The Effects of Cooling on Fine-Grained Sandstone in Relation to Wellbore Injection of Carbon Dioxide

Reppas, Nikolaos, Davie, Colin, , Wetenhall, Ben, & Graham, Samuel (2023) The Effects of Cooling on Fine-Grained Sandstone in Relation to Wellbore Injection of Carbon Dioxide. Rock Mechanics and Rock Engineering, 56(10), pp. 7619-7637.

Open access copy at publisher website

Description

In Carbon Capture and Storage (CCS) procedures, it is important to determine the stability of the wellbore during carbon dioxide (CO2) injection and part of this involves assessing stresses on the rock near the wellbore due to changes in temperature and pressure. To address this, this study investigated the influence of cooling on the mechanical properties of a sandstone typical of those found in the central and southern North Sea. A series of uniaxial and triaxial compression tests was conducted on dry and saturated sandstone samples to determine the effects of cooling on the strength and stiffness under different confining pressures. The elastic modulus, shear modulus, bulk modulus and Poisson’s ratio were determined for three temperature conditions and three pressures representing different depths in a wellbore. Two methods, the International Society of Rock Mechanics (ISRM) and Wood’s (Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge, 1990), were used to determine the mechanical properties of the rock during the Uniaxial Compressive Strength (UCS) tests. For the triaxial test, only Wood’s (1990) method was applied due to the existence of confining pressure. Microstructural analysis on thin sections of the sandstones under plane and crossed polarised light conditions in the deformed and undeformed state was conducted to elucidate deformation mechanisms and aid interpretation of experimental results. It was identified that both an increase in confinement and a reduction in temperature, increased the strength of the sandstone and reduced the Poisson’s ratio. Additionally, by decreasing the temperature, especially in the UCS test the material dilated less. This is an important outcome as expanding the results to a wellbore stability problem, brittle behaviour may be more apparent and damage may occur when sub-zero injection temperatures are applied, especially at the wellbore head, where confinement is low.

Impact and interest:

3 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 241626
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Gui, Yilinorcid.org/0000-0003-3439-3888
Additional Information: Funding: This study was funded by EPSRC with project reference number: EP/R51309X/1.
Measurements or Duration: 19 pages
DOI: 10.1007/s00603-023-03446-5
ISSN: 0723-2632
Pure ID: 140038182
Divisions: Current > Research Centres > Centre for Materials Science
Current > QUT Faculties and Divisions > Faculty of Science
Current > QUT Faculties and Divisions > Faculty of Engineering
Current > Schools > School of Civil & Environmental Engineering
Copyright Owner: Crown 2023
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 18 Jul 2023 04:34
Last Modified: 29 Feb 2024 13:41