

Methodology

I used task-based interviews (Goldin, 2000) to investigate how students’ use the

algorithmic thinking cognitive skills in response to critical path analysis tasks, which is an

appropriate methodology in generative studies such as this because my objective was to

generate new observation categories for algorithmic thinking (Clements, 2000). I conducted

 22

the interviews with pairs of students so that they could discuss their thinking, which enabled

me to make observations and draw inferences about their cognitive skills from both verbal

and nonverbal behaviors (Goldin, 2000).

Participants

Four pairs of Grade 12 students (n = 8; mean age = 17.5) from a large, high-

socioeconomic secondary school in Australia participated in the study. The students were

studying General Mathematics (QCAA, 2019) and were in their final semester of school.

Table 3 shows the names (pseudonyms), age, and grade at the end of Semester 1 for the

students in each pair. The students and their parents gave ethical assent and consent to

participate respectively.

Table 3

Demographic Information about Participants

Pair Name (pseudonym) Age at time of study Grade at end of Semester 1

A Archer 17 A

 Aubrey 18 B

B Brooks 17 B

 Bradley 17 B

C Carter 18 B

 Chandler 18 A

D Dakota 18 A

 Dominique 17 B

I recruited these students because at the time of the study they had sufficient

experience in the fundamentals of graph theory necessary to complete the critical path

analysis tasks and thus enable me to focus on their algorithmic thinking. First, the students

had recently completed an introductory unit on graphs and networks, which involved learning

how to draw vertex-edge graphs and construct adjacency matrices. Second, they had

experience in tasks that required them to develop algorithms for solving shortest path and

 23

minimum spanning tree problems, and then compare their algorithms with standard

algorithms. Hence, the students were familiar with the sequential structure of graph

algorithms written in plain English and the process of algorithmic thinking. Note that the

students had not covered critical path analysis at the time of the study and this study formed

their introduction to the topic.

Tasks

I designed a sequence of six algorithmatizing tasks that progressed from simple to

complex, and included normal and special cases, the latter defined as a project with a dummy

activity. Table 4 contains the sequence of tasks, complexity of each project, and the purpose

of each task in terms of designing algorithms for EST, LFT, and float times. Appendices A–D

contain the tasks sheets that I gave to the students during the interviews. I structured the

sequence in this way because often students can solve graph problems with only a few

vertices and edges easily, and then generalize their solution method for larger graphs (Goldin,

2010). This design feature enabled me to examine how students used algorithmic concepts to

adjust the fundamental operations designed for simple/normal cases for complex/special

cases of the same class of problem.

 24

Table 4

Sequence of Tasks

Tasks

Complexity

Purpose
Number

of Paths

Number of

Activities

Normal/

Special

1. Hamburger Patty 1 3 normal • decompose and abstract problem

• make sense of EST and LFT

2. Hamburger Patty

with Melted Cheese

2 5 normal • account for parallel activities

3. Hamburger* 3 7 normal • test and refine fundamental

operations and

4. Parfait* 3 8 normal • decompose and abstract more

complex problem

• apply fundamental operations for

calculating EST, LFT, and float

time

5. Waffle Breakfast 4 8 special • account for dummy activity

• design general algorithm for EST

and LFT

6. Decontextualized 3 8 normal • design general algorithm float time

• debug general algorithms

*Number of paths or activities are indicative and may vary for Hamburger and Parfait projects depending on

students’ formulation.

The tasks for sessions 1 (tasks 1–3) and 2 (task 4) were designed so that students

would be compelled to formulate the problem before solving the scheduling problems.

Sessions 3 (task 5) and 4 (task 6) were intended to elicit students’ algorithmization and

debugging skills.

In designing the tasks, I had to account for the syllabus requirements, which required

student to be able to “construct a network diagram to represent the durations and

interdependencies of activities that must be completed during the project, e.g. preparing a

meal” (QCAA, 2019, p. 40). Hence, all the tasks required students to construct a graph. I

introduced the specific critical-path notation described above in the first session and the use

 25

of the precedence table in the third and fourth sessions. I designed the first three tasks in meal

preparation contexts, as suggested by the syllabus. Aside from being a readily accessible

context for these students—as opposed to contexts such as planning a festival or building a

house (Hart et al., 2008)—the meal context enabled me to use playdough and toy equipment

as proxies for real equipment that could be operated in real time. Students were able to

physically quantify the durations of the activities and hence emulate the temporal differences

between activities that give rise to the scheduling problems, which critical path analysis is

intended to solve. The fourth task was presented without a context because I wanted students

to begin thinking about critical path analysis as a general method that could be used beyond

the food preparation context.

Data Collection

The interviews occurred over four 60- to 90-minute sessions that took place each

week for four weeks out of school hours. The sessions coincided with the COVID-19

pandemic, which shaped the task environment. Government regulations required us to sit at

least 1.5 metres away from each other and we achieved this by arranging the desks into a U-

shape. The two students sat at the side and bottom of the U, and I sat on the opposite side.

At the start of interviews 1 and 2, I posed the projects to the students by providing a

picture of the meal, the toy equipment, and/or precedence table (the first page of the task

sheets in the appendices). The students formulated models of the projects, which included the

activities, durations, and vertex-edge graphs, after which I posed the scheduling problems

(the subsequent pages of the task sheets in the appendices). At the start of interview 3, I

provided the preformulated model of the Waffle Breakfast in the form of a precedence table,

which the students used to construct a graph, solve the scheduling problems, and then draft a

general algorithm for finding EST and LFT. At the start of interview 4, I asked students to

design algorithms for finding float times and the critical path. I then provided the students

 26

with a precedence table and incomplete graph, which the students used to test and refine the

draft algorithms. At times, I prompted students to explain their reasoning about their

nonverbal actions and made field notes about their responses as I attempted to follow their

thinking. I also made suggestions to help overcome impasses when they arose (Goldin, 2000),

and these prompts are written in italics on the task sheets in the appendices (but did not

appear on the students’ version). Students also had access to additional blank A4 paper. The

students wrote their responses individually either on paper (which I copied after the sessions),

on the computer at the front of the room, which they operated from a wireless keyboard and

mouse or on a wall-mounted whiteboard. I recorded the interviews via Zoom with one

camera positioned so that it captured the students and the wall-mounted whiteboard. Zoom

also captured the virtual whiteboard that some students used to record their working, which I

downloaded using the Save Whiteboard function. I transcribed the audio files generated from

the Zoom recordings and paired these transcriptions with the associated student responses.

Analysis

The data set included transcriptions of the audio recordings, video recordings, copies

of student work, photographs of the wall-mounted whiteboard, and screenshots of the virtual

whiteboard. I prepared the data for analysis by constructing a display of the transcriptions and

associated student responses. I analyzed the data using a two-phase deductive-inductive

approach. During the deductive phase, I read through the data set and coded transcriptions

and student work according to the four cognitive skills. For example, I coded the first group

of lines in Figure 3 as “decomposition” and the students’ work as “abstraction”. I began the

subsequent inductive phase by grouping all instances relating to each of the four cognitive

skills together. Each of these skills required slightly different methods of analysis, which I

will discuss in turn.

 27

Figure 3

Excerpts from Group A’s First Interview

Transcript Student Response Memo

00:04:42 Aubrey

Is it, like, the steps?

00:04:45 Archer

Is it like take the Play-

Doh [meat] out?

00:04:49 Aubrey

Yeah, open the lid.

00:04:52 Archer

Yup.

00:04:55 Aubrey

Take the playdough out.

00:04:56 Archer

And then put it in this

thing [picks up toy mold].

Make a patty! [Makes patty

using mold.]

Decomposition

• decomposes

project into

discrete

activities

• uses toy

equipment to

emulate tasks

• produces

sequential list

of activities

Abstraction

Decomposition and Debugging. To analyze students’ decomposition and debugging skills, I

re-read each line of the dual display while watching the video footage and wrote my

interpretations using memos (Corbin & Strauss, 2015). For example, the third column in

Figure 3 shows my memo for the first decomposition episode of the Hamburger project,

which reflects my interpretation of the students’ physical, verbal, and written behaviors. I

then grouped similar memos together to form what I called subskills (described above). The

memo in Figure 3 was grouped with similar memos to form a subskill “analyze source

 28

material”, which represented the students’ ability to determine the activities by either looking

at the picture or emulating the activities with the toy equipment.

Abstraction. To analyze abstraction skills, I read through the relevant episodes and wrote

memos of my interpretation of the students’ verbal reasoning about abstraction choices and

how they traversed the graphs. I then turned to their written responses and analyzed the

vertices, edges, and labels as shown in Figure 3. I grouped similar memos together to produce

codes for abstraction subskills.

Algorithmization. I began my analysis of algorithmization by reading through the relevant

episodes and coding the students’ verbal and written behavior according to the elements of

algorithms from Table 2. In the third and fourth sessions, the students wrote their algorithms

in plain-English text, as illustrated by Group C’s algorithm for float time in

 29

Figure 4a. I analyzed the text by coding each word, phase, or clause according to the

elements of algorithms. For example, I coded the word “calculate” in step 2 in Carter’s

algorithm (

 30

Figure 4b) as action; “float time” and “float” as output; “LFT”, “EST”, and “duration” as

input; and the mathematical operators “=” and “−” as operator. After coding the transcripts

and algorithms according to the elements, I re-read the transcripts and wrote memos to

describe my interpretations of the students’ reasoning about these algorithmic elements and

produced subskills by grouping similar memos together.

 31

Figure 4

Analysis of Group C’s Algorithm for Float Time

(a) before analysis

(b) with analysis

At each stage of the deductive and inductive analysis, an experienced mathematics

educator reviewed my interpretations, and we resolved any conflicting interpretations through

discussion. Finally, I used comparative analysis (Corbin & Strauss, 2015) until no new codes

emerged.

Findings

Describe, Abstract, and Decompose Problem

The first phase of the algorithmic thinking process is to specify the problem so that it

can be solved. The findings show that the students first decomposed the Hamburger and

Parfait projects into discrete activities by analyzing the source material. This involved

making observations from the picture to identify the components of the meal and handling the

toy equipment to determine how the components are produced, as illustrated by the following

excerpt from Group A's interview:

1 Archer: Let’s look at the picture and work this out…One. Make ice-cream. With this machine

[points to toy ice-cream machine].

2 Aubrey: Make macaroon, cut peach…with these? [picks up toy molds]

 32

3 Archer: …cut raspberries…

4 Aubrey: You don’t need to cut raspberries! You just put them on top.

5 Archer: Yeah, you do… [points to picture] …if you look, they are cut in halves…anyway we

need a step.

6 Aubrey: Okay.

7 Archer: Five. Serve ice-cream. What then?

8 Aubrey: Add fruit?

9 Archer: [Points to picture] Place macaroon on plate.

10 How many workers are we going to have in this parfait shop?

11 Aubrey: Two.

12 Archer: Yeah, cause there’s two of us.

13 Aubrey: One makes the ice-cream, one makes the…

14 Archer: …macaroon!

15 Both: [Laughter.]

16 Aubrey: We have to split the macaroon one up.

17 Archer: Oh, you’re joking!

18 Aubrey: We need steps for that one.

19 Archer: Oh, you’re joking! Okay let’s do it.

This excerpt shows how the students decomposed the project into discrete activities

by analyzing the picture of the parfait to determine the components (ice-cream, macaron,

peach, and raspberry pieces) and linking these components with the relevant toy equipment

(lines 1–9). They also formulated a draft list of sequential activities based on their ongoing

analysis of the parfait, as illustrated in (Lines 10–19 of Group A’s excerpt also illustrate how

the students also recomposed activities into two separate paths. Archer and Aubrey decided

that there were two “workers” involved in preparing the meal (lines 10–12) and that each

worker would complete a separate component. They then decomposed the “make macron

[sic]” activity further into activities H–K (see Error! Not a valid bookmark self-

reference.a) and recomposed the relevant activities into paths for each worker: the

“Strawberry Ice-cream” path (𝐴 − 𝐵 − 𝐶 − 𝐻) and the “Blueberry Macaroon” path (𝐷 − 𝐸 −

𝐹 − 𝐺 − 𝐻).

Table 5 contains the subskills for abstraction that I identified across the sequence of

tasks according to the two elaborations established in the existing literature (see Table 2), and

I will address each of these elaborations in turn.

 33

Figure 5a).

Lines 10–19 of Group A’s excerpt also illustrate how the students also recomposed

activities into two separate paths. Archer and Aubrey decided that there were two “workers”

involved in preparing the meal (lines 10–12) and that each worker would complete a separate

component. They then decomposed the “make macron [sic]” activity further into activities

H–K (see Error! Not a valid bookmark self-reference.a) and recomposed the relevant

activities into paths for each worker: the “Strawberry Ice-cream” path (𝐴 − 𝐵 − 𝐶 − 𝐻) and

the “Blueberry Macaroon” path (𝐷 − 𝐸 − 𝐹 − 𝐺 − 𝐻).

Table 5 contains the subskills for abstraction that I identified across the sequence of

tasks according to the two elaborations established in the existing literature (see Table 2), and

I will address each of these elaborations in turn.

Figure 5

Group A Parfait Project

(a)

(b)

 34

Table 5

Abstraction Subskills

Subskills Tasks

Collecting relevant information/data and disregarding irrelevant information/data

(i) identify and/or quantify variable Hamburger Patty

• identify time as relevant variable

Hamburger, Parfait

• quantify time using stop-watch function on cell phone

(ii) establish implicit criteria for

relevance of information

Hamburger, Parfait

• information effects time

• information effects number of paths

Building representations using the essential components that shows how the problem or system

works using an appropriate representation

(iii) select an appropriate type of

representation

Hamburger Patty

• matrix or vertex-edge graph

(iv) determine how to represent

essential components

Hamburger, Parfait, Waffle Breakfast

• edges represent passing of time for an activity

• vertices represent start and finish for an activity

• draw edges from start of project (on left of page) to

finish (on right of page)

• arrows reflect order of activities

• use precedent relationships to determine position of

edges and parallel activities

The first subskill is the ability to identify and/or quantify the relevant variable. All

groups identified time as the primary variable involved in planning the Hamburger Patty

project. They quantified the duration of each activity by using the stopwatch function on their

cell phones to time how long it took to complete the activities with the toy equipment.

The second subskill was the ability to establish implicit criteria for relevance of

information. Each group appeared to use two implicit criteria to decide whether information

about the project was relevant or not: time and paths. The groups appeared to use information

that affected the time taken for activities or the number of paths required, and disregard

information it if did not. For example, Group C regarded the quantity of ingredients

(playdough) required to prepare parts of the meals as irrelevant because it would not affect

the time required to complete the activity. Conversely, the number of workers assumed to be

 35

preparing the meal, as discussed in lines 10–12 by Group A above, was information regarded

as relevant because it affected the number of paths.

The third subskill is the ability to select an appropriate type of representation. The

groups all selected a vertex-edge graph, as opposed to a matrix, to represent their Hamburger

Patty project, and appeared to use their knowledge about the properties of graphs to justify

their selection. For example, Group B considered both types of representations in the

following discussion:

1 Brooks: Okay, should we use a matrix or graph?

2 Bradley: Not matrix.

3 Researcher: What makes you say that Bradley?

4 Bradley: Because we need to show, like, the steps.

5 Brooks: Yeah, in a matrix.

6 Bradley: No, like you can’t show make patty comes before cook patty in a matrix.

7 That would only show that they are connected.

8 If you drew a graph, you can literally show the order.

9 Brooks: Okay, jokes. You’re right.

In line 5, Brooks asserted that a matrix was an appropriate representation, but Bradley argued

that a graph was appropriate because it would show the unidirectional links between the

activities (line 6, 8). She also argued that a matrix contains only the number of links between

each activity (line 7), which suggests that knowledge about the properties of representations

underpins the ability to select an appropriate representation.

Determine how to represent the essential components was found to be a distinct

subskill for this elaboration of abstraction. I will use two examples of students’ difficulties

with these subskills to illustrate this finding. In the Hamburger Patty project, three of the four

groups initially represented the activities as vertices and the edges as durations, as illustrated

by Group A’s graph in Figure 3. In contrast, Group B represented the activities and their

durations as edges, and the start and finish of these activities as vertices (Figure 6). Note that

I introduced the notational system described above to the students after they had decided to

use a graph to represent the project Hamburger with Patty project.

 36

Figure 6

Group B’s Vertex-Edge Graphs for Hamburger Patty

Algorithm Design

Having specified the problem, the next stage in the algorithmic thinking process was to

design algorithms for solving the scheduling problems. Table 6 contains a summary of the

algorithmization subskills used by the students to design viable algorithms. This table shows

that the fundamental operations for EFT and LFT devised for the Hamburger Patty project,

and the fundamental operation for float time devised for the Hamburger Patty with Cheese

project, were sustained throughout the remainder of the tasks, but adjusted using algorithmic

concepts.

 37

Figure 7 contains Group D’s final EST algorithm and Group C’s final LFT algorithm. I will

refer to Table 6,

 38

Figure 4 (above), and

 39

Figure 7 throughout this section to exemplify the findings.

Table 6

Algorithmization Subskills*

Subskills Earliest Start Time Latest Start Time Float Time

(i) determine inputs durations and

previous EST

Hamburger Patty

durations and

subsequent LFT

Hamburger Patty

EST, LFT, durations

Hamburger Patty

with Cheese

(ii) devise fundamental

operation to solve problem

add duration to

previous EST

Hamburger Patty

subtract duration

from subsequent

LFT

Hamburger Patty

𝐿𝐹𝑇 − 𝐸𝑆𝑇
− 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Hamburger Patty

with Cheese

(iii) determine output EST; minimum time

Hamburger Patty

LFT

Hamburger Patty

float time

Hamburger Patty

with Cheese

(iv) use loop to repeat

fundamental operation

repeat action for

each activity until

end of graph

Hamburger Patty

repeat action for

each activity until

start of graph

Hamburger Patty

repeat action for

each activity in the

graph

Hamburger Patty

with Cheese

(v) use branching to account

for constraints of problem

if two or more edges

finish at a vertex

then select the

highest EST

Hamburger Patty

with Cheese

if two or more edges

finish at a vertex

then select the

lowest LFT

Hamburger Patty

with Cheese

–

(vi) use variable to store

intermediate results

if two or more edges

finish at a vertex,

enter the ESTs

outside the vertex

Waffle Breakfast

Project

If two or more edges

finish at a vertex,

enter the LFTs

outside the vertex

Waffle Breakfast

Project

–

*Projects appearing in italics indicate when the concept emerged in relation to each algorithm.

 40

Figure 7

Group D’s EST Algorithm and Group C’s LFT Algorithm

(a) Group D’s EST Algorithm

(b) Group C’s LFT Algorithm

Fundamental Operations

All groups devised fundamental operations for determining the EST and LFT to solve

the Hamburger Patty problem. For example, Group A first devised the fundamental operation

for determining EST by making sense of the sequential relationships between the activities,

as illustrated by Archer’s written response in Figure 8 and the following explanation:

1 Researcher: How did you get the earliest starting time?

2 Archer: If you start at zero, then like, it takes 10 seconds to make the patty. And you need to

finish making the patty before you grill it. So, you’re starting grilling at 10 seconds.

3 Researcher: What about “serve patty”?

4 Archer: Same thing. Like, you can’t serve the patty until you’ve grilled it. So, the earliest start

time is 50 seconds.

5 Researcher: How did you get 50 seconds?

6 Archer: Well, its 10 seconds plus 40 seconds for grilling.

 41

In line 2, Archer explained that the EST for the cook patty activity was 10 seconds because

this activity could occur only after the patty has been made, which took 10 seconds. In line 4,

Archer again used the sequential relationships between the activities to explain that the EST

for the serve patty activity was 50 seconds because the durations of the preceding two

activities added to 50.

Figure 8

Group A Output for EST and LFT Actions for Hamburger Patty Project

EST LFT

Archer and Aubrey similarly devised the fundamental operation for the LFT by

analyzing the precedent relationships between the activities of the project:

1 Archer: We have to work backwards now.

2 Researcher: What do you mean by that?

3 Archer: Working back and then you have to…so you start…see how it finishes at 54 seconds?

So, if you take off your four seconds, the cooking finishes at 50 seconds.

4 Then if you take off the 40 seconds for cooking…

5 Aubrey: But that’s how long it takes…

6 Archer: Yeah, so that’s when it finishes…after 40 seconds…

7 Aubrey: Oh right, right. Because it takes 10 seconds to make the patty.

8 Archer: Yeah, so it finishes at 50 seconds. And you take 40 seconds off that and make patty

finishes at 10 seconds.

9 You just keep taking each one off! Is that it?

10 Researcher: What do you mean?

11 Archer: Will that always be the case?

12 Aubrey: Yeah, like will you always be able to take the time off to get it?

13 Researcher: What do you think?

14 Archer: It is. I know it. Admit it! [Laughs.]

15 Researcher: Okay, I admit it.

In lines 1 and 3, Archer suggested that the LFT could be determined by traversing the graph

backwards from the minimum time and subtracting the duration of the serving time (4).

 42

This fundamental operation yielded a LFT of 50 seconds, which Archer and Aubrey justified

as the sum of the two remaining activities (lines 4–8).

The groups used the fundamental operations they devised for EST and LFT to solve

the subsequent tasks and included them in their final written algorithms. For example, Group

D used the fundamental operation for EST in the second step of their algorithm, “Add the

duration of the next activity to the EST”. Similarly, Group C used the fundamental operation

for LFT in the second step of their algorithm, “Subtract the duration from LFT and record in

the LFT box at the beginning of the activity”. In each of these steps, the students used the

duration and preceding EST or LFT as inputs that were transformed by the fundamental

operations into outputs.

The student first devised a fundamental operation to calculate float time in response to the

Hamburger Patty with Cheese project, as will be shown in the Branching section below. As

for the fundamental operations for EST and LFT, the students sustained the use of this

fundamental operation throughout the sequence of tasks and incorporated it into their final

algorithms, as illustrated by Group’s C’s algorithm in

 43

Figure 4.

Loop

The excepts from Group A used above to illustrate how the students justified their

fundamental operations for EST and LFT also illustrate how the students recognized a pattern

in how their fundamental operations could be repeated for subsequent activities in the project.

For EST, Archer stated in line 4, “same thing” and then repeated the fundamental operation

for the serve patty. Similarly for LFT, in line 9 Archer suggested that the fundamental

operation of subtracting the duration from the previous LFT could be repeated to find the

LFT for each activity in the project. The students also proposed that the pattern of repeatedly

applying the LFT fundamental operation was a general step that would apply to other projects

(10–12).

The other groups also recognized these patterns and expressed them in their final algorithms

as a loop. For example, Step 3 of both Group D’s EST algorithm and Group C’s LFT

algorithm (

 44

Figure 7) contain an instruction to repeat Step 2 for each activity in the project. In

each case, the loop also contains a condition for terminating the loop, that is, stop repeating

Step 2 until all ESTs have been calculated (Group D) or when the start of the project is

reached (Group C). This latter termination condition assumes that the user of the algorithm is

traversing the graph from right to left and will apply Step 2 to parallel activities.

Branching

The Hamburger with Melted Cheese task elicited students’ reasoning about parallel

activities, which ultimately led to the use of branching in the students’ final algorithms.

Group B’s graph for this task, reproduced in Figure 9, shows how they formulated the project

such that the cook patty (B) and cut cheese (C) activities occurred at the same time, and were

both immediate predecessors of the melt cheese on patty (D) activity. This formulation led

the students to reason about the EST for activity D, as follows:

1 Brooks: First one is zero.

2 Bradley: First one is zero. Yeah.

3 Brooks: And then the next one starts at 10.

4 Bradley: When does cut cheese start?

5 Brooks: It takes 7 seconds into the 20 seconds. It’s how long it will take.

6 But it will start at the same time.

7 Researcher: Start at the same time as what?

8 Brooks: Starts the same time as cook patty.

9 Bradley: Oh, so it’s the same [start] time.

10 Brooks: Yeah, they start at the same time.

11 Bradley: When does melt cheese start?

12 Brooks: Isn’t it 30? Or not? Because you don’t need to add the 7 to the 20.

13 Bradley: It’s 30.

14 Researcher: Why do you say that?

15 Bradley: Because 10 plus 20.

16 Brooks: Oh, so it’s still 30.

In line 6–10, Brooks concluded that their cut cheese activity would start at the same time as

their cook patty activity and, as a result, the duration of the cut cheese activity was not

included in their calculation of the EST for the melt cheese activity (line 12) because it was

shorter (7) than the cook patty activity (20).

 45

Figure 9

Group B’s Hamburger Patty with Melted Cheese Graph

Similarly, this task also required students to reason about the LFT for parallel

activities. For example, Group B compared the two possible LFTs as they traversed the graph

from right to left:

1 Bradley: 30 minus 20 is 10.

2 Brooks: Yeah, I know. What about the 7 seconds? Like 30 minus 7…[uses calculator]…is 23.

3 Bradley: You don’t need that one. Its bigger.

4 Researcher: What do you mean by bigger Bradley?

5 Bradley: Like if you finish making the patty at 23 seconds, it won’t have enough time to cook.

6 Brooks: Yeah, so you gotta choose the 10, the smaller one.

In lines 1 and 2, the students computed the two possible LFTs for their activity A. In lines 3–

5, Bradley claimed that the 23 seconds LFT was not needed because it would delay activity

D. In line 6, Brooks appears to devise a branching condition that the lower LFT should be

selected when two (or more) activities begin at a vertex.

The reasoning about parallel activities illustrated by these two excerpts continued throughout

the subsequent tasks, which all had parallel activities. The students then transformed this

reasoning into branching statements in their final algorithms, as illustrated by the second

steps in

 46

Figure 7. Group D’s EST algorithm contains if/then conditions that instruct the user

how to apply the fundamental operation to instances of either one activity, or two or more

activities. Group C, on the other hand, included an if/then condition for only two activities

finishing at a vertex as an exception to the initial instruction about how to apply the basic

LFT action. This branching statement only accounts for two activities, and is thus an instance

in which the algorithm would not work for all cases.

Variables

Three groups included a variable to store intermediate results for ESTs and LFTs at vertices

that represented the beginning or end of multiple activities. Figure 10 is a screenshot of

Group D’s response to the decontextualized project and shows how the students wrote the

intermediate values of the ESTs for activities G (8 and 19) and H (24 and 25) outside the

vertex. These intermediate values reflect Step (ii) of their EST algorithm (

 47

Figure 7), which forms part of the branching statement. Dakota explained this use of

intermediate variables as follows:

1 Dakota: You don’t know what’s going to be the EST for G. It could be D, it could be F. [Points

to graph.] It depends on how you’re doing it.

2 Researcher: What do you mean by that?

3 Dakota: Like, if you go along the top first [points to graph], you have to watch out for F

because D also comes before G. So, it’s like a way to keep track of what you’re doing.

In line 1, Dakota recognized that the EST for G is dependent on the completion of activities

D and F, but will not become apparent until both D and F are considered. She explained

further in line 3 that writing the possible ESTs for G is needed because of how the graph is

being traversed.

Figure 10

Group D’s Decontextualized Project

Inputs

The inputs for each of the three algorithms were the durations, the precedence

relationships between the activities, and the EST or LFT of the preceding or succeeding

activity. Each group determined the durations and precedence relationships themselves in

formulating the hamburger and parfait tasks but were provided with these inputs for the

waffle breakfast and decontextualized projects.

The inputs used for the fundamental operation were the durations, ESTs and LFTs, but the

selection of these inputs in the students’ algorithms depended on the precedence relationships

between the activities contained in the graph, which in turn depended on traversing the graph.

The students’ algorithms reflected this graph traversal implicitly. For example, Group D’s

EST algorithm (

 48

Figure 7) instructs the user to start at the first vertex and then execute the fundamental

operation on the “next activity”. The loop (step 3) then instructs the user to always choose the

next activity in the graph “until all ESTs have been calculated”, which is somewhat

ambiguous because it does not explicitly account for parallel activities. Similarly, Group C’s

LFT algorithm (

 49

Figure 7) is similarly ambiguous because they instruct the user to “start at the end”

(step 1) and repeat the fundamental operation “until the start of project”.

Figure 11

Group C’s LFT Algorithm

(a) original algorithm

(b) revised algorithm

Test the Solution

Table 7 contains the two debugging subskills that the students used throughout the

tasks. The first, use alternative method to confirm solution, was used to confirm the minimum

time for the Hamburger and Parfait projects. Two groups used a brute-force approach by

using decomposition subskill (ii) and abstraction subskill (v) to decompose the hamburger

project into all possible paths and then compare the total times for each path, as illustrated in

Figure 12.

Table 7

Decomposition Subskills

Subskills Tasks

Considering alternative approaches

(i) use alternative approach to confirm

solution

Hamburger, Parfait

 50

• use brute-force or greedy approaches as alternative

methods

Detecting and fixing errors

(ii) execute algorithm and detect errors

using algorithmic concepts

Waffle Breakfast, Decontextualized

• ambiguous branching statement

• non-terminating loop

• step in wrong order

Figure 12

Group B Paths for Hamburger Project

The other two groups used a greedy approach, that is, they started at the beginning of

the project and chose the edge with the longest duration at each vertex (abstraction subskill

(v)). Dominique (Group D) explained her algorithm as follows:

1 Dominique: Well, this is kind of like shortest path. But instead of using the shortest path, you use

the longest one. You’re finding the longest path.

2 Researcher: Can you show me what you mean?

3 Dominique: So, you take the earliest starting time for cook patty and cut cheese, and then you look

at the next two steps and choose the largest one. Because otherwise it will be too early

to add the cheese.

In line 1, Dominique compared her algorithm with the greedy approach for finding the

shortest path in a graph that the students learned previously, and then provided an example of

her method for examining the nearest neighbor in line 3. Dominique then justified the

selection of the longest duration in terms of the relationships between the ESTs of the two

successive activities (line 3).

The ability to execute algorithm and detect errors using algorithmic concepts was the

second subskill for debugging and, as shown in Table 7, there were three types of errors and

revisions. An ambiguous branching statement refers to a branching statement that did not

contain a condition. For example, Group C found that their branching statement in step 4 of

 51

their original algorithm (Figure 11a) would not be executed at step 2. To correct this error,

they incorporated step 4 into step 2, as shown in Figure 11b. A non-terminating loop error

refers to an iteration step that did not include a condition for when a user should stop

repeating the instruction. Group C corrected this error by adding the condition, “until the start

of the project” (Figure 11b). Finally, a step in wrong order error refers to a situation in which

the students realized that their algorithm would not function as intended if the steps were

carried out in the order given. For example, Group C found that step 4 in their draft algorithm

(Figure 11a) was to be carried out after they moved onto the next activity. To correct this

error, they incorporated the condition into step 2.

Discussion

The aim of the present study was to build on previous literature by examining how

students use the cognitive skills of algorithmic thinking to develop algorithms. The context

used to investigate the research question was critical path analysis because it provides many

opportunities to observe students’ algorithmic thinking. The most significant contribution to

the literature about algorithmic thinking arising from this study relates to how the students

designed viable algorithms in ways that differ substantially from prior research. In this

section, I begin by discussing the findings related to algorithm design before addressing how

the students used decomposition and abstraction to formulate the projects.

Algorithm Design

Previous research into the approaches used by novice students to design graph

algorithms suggests that they tend to base their algorithms on their initial numerical solutions

to the problems they are asked to solve (Moala, 2021; Moala et al., 2019). The findings of the

present study build on this research by showing how the ability to devise a fundamental

operation that is based on an initial solution, but expressed in more general terms, was a

central element of the students’ viable algorithms. The students used the fundamental

 52

operations that they devised to solve the initial problem to solve all the subsequent problems,

and then included the fundamental operations in their final algorithms. These fundamental

operations were comprised of basic mathematical operators (addition, subtraction) and were

based on their reasoning about the goals of the problem. Standard algorithms for solving

other graph algorithms also contain fundamental operations comprised of basic mathematical

operators such as using addition to calculate the shortest distance between two locations

(Dijkstra, 1959) or using an inequality 𝑤1 < 𝑤2 to select the next edge when finding a

minimum spanning tree (Prim, 1957). Indeed, the use of basic mathematical operators to

express fundamental operations can be observed in common algorithms beyond graph theory

such as an inequality sign for the fundamental operation 𝑛1 > 𝑛2 in common algorithms for

sorting sequences of numbers or division in the fundamental operation 𝑚 ÷ 𝑛 in algorithms

for finding the greatest common divisor of two integers, 𝑚 and 𝑛 (Thomas, 2020). Hence, the

finding about the need to devise a fundamental operation that solves the problem is likely to

have general applicability beyond the critical path analysis context in the present study and

hence constitutes a significant contribution to the existing literature about algorithmic

thinking.

The second major finding about students’ algorithm design from the present study is

their use of three algorithmic concepts. First, the students’ reasoning about parallel activities

led to the emergence of a condition for selecting an output for a particular activity based on

their reasoning about the scheduling problems. These conditions were expressed in their final

algorithms as branching statements. There is extremely limited research into students’ use of

branching statements, let alone the reasoning that underpins the construction of those

statements. The findings of the present study, therefore, extend the existing literature by

demonstrating that students’ reasoning about multiple outputs resulting from applying the

fundamental operation requires them to interpret those outputs in terms of the constraints of

 53

the problem. Second, the students’ use of loops emerged when they recognized that the

fundamental operation could be repeated for each activity in their project, that is, for each

edge in the graph. Researchers suggest that pattern recognition is an algorithmic thinking

cognitive skill, although there appears to be limited discussion in the literature about how this

skill is used (Peel et al., 2019; Stephens & Kadijevich, 2020). Peel et al. (2019), however,

suggest that the iteration of a sequence of steps in an algorithm is a pattern, the recognition of

which is manifest in a loop. The students’ use of loops in this study is an instantiation of this

conjecture because the students first recognized the pattern of repeatedly applying the

fundamental operation, and then constructed an if/then instruction based on their recognition

of that pattern. This finding extends the existing literature by showing one way in which

pattern recognition is used in algorithmic thinking, but further research into other ways that

this skill can be used is needed.

Finally, the students in this study used a variable to keep track of intermediate results

returned by the repeated application of the fundamental operation, specifically at vertices that

represented the start or finish of multiple edges. The conditions contained in the branching

statements mentioned above depended on these values either explicitly or implicitly.

Researchers have long recognized the need for students to comprehend that a variable in an

algorithm is used to assign an intermediate value that may change with subsequent iterations

of an instruction, which is different from how a variable is used in algebra (Knuth, 1985;

Modeste, 2016). The students in the present study had learned how to use a variable in this

way when they learned other graph algorithms but recognized that they could use a variable

in this new context when they needed to keep track of the multiple outputs.

The findings about students’ use of fundamental operations, branching statements,

loops, and variables are most likely a consequence of two key features of the tasks sequence.

First, the initial tasks posed in the present study were comprised of only a small number of

 54

vertices and edges, and hence the students easily developed the fundamental operations and

branching conditions that could be generalized to larger graphs (Goldin, 2010). Second, the

complex and special cases of critical path analysis were introduced incrementally, which

enabled the students to recognize the need for a condition when confronted with two or more

outputs at a vertex in a situation deliberately manipulated to do achieve this aim. These two

features of the task design differ substantially from existing studies (Moala, 2021; Moala et

al., 2019), which require students to work with complex graphs initially. From a pedagogical

perspective, such an incremental design may support novice students in developing these

algorithmic concepts.

Describe, Abstract, and Decompose Problem

The students used a range of decomposition and abstraction subskills to formulate the

projects so that the scheduling problems could be solved, and algorithms designed. The

ability to analyze the source materials to break the projects down into discrete activities, as

envisaged by Hart et al. (2008), identify and quantify time as the principle variable, and use

implicit criteria to determine relevant information from the source material (cf Wetzel et al.,

2020) led to the successful formulation of the projects. Choosing an appropriate

representation, determining how to represent the activities using vertices and edges, and

constructing representations were subskills necessary to represent the projects using vertex-

edge graphs accurately. The use of decomposition and abstraction in these ways could just as

easily be interpreted as competence in graph theory (Hart, 2008) or mathematical modeling

(Greefrath et al., 2022; Medová et al., 2019), which reinforces the notion that algorithmic

thinking is a collection of cognitive skills drawn from mathematics and computer science.

However, the ability to select a vertex-edge graph over a matrix to representation should not

be overlooked. The selection in the context of this study was not surprising, given that the

tasks were part of a unit on networks; however, three groups considered using a matrix but

 55

ultimately chose a graph because they appeared to comprehend the underlying structure of

the problem. This subskill is likely to have utility beyond the context of critical path analysis,

and perhaps graph theory, which further research should address.

Test the Solution

Research into the debugging skills of students is also limited and the findings for this

study suggest that students’ ability to use algorithmic concepts was instrumental in the

debugging of their algorithms. The students’ competence in traversing a graph enabled them

to recognize the need to formulate a branching statement and/or add a branching statement in

response to detecting an error during the debugging session. Similarly, their competence in

traversing a graph from start to finish enabled them to identify the opportunity to use iteration

and/or recognize and fix a non-terminating loop during the debugging session. The students’

approaches to debugging are consistent with the patching practice identified by Moala et al.

(2019) in that the students added, removed, or otherwise adjusted steps but retained the

structure of the algorithm. However, the students’ recognition of errors in their use of

algorithmic concepts is a subskill that enhanced the accuracy of their algorithms.

Limitations

I acknowledge that my claims about algorithmic thinking and the associated subskills

are limited in at least four significant ways. First, the subskills are limited to critical path

analysis problems posed within a food preparation context, although the students did appear

to generalize their algorithms to solve the same scheduling problems for a decontextualized

project. Second, the reproducibility of the responses to the projects used in this study by

students in other cohorts will be limited because the fake meals and toy equipment were

familiar to the students. However, similar, simple projects can be devised by adapting the

design of these tasks to projects familiar to students in other contexts. Third, the study was

conducted during the COVID-19 pandemic restrictions, which necessitated various

 56

adjustments to ensure the safety of the participants. Although I took reasonable steps to

minimize the effect of these adjustments on the students’ ability to think or produce written

and verbal responses, the potential impact of the pandemic on the students should be

considered when interpreting the task environment. Finally, the subskills documented in this

study emerged out of an instructional sequence designed to support my operationalization of

algorithmic thinking. Although I adapted an approach suggested by previous researchers

(Hart et al., 2008), my approach to designing the tasks differs substantially from the

approaches taken in more closely-related research (Moala, 2021; Moala et al., 2019). These

differences in task design limit the comparability of this study, and therefore further research

should focus on the difference in task design if this type of research is to support teachers as

they begin to embed algorithmic thinking into mathematics education.

 57

References

Abramovich, S. (2015). Mathematical problem posing as a link between algorithmic thinking

and conceptual knowledge. Teaching of Mathematics, 18(2), 45–60.

Anderson, N. D. (2016). A call for computational thinking in undergraduate psychology.

Psychology Learning & Teaching, 15(3), 226–234.

https://doi.org/10.1177/1475725716659252

Australian Curriculum Assessment and Reporting Authority. (2022). Australian Curriculum:

Mathematics v.9. ACARA. https://v9.australiancurriculum.edu.au/

Basu, S., Biswas, G., & Kinnebrew, J. S. (2017). Learner modeling for adaptive scaffolding

in a computational thinking-based science learning environment. User Modeling and

User-Adapted Interaction, 27(1), 5–53. https://doi.org/10.1007/s11257-017-9187-0

Blannin, J., & Symons, D. (2019). Algorithmic thinking in primary schools. In A. Tatnall

(Ed.), Encyclopedia of education and information technologies (pp. 1–8). Springer.

https://doi.org/10.1007/978-3-319-60013-0_128-1

Clements, J. (2000). Analysis of clinical interviews: Foundations and model viability. In A.

E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and

science education (pp. 547–589). Lawrence Erlbaum.

Corbin, J. M., & Strauss, A. L. (2015). Basics of qualitative research: Techniques and

procedures for developing grounded theory (4th ed.). SAGE Publications.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1), 269–271. https://doi.org/10.1007/BF01386390

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic

thinking, cooperativity, creativity, critical thinking, and problem solving: exploring

the relationship between computational thinking skills and academic performance.

Journal of Computers in Education, 4(4), 355–369. https://doi.org/10.1007/s40692-

017-0090-9

Ferrarello, D., & Mammana, M. F. (2018). Graph theory in primary, middle, and high school.

In E. W. Hart & J. Sandefur (Eds.), Teaching and learning discrete mathematics

worldwide: Curriculum and research (pp. 183–200). Springer.

https://doi.org/10.1007/978-3-319-70308-4

Futschek, G. (2006, November 7–11). Algorithmic thinking: The key for understanding

computer science [Paper presentation]. 2nd International Conference on Informatics

in Secondary Schools, Vilnius, Lithuania.

https://doi.org/10.1177/1475725716659252
https://v9.australiancurriculum.edu.au/
https://doi.org/10.1007/s11257-017-9187-0
https://doi.org/10.1007/978-3-319-60013-0_128-1
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/s40692-017-0090-9
https://doi.org/10.1007/s40692-017-0090-9
https://doi.org/10.1007/978-3-319-70308-4

 58

Futschek, G., & Moschitz, J. (2010, August 16–20). Developing algorithmic thinking by

inventing and playing algorithms [Paper presentation]. Constructionism 2010 The

12th EuroLogo Conference, Paris, France.

Gibson, J. P. (2012, July 3–5). Teaching graph algorithms to children of all ages [Paper

presentation]. 17th ACM Annual Conference on Innovation and Technology in

Computer Science Education, Haifa, Israel.

Ginat, D. (2008, March 12–15). Learning from wrong and creative algorithm design [Paper

presentation]. 39th ACM Technical Symposium on Computer Science Education,

Portland, OR, United States.

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in

mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of

research design in mathematics and science education (pp. 517–545). Lawrence

Erlbaum.

Goldin, G. A. (2010). Problem solving heuristics, affect, and discrete mathematics: A

representational discussion. In B. Sriraman & L. D. English (Eds.), Theories of

mathematics education: Seeking new frontiers (pp. 241–250). Springer.

https://doi.org/10.1007/978-3-642-00742-2

Greefrath, G., Siller, H.-S., Vorhölter, K., & Kaiser, G. (2022). Mathematical modelling and

discrete mathematics: opportunities for modern mathematics teaching. ZDM, 54(4),

865–879. https://doi.org/10.1007/s11858-022-01339-5

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the

field. Educational Researcher, 42(1), 38–43.

Hart, E. W. (1998). Algorithmic problem solving in discrete mathematics. In L. Morrow

(Ed.), Teaching and learning algorithms in school mathematics (pp. 251–267).

National Council of Teachers of Mathematics.

Hart, E. W. (2008). Vertex-edge graphs: An essential topic in high school geometry. The

Mathematics Teacher, 102(3), 178–185.

Hart, E. W., DeBellis, V. A., Kenney, M. J., & Rosenstein, J. G. (2008). Navigating through

discrete mathematics in grades 6–12. National Council of Teachers of Mathematics.

Hart, E. W., & Martin, W. G. (2018). Discrete mathematics is essential mathematics in a 21st

Century school curriculum. In E. W. Hart & J. Sandefur (Eds.), Teaching and

learning discrete mathematics worldwide: Curriculum and research (pp. 3–19).

Springer. https://doi.org/10.1007/978-3-319-70308-4

Kanaki, K., Kalogiannakis, M., & Stamovlasis, D. (2020). Assessing algorithmic thinking

skills in early childhood education: Evaluation in physical and natural science

courses. In M. Kalogiannakis & S. Papadakis (Eds.), Handbook of research on tools

https://doi.org/10.1007/978-3-642-00742-2
https://doi.org/10.1007/s11858-022-01339-5
https://doi.org/10.1007/978-3-319-70308-4

 59

for teaching computational thinking in P-12 education (pp. 103–138). IGI Global.

https://doi.org/10.4018/978-1-7998-4576-8.ch005

Kelley, J. E., & Walker, M. R. (1959, December 1–3). Critical-path planning and scheduling

[Paper presentation]. Eastern Joint Computer Conference, Boston, MA, United States.

https://doi.org/10.1145/1460299.1460318

Knuth, D. E. (1985). Algorithmic thinking and mathematical thinking. The American

Mathematical Monthly, 92(3), 170–181.

https://doi.org/10.1080/00029890.1985.11971572

Kwon, K., & Cheon, J. (2019). Exploring problem decomposition and program development

through block-based programs. International Journal of Computer Science Education

in Schools, 3(1), 1–14.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., &

Werner, L. (2011). Computational thinking for youth in practice. ACM Inroads, 2(1),

32–37.

Lockwood, E., Dejarnette, A., Thomas, M., & Mørken, K. (2022, February 2–5).

Exemplifying algorithmic thinking in mathematics education [Paper presentation].

Twelfth Congress of the European Society for Research in Mathematics Education,

Bozen-Bolzano, Italy.

Lockwood, E., DeJarnette, A. F., Asay, A., & Thomas, M. (2016, November 3–6).

Algorithmic thinking: An initial characterization of computational thinking in

mathematics [Paper presentation]. 38th Annual Meeting of the North American

Chapter of the International Group for the Psychology of Mathematics Education,

Tucson, AZ, United States.

Maurer, S. B. (1992). What are algorithms? What is algorithmics. In B. Cornu & A. Ralston

(Eds.), The influence of computers and informatics on mathematics and its teaching

(pp. 39–50). UNESCO.

Maurer, S. B. (1998). What is an algorithm? What is an answer? In L. J. Morrow & M. J.

Kenney (Eds.), The teaching and learning of algorithms in school mathematics: 1998

yearbook (pp. 21–31). National Council of Teachers of Mathematics.

Maurer, S. B., & Ralston, A. (1991). Algorithms: You cannot do discrete mathematics

without them. In M. J. Kenney (Ed.), Discrete mathematics across the curriculum, K–

12 (pp. 195–206). National Council of Teachers of Mathematics.

Medová, J., Páleníková, K., Rybanský, L., & Naštická, Z. (2019). Undergraduate students’

solutions of modeling problems in algorithmic graph theory. Mathematics, 7(7), 1–16.

Mingus, T. T. Y., & Grassl, R. M. (1998). Algorithmic and recursive thinking: Current

beliefs and their implications for the future. In L. J. Morrow & M. J. Kenney (Eds.),

https://doi.org/10.4018/978-1-7998-4576-8.ch005
https://doi.org/10.1145/1460299.1460318
https://doi.org/10.1080/00029890.1985.11971572

 60

The teaching and learning of algorithms in school mathematics: 1998 yearbook (Vol.

1998, pp. 32–43). National Council of Teachers of Mathematics.

Moala, J. G. (2021). Creating algorithms by accounting for features of the solution: the case

of pursuing maximum happiness. Mathematics Education Research Journal, 33(2),

263–284. https://doi.org/10.1007/s13394-019-00288-9

Moala, J. G., Yoon, C., & Kontorovich, I. (2019). Localized considerations and patching:

Accounting for persistent attributes of an algorithm on a contextualized graph theory

task. The Journal of Mathematical Behavior, 55, 100704.

https://doi.org/10.1016/j.jmathb.2019.04.003

Modeste, S. (2016). Impact of informatics on mathematics and its teaching. In F. Gadducci &

M. Tavosanis (Eds.), History and philosophy of computing (pp. 243–255). Springer.

Peel, A., Sadler, T. D., & Friedrichsen, P. (2019). Learning natural selection through

computational thinking: Unplugged design of algorithmic explanations. Journal of

Research in Science Teaching, 56(7), 983–1007. https://doi.org/10.1002/tea.21545

Petosa, R. L. (1985). The benefits of computer programming in developing algorithmic

thinking. The Mathematics Teacher, 78(2), 128–130.

Pólya, G. (1945). How to solve it: A new aspect of mathematical method. Princeton

University Press.

Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System

Technical Journal, 36(6), 1389–1401.

Queensland Curriculum and Assessment Authority. (2019). General Mathematics 2019 v.1.2.

Queensland Curriculum and Assessment Authority.

https://www.qcaa.qld.edu.au/downloads/senior-

qce/syllabuses/snr_maths_general_19_syll.pdf

Ritter, F., & Standl, B. (2023). Promoting student competencies in informatics education by

combining semantic waves and algorithmic thinking. Informatics in Education, 22(1),

141–160. https://doi.org/10.15388/infedu.2023.07

Rosenstein, J. G. (2018). The absence of discrete mathematics in primary and secondary

education in the United States...and why that is counterproductive. In E. W. Hart & J.

Sandefur (Eds.), Teaching and learning discrete mathematics worldwide: Curriculum

and research (pp. 21–40). Springer. https://doi.org/10.1007/978-3-319-70308-4

Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.

Schwank, I. (1993). On the analysis of cognitive structures in algorithmic thinking. Journal

of Mathematical Behavior, 12(2), 209–231.

https://doi.org/10.1007/s13394-019-00288-9
https://doi.org/10.1016/j.jmathb.2019.04.003
https://doi.org/10.1002/tea.21545
https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_maths_general_19_syll.pdf
https://www.qcaa.qld.edu.au/downloads/senior-qce/syllabuses/snr_maths_general_19_syll.pdf
https://doi.org/10.15388/infedu.2023.07
https://doi.org/10.1007/978-3-319-70308-4

 61

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking.

Educational Research Review, 22, 142–158.

Standl, B. (2017). Solving everyday challenges in a computational way of thinking. In V.

Dagienė & A. Hellas (Eds.), Informatics in schools: Focus on learning programming

(pp. 180–191). Springer.

Stephens, M. (2018). Embedding algorithmic thinking more clearly in the mathematics

curriculum. In Y. Shimizu & R. Vithal (Eds.), ICME 24 School mathematics

curriculum reforms: challenges, changes and opportunities (pp. 483–490).

International Commission on Mathematical Instruction.

Stephens, M., & Kadijevich, D. M. (2020). Computational/algorithmic thinking. In S. Lerman

(Ed.), Encyclopedia of mathematics education (pp. 117–123). Springer.

https://doi.org/10.1007/978-3-030-15789-0_100044

Thomas, M. O. J. (2020). Algorithms. In S. Lerman (Ed.), Encyclopedia of mathematics

education (2nd ed., pp. 48–50). Springer. https://doi.org/10.1007/978-3-030-15789-

0_8

Tupouniua, J. G. (2020a). Explicating how students revise their algorithms in response to

counterexamples: building on small nuanced gains. International Journal of

Mathematical Education in Science and Technology, 53(7), 1711–1732.

https://doi.org/10.1080/0020739X.2020.1837402

Tupouniua, J. G. (2020b). Finding correct solution(s) ⇏ creating correct algorithm(s):

Shedding more light on how and why. The Mathematician Educator, 1(2), 102–121.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U.

(2016). Defining computational thinking for mathematics and science classrooms.

Journal of Science Education and Technology, 25(1), 127–147.

https://doi.org/http://dx.doi.org/10.1007/s10956-015-9581-5

Wetzel, S., Milicic, G., & Ludwig, M. (2020, July 6–7). Gifted students' use of computational

thinking skills approaching a graph problem: A case study [Paper presentation]. 12th

International Conference on Education and New Learning Technologies, Palma de

Mallorca, Spain.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical

transactions of the Royal Society of London. Series A: Mathematical, physical, and

engineering sciences, 366(1881), 3717–3725. https://doi.org/10.1098/rsta.2008.0118

Wing, J. M. (2010). Computational thinking: What and why? Computer Science Department,

Carnegie Mellon University.

https://doi.org/10.1007/978-3-030-15789-0_100044
https://doi.org/10.1007/978-3-030-15789-0_8
https://doi.org/10.1007/978-3-030-15789-0_8
https://doi.org/10.1080/0020739X.2020.1837402
https://doi.org/http:/dx.doi.org/10.1007/s10956-015-9581-5
https://doi.org/10.1098/rsta.2008.0118

 62

Appendix A

Hamburger Patty Project

Create a model that represents the preparation of this hamburger patty:

1. What is the minimum time required to prepare the meal?

2. Determine the earliest starting time for each activity.

3. Determine the latest finishing time for each activity.

4. Determine if any of the tasks can be delayed or extended without
increasing the minimum project completion time.

 63

Hamburger Patty with Melted Cheese Project

Create a model that represents the preparation of this hamburger patty
with cheese:

[Prompt: Introduce notational system.]

1. What is the minimum time required to prepare this meal?

2. Determine the earliest starting time for each activity.

3. Determine the latest finishing time for each activity.

4. Determine if any of the tasks can be delayed or extended without
increasing the minimum project completion time.

 64

Hamburger Project

Create a model that represents the preparation of this hamburger:

1. What is the minimum time required to prepare this meal?

2. Determine the earliest starting time for each activity.

3. Determine the latest finishing time for each activity.

4. Determine if any of the tasks can be delayed or extended without
increasing the minimum project completion time.

[Prompt: Introduce definition of critical path.]

 65

Appendix B

Parfait Project

Construct a model that represents the preparation of this strawberry parfait
with blueberry macaroon.

Determine the following:

(a) earliest starting time for each activity

(b) latest finishing time for each activity

(c) any float times

(d) critical path and minimum time required to prepare the dessert.

 66

Appendix C

Waffle Breakfast Project

1. The table below contains the immediate predecessors and durations for the
activities required to prepare the waffle with raspberries and cream, and
sausage with ketchup. Use the information contained in this table, the picture
of the waffle breakfast, and the Play-Doh equipment to formulate a vertex-
edge graph for this project. [Prompt: Can you decompose the project into
separate paths?]

Activity Description
Immediate

Predecessors
Duration

(seconds)

A Heat stove – 5

B Cook sausage A 30

C Cook waffle A 20

D Wash raspberries C 5

E Plate raspberries D 3

F Load cream C 8

G Plate waffle and sausages B, C 10

H Add ketchup and cream F, G 20

2. Determine the following:

(a) EST, LFT, float time for each activity

(b) critical path and minimum time required to prepare the meal.

3. Draft a general algorithm for finding EST and LFT.

 67

Appendix D

Decontextualized Project

Design algorithms for finding float times of all activities in a project and the critical
path for a project.

Use your draft algorithms to complete a critical path analysis of this project. Explain
any revisions you make to your algorithms.

Activity Immediate Predecessors Duration

A – 6

B – 3

C A 9

D B 5

E C 10

F C 4

G D, F 5

H E, G 6

[Prompt: Did that step really explain the step the way you performed it?]

