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Abstract

The diffusion in comb structure is an important kind of anomalous diffusion with widespread applications. The
special structure corresponds to a novel characteristic of anomalous diffusion, which is characterised by the Dirac
delta function in the governing equation. By considering the memory characteristic, the fractional derivative is in-
troduced into the constitutive relation, and a new fractional governing equation in the infinite regions is constructed.
Instead of simply truncating for the infinite regions, the exact absorbing boundary conditions are deduced by using
the (inverse) Laplace transform technique and the stability is analysed. To deal with the governing equation con-
taining the Dirac function, the finite difference method is proposed and the term with the Dirac function is handled
using an integration method. The stability and convergence of the numerical scheme are discussed in detail. A fast
algorithm is presented that the normal L1-scheme is approximated via a sum-of-exponentials approximation. Three
examples are conducted, in which the particle distributions and the mean square displacement for the anomalous
diffusion in comb structure are discussed. The computational time between the normal numerical scheme and the
fast numerical scheme are compared and the rationality and validity of absorbing boundary conditions are anal-
ysed. An important finding is that the distribution of the mean square displacement with the absorbing boundary
conditions can match the exact one accurately, which demonstrates the effectiveness of the method.

Keywords: Anomalous Diffusion, Fractional Derivative, Fast Algorithm, Absorbing Boundary Conditions, Comb
Structure

1. Introduction

Comb structure is named derived from the combs used in our everyday life. As Fig.1.1(a) shows, the comb
structure contains a backbone located on the x axis and several teeth which are perpendicular to the backbone.
The anomalous diffusion in comb structure has widespread applications, such as the transport of cancer cells [1],
the transport along spiny dendrites [2, 3] (see Fig.1.1(b)), the reaction front propagation of actin polymerization [4].
Therefore studying the anomalous diffusion in comb structure has great significance. Due to the special structure,
the novel characteristic of the diffusion is that the transport along the x direction only happens along the x axis
while the transport along the y direction is normal. For describing the anomalous diffusion behavior, it yields
the Fick’s constitutive relation [5] containing a special diffusion coefficient with the Dirac delta function along x
direction, which is given as

J =

�
−Dxδ(y)

∂u(x, y, t)

∂x
−Dy

∂u(x, y, t)

∂y

�
, (1.1)

where J is the diffusion flux, u(x, y, t) is the particle density at the location (x, y) and time t, Dxδ(y) refers to the
diffusion coefficient along the x direction and Dy denotes the diffusion coefficient along the y direction, δ(y) denotes
to the Dirac delta function to reflect the special characteristics of anomalous diffusion along the x direction.

With the further development of research, it is found that Fick’s model corresponds to a paradox with an infinite
propagation speed [6]. By a modification, considering that the fractional derivative in time reflects the memory
characteristic of the transport process [7], yields the following time fractional Fick’s constitutive relation [8]

J = RL
0 D1−α

t

�
−Dxδ(y)

∂u(x, y, t)

∂x
,−Dy

∂u(x, y, t)

∂y

�
, (1.2)
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(a) (b)

Figure 1.1: (a) The schematic diagram of comb structure. (b) Electron tomogram of a spiny dendrite, which is taken from the website
http://www.cacr.caltech.edu/projects/ldviz/results/levelsets/, accessed on 1 July 2013

where the operator RL
0 D1−α

t refers to the fractional derivative of order 1 − α based on the Riemann-Liouville
definition [9], given as

RL
0 Dα

t g(t) =
1

Γ(1− α)

d

dt

Z t

0

g(ξ)

(t− ξ)α
dξ.

Combining Eq.(1.2) with the following mass conservation equation

∂u(x, y, t)

∂t
= −divJ + f1(x, y, t), (1.3)

we obtain the two-dimensional (2D) time fractional governing equation for describing the anomalous diffusion in
comb structure, in which the Riemann-Liouville fractional derivative is transferred to a Caputo fractional derivative
(the derivation process is given in Appendix A)

C
0 D

α
t u(x, y, t)−Dxδ(y)

∂2u(x, y, t)

∂x2
−Dy

∂2u(x, y, t)

∂y2
= f(x, y, t), t ∈ (0, T ], x, y ∈ R, (1.4)

where f(x, y, t) = RL
0 I1−α

t f1(x, y, t) is the source term reflecting the proliferation of particles, the operator C
0 D

α
t

refers to the Caputo fractional derivative of order α (0 < α < 1), given as

C
0 D

α
t g(t) =

1

Γ(1− α)

Z t

0

g′(ξ)

(t− ξ)α
dξ.

For the sake of simplicity, we introduce the dimensionless quantities

t→
�
D2
x

D3
y

�1/α

t∗, x→ Dx

Dy
x∗, y → Dx

Dy
y∗, u→

D2
y

Dx
u∗, f →

D5
y

D3
x

f∗, u0 →
D2
y

Dx
u∗0,

then we have the dimensionless governing equation (the superscript ∗ is omitted for simplicity)

C
0 D

α
t u(x, y, t)− δ(y)

∂2u(x, y, t)

∂x2
− ∂2u(x, y, t)

∂y2
= f(x, y, t), t > 0, x, y ∈ R, (1.5)

with the initial condition
u(x, y, 0) = u0(x, y), x, y ∈ R, (1.6)

and the boundary conditions

u(x, y, t)→ 0, when |x| → ∞, |y| → ∞ and t ∈ (0, T ]. (1.7)

It is worth mentioning that the anomalous diffusion in the comb model corresponds to the zero boundaries at the
infinite regions. The traditional methods to deal with the infinite boundaries are generally truncated by large values
with the disadvantage that it goes against the reality that the particle concentration of exterior domains is not zero
with time increases, and in turn, the direct truncation also affects the distribution of particle concentration for large
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times. Although we can choose a large enough interval to approximate the infinite boundary, it will undoubtedly
increase the time in the process of dividing the mesh. How to deal with the zero boundary conditions at the infinite
region is of vital importance. In recent works, Gao and Sun [10] applied the finite difference approximation for a
class of fractional sub-diffusion equations on an unbounded spatial domain, in which the space unbounded domain
is reduced to the space bounded domain by the Laplace transform. Brunner et al. [11] derived the absorbing
boundary conditions for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain
and obtained the solutions by using finite difference approximations. Zhang et al. [12] derived the exact absorbing
boundary conditions for the one-dimensional time fractional Korteweg-de Vries equation. For other important
references, the readers can refer to [13, 14, 15, 16, 17, 18, 19, 20].

As a kind of classical and widespread numerical method, the finite difference method is applied to obtain the
numerical solution. For solving the governing equation (1.5), one major problem is that the Dirac function exists
in the governing equation. To deal with the singular function, a technique to integrate the equation within a finite
volume is used that the Dirac function disappears with the help of the integration property. The advantage of this
method is that it can eliminate the influence of the singular Dirac function and the error caused by approximating
the Dirac function. Based on this numerical scheme, the stability and convergence are analysed in detail.

Due to the non-locality of the time fractional operator, the numerical solution at a certain time depends on all
the past discrete time layers by using L1-scheme, resulting in a large amount of demand for discrete storage and
computation. To build a fast algorithm with flexibility, efficiency and accuracy to reduce the computational cost
and save storage is also a problem we are looking forward to solving. In this paper, by referring to the theoretical
construct of the fast algorithm in Ref. [21], the nonlocal fractional derivative in the L1-scheme is evaluated via a
sum-of-exponentials approximation for the convolution kernel. Here we describe the main idea. For the definition
of the Caputo’s derivative, the integral from 0 to tn is separated by two parts, [0, tn−1] and [tn−1, tn]. The integral
over [tn−1, tn] can be calculated with the method of the integration by parts. And the core to deal with convolution
kernel t−1−α in the integral from [0, tn−1] is approximated by a sum-of-exponentials. For each spatial point, the
convolution with the exponential kernel can be evaluated in O(1) time at each time step via standard recurrence
relation or any A-stable ordinary differential equation solver [22, 23, 24, 25, 26, 27]. Compared with the direct L1
discretisation, the computational cost with the fast algorithm reduces from O(N2) to O(NNexp) while the storage
cost reduces from O(N) to O(Nexp), where N and Nexp are the total number of time steps and the exponentials
needed in the sum-of-exponentials approximation, respectively. Define M as the total number of discretisation
points in space. When the similar sum-of-exponentials approximations are used for the exact absorbing boundary
conditions as well, the overall computational cost for our algorithm is O(MNNexp) as compared with O(MN2) for
the direct L1 method and the storage requirement of our algorithm is O(MNexp) as compared with O(MN) for
direct method, where the value of exponentials Nexp depends on the prescribed precision ε, the cutoff time step size
τ and the final time T.

At the end of the paper, three examples are presented. The first one is to verify the effectiveness of the finite
difference scheme by comparing the fast scheme and the normal scheme. The superiority of the calculation with
the fast algorithm is analysed. The second one discusses the difference between the absorbing boundary conditions
and zero boundary conditions and the validity and rationality of the models. The last one analyses the particle
distribution and mean square displacement on the backbone for the anomalous diffusion in comb structure and the
impacts of different dynamic parameters. Based on the mean square displacement, the comparison between the
model (1.5) with the exact absorbing boundary conditions and conventional boundary conditions is also presented.
In addition, the subdiffusion behavior reflected by the mean square displacement is discussed in detail.

The paper is arranged as follows. The absorbing boundary conditions for the model (1.5) is derived in Section
2 and its stability is given in Section 3. The detailed scheme of the finite difference method to treat the governing
equation is demonstrated in Section 4. The analysis of the stability and convergence of the finite difference method is
presented in Section 5. By substituting the kernel in the convolution integral with the efficient sum-of-exponentials,
Section 6 develops the fast algorithm of the finite difference scheme. Three examples are given in Section 7, which
mainly demonstrate the effectiveness of the fast discretisation scheme and the accuracy of the exact absorbing
boundary conditions. The conclusions are summarised in Section 8.

2. The derivation of exact absorbing boundary conditions

In this section, the artificial boundary method is applied to construct the exact absorbing boundary conditions
for problem (1.5)-(1.7). Firstly, the original infinite domain Ω := {(x, y)| − ∞ < x < +∞,−∞ < y < +∞} is
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truncated by a rectangular region Ωc := {(x, y)|xl ≤ x ≤ xr, yd ≤ y ≤ yu}, where xl, xr, yd and yu are the left,
right, lower and upper boundaries of Ωc. The choices of parameters xl, xr, yd and yu are determined such that
the source term f(x, y, t) and initial data u0(x, y) are compactly supported in Ωc. Then the infinite domain can be
divided into five parts (see Figure 2.1), the computational domain of interest Ωc, the unbounded exterior domains
of the left-upper Ωlu, right-upper Ωru, left-down Ωld and right-down Ωrd, respectively given as

Ωlu :=
n
−∞ < x ≤ xl,

yu + yd
2

≤ y < +∞
o
∪
n
−∞ < x ≤ xl + xr

2
, yu ≤ y < +∞

o
,

Ωru :=
n
xr ≤ x < +∞, yu + yd

2
≤ y < +∞

o
∪
nxl + xr

2
≤ x < +∞, yu ≤ y < +∞

o
,

Ωld :=
n
−∞ < x ≤ xl,−∞ < y ≤ yu + yd

2

o
∪
n
−∞ < x ≤ xl + xr

2
,−∞ < y ≤ yd

o
,

Ωrd :=
nxl + xr

2
≤ x < +∞,−∞ < y ≤ yd

o
∪
n
xr ≤ x < +∞,−∞ < y ≤ yd + yu

2

o
.

Figure 2.1: The truncated computational domain Ωc in infinite plane Ω with artificial boundaries x = xl, x = xr, y = yd and y = yu.

On the four exterior space regions Ωlu, Ωru, Ωld and Ωrd and t > 0, we have the following governing equation

C
0 D

α
t u(x, y, t)− δ(y)

∂2u(x, y, t)

∂x2
− ∂2u(x, y, t)

∂y2
= 0, x, y ∈ Ωlu,Ωru,Ωld,Ωrd, (2.1)

subjected to the initial condition

u(x, y, 0) = 0 for x, y ∈ Ωlu,Ωru,Ωld,Ωrd, (2.2)

and boundary conditions

x, y ∈ Ωlu : u(x, y, t)→ 0 when x→ −∞, y → +∞, (2.3)

x, y ∈ Ωru : u(x, y, t)→ 0 when x→ +∞, y → +∞, (2.4)

x, y ∈ Ωld : u(x, y, t)→ 0 when x→ −∞, y → −∞, (2.5)

x, y ∈ Ωrd : u(x, y, t)→ 0 when x→ +∞, y → −∞. (2.6)
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Performing the Laplace transform [9] on the governing equation (2.1), yields

sαeu(x, y, s)− δ(y)
∂2eu(x, y, s)

∂x2
− ∂2eu(x, y, s)

∂y2
= 0, (2.7)

where eu(x, y, s) = L[u(x, y, t)] refers to the Laplace transform of u(x, y, t).

Considering the characteristics of the Dirac delta function, a simplified form sαeu(x, y, s) − ∂2eu(x,y,s)
∂y2 = 0 is

formulated for any y > 0 and y < 0. According to the characteristic equation sα − λ2 = 0, the eigenvalue is

calculated as λ = ±sα/2. Then the analytical solution can be expressed as eu(x, y, s) = c1(x, s)es
α/2y+c2(x, s)e−s

α/2y.

According to the positive and negative infinite boundary conditions (2.3)-(2.6), we have eu(x, y, s) = c2(x, s)e−s
α/2y

for y > 0 while eu(x, y, s) = c1(x, s)es
α/2y for y < 0. Considering the continuity of eu(x, y, s) at y = 0, we deduce

c1(x, s) = c2(x, s). Then the solution can be expressed as eu(x, y, s) = g(x, s)e−s
α/2|y|, where g(x, s) = c1(x, s) =

c2(x, s). Substituting the solution into Eq.(2.7), we have ∂2g(x,s)
∂x2 − 2sα/2g(x, s) = 0. It is easy to find the solution is

g(x, s) = c3(s)e
√

2sα/4x + c4(s)e−
√

2sα/4x. Similarly, using the zero boundary conditions (2.3) at the infinite regions,

it yields g(x, s) = c4(s)e−
√

2sα/4x for regions Ωru and Ωrd. Considering the infinite boundary conditions along the
x and y directions, it yields

eu(x, y, s) = c4(s)e−
√

2sα/4xe−s
α/2y for Ωru, eu(x, y, s) = c3(s)e

√
2sα/4xe−s

α/2y for Ωlu,eu(x, y, s) = c4(s)e−
√

2sα/4xes
α/2y for Ωrd, eu(x, y, s) = c3(s)e

√
2sα/4xes

α/2y for Ωld.

Taking the derivative of the solution with respect to x and y and then performing the inverse Laplace transform,
the exact absorbing boundary conditions can be derived as

∂u(xl, y, t)

∂x
=
√

2C0 D
α/4
t u(xl, y, t),

∂u(xr, y, t)

∂x
= −
√

2C0 D
α/4
t u(xr, y, t), (2.8)

∂u(x, yu, t)

∂y
= −C0 D

α/2
t u(x, yu, t),

∂u(x, yd, t)

∂y
= C

0 D
α/2
t u(x, yd, t). (2.9)

3. Stability of the model with exact absorbing boundary conditions

We now present the theoretical analysis to verify that the governing equation (1.5) with initial condition (1.6)
and boundary conditions (2.8) and (2.9) are stable in L2-norm. We begin with some useful definitions and lemmas.

Definition 3.1 ([9]). Suppose a continuous function g(t) is absolutely integrable in (−∞,+∞), the Fourier trans-

form is defined as Fe{g(t);ω} = Ĝ(ω) =
R +∞
−∞ e−iωtg(t)dt.

Lemma 3.1 ([9]). Suppose a continuous function g(t) is absolutely integrable in (−∞,+∞), and the function g(t)
satisfies zero initial condition g(t) ≡ 0 for t ≤ 0. the Fourier transform for the Caputo fractional derivative is given
as Fe{C0 Dα

t g(t);ω} = (−iω)αĜ(ω).

Lemma 3.2 ([28]). The Plancherel theorem is described as
R +∞
−∞ |g(t)|2 dt = 1

2π

R +∞
−∞

���Ĝ(ω)
���2 dω.

Lemma 3.3 ([29]). Suppose 0 < α < 1, it yields v(t)C0 D
α
t v(t) ≥ 1

2
C
0 D

α
t v

2(t), where the function v(t) is an absolutely
continuous function on [0, T ].

Lemma 3.4 ([9]). Suppose a(t) and b(t) are nonnegative and nondecreasing and a(t) is locally integrable over [0, T ].
For α > 0 and 0 ≤ t ≤ T , v(t) satisfies the inequality v(t) ≤ a(t) + b(t)

R t
0 (t − τ)α−1v(τ)dτ, then the following

inequality can be deduced v(t) ≤ a(t)Eα(b(t)Γ(α)tα), where Eα =
P∞
n=0

zn

Γ(nα+1) refers to the Mittag-Leffler function.

Lemma 3.5 ([12]). Suppose that y(t) is absolutely continuous on [0, T ]. Then the integral of y(t) satisfies I1
t
C
0 D

α
t y(t) =

− t1−α

Γ(2−α)y(0) +RL
0 I1−α

t y(t), where I1
t g(t) :=

R t
0 g(s)ds, the operator RL

0 I1−α
t refers to the Riemann-Liouville frac-

tional integral of order 1− α with the form RL
0 I1−α

t g(t) = 1
Γ(1−α)

R t
0

g(ξ)
(t−ξ)α dξ.
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Lemma 3.6. Supposing f and g are smooth functions, it yields the following inequalities

I1
t (f

C
0 D

α/4
t f + gC0 D

α/4
t g)

��
t=T
≥ 0, I1

t (f
C
0 D

α/2
t f + gC0 D

α/2
t g)

��
t=T
≥ 0,

where T > 0 and f(0) = g(0) = 0.

Proof. Firstly, denote F (t) = f(t)1[0,T ] and G(t) = g(t)1[0,T ] for any T > 0, where 10,T (t) is the characteristic
function of [0, T ] [12]. Then we can extend the integration domain as follows

I1
t (f

C
0 D

α/4
t f + gC0 D

α/4
t g)

��
t=T

= I1
t (F

C
0 D

α/4
t F +GC0 D

α/4
t G)

��
t=T

=

Z +∞

−∞
(FC0 D

α/4
t F +GC0 D

α/4
t G)dt.

Employing Lemma 3.1 and the Plancherel theorem in Lemma 3.2, we obtainZ +∞

−∞
(FC0 D

α/4
t F +GC0 D

α/4
t G)dt =

1

2π

Z +∞

−∞

�
(−iω)α/4

��F̂ (ω)
��2 + (−iω)α/4

��Ĝ(ω)
��2�dω

=
1

2π

Z +∞

0

�
(iω)α/4

��F̂ (ω)
��2 + (−iω)α/4

��F̂ (ω)
��2 + (iω)α/4

��Ĝ(ω)
��2 + (−iω)α/4

��Ĝ(ω)
��2�dω

=
1

2π
cos(

πα

8
)

Z +∞

0
|ω|α/4(

��F̂ (ω)
��2 +

��Ĝ(ω)
��2)dω.

For 0 < α < 1, it is easy to conclude that the integral is larger than zero. Following the same process, we can
verify the second inequality also holds.

Lemma 3.7. For any continuous function g(y), the integral of the product of g(y) and the Dirac function satisfiesR y
y g(y)δ(y − y0)dy = g(y0), where y < y0 < y.

Lemma 3.8 ([9]). For any continuous function g(t) and α, β ∈ R+, it yields RL
0 Iαt

RL
0 Iβt g(t) = RL

0 Iα+β
t g(t).

Theorem 3.9. For 0 < t ≤ T , the governing equation (1.5) with initial condition (1.6) and boundary conditions
(2.8) and (2.9) is L2-stable and satisfyZ t

0
‖u(·, ·, τ)‖2dτ ≤ RL

0 Iαt

�
t1−αEα(tα)

Γ(2− α)

�
‖u(·, ·, 0)‖2 + RL

0 Iαt

�
Eα(tα)

Z t

0
‖f(·, ·, τ)‖2dτ

�
, (3.1)

where ‖u(·, ·, t)‖2 is defined as ‖u(·, ·, t)‖2 =
R yu
yd

R xr
xl
u2(x, y, t)dxdy.

Proof. Multiplying both sides of (1.5) with 2u, integrating x from xl to xr, integrating y from yd to yu, integrating
t over [0, T ], and applying the property of the Dirac delta function in Lemma 3.7, we obtain

2

Z t

0

Z yu

yd

Z xr

xl

u(x, y, τ)C0 D
α
t u(x, y, τ)dxdydτ − 2

Z t

0

Z xr

xl

u(x, 0, τ)
∂2u(x, 0, τ)

∂x2
dxdτ

−2

Z t

0

Z yu

yd

Z xr

xl

u(x, y, τ)
∂2u(x, y, τ)

∂y2
dxdydτ = 2

Z t

0

Z yu

yd

Z xr

xl

f(x, y, τ)u(x, y, τ)dxdydτ. (3.2)

For the second term in (3.2), by applying Lemma 3.6, integration by parts and substituting the boundary
conditions (2.8), it yields

− 2

Z t

0

Z xr

xl

u(x, 0, τ)
∂2u(x, 0, τ)

∂x2
dxdτ = −2

Z t

0

Z xr

xl

u(x, 0, τ)d
∂u(x, 0, τ)

∂x
dτ

= −2

Z t

0

�
u(x, 0, τ)

∂u(x, 0, τ)

∂x

�����xr
xl

dτ + 2

Z t

0

Z xr

xl

∂u(x, 0, τ)

∂x

∂u(x, 0, τ)

∂x
dxdτ

= 2
√

2

Z t

0

�
u(xr, 0, τ)C0 D

α/4
t u(xr, 0, τ) + u(xl, 0, τ)C0 D

α/4
t u(xl, 0, τ)

�
dτ + 2

Z t

0

Z xr

xl

�
∂u(x, 0, τ)

∂x

�2

dxdτ ≥ 0.
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For the third term in (3.2), by applying Lemma 3.6 and the boundary conditions (2.9), we obtain

− 2

Z t

0

Z yu

yd

Z xr

xl

u(x, y, τ)
∂2u(x, y, τ)

∂y2
dxdydτ = −2

Z t

0

Z xr

xl

Z yu

yd

u(x, y, τ)d
∂u(x, y, τ)

∂y
dxdτ

= −2

Z t

0

Z xr

xl

u(x, y, τ)
∂u(x, y, τ)

∂y

����yu
yd

+ 2

Z t

0

Z xr

xl

Z yu

yd

�
∂u(x, y, τ)

∂y

�2

dydxdτ

= −2

Z t

0

Z xr

xl

�
u(x, yu, τ)

∂u(x, yu, τ)

∂y
− u(x, yd, τ)

∂u(x, yd, τ)

∂y

�
dxdτ + 2

Z t

0

Z xr

xl

Z yu

yd

�
∂u(x, y, τ)

∂y

�2

dydxdτ

= 2

Z t

0

Z xr

xl

�
u(x, yu, τ)C0 D

α/2
t u(x, yu, τ) + u(x, yd, τ)C0 D

α/2
t u(x, yd, τ)

�
dxdτ + 2

Z t

0

Z xr

xl

Z yu

yd

�
∂u(x, y, τ)

∂y

�2

dydxdτ ≥ 0.

We now applying Lemma 3.3 to obtain the simplified form of Eq.(3.2)Z t

0

Z yu

yd

Z xr

xl

C
0 D

α
t u

2(x, y, τ)dxdydτ ≤ 2

Z t

0

Z yu

yd

Z xr

xl

f(x, y, τ)u(x, y, τ)dxdydτ.

With the application of Lemma 3.5 and the Cauchy-Schwarz inequality, the above inequality changes as

RL
0 I1−α

t

Z yu

yd

Z xr

xl

u2(x, y, τ)dxdy ≤ t1−α

Γ(2− α)

Z yu

yd

Z xr

xl

u2(x, y, 0)dxdy

+

Z t

0

Z yu

yd

Z xr

xl

u2(x, y, τ)dxdydτ +

Z t

0

Z yu

yd

Z xr

xl

f2(x, y, τ)dxdydτ. (3.3)

Denote v(t) := RL
0 I1−α

t

R yu
yd

R xr
xl
u2dxdy. Using the property of the Riemann-Liouville integral in Lemma 3.8, we

may rewrite
R t

0

R yu
yd

R xr
xl
u2(x, y, τ)dxdydτ asZ t

0

Z yu

yd

Z xr

xl

u2dxdydτ =RL
0 Iαt

�
RL
0 I1−α

t

Z yu

yd

Z xr

xl

�
=RL

0 Iαt v(t).

Denote a(t) := t1−α

Γ(2−α)

R yu
yd

R xr
xl
u2(x, y, 0)dxdy +

R t
0

R yu
yd

R xr
xl
f2(x, y, τ)dxdydτ and b(t) := 1

Γ(α) , which satisfy

nonnegative and nondecreasing and a(t) is locally integrable over [0, T ]. Then Eq.(3.3) can be rewritten as

v(t) ≤ a(t) + RL
0 Iαt v(t) = a(t) +

1

Γ(α)

Z t

0
(t− τ)α−1v(τ)dτ. (3.4)

A direct application of Lemma 3.4 to (3.4) leads to

v(t) ≤ a(t)Eα(tα). (3.5)

Applying the fractional integral operator RL
0 Iαt of order α on both sides of (3.5) leads to the desired result

(3.1).

Remark 3.1. For the special case u (x, y, 0) = δ (x) δ (y) and f (x, y, t) = 0 in model (1.5), the solution to the
problem can be expressed as (the detailed deduction is presented in Example 7.3)

u (x, y, t) =
1

2
√
π

+∞Z
0

e−
x2

4τ

√
τ
L−1

�
sα−1e−(2τ+|y|)sα/2

�
dτ, (3.6)

which is difficult to expressed explicitly. However, an important physical characteristics parameter, the mean square
displacement, can be derived explicitly as¬

χ2 (t)
¶

=

R +∞
−∞ x2u (x, 0, t) dxR +∞
−∞ u (x, 0, t) dx

= Γ (1− α/2) tα/2, (3.7)

which will be used to verify the existence and correctness of the solution.
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Theorem 3.10. Suppose u(x, y, t) and v(x, y, t) are any two solutions of the governing equation (1.5) subjected to
the initial condition (1.6) and boundary conditions (2.8) and (2.9), then the two solutions are equal, namely the
solution is unique.

Proof. Suppose w(x, y, t) = u(x, y, t)− v(x, y, t), then w(x, y, t) satisfies the following equation

C
0 D

α
t w(x, y, t)− δ(y)

∂2w(x, y, t)

∂x2
− ∂2w(x, y, t)

∂y2
= 0, x, y ∈ Ωc, t > 0, (3.8)

subjected to the initial condition
w(x, y, 0) = 0 for x, y ∈ Ωc, (3.9)

and the boundary conditions (2.8) and (2.9). A direct application of Theorem 3.9 yieldsZ t

0
‖w(·, ·, τ)‖2dτ ≤ 0. (3.10)

Since ‖w(·, ·, τ)‖2 is no less than zero, we obtain w(·, ·, τ) = 0. The solution has been verified to be unique.

4. Construction of the finite difference method

In this section, the finite difference method is proposed to solve the time fractional governing equation (1.5)
subjected to the initial condition (1.6) and exact absorbing boundary conditions (2.8) and (2.9). For the positive
integers N , Mx and My, define a uniform temporal partition of time region [0, T ] with time steps τ = T/N and
uniform mesh partition of the space region Ωc with the space steps hx = xr−xl

Mx
and hy = yu−yd

My
. Then, we

have tn = nτ for n = 0, 1, . . . , N and the set of grid points are denoted by xi = xl + ihx, yj = yd + jhy for
i = 0, 1, . . . ,Mx and j = 0, 1, . . . ,My. Besides, denote un = u(·, ·, tn), Uni,j = u (xi, yj , tn) be the exact solution of u
at grid points (xi, yj , tn), uni,j be the numerical approximation to u(xi, yj , tn) for i = 0, 1, . . . ,Mx, j = 0, 1, . . . ,My

and n = 0, 1, . . . , N . Denote

δxu
n
i,j =

1

hx
(uni,j − uni−1,j), i = 1, 2, . . . ,Mx; j = 0, 1, . . . ,My,

δyu
n
i,j =

1

hy
(uni,j − uni,j−1), i = 0, 1, . . . ,Mx; j = 1, . . . ,My,

δ2
xu

n
i,j =

1

h2
x

(uni+1,j − 2uni,j + uni−1,j), i = 1, 2, . . . ,Mx − 1; j = 0, 1, . . . ,My,

δ2
yu

n
i,j =

1

h2
y

(uni,j+1 − 2uni,j + uni,j−1), i = 0, 1, . . . ,Mx; j = 1, 2, . . . ,My − 1.

Integrating both sides of the governing equation (1.5) over the finite volume [yj−1/2, yj+1/2] with y, it yieldsZ yj+1/2

yj−1/2

C
0 D

α
t u(x, y, t)dy −

Z yj+1/2

yj−1/2

δ(y)
∂2u(x, y, t)

∂x2
dy −

Z yj+1/2

yj−1/2

∂2u(x, y, t)

∂y2
dy =

Z yj+1/2

yj−1/2

f(x, y, t)dy. (4.1)

According to the rectangle formula, we haveZ yj+1/2

yj−1/2

C
0 D

α
t u(x, y, t)dy = hy

C
0 D

α
t u(x, yj , t) +O(h3

y),Z yj+1/2

yj−1/2

∂2u(x, y, t)

∂y2
dy = hy

∂2u(x, yj , t)

∂y2
+O(h3

y),Z yj+1/2

yj−1/2

f(x, y, t)dy = hyf(x, yj , t) +O(h3
y).
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For the simplicity of discussion, suppose Mx and My are even and denote xMx/2 = 0, yMy/2 = 0, namely,
(xMx/2, yMy/2) = (0, 0). Considering the characteristic of the Dirac function, the core to deal with the second term

δ(y)∂
2u(x,y,tn)
∂x2 is that whether δ(yj) is equal to zero. We now apply Lemma 3.7 to obtainZ yj+1/2

yj−1/2

δ(y)
∂2u(x, y, tn)

∂x2
dy =

¨
∂2u(x,0,tn)

∂x2 , for j =
My

2 ,

0, for j 6= My

2 .

The singular property of the delta function disappears through the integration of the governing equation. At
(xi, yj , tn), the Eq.(4.1) changes as

C
0 D

α
t u(xi, yj , tn)− 1

hy
Φ(yj)

∂2u(xi, yj , tn)

∂x2
− ∂2u(xi, yj , tn)

∂y2
= f(xi, yj , tn) +O(h2

y), (4.2)

for 0 ≤ i ≤Mx, 0 ≤ j ≤My, 1 ≤ n ≤ N, and Φ (y) =

§
1, y = 0
0, y 6= 0

.

At t = tn, the L1-scheme [30, 31] to approximate the Caputo time fractional derivative of order α (0 < α < 1)
is given as

C
0 D

α
t u

n = µ

�
d

(α)
0 un −

n−1X
k=1

�
d

(α)
n−k−1 − d

(α)
n−k

�
uk − d(α)

n−1u
0

�
+Rn,α0 := Dα

t u
n +Rn,α0 , (4.3)

where µ = τ−α

Γ(2−α) , d
(α)
0 = 1 and d

(α)
k = (k + 1)1−α − k1−α for 1 ≤ k ≤ n − 1 and the error Rn,α0 satisfies

|Rn,α0 | ≤ Cτ2−α when un ∈ C2[0, tn].
Using the Taylor expansion, the finite difference discretization for Eq.(4.2) with the initial condition (2.2) and

absorbing boundary conditions Eqs.(2.8)-(2.9) is given as

Dα
t u

n
i,j −

1

hy
Φ (j −My/2) δ2

xu
n
i,j − δ2

yu
n
i,j = fni,j , 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 1 ≤ n ≤ N, (4.4)

u0
i,j = u0(xi, yj), 0 ≤ i ≤Mx, 0 ≤ j ≤My, (4.5)

Dα
t u

n
0,j −

1

hy
Φ (j −My/2)

2

hx
(δxu

n
1,j −

√
2D

α/4
t un0,j)− δ2

yu
n
0,j = fn0,j , 1 ≤ j ≤My − 1, 1 ≤ n ≤ N, (4.6)

Dα
t u

n
Mx,j −

1

hy
Φ (j −My/2)

2

hx
(−
√

2D
α/4
t unMx,j − δxu

n
Mx,j)− δ

2
yu

n
Mx,j = fnMx,j , 1 ≤ j ≤My − 1, 1 ≤ n ≤ N,

(4.7)

Dα
t u

n
i,0 −

2

hy
(δyu

n
i,1 −D

α/2
t uni,0) = fni,0, 0 ≤ i ≤Mx, 1 ≤ n ≤ N, (4.8)

Dα
t u

n
i,My
− 2

hy
(−Dα/2

t uni,My
− δyuni,My

) = fni,My
, 0 ≤ i ≤Mx, 1 ≤ n ≤ N. (4.9)

In the above, we apply second-order central differences to approximate the spatial derivatives in (4.2) at interior
nodes. The discretization for the boundary nodes is based on the following lemma.

Lemma 4.1 ([10]). Suppose f(x) ∈ C3 [xl, xr], then we have

f ′′ (x0)− 2

hx

�
f (x1)− f (x0)

hx
− f ′ (x0)

�
= −hx

3
f (3) (x0 + θ1hx) , θ1 ∈ (0, 1), (4.10)

f ′′ (xMx
)− 2

hx

�
f ′ (xMx

)− f (xMx
)− f (xMx−1)

hx

�
=
hx
3
f (3) (xMx

− θ2hx) , θ2 ∈ (0, 1). (4.11)

5. Stability and convergence analysis of the finite difference scheme

In this section, we mainly analyze the stability and convergence of the finite difference scheme (4.4)-(4.9).
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Let V = {v|v = (v0,0, v0,1, · · · , v0,My , v1,0, v1,1, · · · , v1,My , · · · , vMx,0, vMx,1, · · · , vMx,My )}. For any u, v ∈ V, we
define the two-dimensional inner product and norm as

(u, v)h = hx
2

�
hy
2 u0,0v0,0 + hy

My−1P
j=1

u0,jv0,j +
hy
2 u0,My

v0,My

�
+hx

Mx−1P
i=1

�
hy
2 ui,0vi,0 + hy

My−1P
j=1

ui,jvi,j +
hy
2 ui,My

vi,My

�
+hx

2

�
hy
2 uMx,0vMx,0 + hy

My−1P
j=1

uMx,jvMx,j +
hy
2 uMx,My

vMx,My

�
,

(5.1)

and
‖u‖h =

È
(u, u)h, (5.2)

respectively.

Lemma 5.1. ([15, 30])For any mesh functions g = {gk|0 ≤ k ≤ N } defined on Ωt = {tk|0 ≤ k ≤ N }, the following
inequality holds

τ
nX
k=1

(Dα
t g

k)gk ≥ t−αn
2Γ(1− α)

τ
nX
k=1

(gk)2 − t1−αn

2Γ(2− α)
(g0)2, 1 ≤ n ≤ N .

Theorem 5.2. For 0 < α < 1 and 1 ≤ n ≤ N , the finite difference scheme (4.4)-(4.9) is unconditionally stable
and it holds

τ
NX
n=1

‖un‖2h ≤
2T

1− α
‖u0‖2h + 4T 2αΓ(1− α)

2
τ

NX
n=1

‖fn‖2h. (5.3)

Proof. Performing the inner product between (4.4)-(4.9) with un and summing n from 1 to N , yields

τ
NX
n=1

(Dα
t u

n, un)h − τ
NX
n=1

�
1

hy
Φ (j −My/2) δ2

xu
n, un

�
h

− τ
NX
n=1

�
δ2
yu

n, un
�
h

= τ
NX
n=1

(fn, un)h. (5.4)

For the first term of (5.4), applying Lemma 5.1, we have

τ
NX
n=1

(Dα
t u

n, un)h ≥
T−α

2Γ (1− α)
τ

NX
n=1

‖un‖2h −
T 1−α

2Γ (2− α)
‖u0‖2h. (5.5)

For the second term of (5.4), using the definition of the inner product, we can obtain�
1

hy
Φ (j −My/2) δ2

xu
n, un

�
h

=
�
δxu

n
1,My/2

−
√

2D
α/4
t un0,My/2

�
un0,My/2

+ hx

Mx−1X
i=1

�
δ2
xu

n
i,My/2

· uni,My/2

�
+
�
−
√

2D
α/4
t unMx,My/2

− δxunMx,My/2

�
unMx,My/2

.

(5.6)

According to the discrete Green’s identity

hx

Mx−1X
i=1

δ2
xu

n
i,j · uni,j = −hx

Mx−1X
i=2

�
δxu

n
i,j

�2
− δxun1,j · un1,j + δxu

n
Mx,j · u

n
Mx−1,j , (5.7)

the Eq.(5.6) can be changed as�
1

hy
Φ(j −My/2)δ2

xu
n, un

�
h

=− hx
MxX
i=1

�
δxu

n
i,My/2

�2
−
√

2un0,My/2
D
α/4
t un0,My/2

−
√

2unMx,My/2
D
α/4
t unMx,My/2

.

(5.8)
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Similarly, for the third term of (5.4), we have�
δ2
yu

n, un
�
h

=
hx
2

24�δyun0,1 −Dα/2
t un0,0

�
un0,0 + hy

My−1X
j=1

δ2
yu

n
0,ju

n
0,j +

�
−Dα/2

t un0,My
− δyun0,My

�
un0,My

35
+ hx

Mx−1X
i=1

24�δyuni,1 −Dα/2
t uni,0

�
uni,0 + hy

My−1X
j=1

δ2
yu

n
i,ju

n
i,j +

�
−Dα/2

t uni,My
− δyuni,My

�
uni,My

35
+
hx
2

24�δyunMx,1 −D
α/2
t unMx,0

�
unMx,0 + hy

My−1X
j=1

δ2
yu

n
Mx,ju

n
Mx,j +

�
−Dα/2

t unMx,My
− δyunMx,My

�
unMx,My

35
=
hx
2

24−hy MyX
j=1

�
δyu

n
0,j

�2
− un0,0D

α/2
t un0,0 − un0,My

D
α/2
t un0,My

35
+ hx

Mx−1X
i=1

24−hy MyX
j=1

�
δyu

n
i,j

�2
− uni,0D

α/2
t uni,0 − uni,My

D
α/2
t uni,My

35
+
hx
2

24−hy MyX
j=1

�
δyu

n
Mx,j

�2
− unMx,0D

α/2
t unMx,0 − u

n
Mx,My

D
α/2
t unMx,My

35 .

(5.9)

Using the fact that u0
i,0 = u0

i,My
= u0

0,j = u0
Mx,j

= 0 by the assumption that the initial data are compactly
supported and applying the Lemma 5.1, we obtain

τ
NX
n=1

�
un0,My/2

D
α/4
t un0,My/2

+ unMx,My/2
D
α/4
t unMx,My/2

�
≥ T−α/4

2Γ (1− α/4)
τ

NX
n=1

�
un0,My/2

�2
− T 1−α/4

2Γ (2− α/4)

�
u0

0,My/2

�2

+
T−α/4

2Γ (1− α/4)
τ

NX
n=1

�
unMx,My/2

�2
− T 1−α/4

2Γ (2− α/4)

�
u0
Mx,My/2

�2

≥0.

(5.10)

Similarly, we derive

τ
NX
n=1

�
uni,0D

α/2
t uni,0 + uni,My

D
α/2
t uni,My

�
≥ 0, 0 ≤ i ≤Mx. (5.11)

For the fourth term of (5.4) , we obtain

τ
NX
n=1

(fn, un)h ≤ τ
NX
n=1

(‖fn‖h · ‖un‖h) ≤ τ
NX
n=1

TαΓ (1− α) ‖fn‖2h + τ
NX
n=1

T−α

4Γ (1− α)
‖un‖2h (5.12)

≤ TαΓ (1− α) τ
NX
n=1

‖fn‖2h +
T−α

4Γ (1− α)
τ

NX
n=1

‖un‖2h. (5.13)

Substituting (5.5)-(5.13) into Eq.(5.4), it derives the following inequality

T−α

4Γ (1− α)
τ

NX
n=1

‖un‖2h ≤
T 1−α

2Γ (2− α)
‖u0‖2h + TαΓ (1− α) τ

NX
n=1

‖fn‖2h. (5.14)
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Furthermore, it can be simplified as

τ
NX
n=1

‖un‖2h ≤
2T

1− α
‖u0‖2h + 4T 2αΓ(1− α)

2
τ

NX
n=1

‖fn‖2h. (5.15)

The proof is completed.

Now we show the convergence result for the finite difference scheme (4.4)-(4.9).

Theorem 5.3. Suppose that u (x, y, t) ∈ C4,4,2
x,y,t (Ωc × [0, T ]) is the solution of problem (1.5) with initial condition

(1.6) and boundary conditions (2.8) and (2.9). Denote Uni,j = u (xi, yj , tn) and uni,j be the exact solution and
the numerical solution of u at grid points (xi, yj , tn) for 0 ≤ i ≤ Mx, 0 ≤ j ≤ My and 0 ≤ n ≤ N . Define
eni,j = Uni,j − uni,j, then we have the following error estimate

τ
NX
n=1

‖en‖2h ≤ 4T 2α+1Γ(1− α)
2
C
�
τ4−2α + τ4−α/hy + τ4−α/2/hx/hy + h3

x/hy + h3
y + hxh

5
y

�
, (5.16)

where C is independent of hx, hy and τ .

Proof. The error function eni,j satisfies the following governing equation:

Dα
t e

n
i,j −

1

hy
Φ (j −My/2) δ2

xe
n
i,j − δ2

ye
n
i,j = Rni,j , 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 1 ≤ n ≤ N, (5.17)

e0
i,j = 0, 0 ≤ i ≤Mx, 0 ≤ j ≤My, (5.18)

Dα
t e

n
0,j −

1

hy
Φ (j −My/2)

2

hx
(δxe

n
1,j −

√
2D

α/4
t en0,j)− δ2

ye
n
0,j = Rn0,j , 1 ≤ j ≤My − 1, 1 ≤ n ≤ N, (5.19)

Dα
t e

n
Mx,j −

1

hy
Φ (j −My/2)

2

hx
(−
√

2D
α/4
t enMx,j − δxe

n
Mx,j)− δ

2
ye
n
Mx,j = RnMx,j , 1 ≤ j ≤My − 1, 1 ≤ n ≤ N,

(5.20)

Dα
t e

n
i,0 −

2

hy
(δye

n
i,1 −D

α/2
t eni,0) = Rni,0, 0 ≤ i ≤Mx, 1 ≤ n ≤ N, (5.21)

Dα
t e

n
i,My
− 2

hy
(−Dα/2

t eni,My
− δyeni,My

) = Rni,My
, 0 ≤ i ≤Mx, 1 ≤ n ≤ N. (5.22)

By Taylor theorem, it is easy to know that there exists a positive constant C such that (see [10])

|Rni,j | ≤ C(τ2−α + h2
y), 0 ≤ i ≤Mx, j 6= 0,My/2,My,

|Rni,j | ≤ C(τ2−α + hy + τ2−α/2/hy), 0 ≤ i ≤Mx, j = 0,My,

|Rni,j | ≤ C(τ2−α + h2
x/hy + h2

y), 1 ≤ i ≤Mx − 1, j = My/2,

|Rni,j | ≤ C(τ2−α + hx/hy + τ2−α/4/hx/hy + h2
y), i = 0,Mx, j = My/2.

(5.23)

According to the Theorem 5.2, we have

τ
NX
n=1

‖en‖2h ≤
2T

1− α
‖e0‖2h + 4T 2αΓ(1− α)

2
τ

NX
n=1

‖Rn‖2h

≤ 4T 2α+1Γ(1− α)
2
C
�
τ4−2α + τ4−α/hy + τ4−α/2/hx/hy + h3

x/hy + h3
y + hxh

5
y

�
.

(5.24)

The proof is completed.
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6. Acceleration of the finite difference scheme

The normal scheme to discretise the time Caputo derivative is the L1-scheme, which is very expensive in both
the computational and storage cost. This difference scheme contains a summation that involves all history values
and the total cost of evaluating the L1 discretisation at each point is O

�
N2

�
, where N is the total number of time

steps. In order to reduce the computational and storage cost, we now apply a fast algorithm for the evaluation of
the Caputo fractional derivative proposed by [21]. Here we present a short summary of the algorithm.

Firstly, the Caputo fractional derivative is divided into two parts, a local part Cl (tk) and a history part Ch (tk)

C
0 D

α
t u (t)|t=tk =

1

Γ (1− α)

Z tk

tk−1

u′ (s) ds

(tk − s)α
+

1

Γ (1− α)

Z tk−1

0

u′ (s) ds

(tk − s)α
:= Cl (tk) + Ch (tk) . (6.1)

For dealing with the local part Cl (tk), we apply the backward finite difference approximation for u′(s) on the
region [tk−1, tk], which yields

Cl (tk) ≈ u (tk)− u (tk−1)

τΓ (1− α)

Z tk

tk−1

1

(tk − s)α
ds =

u (tk)− u (tk−1)

ταΓ (2− α)
. (6.2)

For the history part Ch (tk), we first perform integration by parts to obtain

Ch (tk) =
1

Γ (1− α)

�
u (tk−1)

τα
− u (t0)

tαk
− α

Z tk−1

0

u (s) ds

(tk − s)1+α

�
. (6.3)

As [21] shows, the key of the method is that the kernel 1
t1+α in the convolution integral can be evaluated by an

efficient sum-of-exponentials for any given interval [τ, T ] with a precision ε, such that������ 1

t1+α
−
NexpX
l=1

ωle
−slt

������ ≤ ε, (6.4)

where sl and l = 1, 2, ..., Nexp are positive real numbers, t belongs to the region [τ, T ]. The number of exponentials

Nexp needed is of the order O
�
log 1

ε

�
log log 1

ε + log T
τ

�
+ log 1

∆t

�
log log 1

ε + log 1
τ

��
.

For a fixed precision ε, Nexp = O (logN) when T >> 1 and Nexp = O
�
log2N

�
when T ≈ 1 with N = T

τ .

Replacing the convolution kernel 1
t1+α in (6.3) by its sum-of-exponentials approximation in (6.4), we obtain

Ch (tk) ≈ 1

Γ (1− α)

24u (tk−1)

τα
− u (t0)

tαk
− α

NexpX
l=1

ωlUhist,l (tk)

35 , (6.5)

where Uhist,l(tk) satisfies a simple recurrence relation

Uhist,l (tk) = e−slτUhist,l (tk−1) +

Z tk−1

tk−2

e−sl(tk−τ)u (τ)dτ, (6.6)

with Uhist,l(t0) = 0 for l = 1, 2, . . . , Nexp. The integral on the right-hand side of (6.6) can be calculated by a linear
approximation of u(τ) to obtainZ tk−1

tk−2

e−si(tk−τ)u (τ)dτ ≈ e−siτ

s2
i τ

��
e−siτ − 1 + siτ

�
Uk−1 +

�
1− e−siτ − e−siτsiτ

�
Uk−2

�
. (6.7)

By the above recurrence relation, the fast algorithm with the reduction of the computational and storage cost is
achieved. As Uhist,l(tk−1) is already computed and storage, one only needs O(1) cost to compute Uhist,l(tk) at each
step. As there are Nexp history nodes altogether, the cost of evaluating the Caputo derivative at each time step
changes as O(Nexp). That is, the calculated quantity O(N2) and the storage content O(N) for the direct L1-scheme
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reduce to O(logN) or O(log2N) for the given fast scheme, respectively. Substituting (6.2) and (6.5) into (6.1), the
fast evaluation of the Caputo fractional derivative can be implemented by the following formula

FDα
t u

n :=
un − un−1

ταΓ (2− α)
+

1

Γ (1− α)

24un−1

τα
− u0

tαn
− α

NexpX
l=1

ωlUhist,l (tn)

35 , (6.8)

where Uhist,l(tn) is evaluated via (6.6) and (6.7). Replacing the L1 discretisation Dα
t u

n by its fast version FDα
t u

n

in the Caputo fractional difference scheme, we obtain an accelerated difference scheme as

FDα
t u

n
i,j −

1

hy
Φ (j −My/2) δ2

xu
n
i,j − δ2

yu
n
i,j = fni,j , 1 ≤ i ≤Mx − 1, 1 ≤ j ≤My − 1, 1 ≤ n ≤ N, (6.9)

u0
i,j = u0(xi, yj), 0 ≤ i ≤Mx, 0 ≤ j ≤My, (6.10)

FDα
t u

n
0,j −

1

hy
Φ (j −My/2)

2

hx
(δxu

n
1,j −

√
2FD

α/4
t un0,j)− δ2

yu
n
0,j = fn0,j , 1 ≤ j ≤My − 1, 1 ≤ n ≤ N, (6.11)

FDα
t u

n
Mx,j −

1

hy
Φ (j −My/2)

2

hx
(−
√

2FD
α/4
t unMx,j − δxu

n
Mx,j)− δ

2
yu

n
Mx,j = fnMx,j , 1 ≤ j ≤My − 1, 1 ≤ n ≤ N,

(6.12)

FDα
t u

n
i,0 −

2

hy
(δyu

n
i,1 − FD

α/2
t uni,0) = fni,0, 0 ≤ i ≤Mx, 1 ≤ n ≤ N, (6.13)

FDα
t u

n
i,My
− 2

hy
(−FDα/2

t uni,My
− δyuni,My

) = fni,My
, 0 ≤ i ≤Mx, 1 ≤ n ≤ N. (6.14)

7. Numerical examples

We now report the results of some examples which demonstrate the effectiveness and accuracy of the model with
exact absorbing boundary conditions and offer quantitative features of the finite difference scheme in the conver-
gence order and the computational complexity. All the numerical computations were carried out using MATLAB
R2015b on a Lenovo desktop with configuration: Intel(R) Xeon(R), Gold 6128 CPU @ 3.40 GHz 3.39 GHz and
256.0 GB RAM. To examine the convergence orders, we define the error norm and convergence order by the formulae

E (hx, hy, τ) = max
0≤i≤Mx

max
0≤j≤Mj

��u (xi, yj , tn)− uni,j
�� , rt = log2

E (hx, hy, τ)

E (hx, hy, τ/2)
, rs = log2

E (hx, hy, τ)

E (hx/2, hy/2, τ)
.

7.1. Example 7.1. Analysis of the max error, convergence order and CPU time

In order to demonstrate the effectiveness of the finite difference scheme, we consider an example with the zero
initial value problem. The various source terms reflect different particle proliferation. In our calculation, we set the
computational domain Ωc = [−1, 1] × [−1, 1], final time T = 5 and the tolerance precision ε = 10−12. The exact
solution for the problem (1.5) is considered in the form

u (x, y, t) =

�
(x− 1)

2
(x+ 1)

2
(y − 1)

2
(y + 1)

2
t2, x, y ∈ [−1, 1]× [−1, 1] , t ∈ [0, T ] ,

0, x, y /∈ [−1, 1]× [−1, 1] , t ∈ [0, T ] ,

which leads to a fixed source term

f (x, y, t) =

8<: (x− 1)
2
(x+ 1)

2
(y − 1)

2
(y + 1)

2 2t2−α

Γ(3−α) − 4(x− 1)
2
(x+ 1)

2 �
3y2 − 1

�
t2

−4
�
3x2 − 1

�
δ (y) (y − 1)

2
(y + 1)

2
t2, x, y ∈ [−1, 1]× [−1, 1] , t ∈ [0, T ] ,

0, x, y /∈ [−1, 1]× [−1, 1] , t ∈ [0, T ] .
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hx = hy
Direct time Fast time Direct time Fast time

E(hx, hy,∆t) rs CPU(s) E(hx, hy,∆t) rs CPU(s) E(hx, hy,∆t) rs CPU(s) E(hx, hy,∆t) rs CPU(s)

α=0.2 α=0.4

1/16 5.5496e-01 4720.50 5.5496e-01 336.88 5.8650e-01 4653.85 5.8650e-01 342.64

1/32 1.3889e-01 2.00 9841.73 1.3889e-01 2.00 417.66 1.4677e-01 2.00 9842.40 1.4677e-01 2.00 424.77

1/64 3.4734e-02 2.00 22939.99 3.4734e-02 2.00 1199.49 3.6701e-02 2.00 23837.03 3.670e-02 2.00 1214.23

1/128 8.6840e-03 2.00 95983.66 8.6840e-03 2.00 4818.13 9.1757e-03 2.00 94281.04 9.1757e-03 2.00 4617.84

1/256 2.1710e-03 2.00 280467.77 2.1710e-03 2.00 18904.21 2.2939e-03 2.00 285024.85 2.2939e-03 2.00 19367.15

α=0.6 α=0.8

1/16 6.1819e-01 4292.24 6.1819e-01 347.53 6.4992e-01 4213.81 6.4992e-01 347.82

1/32 1.5467e-01 2.00 9545.92 1.5467e-01 2.00 434.38 1.6259e-01 2.00 9338.82 1.6259e-01 2.00 418.94

1/64 3.8676e-02 2.00 21611.88 3.8676e-02 2.00 1189.63 4.0652e-02 2.00 22812.73 4.0652e-02 2.00 1156.91

1/128 9.6693e-03 2.00 95342.23 9.6693e-03 2.00 5173.93 1.0160e-02 2.00 97616.57 1.0160e-02 2.00 4704.85

1/256 2.4170e-03 2.00 297294.73 2.4170e-03 2.00 17846.56 2.5368e-03 2.00 293049.69 2.5368e-03 2.00 18115.76

Table 7.1: The error, convergence order of hx = hy and CPU time for normal and fast schemes with fixed
τ = 2× 10−5.

τ
Direct time Fast time Direct time Fast time

E(hx, hy, τ) rt E(hx, hy, τ) rt E(hx, hy, τ) rt E(hx, hy, τ) rt
α=0.2 α=0.4

1/16 6.02104227e-03 6.0210e-03 1.7817e-02 1.7817e-02
1/32 1.8367e-03 1.71 1.8367e-03 1.71 6.0576e-03 1.56 6.0576e-03 1.56
1/64 5.5379e-04 1.73 5.5379e-04 1.73 2.0421e-03 1.57 2.0421e-03 1.57
1/128 1.6513e-04 1.75 1.6513e-04 1.75 6.8386e-04 1.58 6.8386e-04 1.58
1/256 4.8474e-05 1.77 4.8474e-05 1.77 2.2753e-04 1.59 2.2753e-04 1.59

α=0.6 α=0.8
1/16 4.0632e-02 4.0632e-02 8.32362422e-02 8.32362422e-02
1/32 1.5631e-02 1.38 1.5631e-02 1.38 3.6544e-02 1.19 3.6544e-02 1.19
1/64 5.9784e-03 1.39 5.9784e-03 1.39 1.5979e-02 1.19 1.5979e-02 1.19
1/128 2.2781e-03 1.39 2.2781e-03 1.39 6.9718e-03 1.20 6.9718e-03 1.20
1/256 8.65640702e-04 1.40 8.6564e-04 1.40 3.0378e-03 1.20 3.0378e-03 1.20

Table 7.2: The error, convergence order of τ and CPU time for normal and fast schemes with fixed
hx = hy = 1/5000.

Tables 7.1 and 7.2 provide a detailed comparison of the errors E(hx, hy, τ) between the exact solution and the
numerical solution, the convergence order in time and space and the CPU time between the fast algorithm and the
direct method. As can be seen from Table 7.1 and Table 7.2, we find the convergence rate in space is O(h2

x + h2
y)

while in time is O(τ2−α). As Eq. (5.16) indicates, the convergence results shown in Theorem 5.3 may not be an
optimal order of convergence. Further analysis is our next goal. In addition, from Table 7.1, we have been able to
understand the superiority of our fast algorithm when N is large. We can use the fast evaluation to obtain almost
the same accuracy as the direct method. As can be reflected from the CPU time in Table 7.1, the fast scheme
is much faster than the direct scheme and saves the computational memory for long time simulation. Moreover,
we set M = 128, N = 5000, α = 0.8 and the comparison between the numerical solution and the exact solution
is shown in Fig.7.1. The distribution of particle concentration shows a bell-shaped surface. As Fig.7.2 shows, the
magnitude of the distribution of the error is very small, which indicates that the numerical solution and the exact
solution fit very well.

Figure 7.1: The comparison between the exact solution (left) and the numerical
solution (right) when α = 0.5 and t = 5.

Figure 7.2: The profile of the spatial
error between the numerical solution
and the exact solution when α = 0.5

and t = 5.
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Figure 7.3: The particle distribution for different α at t = 1 with the absorbing boundary conditions.

Figure 7.4: The particle distribution for different α at t = 1 with the zero boundary conditions.

7.2. Example 7.2. Anomalous diffusion in comb structure with different parameters

In this example, we consider the case f(x, y, t) = 0 without considering the particle proliferation. We set the
computational domain Ωc = [−1, 1] × [−1, 1] and the tolerance precision ε = 10−12. The initial distribution is

u(x, y, 0) = e−x
2−y2

. Then we mainly discuss the impacts of different parameters on the particle distribution.
Fig.7.3 gives the three-dimensional particle distribution for the model (1.5) with the absorbing boundary con-

ditions at t = 1 for α = 0.2, α = 0.5, α = 0.8, respectively. We can see the impact of α on the particle distribution
is mild. A gap at y = 0 along the x direction appears due to the fact that the diffusion along the x direction only
happens on the backbone. Fig.7.4 presents the particle distribution for the model (1.5) with the zero boundary
conditions. Compared with Fig.7.3, the differences of the distribution are that the magnitude of the distribution
at the boundary is zero and the impact of α on the particle distribution is significant. Besides, it can be concluded
from the global distribution that the zero boundary conditions at the infinite positions not only influences the
distribution at the truncated position, but also the overall particle distribution. Thus, the diffusion mechanism
cannot be analyzed accurately by the distribution of particles with zero boundary conditions. Finding the absorb-
ing boundary conditions for the model (1.5) in Section 2 is a reasonable and effective method. In addition, the
treatment of the problem is to increase the boundary intervals and choose a fine grid size, in this case, takes a long
time to compute and cannot simulate the behavior of particle evolution accurately. Fig.7.5 describes the spatial
evolution of the particle distribution with increasing time along y = 0. The larger the time parameter is, the smaller
the magnitude of the distribution at the fixed position is, which describes the transport process of particles from
high concentration to low concentration well. Fig.7.6 shows the impacts of different fractional parameters on the
particle distribution along y = 0. The larger the fractional parameter is, the faster the particles diffuse.
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Figure 7.5: The particle distribution versus x at different
times for fixed α = 0.5 and y = 0.

Figure 7.6: The particle distribution versus x with different
fractional parameters α for fixed y = 0 at t = 3.

7.3. Example 7.3. Discussion of the advantage for the model with absorbing boundary conditions

Tracking the particle to find the distribution at any position and time and discussing the mean square displace-
ment are important to analyse the diffusion process in the comb model. This example mainly demonstrates the
impacts of the involved parameters on the particle distribution and discusses the superiority of the exact absorbing
boundary conditions by comparing them with the exact expression of the mean square displacement. According
to the general relationship between the mean square displacement and time



χ2 (t)

�
∼ tγ , the types of anomalous

diffusion can be divided into subdiffusion for 0 < γ < 1, superdiffusion for 1 < γ < 2 and the normal diffusion for
γ = 1.

In this example, we consider the initial condition with the form u (x, y, 0) = δ (x) δ (y) for problem (1.5). Then
the exact mean square displacement can be obtained for the case f(x, y, t) = 0 and u(x, y, t)→ 0, |x| → ∞, |y| → ∞.
Now we present the derivation. Firstly, performing the Laplace transform for time in Eq.(1.5) yields

sαū (x, y, s)− sα−1δ (x) δ (y)− δ (y)
∂2ū (x, y, s)

∂x2
− ∂2ū (x, y, s)

∂y2
= 0.

Imposing the spatial Fourier transform on x leads to

sα ˆ̄u (k, y, s)− sα−1δ (y) + δ (y) k2 ˆ̄u (k, y, s)− ∂2 ˆ̄u (k, y, s)

∂y2
= 0, (7.1)

where ˆ̄u (k, y, s) refers to the Fourier transform of ū (x, y, s). Applying the separate variable method, we define
ˆ̄u (k, y, s) = h (s, k) e−λ|y|. By using the characteristic of the Dirac delta function, the solution ˆ̄u (k, y, s) can be
obtained as

ˆ̄u (k, y, s) =
sα−1e−s

α/2|y|

2sα/2 + k2
= sα−1e−s

α/2|y|
+∞Z
0

e−2sα/2τ−k2τdτ.

Performing the inverse Fourier transform for k to derive

ū (x, y, s) =
sα−1e−s

α/2|y|

2
√
π

+∞Z
0

1√
τ
e−2sα/2τ− x2

4τ dτ =
1

2
√
π

+∞Z
0

e−
x2

4τ

√
τ
sα−1e−(2τ+|y|)sα/2

dτ.

Imposing the inverse Laplace transform for s results in

u (x, y, t) =
1

2
√
π

+∞Z
0

e−
x2

4τ

√
τ
L−1

�
sα−1e−(2τ+|y|)sα/2

�
dτ. (7.2)
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Based on (7.2), we can calculate the total number of particles on the backbone

〈u〉 =

+∞Z
−∞

u (x, 0, t)dx =

+∞Z
−∞

1

2
√
π

+∞Z
0

e−
x2

4τ

√
τ
L−1

�
sα−1e−2τsα/2

�
dτdx =

+∞Z
0

√
4τ

2
√
τ
L−1

�
sα−1e−2τsα/2

�
dτ

= L−1

�
sα−1

+∞Z
0

e−2sα/2τdτ

�
= L−1

�
sα−1 1

2sα/2

�
=

1

2
L−1

�
sα/2−1

�
=

t−α/2

2Γ (1− α/2)
.

Then we calculate


x2u

�
¬
x2u

¶
=

+∞Z
−∞

x2u (x, 0, t)dx =

+∞Z
−∞

x2 1

2
√
π

+∞Z
0

e−
x2

4τ

√
τ
L−1

�
sα−1e−2τsα/2

�
dτdx = L−1

�
2sα−1 1

4sα

�
=

1

2
.

The exact expression of the mean square displacement can be obtained as¬
χ2 (t)

¶
=

R +∞
−∞ x2u (x, 0, t) dxR +∞
−∞ u (x, 0, t) dx

= Γ (1− α/2) tα/2. (7.3)

Now, we obtain an important result that the anomalous subdiffusion in the comb model is of order α/2 on t.

Figure 7.7: The particle distributions of model (1.5) for different α at t = 1 with the absorbing boundary conditions and
u (x, y, 0) = δ (x) δ (y).

We now compare the model (1.5)-(1.7) with the model (1.5) with the exact absorbing boundary conditions

(2.8) and (2.9). Noticing δ (x) can be approximated by δ (x) ≈ 1
2
√
πσ

exp
�
− x2

4σ

�
with σ → 0. In the numerical

simulation, we take σ = 1 × 10−4 to approximate the Dirac delta function. Fig.7.7 gives the three-dimensional
particle distribution for different α that the distribution presents as the bell-shaped forms with a high concentration
in the centre position and low concentration at the boundaries. Due to the special structure of the comb structure,
the diffusion along the x and y directions are obviously different. The impacts of the fractional parameters α on
the particle distribution are significant. In the following, we mainly compute the particle distributions and the
mean square displacement on the backbone (y = 0). Fig.7.8 shows the distribution of the particle concentration at
different times. With the increase of time, the distributions decline in the middle and diffuse across the boundaries,
which means the particles are moving from high concentration to low concentration. Fig.7.9 shows the impacts of the
fractional parameter α on the particle distributions. Time fractional parameter refers to the memory characteristics
of the diffusion process. With the increase of fractional parameters, the particle density becomes low at the centre
positions and high at the boundaries.

The comparison of the mean square displacement for the model with the exact absorbing boundary conditions,
the traditional zero boundary conditions and the exact expression are displayed in Fig.7.10. It is obvious to see the
rationality of constructing absorbing boundary conditions that the numerical solution of the model with the exact
absorbing boundary conditions agree with the exact solution (7.3) very well, while the distribution with the zero
boundary condition deviates the exact solution. In addition, the impacts of different fractional parameters α on the
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mean square displacement


χ2 (t)

�
are shown in Fig.7.11. We can observe that the smaller the fractional parameter

is, the slower the particles spread.

Figure 7.8: The evolution of the particle distribution with
time on the backbone for fixed α = 0.5.

Figure 7.9: The impacts of the fractional parameter on the
particle distribution along y = 0 at t = 1.

Figure 7.10: The comparison of the mean square
displacement for the model with the exact absorbing

boundary condition, the traditional zero boundary condition
and the exact expression.

Figure 7.11: The impacts of fractional parameter on the
mean square displacement on the backbone.

8. Conclusions

In this paper, based on the background of the anomalous diffusion in comb structure, we constructed the exact
absorbing boundary conditions for treating the comb model in the infinite regions and proposed the finite difference
method treating the Dirac delta function in the governing equation through an integral over a finite volume. The
stability and convergence for the finite difference method were analysed. For more efficient computing, a fast
algorithm was proposed. Three examples were presented. One indicated the effectiveness of the finite difference
method with the fast scheme, which can greatly reduce the computational cost and save storage without affecting
the theoretical accuracy. Another one illustrated the impacts of involved parameters on the particle distribution
and discussed the difference in the anomalous diffusion between the absorbing boundary conditions and the zero
boundary conditions. The last one analysed the influences of involved parameters on the particle distribution and
the mean square displacement on the backbone for the comb model with different boundary conditions. The main
results can be summarised as follows:

(1) The absorbing boundary conditions for the comb model on infinite domains is constructed, which is a very
useful method for analysing infinite boundary problems;
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(2) An efficient finite difference scheme is proposed to solve the model with the exact absorbing boundary con-
ditions, which is stable and convergent. A fast algorithm is developed, which can reduce the computation
efficiently without affecting the accuracy;

(3) The validity of the absorbing boundary condition is verified by comparing with the exact solution of the mean
square displacement.

(4) Anomalous diffusion in comb model is a kind of subdiffusion problem with the mean square displacement in
the form



x2 (t)

�
= Γ (1− α/2) tα/2.
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Appendix A.

In this section, we present the derivation of (1.4), i.e., the equivalence between the governing equations with
the Caputo fractional derivative and the Riemann-Liouville fractional derivative.
The governing equations

∂u (x, y, t)

∂t
= RL

0 D1−α
t

∂2u (x, y, t)

∂x2
+ f1 (x, y, t) , (8.1)

and
C
0 D

α
t u (x, y, t) =

∂2u (x, y, t)

∂x2
+ RL

0 I1−α
t f1 (x, y, t) , (8.2)

are equivalent.
Proof: Performing the RL fractional integral RL0 I1−α

t , the left side of Eq. (8.1) equals to

RL
0 I1−α

t

∂u (x, y, t)

∂t
= RL

0 Dα
t u (x, y, t)− u (x, y, 0)

t−α

Γ (1− α)
= C

0 D
α
t u (x, y, t) ,

and the right side of Eq. (8.1) equals

RL
0 I1−α

t
RL
0 D1−α

t

∂2u (x, y, t)

∂x2
+ RL

0 I1−α
t f1 (x, y, t)

=
∂2u (x, y, t)

∂x2
−
�
RL
0 Iαt

∂2u (x, y, t)

∂x2

�����
t=0

t−α

Γ (1− α)
+ RL

0 I1−α
t f1 (x, y, t) ,

where �
RL
0 Iαt

∂2u (x, y, t)

∂x2

�����
t=0

= lim
t→0

1

Γ (α)

Z t

0

1

(t− s)1−α
∂2u (x, y, s)

∂x2
ds

= − lim
t→0

1

Γ (1 + α)

Z t

0

∂2u (x, y, s)

∂x2
d(t− s)α

= lim
t→0

1

Γ (1 + α)

�
∂2u (x, y, 0)

∂x2
tα +

Z t

0

∂

∂t

�
∂2u (x, y, s)

∂x2

�
(t− s)αds

�
= 0.

Namely, the two equations (8.1) and (8.2) are equivalent.
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