Quantifying the role of photoacclimation and self-facilitation for seagrass resilience to light deprivation

Minguito-Frutos, Mario, , Alcoverro, Teresa, Vilas, Maria, Alonso, David, Mayol, Elvira, Bernardeau-Esteller, Jaime, Marín-Guirao, Lázaro, Ruiz, Juan, & Boada, Jordi (2023) Quantifying the role of photoacclimation and self-facilitation for seagrass resilience to light deprivation. Frontiers in Plant Science, 14, Article number: 1186538.

[img]
Preview
Published Version (PDF 2MB)
141867320.
Available under License Creative Commons Attribution 4.0.

Open access copy at publisher website

Description

Introduction: Light gradients are ubiquitous in marine systems as light reduces exponentially with depth. Seagrasses have a set of mechanisms that help them to cope with light stress gradients. Physiological photoacclimation and clonal integration help to maximize light capture and minimize carbon losses. These mechanisms can shape plants minimum light requirements (MLR), which establish critical thresholds for seagrass survival and help us predict ecosystem responses to the alarming reduction in light availability.

Methods: Using the seagrass Cymodocea nodosa as a case study, we compare the MLR under different carbon model scenarios, which include photoacclimation and/or self-facilitation (based on clonal integration) and that where parameterized with values from field experiments.

Results: Physiological photoacclimation conferred plants with increased tolerance to reducing light, approximately halving their MLR from 5-6% surface irradiance (SI) to ≈ 3% SI. In oligotrophic waters, this change in MLR could translate to an increase of several meters in their depth colonization limit. In addition, we show that reduced mortality rates derived from self-facilitation mechanisms (promoted by high biomass) induce bistability of seagrass meadows along the light stress gradient, leading to abrupt shifts and hysteretic behaviors at their deep limit.

Discussion: The results from our models point to (i) the critical role of physiological photoacclimation in conferring greater resistance and ability to recover (i.e., resilience), to seagrasses facing light deprivation and (ii) the importance of self-facilitating reinforcing mechanisms in driving the resilience and recovery of seagrass systems exposed to severe light reduction events.

Impact and interest:

1 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

27 since deposited on 08 Aug 2023
27 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 242168
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Adams, Mattheworcid.org/0000-0003-4875-0225
Additional Information: Funding: Funding was provided by grant UMBRAL, CTM2017-86695-C3-3-R and CTM2017-86695-C3-1-R, as well as grant STORM, PID2020-113745RB-I00 from the Spanish Agency of Research (AEI-MICINN) and European funding (FEDER/ERDF). MM-F was funded by grant PRE2018-085778 from the Spanish FPI PhD scholarships program. JB acknowledges the support received by the Spanish Ministry of Science and Innovation under the JdC fellowship (FJC2018-035566-I) and the European Commission – European Union’s Horizon 2020 MSCA – SHIFT2SOLVE-1030591. MA’s contribution was funded by an Australian Research Council (ARC) Discovery Early Career Researcher Award (DE200100683).
Measurements or Duration: 13 pages
Keywords: minimum light requirements, physiological photoacclimation, bistability, resilience, Cymodocea nodosa
DOI: 10.3389/fpls.2023.1186538
ISSN: 1664-462X
Pure ID: 141867320
Divisions: Current > Research Centres > Centre for Data Science
Current > QUT Faculties and Divisions > Faculty of Science
Current > Schools > School of Mathematical Sciences
Funding:
Copyright Owner: 2023 The Authors
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 08 Aug 2023 00:20
Last Modified: 01 Mar 2024 05:25