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Using Algorithmic Thinking to Design Algorithms: The Case of Critical Path Analysis 

Algorithmic thinking is emerging as an important competence in mathematics education, yet 

research appears to be lagging this shift in curricular focus. The aim of this generative study 

is to examine how students use the cognitive skills of algorithmic thinking to design 

algorithms. Task-based interviews were conducted with four pairs of Year 12 students (n = 8) 

to analyze how they used decomposition and abstraction to specify the projects, designed 

algorithms to solve scheduling problems by first devising fundamental operations and then 

using algorithmic concepts to account for complex and special cases of the problems, and 

tested and debugged their algorithms. A deductive-inductive analytical process was used to 

classify students’ responses according to the four cognitive skills to develop sets of subskills 

to describe how the students engaged these cognitive skills. 

Keywords: algorithmic thinking; algorithm; critical path analysis; discrete mathematics; 

graph theory 
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Introduction 

The integration of algorithmic thinking into mathematics curriculums at all levels is 

becoming increasingly important (Stephens, 2018) as students prepare for a society that is 

heavily reliant on digital technologies and complex systems (Wing, 2006). The shift towards 

integrating algorithmic thinking is in line with the recognition that computational thinking—

which some argue encompasses algorithmic thinking among other key practices—is a 

fundamental competence that students should develop in order to meet the current and future 

demands of the STEM workforce (Weintrop et al., 2016; Wing, 2006). Efforts to integrate 

algorithmic thinking in school curriculums is well underway in many countries, including 

Australia, France, Japan, and the United Kingdom (Stephens, 2018). In Australia, recent 

revisions to the F–10 mathematics curriculum now explicitly include algorithmic thinking 

content across the domains of number (Years 3–5), algebra (Year 6), and space (Years 8–9) 

(Australian Curriculum, Assessment and Reporting Authority [ACARA], 2022). 

Mathematics education researchers have long proposed that mathematics curriculums 

should include graph theory topics because they offer students many opportunities to engage 

in algorithmic thinking (Hart, 1998; Rosenstein, 2018). This proposition is reflected in the 

revised Australian mathematics curriculum, which requires Year 10 students to use graph 

theory to model real-world networks using vertex-edge graphs, and then design, test, and 

refine algorithms to solve problems related to these networks (ACARA, 2022). In 

Queensland (the state where this study was conducted), Year 12 students studying General 

Mathematics1 (Queensland Curriculum & Assessment Authority [QCAA], 2019) are 

 

 

 

1General Mathematics is a course for senior students whose intended future study or work does not require a 

knowledge of calculus and is based on the ACARA Senior Secondary curriculum. In addition to graph theory 

topics, it includes bivariate and time series analysis, growth and decay in sequences, Earth geometry and time 

zones, and loans, investments and annuities. 
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introduced to a range of graph theory topics, such as critical path analysis, and learn how to 

use standard algorithms to solve problems in an unplugged environment. However, the 

integration of algorithmic thinking into mathematics curriculums in this way is progressing at 

a time when there is a lack of research into ways that mathematics teachers might develop 

students’ algorithmic thinking. 

The literature about algorithmic thinking in relation to graph theory topics largely 

consists of proposed instructional tasks, or approaches, that invite students to design 

algorithms to solve common graph problems (Hart, 1998; Hart et al., 2008; Maurer & 

Ralston, 1991); however, empirical research into students’ responses to such algorithmatising 

tasks is only just emerging (Moala, 2021; Moala et al., 2019; Tupouniua, 2020b). For 

example, Moala (2021) observed a mechanism that he called “accounting for features of a 

solution” (p. 264) to describe how a group of novice students developed the rules for a 

Hamiltonian path algorithm based on the numerical attributes of their solution. Similarly, 

Moala et al. (2019) introduced two practices—localized considerations and patching—to 

describe how novice students approached the revision and validation of the algorithms they 

designed to solve a series of friendship network optimization problems based on their initial 

solutions. They used the term localized considerations to refer to instances in which students 

adjusted the rules of an algorithm to fix an error that occurred at a particular vertex in a 

counterexample for which the initial algorithm was incorrect. Patching refers to the practice 

of retaining the overall structure of an algorithm but adding or removing rules in response to 

counterexamples. Accounting for features of a solution, localized considerations, and 

patching offer much needed insights into how students design algorithms in response to graph 

algorithmatizing tasks, but it remains unclear whether these mechanisms and practices apply 

beyond the tasks posed to the students in these studies or if they are used by students with 

more experience in graph theory. 
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The aim of the present study was to build on the emerging literature about the 

mechanisms and practices that students might use to design graph algorithms by examining 

how student-invented algorithms emerged across a sequence of graph algorithmatizing tasks 

of increasing complexity. To achieve this aim, I conducted an analysis of the algorithmic 

thinking of four pairs of Year 12 students as they developed viable algorithms to solve 

common scheduling problems in the context of critical path analysis (described further 

below). Critical path analysis was chosen as a graph theory topic in which to study students’ 

algorithmic thinking because it involves multiple graph algorithms as well as opportunities 

for students to use algorithmic concepts including loops, branching statements, and variables. 

I found that the students devised a method for solving the scheduling problems in relation to 

the first problem, which I termed a fundamental operation, and then adjusted their 

fundamental operations using loops, branching statements, and variables in response to 

complex and special cases of the problems. 

Review of Related Literature 

One potential obstacle to this type of research is that the construct of algorithmic 

thinking is ambiguous because the term has been interpreted and applied inconsistently 

throughout the mathematics education literature (Lockwood et al., 2022). This ambiguity is 

further exacerbated by the use of the term throughout computer science education and 

computational thinking education literature, where the connection between computational and 

algorithmic thinking remains unresolved. Further research is needed to better understand the 

contemporary meaning of algorithmic thinking to promote consistency across empirical 

studies and support curriculum reforms. In this section, I first address definitions of 

algorithmic thinking and then examine the cognitive skills that comprise algorithmic 

thinking. Finally, I examine the literature related to graph theory in mathematics education. 
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Defining Algorithmic Thinking 

Mathematics education researchers have occasionally used the term algorithmic 

thinking in reference to the construction of algorithms, although the term has not been 

defined consistently (Abramovich, 2015; Knuth, 1985; Petosa, 1985; Schwank, 1993). 

Mingus and Grassl (1998) proposed the following definition in the 1998 NCTM yearbook 

about the teaching and learning of algorithms in school mathematics: 

Algorithmic thinking is a method of thinking and guiding thought processes that uses 

step-by-step procedures, requires inputs and produces outputs, requires decisions 

about the quality and appropriateness of information coming in and information going 

out, and monitors the thought processes as a means of controlling and directing the 

thinking process. In essence, algorithmic thinking is simultaneously a method of 

thinking and a means for thinking about one’s thinking. (p. 34) 

More recently, Lockwood et al. (2016) interviewed five mathematicians about how they use 

computation and used their findings to formulate a working definition of algorithmic 

thinking: “A logical, organized way of thinking used to break down a complicated goal into a 

series of (ordered) steps using available tools” (p. 1591). Both definitions specify that 

algorithmic thinking is a way of thinking that results in a set of steps although do not describe 

this proposed way of thinking. 

In contrast, Stephens (2018) proposes that algorithmic thinking is a form of 

mathematical reasoning comprised of a subset of computational thinking skills including, 

“decomposition (breaking a complex problem down into component sub-problems and sub-

tasks), pattern recognition, generalization and abstraction” (p. 1). Stephens and Kadijevich 

(2020) also define algorithmic thinking as a form of mathematical reasoning that “is required 

whenever one has to comprehend, test, improve, or design an algorithm” (p. 2) and suggest 

that algorithmic thinking involves decomposition, abstraction, and algorithmization (or 

algorithm design). They exclude pattern recognition from their definition because they 
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assume that it is an instance of abstraction and generalization. They also exclude 

generalization from their definition but do not explain why. The notion that algorithmic 

thinking is defined by a set of cognitive skills is consistent with definitions in computer 

science education literature. From this perspective, cognitive skills include analyzing and 

understanding problems, specifying a problem precisely so that it can be solved, formulating 

basic actions that will solve the problem, constructing an algorithm comprised of those basic 

actions, considering normal/special and simple/complex cases of the problem, and evaluating 

and improving the efficiency of the algorithm by considering alternative methods (Doleck et 

al., 2017; Futschek, 2006; Kanaki et al., 2020). 

There are clearly diverse definitions of algorithmic thinking throughout education 

literature although the notion that a set of cognitive skills—drawn from models of 

computational thinking—is required to understand, construct, or evaluate algorithms is 

emerging as a common theme. There appears to be agreement, however, that algorithmic 

thinking refers to the creation of an algorithm independent of the coding language involved in 

programming a machine to process it, and this is the perspective adopted in this study. In the 

next section, I review each of the cognitive skills before describing how these abilities relate 

to the algorithmic thinking process. 

Cognitive Skills 

Decomposition 

In mathematics education, heuristics such as decomposing and recombining (Pólya, 

1945) and establishing subgoals (Schoenfeld, 1985) have long been taught to students to 

solve problems across domains of mathematics. These heuristics involve solving simpler 

problems that partially fulfil the conditions of the problem, and then recombining those 

solutions to solve the initial problem. Indeed, Hart et al. (2008) proposed a festival planning 

project for teaching students critical path analysis and envisage that students will first break 

down the project into many individual activities. Stephens and Kadijevich (2020) define 



  7 

decomposition in relation to algorithmic thinking in a similar way, “breaking a problem down 

into subproblems” (p. 117). Blannin and Symons (2019) provide an example of 

decomposition in a middle-years algorithmic thinking project about the busyness of 

playground areas in the school. The students broke down the playground into five locations, 

and then focused their analysis on each location and playground activity one at a time before 

combining their findings to determine which noisy activities disrupted the quiet areas.  

From a computer science education perspective, decomposition appears to align with 

the ability to analyze a problem by splitting the main problem up into smaller problems 

(Futschek & Moschitz, 2010), such as identify the subtasks required to create and code a 

game in Scratch (Kwon & Cheon, 2019). However, from a computational thinking 

perspective, Shute et al. (2017) propose a broader definition:“[d]issect a complex 

problem/system into manageable parts. The divided parts are not random pieces, but 

functional elements that collectively comprise the whole system/problem.” (p. 153), which 

reflects Wing’s (2006) perspective that computational thinking is about both solving 

problems and designing systems. Examples of decomposition from a computational thinking 

perspective are the ability to decompose the modeling process used to build models of an 

ecological system in Year 6 science (Basu et al., 2017) and decomposing the research design 

process in undergraduate psychology into smaller issues such as the choice of research 

design, demographics of participants, and type of stimuli used in the experiment (Anderson, 

2016). There appears to be consistency across the definitions and examples of decomposition 

through the education literature; however, there appears to be limited empirical research into 

how students use decomposition in algorithmic thinking contexts. 

Abstraction 

Stephens and Kadijevich (2020) define abstraction in relation to algorithmic thinking 

as “making general statements summarizing particular examples regarding underlying 

concepts, procedures, relationships, and models” (p. 118). In the computational thinking 
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literature, abstraction refers to the ability to express a complex problem or system in terms of 

its essential elements. This ability involves distinguishing between relevant and irrelevant 

information or data (Wing, 2008), recognizing patterns and generalizing from particular 

instances (Wing, 2010), and building models that show how the problem or systems works by 

using the essential elements (Shute et al., 2017) using an appropriate representation to make 

the problem tractable (Wing, 2006). For example, Lee et al. (2011) describe how a group of 

middle school students used abstraction to represent the spread of disease throughout their 

school by identifying relevant factors, such as the layout of the school, the number of 

students, and the virulence of the disease, and then represented these factors using a virtual 

3D model that showed the layout of the school and students. By using these abstractions, the 

students were able to simplify the complexity of the real-world scenario and focus on the key 

factors that were important in determining if a disease would spread throughout their school. 

This example highlights how the purpose of abstraction is to simplify a complex problem so 

that it can be solved (Grover & Pea, 2013; Standl, 2017), which aligns with the second skill 

in Futschek’s (2006) model of algorithmic thinking from a computer science perspective: 

precisely specifying the problem. Despite the consistency in definitions throughout the 

literature, there are very few examples of how students use abstraction in algorithmic 

thinking. 

Algorithmization 

Algorithmization refers to the ability to construct a sequence of ordered steps for 

solving a problem (Maurer, 1992; Shute et al., 2017), or algorithm. To be effective, the rules 

specifying the algorithm must be precise and satisfy certain criteria (Maurer, 1992, 1998). 

First, the algorithm must be determinate, meaning that the first action is uniquely determined 

for each allowed input, and the next action is uniquely determined for each action in the 

sequence. Second, an algorithm must be finite, that is, it must stop after a finite set of actions 

for any allowed input. Finally, an algorithm must be conclusive, which means that when it 
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terminates, it must either output a solution to the problem or indicate that it cannot solve the 

problem. 

Algorithmization is the ability to write a series of steps that transform inputs into 

outputs, as outlined in the definition of algorithmic thinking by Mingus and Grassl (1998) 

above. These steps are comprised of basic actions devised to solve the given problem 

(Futschek, 2006), which may include algorithmic concepts such as branching (if/then/else 

conditions), iteration (loops or repeating steps), or the use of a variable to store intermediate 

results (Knuth, 1985; Modeste, 2016; Peel et al., 2019). For example, Peel et al. (2019) 

analyzed the handwritten algorithms constructed by secondary biology students to describe 

the natural selection process and found that the students used algorithmic concepts including 

branching, iteration, and variables. However, their study did not consider the process by 

which the students arrived at their sequence of steps as written, a gap that is common 

throughout literature about algorithmic thinking. 

Debugging 

Debugging is the ability to evaluate an algorithm, and find and fix errors in an 

algorithm to ensure that it solves the problem as intended (Shute et al., 2017). From a 

computer science education perspective, algorithmic thinking involves evaluating algorithms 

for correctness, particularly in relation to normal/special or simple/complex cases of the 

problem (Futschek, 2006; Kanaki et al., 2020) or efficiency (Futschek, 2006; Futschek & 

Moschitz, 2010). Evaluating algorithms may involve considering alternative actions or 

approaches, particularly when an algorithm is incorrect (Ginat, 2008). These skills are similar 

to those suggested by mathematics education researchers in relation to the design of 

algorithms. In the mathematics education literature, Maurer (1992) uses the term algorithm 

verification to describe the process of confirming or proving that an algorithm solves the 

problem, which can be achieved through mathematical induction. He also uses the term 

algorithm analysis to describe the process of evaluating the efficiency or complexity of an 
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algorithm, which might also form part of algorithm evaluation. Again, there appears to be 

some consistency in the literature about the construct of debugging, but there are very few 

studies that examine how students use this ability. 

Algorithmic Thinking Process 

Researchers propose that the process of constructing an algorithm is similar to a 

problem-solving process, and that the cognitive skills outlined above are used at each stage of 

that process (Futschek & Moschitz, 2010; Mingus & Grassl, 1998; Ritter & Standl, 2023). In 

mathematics education, Mingus and Grassl (1998) compared the algorithmic thinking process 

to Pólya’s (1945) four-stage problem-solving model (understand the problem; devise a plan, 

possibly an algorithm; carrying out the plan; looking back) and in computer science, Futschek 

and Moschitz (2010) proposed an iterative process involving five stages (analyze problem; 

find idea; formulate algorithm; play algorithm; reflect algorithm). From a computational 

thinking perspective, Ritter and Standl (2023) recently proposed a three-stage process that 

makes the links to the cognitive skills clear: “1. Describe, abstract and decompose the 

problem, 2. Design the algorithm, 3. Test the solution” (p. 4). I used these three stages to 

structure the comparison of the cognitive skills from each of the three perspectives discussed 

above, summarized in Table 1, to understand how they are used to construct an algorithm. 
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Table 1 

Perspectives on Cognitive Skills Involved in Constructing an Algorithm 

Algorithmic Thinking 

Process (Ritter & Standl, 

2023) 

Mathematics Education Computer Science Education  Computational Thinking  

Describe, abstract and 

decompose problem  
• break down a problem into 

subproblems (Stephens & 

Kadijevich, 2020) 

• analyze a problem by splitting it up 

into smaller problems 

• decomposition: break down a 

problem/system into smaller parts 

 • abstraction (Stephens & 

Kadijevich, 2020) 

• specify problem precisely  • abstraction: determine the essential 

components of a system 

Design algorithm • break down a goal into a sequence 

of steps using available tools 

(Lockwood et al., 2016) 

• algorithmization (Stephens & 

Kadijevich, 2020) 

• define basic actions that will solve 

the problem 

• develop a sequence of steps 

comprised of basic actions 

• algorithms/algorithm design: create 

a sequence of steps to solve the 

problem 

Test the solution • confirm or prove that the algorithm 

solves the problem (Maurer, 1992) 

• compare algorithm with others that 

solve the same problem (Hart, 

1998) 

• improve or consider alternative 

actions (Doleck et al., 2017; Ginat, 

2008) 

• optimize efficiency  

• debugging: detect and fix errors 

 • test and refine the algorithm using 

problems of the same type (Moala 

et al., 2019) 

• consider normal and special cases; 

simple and complex (Kanaki et al., 

2020) 

• iteration: repeat algorithm design 

process 
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I drew three conclusions from this comparison of the cognitive skills from each 

perspective. First, decomposition and abstraction are complementary skills involved in 

understanding a problem, simplifying it, and specifying it precisely so that it can be solved 

using an algorithm. Second, algorithmization is the ability to design basic actions, which may 

include algorithmic concepts such as branching, iteration, and variables, and put these actions 

into a sequence that transforms inputs into the desired outputs. Finally, debugging not only 

refers to the ability to detect and fix errors in an algorithm to ensure that it solved the problem 

accurately, but also ensuring that the algorithm solves all problems of a particular type, 

improving the algorithm by considering alternative actions or entirely new approaches, or 

optimizing the efficiency of the algorithm. In the next section, I use this algorithmic thinking 

process to structure a review of the graph theory literature to illustrate its close relationship 

with algorithmic thinking. 

Graph Theory in Mathematics Education 

Researchers who advocate for the inclusion of graph theory in mathematics education 

describe a problem-solving process similar to the one described in Table 1 (Hart, 1998; Hart 

et al., 2008). Students should begin by understanding a real-world problem and then construct 

a vertex-edge graph to describe the relationships between the elements in the problem. 

Researchers provide examples to describe how they envisage students would represent graph 

problems with vertex edge graphs, including finding Eulerian circuits (Ferrarello & 

Mammana, 2018; Hart, 1998), minimal spanning trees (Hart, 1998), the travelling salesperson 

problem (Mingus & Grassl, 1998), optimizing traffic lights (Hart, 2008), and compatibility of 

radio station locations (Hart & Martin, 2018). Several researchers argue that constructing a 

vertex-edge graph is closely related to mathematical modelling (Greefrath et al., 2022; Hart, 

2008; Medová et al., 2019). For example, Greefrath et al. (2022) showed how Year 9 

mathematics students with no prior experience in graph theory were able to draw on their 
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mathematical modeling competencies to successfully construct a vertex-edge graph to 

represent a road network and solve an Eulerian circuit problem using the graph. The authors 

argue that their findings highlight the reciprocity between developing students’ knowledge of 

vertex-edge graph concepts and mathematical modeling competences. From a computational 

thinking perspective, Wetzel et al. (2020) conducted a similar case study in which they 

showed three novice 17-year-old students a road network and asked them to find the fastest 

route between two cities. The students were asked to simplify the map to solve the problem, 

but the researchers found that the students struggled to disregard irrelevant information from 

the map, with one student attempting to draw a vertex-edge graph in direct proportion to the 

source map. However, it appears that students in both these studies used their abstract 

representations of the road maps to solve the problems by graph traversal, which is the 

process of systematically examining and updating each vertex in a graph. 

The second stage of solving graph theory problems is to use the vertex-edge graph to 

develop an algorithm to solve the problem (Hart, 1998). Again, researchers describe 

anecdotal evidence that students can create rudimentary algorithms to solve various graph 

problems including finding shortest paths (Gibson, 2012), optimal assignments (Hart & 

Martin, 2018), and Eulerian cycles (Ferrarello & Mammana, 2018), although there is little 

analysis of the steps that the students devised. In contrast, Moala (2021) analyzed the 

instructions in the algorithms written in the form a letter by two groups of students to find the 

optimal seating arrangement from a given graph. The analysis showed that the students first 

identified the optimal arrangement and then developed rules based on the contents of their 

solution. The students in the aforementioned study by Wetzel et al. (2020) found the fastest 

route between two towns using a brute-force approach, but realized that this was an 

inefficient approach and began looking for a more efficient, general algorithm. Studies that 

analyze students’ approaches to writing basic actions or overall approaches to structuring an 
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algorithm, such as a brute-force approach, provide long-overdue insights into 

algorithmization, and more research of this kind is needed. 

Finally, Hart (1998) suggests that the final stage in solving graph theory problems is 

for students to check that their algorithm will always work, and compare their algorithms 

with other students’ or standard algorithms. Researchers have begun to study how students 

revise their algorithms and try to adapt them to solve similar problems (Moala, 2021; Moala 

et al., 2019; Tupouniua, 2020a, 2020b). For instance, Moala et al. (2019) asked a group of 

pre-degree students to design an algorithm that could solve a friendship optimization problem 

represented by a vertex-edge graph, and then asked them to ensure that their algorithm could 

apply to two additional friendship graphs. The researchers found that the students retained 

certain parts of their algorithm that they thought were appropriate for some of the networks 

(local considerations) and added or removed instructions (patching) when the algorithm did 

not yield the correct solution. The students were initially able to solve the problem but were 

ultimately unsuccessful in constructing a correct algorithm. Nevertheless, the study provides 

insights into how novice students might approach debugging in the context of graph theory. 

The existing literature about how mathematics students solve graph theory problems 

is largely speculative, involving mostly novice students in order to show how this topic 

would be easily accessible and engaging for students if it were included in school curriculums 

(Greefrath et al., 2022; Hart & Martin, 2018). Researchers also argue that graph theory 

provides opportunities for students to develop general mathematical processes, such as 

mathematical modelling and problem solving (Goldin, 2010; Greefrath et al., 2022), and, as 

in the case of the present study, algorithmic thinking. The aim of the present study, therefore, 

is to build on this foundational research by examining how more experienced Year 12 

mathematics students, in a context where graph theory is included in the curriculum, engage 

algorithmic thinking as they are introduced to critical path analysis. Critical path analysis was 
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used to examine students’ algorithmic thinking in involves the design of multiple algorithms 

that include opportunities for using loops, branching, and variables. The following research 

question guided this study:  

How do students use the cognitive skills of algorithmic thinking to develop algorithms? 

Conceptual Framework 

In this section, I outline a working conceptual framework for algorithmic thinking that 

I developed throughout this study. I began constructing this framework by assuming that 

algorithmic thinking is defined by a subset of cognitive skills as defined in the literature. 

There are conflicting perspectives about which cognitive skills constitute algorithmic 

thinking, so I turned to the algorithmic thinking process outlined in Table 1 and determined 

that algorithmic thinking involves decomposition, abstraction, algorithmization, and 

debugging. Finally, I developed elaborations for each of the cognitive skills based on my 

review of mathematics, computer science, and computational thinking education literature. 

The resultant conceptual framework for algorithmic thinking, contained in Table 2, is a 

working framework because I acknowledge that discussions about definitions are ongoing 

and unlikely to be resolved in a single paper such as this. 

Table 2 

Framework for Algorithmic Thinking 

Cognitive Skills Elaboration 

Decomposition Break down a problem or system into subproblems or smaller parts 

(Shute et al., 2017; Stephens & Kadijevich, 2020) 

Abstraction Determine the essential components of a problem or system, which 

involves: 

• collecting relevant information/data and disregarding irrelevant 

information/data (Shute et al., 2017; Wetzel et al., 2020) 

• building representations using the essential components that show 

how the problem or system works using an appropriate 

representation (Hart, 1998; Shute et al., 2017; Wing, 2006). 
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Algorithmization Design a set of ordered steps to produce a solution or achieve a goal 

(Lockwood et al., 2016; Shute et al., 2017). Steps include algorithmic 

concepts such as: 

• inputs (Mingus & Grassl, 1998) 

• basic actions (Futschek, 2006; Moala, 2021) 

• outputs (Mingus & Grassl, 1998) 

• branching (if/then/else) (Peel et al., 2019) 

• iteration/loops (Peel et al., 2019) 

• variables/intermediate results (Mingus & Grassl, 1998; Peel et al., 

2019). 

Debugging Test that the algorithm solves the problem or other problems of the 

same type, which involves: 

• detecting and fixing errors (Moala et al., 2019; Shute et al., 2017) 

• considering alternative approaches (Ginat, 2008; Moala et al., 

2019) 

• improve efficiency of algorithm (Futschek & Moschitz, 2010; Hart, 

1998). 

 

As will become apparent in the sections that following, I found it necessary to 

develop a secondary construct to explain the ways that students used the cognitive skills, 

which I called subskills. By way of example, the accounting for features of the solution 

mechanism (Moala, 2021) outlined above would be a subskill of the basic actions elaboration 

of the algorithmization cognitive skill because it explains one way that students might 

develop instructions for an algorithm. Similarly, the practice of patching (Moala et al., 2019) 

would be a subskill of the detecting and fixing errors elaboration of the debugging cognitive 

skill because it explains one way that students might debug their algorithm. I used the 

construct of a subskill to operationalize the working framework to answer the research 

question. 

Critical Path Analysis 

Before describing the methodology, I will first provide a brief analysis of critical path 

analysis, which was the topic used in this study used to examine students’ algorithmic 

thinking. Critical path analysis (or critical path method) is a widely-used project modeling 

tool developed during the 1950s to analyze and manage the scheduling of large engineering 
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and military projects comprised of many interdependent activities (Kelley & Walker, 1959). 

The goal of critical path analysis is to build a model of a project and develop a schedule to 

ensure that a project is completed on time. Schedules typically include the following 

information: 

(1) Earliest Start Time (EST): the earliest time the activity must start without delaying the 

entire project. 

(2) Latest Finishing Time (LFT): the latest possible time the activity can finish without 

delaying the entire project. 

(3) Float time: the duration that an activity can be delayed without delaying the 

completion of the project. 

(4) Critical path: The critical path of a project is the path(s) from start to finish in the 

graph comprised of the sequence of activities that cannot be delayed without delaying 

the entire project. The minimum time required to complete the project is equal to the 

sum of the durations of the activities that comprise the critical path. 

The purpose of critical path analysis for project managers is to identify the activities that 

cannot be delayed without delaying the entire project as well as activities with positive float 

time so that resources can be temporarily diverted from these activities to activities without 

float time, when necessary, to ensure the project is completed on time. I will use the 

preparation of the Waffle Breakfast, pictured in Figure 1, as an example project to explain the 

purpose of each step in critical path analysis in terms of the algorithmic thinking skills. 
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Figure 1 

Waffle Breakfast Project* and Precedence Table 

 

 

Activity Description 
Immediate 

Predecessor(s) 
Duration 

(seconds) 

A Heat stove – 5 

B Cook sausage A 30 

C Cook waffle A 20 

D Wash raspberries C 5 

E Plate raspberries D 3 

F Load cream C 8 

G Plate waffle and sausages B, C 10 

H Add ketchup and cream F, G 20 

*Project is shown as a picture of a meal made with playdough, which is discussed in the methodology section. 

Decomposition 

The first step in critical path analysis is to decompose the project into a list of all the 

activities required to complete the project, the duration of each of these activities, and the 

dependent relationships between the activities. This information can be summarized in a 

precedence table, as shown in Figure 1, which also shows that each activity has been 

assigned a letter. The immediate predecessor(s) column shows the activity or activities that 

must occur directly before an activity can start. For example, the plate waffle and sausages 
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activity (𝐺) can only commence after both cook sausage (𝐵) and cook waffle (𝐶) activities 

are completed. 

Abstraction 

The second step in critical path analysis is to construct a visual representation of the 

project using a vertex-edge graph, also referred to as a PERT (Program Evaluation and 

Review Technique) chart (Hart, 2008). Figure 2 shows such a graph for the Waffle Breakfast 

project. The first and last vertices represent the start and completion of the project 

respectively, and the vertices in between represent the end of an activity and the beginning of 

the next activity. The edges represent the duration of the activity in between the start and end 

of that activity. The purpose of constructing a vertex-edge graph is to make the precedence 

relationships between the activities more apparent than in the precedence table, particularly 

for activities that occur concurrently but have different durations. 

Figure 2 

Waffle Breakfast Vertex-Edge Graph 

 

The vertices in Figure 2 are drawn as a box with two cells, which display the schedule 

for the project in terms of the EST and LFT for the activities. The EST for an activity is 

written in the left-hand cell and the LFT is written in the right-hand cell of the subsequent 

vertex. The durations of each activity are written on the edge that represents that activity, 

with an arrow facing towards the end of the project representing the passage of time. For 

example, the cook sausage activity (𝐵) can only start after the heat stove activity (𝐴) is 

finished, hence the EST for 𝐵 is 5 seconds, which is written in the left-hand cell of the vertex 
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at the start of Activity 𝐵. The duration of 𝐵 is 30 seconds, so 30 seconds is added to the EST 

resulting in a LFT of 35 seconds, which is written in the right-hand cell of the vertex at the 

end of Activity 𝐵. 

The cook waffle activity (𝐶) also starts at 5 seconds and the duration of this activity is 

20 seconds. However, as noted above, the plate waffle and sausage activity (𝐺) can only start 

once both activities 𝐵 and 𝐶 are finished. Therefore, Activity 𝐶 must also have a LFT of 35 

seconds otherwise the schedule would indicate that 𝐺 can start before activity 𝐵 is finished. 

The earliest 𝐵 can start is 5 seconds and the latest it can finish is 35 seconds, but its duration 

is 20 seconds, therefore it has a float time of 10 seconds. In other words, the cook waffle 

activity can be delayed up to 10 seconds without delaying the start of activity 𝐺. The vertex-

edge graph makes these precedence relationships easier to follow than the precedence table 

(Kelley & Walker, 1959). 

Activity 𝐶 is an immediate predecessor for activities 𝐷 and 𝐹 in addition to activity 𝐺, 

however, activity 𝐵 is not an immediate predecessor for these activities. To represent this 

arrangement, a dummy activity with a duration of 0 is drawn as a dotted edge, as shown in 

Figure 2, to separate activity 𝐵 from activities 𝐷 and 𝐹.  

Algorithms 

The third step in critical path analysis is to analyze the graph to plan a schedule for 

the project using three graph algorithms, which use the graph as inputs. Forward scanning is 

used to determine the EST for each activity and the minimum time required to complete the 

project. Forward scanning begins by assigning a 0 to the EST at the first vertex. The duration 

of the subsequent activity is added to the EST, which becomes the EST for the next activity. 

For example, the EST for 𝐴 is 0, the EST for 𝐵 is 0 + 5 = 5, the EST for G is 5 + 30 = 35. 

This fundamental operation is repeated from the start of the graph until the end of the graph, 

and therefore requires the user to traverse the graph activity-by-activity because the EST of 
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one activity becomes an input for the subsequent activity. An exception is needed for parallel 

activities with different durations, such as activities 𝐵 and 𝐶 outlined above, and the highest 

EST is used in these instances. The minimum time required to complete the entire project is 

the value of the EST at the final vertex (65). 

The second algorithm is backwards scanning and is used to determine the LFT for 

each activity. Backwards scanning begins by assigning the minimum time required to 

complete the project to the LFT at the last vertex because this is the latest finishing time for 

the entire project. The duration of each preceding activity is then subtracted from the LFT, 

which becomes the LFT for the preceding activity. For example, 65 is written in the LFT at 

the final vertex and then 20 and 3 are subtracted from 65 to determine the LFT for activities 

𝐻 and 𝐸 respectively. This fundamental operation is repeated from the end of the graph back 

to the start, activity-by-activity, and each LFT becomes an input for the next iteration. The 

smallest difference between LFT and duration is used for vertices that are preceded by more 

than one activity, otherwise the preceding activity will be scheduled too late, and the project 

will be delayed. For example, the LFT for both 𝐵 and 𝐶 is 35; however, the LFT for 𝐴 must 

be 35 − 30 = 5 rather than 35 − 20 = 15 because if 𝐴 is scheduled any later than 5, it will 

delay the start of 𝐺 and hence the whole project. 

As outlined above, this gives rise to float time for activity 𝐶, which can be calculated 

as 𝐿𝐹𝑇 − 𝐸𝑆𝑇 − 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 35 − 20 − 5 = 10. An algorithm for float time is to repeat this 

calculation for each activity in the project. 

Methodology 

I used task-based interviews (Goldin, 2000) to investigate how students’ use the 

algorithmic thinking cognitive skills in response to critical path analysis tasks, which is an 

appropriate methodology in generative studies such as this because my objective was to 

generate new observation categories for algorithmic thinking (Clements, 2000). I conducted 
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the interviews with pairs of students so that they could discuss their thinking, which enabled 

me to make observations and draw inferences about their cognitive skills from both verbal 

and nonverbal behaviors (Goldin, 2000). 

Participants 

Four pairs of Grade 12 students (n = 8; mean age = 17.5) from a large, high-

socioeconomic secondary school in Australia participated in the study. The students were 

studying General Mathematics (QCAA, 2019) and were in their final semester of school. 

Table 3 shows the names (pseudonyms), age, and grade at the end of Semester 1 for the 

students in each pair. The students and their parents gave ethical assent and consent to 

participate respectively. 

Table 3 

Demographic Information about Participants 

Pair Name (pseudonym) Age at time of study Grade at end of Semester 1 

A Archer 17 A 

 Aubrey 18 B 

B Brooks 17 B 

 Bradley 17 B 

C Carter 18 B 

 Chandler 18 A 

D Dakota 18 A 

 Dominique 17 B 

 

I recruited these students because at the time of the study they had sufficient 

experience in the fundamentals of graph theory necessary to complete the critical path 

analysis tasks and thus enable me to focus on their algorithmic thinking. First, the students 

had recently completed an introductory unit on graphs and networks, which involved learning 

how to draw vertex-edge graphs and construct adjacency matrices. Second, they had 

experience in tasks that required them to develop algorithms for solving shortest path and 
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minimum spanning tree problems, and then compare their algorithms with standard 

algorithms. Hence, the students were familiar with the sequential structure of graph 

algorithms written in plain English and the process of algorithmic thinking. Note that the 

students had not covered critical path analysis at the time of the study and this study formed 

their introduction to the topic. 

Tasks 

I designed a sequence of six algorithmatizing tasks that progressed from simple to 

complex, and included normal and special cases, the latter defined as a project with a dummy 

activity. Table 4 contains the sequence of tasks, complexity of each project, and the purpose 

of each task in terms of designing algorithms for EST, LFT, and float times. Appendices A–D 

contain the tasks sheets that I gave to the students during the interviews. I structured the 

sequence in this way because often students can solve graph problems with only a few 

vertices and edges easily, and then generalize their solution method for larger graphs (Goldin, 

2010). This design feature enabled me to examine how students used algorithmic concepts to 

adjust the fundamental operations designed for simple/normal cases for complex/special 

cases of the same class of problem. 
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Table 4 

Sequence of Tasks 

Tasks 

Complexity 

Purpose 
Number 

of Paths 

Number of 

Activities 

Normal/ 

Special 

1. Hamburger Patty 1 3 normal • decompose and abstract problem 

• make sense of EST and LFT 

2. Hamburger Patty 

with Melted Cheese 

2 5 normal • account for parallel activities 

3. Hamburger* 3 7 normal • test and refine fundamental 

operations and  

4. Parfait* 3 8 normal • decompose and abstract more 

complex problem 

• apply fundamental operations for 

calculating EST, LFT, and float 

time 

5. Waffle Breakfast 4 8 special • account for dummy activity 

• design general algorithm for EST 

and LFT 

6. Decontextualized 3 8 normal • design general algorithm float time 

• debug general algorithms 

*Number of paths or activities are indicative and may vary for Hamburger and Parfait projects depending on 

students’ formulation. 

 

The tasks for sessions 1 (tasks 1–3) and 2 (task 4) were designed so that students 

would be compelled to formulate the problem before solving the scheduling problems. 

Sessions 3 (task 5) and 4 (task 6) were intended to elicit students’ algorithmization and 

debugging skills.  

In designing the tasks, I had to account for the syllabus requirements, which required 

student to be able to “construct a network diagram to represent the durations and 

interdependencies of activities that must be completed during the project, e.g. preparing a 

meal” (QCAA, 2019, p. 40). Hence, all the tasks required students to construct a graph. I 

introduced the specific critical-path notation described above in the first session and the use 
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of the precedence table in the third and fourth sessions. I designed the first three tasks in meal 

preparation contexts, as suggested by the syllabus. Aside from being a readily accessible 

context for these students—as opposed to contexts such as planning a festival or building a 

house (Hart et al., 2008)—the meal context enabled me to use playdough and toy equipment 

as proxies for real equipment that could be operated in real time. Students were able to 

physically quantify the durations of the activities and hence emulate the temporal differences 

between activities that give rise to the scheduling problems, which critical path analysis is 

intended to solve. The fourth task was presented without a context because I wanted students 

to begin thinking about critical path analysis as a general method that could be used beyond 

the food preparation context. 

Data Collection 

The interviews occurred over four 60- to 90-minute sessions that took place each 

week for four weeks out of school hours. The sessions coincided with the COVID-19 

pandemic, which shaped the task environment. Government regulations required us to sit at 

least 1.5 metres away from each other and we achieved this by arranging the desks into a U-

shape. The two students sat at the side and bottom of the U, and I sat on the opposite side. 

At the start of interviews 1 and 2, I posed the projects to the students by providing a 

picture of the meal, the toy equipment, and/or precedence table (the first page of the task 

sheets in the appendices). The students formulated models of the projects, which included the 

activities, durations, and vertex-edge graphs, after which I posed the scheduling problems 

(the subsequent pages of the task sheets in the appendices). At the start of interview 3, I 

provided the preformulated model of the Waffle Breakfast in the form of a precedence table, 

which the students used to construct a graph, solve the scheduling problems, and then draft a 

general algorithm for finding EST and LFT. At the start of interview 4, I asked students to 

design algorithms for finding float times and the critical path. I then provided the students 
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with a precedence table and incomplete graph, which the students used to test and refine the 

draft algorithms. At times, I prompted students to explain their reasoning about their 

nonverbal actions and made field notes about their responses as I attempted to follow their 

thinking. I also made suggestions to help overcome impasses when they arose (Goldin, 2000), 

and these prompts are written in italics on the task sheets in the appendices (but did not 

appear on the students’ version). Students also had access to additional blank A4 paper. The 

students wrote their responses individually either on paper (which I copied after the sessions), 

on the computer at the front of the room, which they operated from a wireless keyboard and 

mouse or on a wall-mounted whiteboard. I recorded the interviews via Zoom with one 

camera positioned so that it captured the students and the wall-mounted whiteboard. Zoom 

also captured the virtual whiteboard that some students used to record their working, which I 

downloaded using the Save Whiteboard function. I transcribed the audio files generated from 

the Zoom recordings and paired these transcriptions with the associated student responses. 

Analysis 

The data set included transcriptions of the audio recordings, video recordings, copies 

of student work, photographs of the wall-mounted whiteboard, and screenshots of the virtual 

whiteboard. I prepared the data for analysis by constructing a display of the transcriptions and 

associated student responses. I analyzed the data using a two-phase deductive-inductive 

approach. During the deductive phase, I read through the data set and coded transcriptions 

and student work according to the four cognitive skills. For example, I coded the first group 

of lines in Figure 3 as “decomposition” and the students’ work as “abstraction”. I began the 

subsequent inductive phase by grouping all instances relating to each of the four cognitive 

skills together. Each of these skills required slightly different methods of analysis, which I 

will discuss in turn. 
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Figure 3 

Excerpts from Group A’s First Interview 

Transcript Student Response Memo 

00:04:42 Aubrey 

Is it, like, the steps? 

 

00:04:45 Archer 

Is it like take the Play-

Doh [meat] out? 

 

00:04:49 Aubrey 

Yeah, open the lid. 

 

00:04:52 Archer 

Yup. 

 

00:04:55 Aubrey 

Take the playdough out. 

 

00:04:56 Archer 

And then put it in this 

thing [picks up toy mold]. 

Make a patty! [Makes patty 

using mold.] 

 

 

Decomposition 

• decomposes 

project into 

discrete 

activities 

• uses toy 

equipment to 

emulate tasks 

• produces 

sequential list 

of activities 

 

Abstraction 

 

 

Decomposition and Debugging. To analyze students’ decomposition and debugging skills, I 

re-read each line of the dual display while watching the video footage and wrote my 

interpretations using memos (Corbin & Strauss, 2015). For example, the third column in 

Figure 3 shows my memo for the first decomposition episode of the Hamburger project, 

which reflects my interpretation of the students’ physical, verbal, and written behaviors. I 

then grouped similar memos together to form what I called subskills (described above). The 

memo in Figure 3 was grouped with similar memos to form a subskill “analyze source 
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material”, which represented the students’ ability to determine the activities by either looking 

at the picture or emulating the activities with the toy equipment. 

Abstraction. To analyze abstraction skills, I read through the relevant episodes and wrote 

memos of my interpretation of the students’ verbal reasoning about abstraction choices and 

how they traversed the graphs. I then turned to their written responses and analyzed the 

vertices, edges, and labels as shown in Figure 3. I grouped similar memos together to produce 

codes for abstraction subskills. 

Algorithmization. I began my analysis of algorithmization by reading through the relevant 

episodes and coding the students’ verbal and written behavior according to the elements of 

algorithms from Table 2. In the third and fourth sessions, the students wrote their algorithms 

in plain-English text, as illustrated by Group C’s algorithm for float time in   
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Figure 4a. I analyzed the text by coding each word, phase, or clause according to the 

elements of algorithms. For example, I coded the word “calculate” in step 2 in Carter’s 

algorithm (  
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Figure 4b) as action; “float time” and “float” as output; “LFT”, “EST”, and “duration” as 

input; and the mathematical operators “=” and “−” as operator. After coding the transcripts 

and algorithms according to the elements, I re-read the transcripts and wrote memos to 

describe my interpretations of the students’ reasoning about these algorithmic elements and 

produced subskills by grouping similar memos together. 
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Figure 4 

Analysis of Group C’s Algorithm for Float Time 

(a) before analysis 

 

(b) with analysis 

 

 

At each stage of the deductive and inductive analysis, an experienced mathematics 

educator reviewed my interpretations, and we resolved any conflicting interpretations through 

discussion. Finally, I used comparative analysis (Corbin & Strauss, 2015) until no new codes 

emerged. 

Findings 

Describe, Abstract, and Decompose Problem 

The first phase of the algorithmic thinking process is to specify the problem so that it 

can be solved. The findings show that the students first decomposed the Hamburger and 

Parfait projects into discrete activities by analyzing the source material. This involved 

making observations from the picture to identify the components of the meal and handling the 

toy equipment to determine how the components are produced, as illustrated by the following 

excerpt from Group A's interview: 

1 Archer: Let’s look at the picture and work this out…One. Make ice-cream. With this machine 

[points to toy ice-cream machine]. 

2 Aubrey: Make macaroon, cut peach…with these? [picks up toy molds] 
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3 Archer: …cut raspberries… 

4 Aubrey: You don’t need to cut raspberries! You just put them on top. 

5 Archer:  Yeah, you do… [points to picture] …if you look, they are cut in halves…anyway we 

need a step. 

6 Aubrey: Okay. 

7 Archer: Five. Serve ice-cream. What then? 

8 Aubrey: Add fruit? 

9 Archer:  [Points to picture] Place macaroon on plate. 

10  How many workers are we going to have in this parfait shop? 

11 Aubrey: Two. 

12 Archer: Yeah, cause there’s two of us. 

13 Aubrey: One makes the ice-cream, one makes the… 

14 Archer: …macaroon! 

15 Both: [Laughter.] 

16 Aubrey: We have to split the macaroon one up. 

17 Archer: Oh, you’re joking!  

18 Aubrey: We need steps for that one. 

19 Archer:  Oh, you’re joking! Okay let’s do it. 

 

This excerpt shows how the students decomposed the project into discrete activities 

by analyzing the picture of the parfait to determine the components (ice-cream, macaron, 

peach, and raspberry pieces) and linking these components with the relevant toy equipment 

(lines 1–9). They also formulated a draft list of sequential activities based on their ongoing 

analysis of the parfait, as illustrated in (Lines 10–19 of Group A’s excerpt also illustrate how 

the students also recomposed activities into two separate paths. Archer and Aubrey decided 

that there were two “workers” involved in preparing the meal (lines 10–12) and that each 

worker would complete a separate component. They then decomposed the “make macron 

[sic]” activity further into activities H–K (see Error! Not a valid bookmark self-

reference.a) and recomposed the relevant activities into paths for each worker: the 

“Strawberry Ice-cream” path (𝐴 − 𝐵 − 𝐶 − 𝐻) and the “Blueberry Macaroon” path (𝐷 − 𝐸 −

𝐹 − 𝐺 − 𝐻). 

Table 5 contains the subskills for abstraction that I identified across the sequence of 

tasks according to the two elaborations established in the existing literature (see Table 2), and 

I will address each of these elaborations in turn. 
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Figure 5a). 

Lines 10–19 of Group A’s excerpt also illustrate how the students also recomposed 

activities into two separate paths. Archer and Aubrey decided that there were two “workers” 

involved in preparing the meal (lines 10–12) and that each worker would complete a separate 

component. They then decomposed the “make macron [sic]” activity further into activities 

H–K (see Error! Not a valid bookmark self-reference.a) and recomposed the relevant 

activities into paths for each worker: the “Strawberry Ice-cream” path (𝐴 − 𝐵 − 𝐶 − 𝐻) and 

the “Blueberry Macaroon” path (𝐷 − 𝐸 − 𝐹 − 𝐺 − 𝐻). 

Table 5 contains the subskills for abstraction that I identified across the sequence of 

tasks according to the two elaborations established in the existing literature (see Table 2), and 

I will address each of these elaborations in turn. 

 

Figure 5 

Group A Parfait Project 

(a) 

 

(b) 
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Table 5 

Abstraction Subskills 

Subskills Tasks 

Collecting relevant information/data and disregarding irrelevant information/data 

(i) identify and/or quantify variable Hamburger Patty 

• identify time as relevant variable 

Hamburger, Parfait 

• quantify time using stop-watch function on cell phone 

(ii) establish implicit criteria for 

relevance of information 

Hamburger, Parfait 

• information effects time 

• information effects number of paths 

Building representations using the essential components that shows how the problem or system 

works using an appropriate representation 

(iii) select an appropriate type of 

representation 

Hamburger Patty 

• matrix or vertex-edge graph 

(iv) determine how to represent 

essential components 

Hamburger, Parfait, Waffle Breakfast 

• edges represent passing of time for an activity 

• vertices represent start and finish for an activity 

• draw edges from start of project (on left of page) to 

finish (on right of page) 

• arrows reflect order of activities 

• use precedent relationships to determine position of 

edges and parallel activities 

The first subskill is the ability to identify and/or quantify the relevant variable. All 

groups identified time as the primary variable involved in planning the Hamburger Patty 

project. They quantified the duration of each activity by using the stopwatch function on their 

cell phones to time how long it took to complete the activities with the toy equipment.  

The second subskill was the ability to establish implicit criteria for relevance of 

information. Each group appeared to use two implicit criteria to decide whether information 

about the project was relevant or not: time and paths. The groups appeared to use information 

that affected the time taken for activities or the number of paths required, and disregard 

information it if did not. For example, Group C regarded the quantity of ingredients 

(playdough) required to prepare parts of the meals as irrelevant because it would not affect 

the time required to complete the activity. Conversely, the number of workers assumed to be 
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preparing the meal, as discussed in lines 10–12 by Group A above, was information regarded 

as relevant because it affected the number of paths. 

The third subskill is the ability to select an appropriate type of representation. The 

groups all selected a vertex-edge graph, as opposed to a matrix, to represent their Hamburger 

Patty project, and appeared to use their knowledge about the properties of graphs to justify 

their selection. For example, Group B considered both types of representations in the 

following discussion: 

1 Brooks: Okay, should we use a matrix or graph? 

2 Bradley: Not matrix. 

3 Researcher: What makes you say that Bradley? 

4 Bradley: Because we need to show, like, the steps. 

5 Brooks: Yeah, in a matrix. 

6 Bradley: No, like you can’t show make patty comes before cook patty in a matrix. 

7  That would only show that they are connected. 

8  If you drew a graph, you can literally show the order. 

9 Brooks: Okay, jokes. You’re right. 

In line 5, Brooks asserted that a matrix was an appropriate representation, but Bradley argued 

that a graph was appropriate because it would show the unidirectional links between the 

activities (line 6, 8). She also argued that a matrix contains only the number of links between 

each activity (line 7), which suggests that knowledge about the properties of representations 

underpins the ability to select an appropriate representation. 

Determine how to represent the essential components was found to be a distinct 

subskill for this elaboration of abstraction. I will use two examples of students’ difficulties 

with these subskills to illustrate this finding. In the Hamburger Patty project, three of the four 

groups initially represented the activities as vertices and the edges as durations, as illustrated 

by Group A’s graph in Figure 3. In contrast, Group B represented the activities and their 

durations as edges, and the start and finish of these activities as vertices (Figure 6). Note that 

I introduced the notational system described above to the students after they had decided to 

use a graph to represent the project Hamburger with Patty project. 
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Figure 6 

Group B’s Vertex-Edge Graphs for Hamburger Patty 

 

Algorithm Design 

Having specified the problem, the next stage in the algorithmic thinking process was to 

design algorithms for solving the scheduling problems. Table 6 contains a summary of the 

algorithmization subskills used by the students to design viable algorithms. This table shows 

that the fundamental operations for EFT and LFT devised for the Hamburger Patty project, 

and the fundamental operation for float time devised for the Hamburger Patty with Cheese 

project, were sustained throughout the remainder of the tasks, but adjusted using algorithmic 

concepts.   
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Figure 7 contains Group D’s final EST algorithm and Group C’s final LFT algorithm. I will 

refer to Table 6,   
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Figure 4 (above), and   
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Figure 7 throughout this section to exemplify the findings.  

Table 6 

Algorithmization Subskills* 

Subskills Earliest Start Time Latest Start Time Float Time 

(i) determine inputs durations and 

previous EST 

Hamburger Patty 

durations and 

subsequent LFT 

Hamburger Patty 

EST, LFT, durations 

Hamburger Patty 

with Cheese 

(ii) devise fundamental 

operation to solve problem 

add duration to 

previous EST 

Hamburger Patty  

subtract duration 

from subsequent 

LFT 

Hamburger Patty 

𝐿𝐹𝑇 − 𝐸𝑆𝑇
− 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

Hamburger Patty 

with Cheese 

(iii) determine output EST; minimum time 

Hamburger Patty 

LFT 

Hamburger Patty 

float time 

Hamburger Patty 

with Cheese 

(iv) use loop to repeat 

fundamental operation 

repeat action for 

each activity until 

end of graph 

Hamburger Patty 

repeat action for 

each activity until 

start of graph 

Hamburger Patty 

repeat action for 

each activity in the 

graph 

Hamburger Patty 

with Cheese 

(v) use branching to account 

for constraints of problem 

if two or more edges 

finish at a vertex 

then select the 

highest EST 

Hamburger Patty 

with Cheese 

if two or more edges 

finish at a vertex 

then select the 

lowest LFT 

Hamburger Patty 

with Cheese 

– 

(vi) use variable to store 

intermediate results 

if two or more edges 

finish at a vertex, 

enter the ESTs 

outside the vertex 

Waffle Breakfast 

Project 

If two or more edges 

finish at a vertex, 

enter the LFTs 

outside the vertex 

Waffle Breakfast 

Project 

– 

*Projects appearing in italics indicate when the concept emerged in relation to each algorithm. 
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Figure 7 

Group D’s EST Algorithm and Group C’s LFT Algorithm 

(a) Group D’s EST Algorithm 

 
(b) Group C’s LFT Algorithm 

 

Fundamental Operations 

All groups devised fundamental operations for determining the EST and LFT to solve 

the Hamburger Patty problem. For example, Group A first devised the fundamental operation 

for determining EST by making sense of the sequential relationships between the activities, 

as illustrated by Archer’s written response in Figure 8 and the following explanation: 

1 Researcher: How did you get the earliest starting time? 

2 Archer: If you start at zero, then like, it takes 10 seconds to make the patty. And you need to 

finish making the patty before you grill it. So, you’re starting grilling at 10 seconds. 

3 Researcher: What about “serve patty”? 

4 Archer: Same thing. Like, you can’t serve the patty until you’ve grilled it. So, the earliest start 

time is 50 seconds. 

5 Researcher: How did you get 50 seconds? 

6 Archer: Well, its 10 seconds plus 40 seconds for grilling. 
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In line 2, Archer explained that the EST for the cook patty activity was 10 seconds because 

this activity could occur only after the patty has been made, which took 10 seconds. In line 4, 

Archer again used the sequential relationships between the activities to explain that the EST 

for the serve patty activity was 50 seconds because the durations of the preceding two 

activities added to 50.  

Figure 8 

Group A Output for EST and LFT Actions for Hamburger Patty Project 

EST LFT 

  

 

Archer and Aubrey similarly devised the fundamental operation for the LFT by 

analyzing the precedent relationships between the activities of the project: 

1 Archer: We have to work backwards now. 

2 Researcher: What do you mean by that? 

3 Archer: Working back and then you have to…so you start…see how it finishes at 54 seconds? 

So, if you take off your four seconds, the cooking finishes at 50 seconds. 

4  Then if you take off the 40 seconds for cooking… 

5 Aubrey: But that’s how long it takes… 

6 Archer: Yeah, so that’s when it finishes…after 40 seconds… 

7 Aubrey: Oh right, right. Because it takes 10 seconds to make the patty. 

8 Archer: Yeah, so it finishes at 50 seconds. And you take 40 seconds off that and make patty 

finishes at 10 seconds. 

9  You just keep taking each one off! Is that it? 

10 Researcher: What do you mean? 

11 Archer: Will that always be the case? 

12 Aubrey: Yeah, like will you always be able to take the time off to get it? 

13 Researcher: What do you think? 

14 Archer: It is. I know it. Admit it! [Laughs.] 

15 Researcher: Okay, I admit it. 

In lines 1 and 3, Archer suggested that the LFT could be determined by traversing the graph 

backwards from the minimum time and subtracting the duration of the serving time (4).  
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This fundamental operation yielded a LFT of 50 seconds, which Archer and Aubrey justified 

as the sum of the two remaining activities (lines 4–8). 

The groups used the fundamental operations they devised for EST and LFT to solve 

the subsequent tasks and included them in their final written algorithms. For example, Group 

D used the fundamental operation for EST in the second step of their algorithm, “Add the 

duration of the next activity to the EST”. Similarly, Group C used the fundamental operation 

for LFT in the second step of their algorithm, “Subtract the duration from LFT and record in 

the LFT box at the beginning of the activity”. In each of these steps, the students used the 

duration and preceding EST or LFT as inputs that were transformed by the fundamental 

operations into outputs. 

The student first devised a fundamental operation to calculate float time in response to the 

Hamburger Patty with Cheese project, as will be shown in the Branching section below. As 

for the fundamental operations for EST and LFT, the students sustained the use of this 

fundamental operation throughout the sequence of tasks and incorporated it into their final 

algorithms, as illustrated by Group’s C’s algorithm in   
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Figure 4. 

Loop 

The excepts from Group A used above to illustrate how the students justified their 

fundamental operations for EST and LFT also illustrate how the students recognized a pattern 

in how their fundamental operations could be repeated for subsequent activities in the project. 

For EST, Archer stated in line 4, “same thing” and then repeated the fundamental operation 

for the serve patty. Similarly for LFT, in line 9 Archer suggested that the fundamental 

operation of subtracting the duration from the previous LFT could be repeated to find the 

LFT for each activity in the project. The students also proposed that the pattern of repeatedly 

applying the LFT fundamental operation was a general step that would apply to other projects 

(10–12). 

The other groups also recognized these patterns and expressed them in their final algorithms 

as a loop. For example, Step 3 of both Group D’s EST algorithm and Group C’s LFT 

algorithm (  
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Figure 7) contain an instruction to repeat Step 2 for each activity in the project. In 

each case, the loop also contains a condition for terminating the loop, that is, stop repeating 

Step 2 until all ESTs have been calculated (Group D) or when the start of the project is 

reached (Group C). This latter termination condition assumes that the user of the algorithm is 

traversing the graph from right to left and will apply Step 2 to parallel activities.  

Branching 

The Hamburger with Melted Cheese task elicited students’ reasoning about parallel 

activities, which ultimately led to the use of branching in the students’ final algorithms. 

Group B’s graph for this task, reproduced in Figure 9, shows how they formulated the project 

such that the cook patty (B) and cut cheese (C) activities occurred at the same time, and were 

both immediate predecessors of the melt cheese on patty (D) activity. This formulation led 

the students to reason about the EST for activity D, as follows: 

1 Brooks: First one is zero. 

2 Bradley: First one is zero. Yeah. 

3 Brooks: And then the next one starts at 10. 

4 Bradley: When does cut cheese start? 

5 Brooks: It takes 7 seconds into the 20 seconds. It’s how long it will take.  

6  But it will start at the same time. 

7 Researcher: Start at the same time as what? 

8 Brooks: Starts the same time as cook patty. 

9 Bradley: Oh, so it’s the same [start] time. 

10 Brooks: Yeah, they start at the same time. 

11 Bradley: When does melt cheese start? 

12 Brooks: Isn’t it 30? Or not? Because you don’t need to add the 7 to the 20. 

13 Bradley: It’s 30. 

14 Researcher: Why do you say that? 

15 Bradley: Because 10 plus 20.  

16 Brooks: Oh, so it’s still 30. 

In line 6–10, Brooks concluded that their cut cheese activity would start at the same time as 

their cook patty activity and, as a result, the duration of the cut cheese activity was not 

included in their calculation of the EST for the melt cheese activity (line 12) because it was 

shorter (7) than the cook patty activity (20).  
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Figure 9 

Group B’s Hamburger Patty with Melted Cheese Graph 

 

Similarly, this task also required students to reason about the LFT for parallel 

activities. For example, Group B compared the two possible LFTs as they traversed the graph 

from right to left: 

1 Bradley: 30 minus 20 is 10. 

2 Brooks: Yeah, I know. What about the 7 seconds? Like 30 minus 7…[uses calculator]…is 23. 

3 Bradley: You don’t need that one. Its bigger. 

4 Researcher: What do you mean by bigger Bradley? 

5 Bradley: Like if you finish making the patty at 23 seconds, it won’t have enough time to cook. 

6 Brooks: Yeah, so you gotta choose the 10, the smaller one. 

In lines 1 and 2, the students computed the two possible LFTs for their activity A. In lines 3–

5, Bradley claimed that the 23 seconds LFT was not needed because it would delay activity 

D. In line 6, Brooks appears to devise a branching condition that the lower LFT should be 

selected when two (or more) activities begin at a vertex. 

The reasoning about parallel activities illustrated by these two excerpts continued throughout 

the subsequent tasks, which all had parallel activities. The students then transformed this 

reasoning into branching statements in their final algorithms, as illustrated by the second 

steps in   
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Figure 7. Group D’s EST algorithm contains if/then conditions that instruct the user 

how to apply the fundamental operation to instances of either one activity, or two or more 

activities. Group C, on the other hand, included an if/then condition for only two activities 

finishing at a vertex as an exception to the initial instruction about how to apply the basic 

LFT action. This branching statement only accounts for two activities, and is thus an instance 

in which the algorithm would not work for all cases. 

Variables 

Three groups included a variable to store intermediate results for ESTs and LFTs at vertices 

that represented the beginning or end of multiple activities. Figure 10 is a screenshot of 

Group D’s response to the decontextualized project and shows how the students wrote the 

intermediate values of the ESTs for activities G (8 and 19) and H (24 and 25) outside the 

vertex. These intermediate values reflect Step (ii) of their EST algorithm (  
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Figure 7), which forms part of the branching statement. Dakota explained this use of 

intermediate variables as follows: 

1 Dakota: You don’t know what’s going to be the EST for G. It could be D, it could be F. [Points 

to graph.] It depends on how you’re doing it. 

2 Researcher: What do you mean by that? 

3 Dakota: Like, if you go along the top first [points to graph], you have to watch out for F 

because D also comes before G. So, it’s like a way to keep track of what you’re doing.  

In line 1, Dakota recognized that the EST for G is dependent on the completion of activities 

D and F, but will not become apparent until both D and F are considered. She explained 

further in line 3 that writing the possible ESTs for G is needed because of how the graph is 

being traversed. 

Figure 10 

Group D’s Decontextualized Project 

 

Inputs 

The inputs for each of the three algorithms were the durations, the precedence 

relationships between the activities, and the EST or LFT of the preceding or succeeding 

activity. Each group determined the durations and precedence relationships themselves in 

formulating the hamburger and parfait tasks but were provided with these inputs for the 

waffle breakfast and decontextualized projects. 

The inputs used for the fundamental operation were the durations, ESTs and LFTs, but the 

selection of these inputs in the students’ algorithms depended on the precedence relationships 

between the activities contained in the graph, which in turn depended on traversing the graph. 

The students’ algorithms reflected this graph traversal implicitly. For example, Group D’s 

EST algorithm (  
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Figure 7) instructs the user to start at the first vertex and then execute the fundamental 

operation on the “next activity”. The loop (step 3) then instructs the user to always choose the 

next activity in the graph “until all ESTs have been calculated”, which is somewhat 

ambiguous because it does not explicitly account for parallel activities. Similarly, Group C’s 

LFT algorithm (  
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Figure 7) is similarly ambiguous because they instruct the user to “start at the end” 

(step 1) and repeat the fundamental operation “until the start of project”.  

Figure 11 

Group C’s LFT Algorithm 

(a) original algorithm 

 
(b) revised algorithm 

 

 

Test the Solution 

Table 7 contains the two debugging subskills that the students used throughout the 

tasks. The first, use alternative method to confirm solution, was used to confirm the minimum 

time for the Hamburger and Parfait projects. Two groups used a brute-force approach by 

using decomposition subskill (ii) and abstraction subskill (v) to decompose the hamburger 

project into all possible paths and then compare the total times for each path, as illustrated in 

Figure 12. 

Table 7 

Decomposition Subskills 

Subskills Tasks 

Considering alternative approaches 

(i) use alternative approach to confirm 

solution 

Hamburger, Parfait 
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• use brute-force or greedy approaches as alternative 

methods 

Detecting and fixing errors 

(ii) execute algorithm and detect errors 

using algorithmic concepts 

Waffle Breakfast, Decontextualized 

• ambiguous branching statement 

• non-terminating loop  

• step in wrong order 

 

Figure 12 

Group B Paths for Hamburger Project 

 

The other two groups used a greedy approach, that is, they started at the beginning of 

the project and chose the edge with the longest duration at each vertex (abstraction subskill 

(v)). Dominique (Group D) explained her algorithm as follows: 

1 Dominique: Well, this is kind of like shortest path. But instead of using the shortest path, you use 

the longest one. You’re finding the longest path. 

2 Researcher: Can you show me what you mean? 

3 Dominique: So, you take the earliest starting time for cook patty and cut cheese, and then you look 

at the next two steps and choose the largest one. Because otherwise it will be too early 

to add the cheese. 

In line 1, Dominique compared her algorithm with the greedy approach for finding the 

shortest path in a graph that the students learned previously, and then provided an example of 

her method for examining the nearest neighbor in line 3. Dominique then justified the 

selection of the longest duration in terms of the relationships between the ESTs of the two 

successive activities (line 3).  

The ability to execute algorithm and detect errors using algorithmic concepts was the 

second subskill for debugging and, as shown in Table 7, there were three types of errors and 

revisions. An ambiguous branching statement refers to a branching statement that did not 

contain a condition. For example, Group C found that their branching statement in step 4 of 
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their original algorithm (Figure 11a) would not be executed at step 2. To correct this error, 

they incorporated step 4 into step 2, as shown in Figure 11b. A non-terminating loop error 

refers to an iteration step that did not include a condition for when a user should stop 

repeating the instruction. Group C corrected this error by adding the condition, “until the start 

of the project” (Figure 11b). Finally, a step in wrong order error refers to a situation in which 

the students realized that their algorithm would not function as intended if the steps were 

carried out in the order given. For example, Group C found that step 4 in their draft algorithm 

(Figure 11a) was to be carried out after they moved onto the next activity. To correct this 

error, they incorporated the condition into step 2. 

Discussion 

The aim of the present study was to build on previous literature by examining how 

students use the cognitive skills of algorithmic thinking to develop algorithms. The context 

used to investigate the research question was critical path analysis because it provides many 

opportunities to observe students’ algorithmic thinking. The most significant contribution to 

the literature about algorithmic thinking arising from this study relates to how the students 

designed viable algorithms in ways that differ substantially from prior research. In this 

section, I begin by discussing the findings related to algorithm design before addressing how 

the students used decomposition and abstraction to formulate the projects. 

Algorithm Design 

Previous research into the approaches used by novice students to design graph 

algorithms suggests that they tend to base their algorithms on their initial numerical solutions 

to the problems they are asked to solve (Moala, 2021; Moala et al., 2019). The findings of the 

present study build on this research by showing how the ability to devise a fundamental 

operation that is based on an initial solution, but expressed in more general terms, was a 

central element of the students’ viable algorithms. The students used the fundamental 
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operations that they devised to solve the initial problem to solve all the subsequent problems, 

and then included the fundamental operations in their final algorithms. These fundamental 

operations were comprised of basic mathematical operators (addition, subtraction) and were 

based on their reasoning about the goals of the problem. Standard algorithms for solving 

other graph algorithms also contain fundamental operations comprised of basic mathematical 

operators such as using addition to calculate the shortest distance between two locations 

(Dijkstra, 1959) or using an inequality 𝑤1 < 𝑤2 to select the next edge when finding a 

minimum spanning tree (Prim, 1957). Indeed, the use of basic mathematical operators to 

express fundamental operations can be observed in common algorithms beyond graph theory 

such as an inequality sign for the fundamental operation 𝑛1 > 𝑛2 in common algorithms for 

sorting sequences of numbers or division in the fundamental operation 𝑚 ÷ 𝑛 in algorithms 

for finding the greatest common divisor of two integers, 𝑚 and 𝑛 (Thomas, 2020). Hence, the 

finding about the need to devise a fundamental operation that solves the problem is likely to 

have general applicability beyond the critical path analysis context in the present study and 

hence constitutes a significant contribution to the existing literature about algorithmic 

thinking. 

The second major finding about students’ algorithm design from the present study is 

their use of three algorithmic concepts. First, the students’ reasoning about parallel activities 

led to the emergence of a condition for selecting an output for a particular activity based on 

their reasoning about the scheduling problems. These conditions were expressed in their final 

algorithms as branching statements. There is extremely limited research into students’ use of 

branching statements, let alone the reasoning that underpins the construction of those 

statements. The findings of the present study, therefore, extend the existing literature by 

demonstrating that students’ reasoning about multiple outputs resulting from applying the 

fundamental operation requires them to interpret those outputs in terms of the constraints of 
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the problem. Second, the students’ use of loops emerged when they recognized that the 

fundamental operation could be repeated for each activity in their project, that is, for each 

edge in the graph. Researchers suggest that pattern recognition is an algorithmic thinking 

cognitive skill, although there appears to be limited discussion in the literature about how this 

skill is used (Peel et al., 2019; Stephens & Kadijevich, 2020). Peel et al. (2019), however, 

suggest that the iteration of a sequence of steps in an algorithm is a pattern, the recognition of 

which is manifest in a loop. The students’ use of loops in this study is an instantiation of this 

conjecture because the students first recognized the pattern of repeatedly applying the 

fundamental operation, and then constructed an if/then instruction based on their recognition 

of that pattern. This finding extends the existing literature by showing one way in which 

pattern recognition is used in algorithmic thinking, but further research into other ways that 

this skill can be used is needed. 

Finally, the students in this study used a variable to keep track of intermediate results 

returned by the repeated application of the fundamental operation, specifically at vertices that 

represented the start or finish of multiple edges. The conditions contained in the branching 

statements mentioned above depended on these values either explicitly or implicitly. 

Researchers have long recognized the need for students to comprehend that a variable in an 

algorithm is used to assign an intermediate value that may change with subsequent iterations 

of an instruction, which is different from how a variable is used in algebra (Knuth, 1985; 

Modeste, 2016). The students in the present study had learned how to use a variable in this 

way when they learned other graph algorithms but recognized that they could use a variable 

in this new context when they needed to keep track of the multiple outputs. 

The findings about students’ use of fundamental operations, branching statements, 

loops, and variables are most likely a consequence of two key features of the tasks sequence. 

First, the initial tasks posed in the present study were comprised of only a small number of 
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vertices and edges, and hence the students easily developed the fundamental operations and 

branching conditions that could be generalized to larger graphs (Goldin, 2010). Second, the 

complex and special cases of critical path analysis were introduced incrementally, which 

enabled the students to recognize the need for a condition when confronted with two or more 

outputs at a vertex in a situation deliberately manipulated to do achieve this aim. These two 

features of the task design differ substantially from existing studies (Moala, 2021; Moala et 

al., 2019), which require students to work with complex graphs initially. From a pedagogical 

perspective, such an incremental design may support novice students in developing these 

algorithmic concepts. 

Describe, Abstract, and Decompose Problem 

The students used a range of decomposition and abstraction subskills to formulate the 

projects so that the scheduling problems could be solved, and algorithms designed. The 

ability to analyze the source materials to break the projects down into discrete activities, as 

envisaged by Hart et al. (2008), identify and quantify time as the principle variable, and use 

implicit criteria to determine relevant information from the source material (cf Wetzel et al., 

2020) led to the successful formulation of the projects. Choosing an appropriate 

representation, determining how to represent the activities using vertices and edges, and 

constructing representations were subskills necessary to represent the projects using vertex-

edge graphs accurately. The use of decomposition and abstraction in these ways could just as 

easily be interpreted as competence in graph theory (Hart, 2008) or mathematical modeling 

(Greefrath et al., 2022; Medová et al., 2019), which reinforces the notion that algorithmic 

thinking is a collection of cognitive skills drawn from mathematics and computer science. 

However, the ability to select a vertex-edge graph over a matrix to representation should not 

be overlooked. The selection in the context of this study was not surprising, given that the 

tasks were part of a unit on networks; however, three groups considered using a matrix but 
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ultimately chose a graph because they appeared to comprehend the underlying structure of 

the problem. This subskill is likely to have utility beyond the context of critical path analysis, 

and perhaps graph theory, which further research should address. 

Test the Solution 

Research into the debugging skills of students is also limited and the findings for this 

study suggest that students’ ability to use algorithmic concepts was instrumental in the 

debugging of their algorithms. The students’ competence in traversing a graph enabled them 

to recognize the need to formulate a branching statement and/or add a branching statement in 

response to detecting an error during the debugging session. Similarly, their competence in 

traversing a graph from start to finish enabled them to identify the opportunity to use iteration 

and/or recognize and fix a non-terminating loop during the debugging session. The students’ 

approaches to debugging are consistent with the patching practice identified by Moala et al. 

(2019) in that the students added, removed, or otherwise adjusted steps but retained the 

structure of the algorithm. However, the students’ recognition of errors in their use of 

algorithmic concepts is a subskill that enhanced the accuracy of their algorithms. 

Limitations 

I acknowledge that my claims about algorithmic thinking and the associated subskills 

are limited in at least four significant ways. First, the subskills are limited to critical path 

analysis problems posed within a food preparation context, although the students did appear 

to generalize their algorithms to solve the same scheduling problems for a decontextualized 

project. Second, the reproducibility of the responses to the projects used in this study by 

students in other cohorts will be limited because the fake meals and toy equipment were 

familiar to the students. However, similar, simple projects can be devised by adapting the 

design of these tasks to projects familiar to students in other contexts. Third, the study was 

conducted during the COVID-19 pandemic restrictions, which necessitated various 
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adjustments to ensure the safety of the participants. Although I took reasonable steps to 

minimize the effect of these adjustments on the students’ ability to think or produce written 

and verbal responses, the potential impact of the pandemic on the students should be 

considered when interpreting the task environment. Finally, the subskills documented in this 

study emerged out of an instructional sequence designed to support my operationalization of 

algorithmic thinking. Although I adapted an approach suggested by previous researchers 

(Hart et al., 2008), my approach to designing the tasks differs substantially from the 

approaches taken in more closely-related research (Moala, 2021; Moala et al., 2019). These 

differences in task design limit the comparability of this study, and therefore further research 

should focus on the difference in task design if this type of research is to support teachers as 

they begin to embed algorithmic thinking into mathematics education. 
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Appendix A 

 
Hamburger Patty Project 

 
Create a model that represents the preparation of this hamburger patty: 
 
 

 
 
 

  
1. What is the minimum time required to prepare the meal? 

 
 
 
 

2. Determine the earliest starting time for each activity. 
 
 
 
 
 
 
 
 
 

3. Determine the latest finishing time for each activity. 
 
 
 
 
 
 
 
 
 

4. Determine if any of the tasks can be delayed or extended without 
increasing the minimum project completion time. 
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Hamburger Patty with Melted Cheese Project 

 
Create a model that represents the preparation of this hamburger patty 
with cheese: 
 
 

 
 

 
[Prompt: Introduce notational system.] 

  
1. What is the minimum time required to prepare this meal? 

 
 
 
 

2. Determine the earliest starting time for each activity. 
 
 
 
 
 
 
 
 
 

3. Determine the latest finishing time for each activity. 
 
 
 
 
 
 
 

4. Determine if any of the tasks can be delayed or extended without 
increasing the minimum project completion time. 

 

 



  64 

 
Hamburger Project 

 
Create a model that represents the preparation of this hamburger: 
 
 

 

  
1. What is the minimum time required to prepare this meal? 

 
 
 
 

2. Determine the earliest starting time for each activity. 
 
 
 
 
 
 
 
 
 

3. Determine the latest finishing time for each activity. 
 
 
 
 
 
 
 

4. Determine if any of the tasks can be delayed or extended without 
increasing the minimum project completion time. 

 
[Prompt: Introduce definition of critical path.] 
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Appendix B 

 
Parfait Project 

 
Construct a model that represents the preparation of this strawberry parfait 
with blueberry macaroon. 
 
 

 
 
 

  
Determine the following: 
 

(a) earliest starting time for each activity 
 
 
 
 
 
 

(b) latest finishing time for each activity 
 
 
 
 
 
 

(c) any float times 
 
 
 
 
 
 
 

(d) critical path and minimum time required to prepare the dessert. 
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Appendix C 

 
Waffle Breakfast Project 

 

 
 

1. The table below contains the immediate predecessors and durations for the 
activities required to prepare the waffle with raspberries and cream, and 
sausage with ketchup. Use the information contained in this table, the picture 
of the waffle breakfast, and the Play-Doh equipment to formulate a vertex-
edge graph for this project. [Prompt: Can you decompose the project into 
separate paths?] 

 

Activity Description 
Immediate 

Predecessors 
Duration 

(seconds) 

A Heat stove – 5 

B Cook sausage A 30 

C Cook waffle A 20 

D Wash raspberries C 5 

E Plate raspberries D 3 

F Load cream C 8 

G Plate waffle and sausages B, C 10 

H Add ketchup and cream F, G 20 

 
 

  
2. Determine the following:  

 
(a) EST, LFT, float time for each activity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) critical path and minimum time required to prepare the meal. 
 
 
 
 
 
 

3. Draft a general algorithm for finding EST and LFT. 
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Appendix D 

Decontextualized Project 

Design algorithms for finding float times of all activities in a project and the critical 
path for a project. 
 
Use your draft algorithms to complete a critical path analysis of this project. Explain 
any revisions you make to your algorithms. 
 

 

 

Activity Immediate Predecessors Duration 

A – 6 

B – 3 

C A 9 

D B 5 

E C 10 

F C 4 

G D, F 5 

H E, G 6 

 

[Prompt: Did that step really explain the step the way you performed it?] 


