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Abstract:

To improve the calculation accuracy and efficiency, in this article, we develops
a fast time stepping Legendre spectral method for solving fractional Cable
equation, where in temporal direction the time stepping method is utilized
and the spatial variable is discretized by Legendre spectral method. The time
stepping method is used to approximate fractional order derivative, and its
convergence accuracy in time is O(72). The fast algorithm is applied to the
time stepping method and it can reduce the computational complexity from
O(M?) to O(Mlog M), where M denotes the number of time stepping. For
non-smooth solutions, we deal with the initial singularity by adding correction
terms. We also analyze the numerical stability and convergence in detail.
Numerical experiments confirm our theoretical analysis and efficiency of the
fast algorithm.

Keywords: Time stepping method, Legendre spectral method, Stability and
convergence, Fast algorithm, Smooth and non-smooth solutions

1. Introduction

Fractional differential equations (FDEs) have aroused the interest of many re-
searchers for their ability to describe accurately long-range cumulative efforts
[1, 2, 3]. Actually, FDEs are widely employed in many fields, such as anoma-
lous diffusion, image process, biological system, seismic singularity analysis
and non-Newtonian fluid mechanics [4, 5, 6, 7]. The model of FDEs shows
better description of physical phenomenons compared with the traditional
model.

As well known, the solutions of FDEs are not expressed in a closed form
in most cases, so developing efficient numerical methods to solve FDEs is
crucial. Analysis on solving FDEs by numerical method has been a trendy,
such as finite difference method [8, 9, 10, 11], finite element method [12, 13,
14, 15], finite volume method [16, 17, 18], spectral method [19, 20, 21, 22]
and other methods [23, 24].
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In this paper, we consider the following fractional Cable equation

ou T

a — Mot Ox2 _Dé;’ﬁu—’—f(xat)v
u(xz,0) = Pg(x), ut(z,0) = P1(z), 0 < <L, (1.1)
w(0,t) =0, u(L,t) =0, t >0

where 0 < 2 < L, t >0, 0 < 1,72 < L. Dé;”’ﬂ i = 1,2 are the Caputo
fractional derivatives with respect to ¢, which can be defined by

1 ! o
Dg ju(z,t) = m/o (t—s)"_l_“’$ds7 0<n-1<+y<mn,néeN.

Fractional Cable equation is essential in neuronal dynamics, which mod-
els the anomalous electrical diffusion of neurons [25, 26]. Many scholars in-
vestigated Fractional Cable equation [27, 28]. Sweilan et al. proposed a novel
numerical scheme for solving 2D fractional Cable equation, whose conver-
gence rate is O(7 + hy, + &hy) [29]. Recently, Liu et al. utilized L1 scheme in
time and implicit compact difference scheme in space, and presented a fast
technique to reduce computational complexity from O(N?) to O(N log? N)
[30], where N denotes 1/7, its convergence accuracy in temporal direction
is O(r™in{l+71.1+92}) Lin et al. conducted spectral method in spatial dis-
cretization and its convergence accuracy is O(r2~ ™8} 4 =1 N=m)[31],
where N denotes the degree of polynomial, m is the regularity of its solution.
Mohebbi et al. used a scheme with second order accuracy in time and RBF
meshless method in space [32]. Compared their analysis, we apply a fast time
stepping Legendre spectral method for solving fractional Cable equation and
our highlights focus on three aspects:

e We utilize a time stepping method in temporal direction and spectral
method in spatial direction, and our convergence rate is O(72 + N~™),
where N denotes the degree of polynomial, 7 is the time step, m is the
regularity of solution.

e We apply a fast algorithm to overcome the dense computation caused
by fractional derivatives, which can help us reduce the computational
work from O(M?) to O(M log M).

e We add correction terms to improve the convergence rate for non-
smooth solutions.

We outline this paper as follows. In Section 2, we make some prepa-
rations for following analysis. We apply a time stepping Legendre spectral
method to formulate a fully discrete scheme in Section 3. In Section 4, the
stability and convergence of the fully discrete scheme are rigorously proved.
In Section 5, a scheme with corrections terms is given for solving fractional
Cable equation with non-smooth solutions. In Section 6, a fast algorithm is
implemented to accelerate the computation. In Section 7, numerical exper-
iments confirm our theoretical analysis and efficiency of the fast algorithm.
Finally, we make a conclusion.



2. Preparations

In this section, we give some definitions and lemmas for the following analysis.
Define functional spaces by

Hy(Q) = {v € H'(Q),v|pa = 0},
H™(Q) = {v e L*(Q),0'v € L*(Q), Yi <m, i >0},
where € (0,1), L?(Q2) is Lebesgue space, which is the space consisted of

quadratically Lebesgue integrable functions, and its inner product and norm
are defined following

(u,v):/ﬂuvdx, [lv]| = v/ (v,v)

Let Py(92) be a space, which is composed of polynomials of degree less
than N — 1, and Py = {w € Pn(Q)|w(99) = 0}.

Denote 7y° be the H} - orthogonal projection operator from Hg ()
into PY, such that for all w € H}(Q)

(8,75 w, 8,0) = (Opw, Dpv), v € PY.

We assume the solution of (1.1) has the following expression [12, 33]

u(x,t) = Pg+ Pt +cot?® ¢t +- - = ‘1)0+(I)1t+26jt0j +o(x,t), (2.1)
=2

define 01 = 1 and 0; < 041, ¢ < m — 1. ¢(x,t) is smooth enough for z and
t,and ¢; € HY(Q)NH™(Q), I ¢; #0for j =2,3,--- ,m.
o (0 > 1) is used to indicate the regularity of the solution, defined by:

o2, ®1=0 59
7= {1, otherwise (2.2)

Lemma 2.1. (7] For the projection operator my°, let uw € HE () N H™(Q), it
1s known that the following projection estimation holds
lu = 7i%ul] < CN=™jul]. (2.3)

Lemma 2.2. (Gronwall’s inequality) [20] Let k, B and a,, by, ¢, 7y, for inte-
ger > 0, be nonnegative numbers such that

anJrkibuSki’yua#JrkiC#JrB, n > 0.
n=0 pn=0 n=0

Suppose that kry, < 1, for all u, set o, = (1 — kv,)~", then

ap + kz b, < exp(kZaﬂyu)(ch# + B), n>0.
pn=0 pn=0 pn=0



3. Fully discrete scheme

Ltk =kr, k=0,1,2,--- , M,
uF £ u(ty) = u(k7). The time stepping method is the discretization for
fractional derivative and first derivative utilizing the novel formulas with
shifted parameter 0, see Lemmas 3.1 and 3.2.

Divide [0, 7] into M segments evenly, 7 =

Lemma 3.1. [12] Caputo fractional derivative Dg u (0 < v < 1) is approzi-
mated at t,_g

DY ju(tn—g) = D20u+ E,

3.1
_ . ”Z%ﬂk (Wb — %)+ B, (3.1)
where u® = @, Efl =0t —)~ %72), coefficients w(w) are as follows:
2/2(146) =], k=0
wi = LAWY /2(1+6) — )%, k=1 (32

(Wit + WEwy) /k/(1 = v/2+0), k>2
Wi=—+(-1)(/2-60)—(k—1)(y—20-1),
Wi =—(y—1)(v/2-6) — (k—2)(6 —7/2).

Remark 1. The weights w,(J) are the expansion coeflicients of the gener-
ating function w(&,~y) which is defined by

:Zw;”>gk=1(s1_€)1€),76( 1), 0 € ( 211}
k=0

3 = 0)(
Lemma 3.2. [12, 34] First order derivative u, is approzimated at t,_g

Ut(tn_g) = ul g+ E(l)
1

ut —u’ +E§1—)0’ n=1
= T (3.3)
3220, 2-20 ., 1-20 W
or T 7 U * 27 tEg n =2

where Eg) = O0(t5=572), 6 = min{oa,03,---} \{ 2} .

Using (3.1) and (3.3), we discretize (1.1) in the temporal direction
Casen =1:

1
u_ﬂl 12 (- 'n (u* — u0)
(3.4)
— 721 ngf_k%)(uk _ UO) + f170 + B,
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Casen >2:
-2 2—-2 —
3 eun _ eun—l + 1 29un—2
2T T 2T
n
-1 (1—71) k 0
_T’Yl anfk A(U; — U ) (3.5)
k=0

— 2l Zw(l W) —u%) + "%+ E,_g.

where f"7% = f(z,t,_¢) and the error term E,,_, is
En g =00’ 12 1 07 232 + 01523 72). (3.6)

Then we can get the fully discrete scheme by applying Legendre spectral
method in space. The Legendre spectral method in weak formulation is to
find uk, € Py (for Vv € PY), such that

Casen=1:

1 0
INTUN ) = — et E w(l 71 (Opuly — 0pu, 9v)
r Y ’

(3.7)
T 1Zw172 _uNa ) (flev)
Casen > 2:
3 —26 2 — 20 n— 1—26 n—
—5 (ul,v) = — (uy o) + or (w5 v)
— - 1 Z 6 U’N 8wu9\]7811}) (3 8)

— Y2 1Zw(1 v2) _uN’ ) (fn 0 v)

. 1,0
with 4% =Ty u?, wheren=1,2,--- , M.

4. Stability and convergence analysis

Lemma 4.1. [12] wfj) are defined in (3.1). For any vector (ul,..,u™) € RM
with M > 1, it satisfies that

M k
SN wiutut >0, (4.1)

k=11=1

where v € (0,1), 6 € (%5+,1].



Lemma 4.2. [12] u] , are defined in (3.3). For any vector (ul, ..., uM) e RM
with M > 2, it satzsﬁes that
M 1 1
Jd > M2 1y2 4.9
Dot ) - gl (1.2

where 6 € [0,1].

Theorem 4.3. The schemes (3.7) and (3.8) derived by our method are uncon-
ditionally stable, and they have the following estimate

IIUNH<C(|IUNH+ max, 171D (4.3)

Proof. We approximate u® with u%;, which holds ||u%|| < [|u°||. For simplic-
ity, define v% £ u% — ul; and we can derive by (3.1), (3.3)

1 0 1 0
Uy — U Uy — U
N N N N
7’U 7U )
T T

320 220, _ 1-20
T(”N )= = (R0 + 5 () (4.4)
3-20, 2-20 1-20,
= o (uf,v) — - (uN 1#’) + o0 (“N 2>”)7
Dn0 Dn&

Replacing v Wlth v in (3.8) and utilizing (4.4), we obtain
— 20 L 2-20 L 1—20 .,
T( N UN) — (vy ' oR) + o7 (oh % vR)

n
-t Z wflljk%) (81.1)]1%, 81.1)17\1,)

k=0

— 2~ 1Zw(1 “/2) UN’UN) (fn—Q’UR[)’

(4.5)

then, we replace n with j and sum both sides for j from 1 to M (M > 2 ),

we get
1 M
'UN 1 3729 j j
(7”UN>Jr 27 Z(UN’UN)

j=2
M M
SO () + S ()
T =2 (4.6)
= .
Y S ) (a0 000}
j=1k=1

M

e S (k) 50 (50k)

j=1k=1 j=1



Using the Lemmas 4.1 and 4.2 and Cauchy-Schwarz inequality, we have
v} 32200, . o\ 2-20 & Lo
(h) #2375 (herd) - 2570 (4

M
1-—26 P 1
+ S (k) 2 AP = ool

(4.7)

J
Z w}i}vl)axvaaxvgvdx >0,
1hk=1

M:

P S (durk o) = [
; Q
M j ) M
Yt (k) =[S

~
Il
-
B
Il
-
<.
Il

1—v2) k,Jj
wj(_k 2)UJ\,vgvd:v >0,

MQ.

j=1k=1 Q=1 k=1
(4.8)
M , 1 & ,
S (F700k) < 5 U + ekl )
Jj=1 j=1
LM M
§ZIIU?VII2+CZ (LA +11F7HP) (4.9)
j=1 j=1
1 Mo M
=5 olAIP+C 111
j=1 7=0
Ignore the nonnegative terms, we get
o 117 < 2[joy |1 + 272 okl ? + CTZ 121 (4.10)

7=0
Similarly, for n = 1, with (3.7) and Cauchy-Schwarz inequality we have
1 1
(- 3) Ikl < CUPIP + ), 7 <2 (111)

Using Gronwall’s inequality, we obtain

lon[1* < C(r Z 11 (4.12)

7=0
where C' is independent of n and 7.
Finally, using the triangular inequality |[ul|| < [[v¥]| + [|[u%]], we get
Theorem 4.3.

Next we prove the convergence of (3.7) and (3.8).

Theorem 4.4. Let u is the solution of (1.1), and {uk M. are the solutions

of (3.7) and (3.8), assume u € H([0,T]) x (H™(Q) x H(2)),m > 1, u® =

1,0 o
Ty U, we have



[lu"™ —uy|| < Cr2 4+ Cr% 2 4 Orotm—2 4 Orot12—3 f ON~™.

Proof. For simplicity, define v — v}, = (u™ — W]l\;ou”) + (W]l\}ou” —u) =
n" + €%, note that 7n° = e, = 0, then we have
Casen=1:

1 1
n tex — 1,051 (5 g
( : ,U) — 1 (9ek, B,0)

(4.13)
- Tvzflwél_W) (771 + e}v,v) + (E1—g,v)
Casen > 2:
3-20 ., 292 . . 120, . 5 .
T(17’L—|—e]\,,v) - ("t +ely Lo)+ T(n 2+eN 2 v)
n n
— -1 ng:k%) (aweﬁcv’axv) — -l Zwr(Ll:k“/z) (nk + 6?\[7’0) + (Ep_g,v)
k=1 k=1

(4.14)
We set v to e and replace n with j. Summing j from 1 to n (n > 2),
we get

1 320 <~/ 220, i g
~(ehneh) + 5 2 (ehoed ) = == Do (eh el
Jj=2 j=2
1-20 S~ 2 1NN ) k j
S (k) T Y S W @rk dued)
j=2 j=1k=1
n 7 n
_ 1 3—20 .
£ SN w0 (e ) =~ eh) - S5 > (el
j=1k=1 L
2-20~, 4 g, 1-20~ i,
S ) - e Yo )
j=2 j=2
N P '
— NN WY (b ) + Y (Bjasel).
j=1k=1 j=1

(4.15)
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Using Lemmas 4.1 and 4.2, we have the following estimates

1 3—-20~/; —20 L
L ehoek) + 22205 (choeh) - 22 S (e )
T T - T -
Jj=2 Jj=2
1-20~, j2 2 2
T Z(egv Len) = Z" enll _*H NI,
j=2
n
PSS W (Gaek duely) 2 0,
j=1k=1
n o J
T Y w0 (Reh) 2 0
j=1k=1
By (2.1), we can get
n(t) = (o —mx uo) + (w1 =N )b+ Y (e =y )t + (-7’
j=2

(4.16)

), (4.17)

and we derive ||n:|| + HD1 p|| < CN~™ based on (2.3). Further, we have

n,0 o —
Dry_\n— DOt N(tn—g) = O(t tgl 37'2)-

n

D ,0 n— Dé;wn(tn—e) —_ O(tzth_gTQ)-

T,1—72
casen =1:
1 5_
—n' —m(ti-g) = O(t7 ),
casen > 2:
3—20 2—-20 1-20 __ 5_
2T "= T " 2T " ‘- i (tn—p) = OU‘L?TQ)’

We konw that

. o(1), s>—1
q—Zt;%} ={O0(logn), s=-1
i=1 o(r'ts), s< -1

combining (4.18)-(4.22), we derive

n
, 1-
Ty D= Do n(ty-o)l?
j=1

o(rh), o>—y +25
<BW, £ Cr? Z 2752170 = L O(* log n), o=—v+25
o(r?2m=h o< —y +25

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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n
TleDiel_w—Dé;”n(tj—e)HQ (4.24)
o(r), o> —v+25
<E7(L2)9 £ 070 ZtQUHW 6 = O(r*logn), o=-—72+25
j=1 0(7_247—&-2’)'2—1)7 o< _72_’_2.5
3—260 2—-20 ._ 1-20 .
20— m o)l +TZ\| W T T ()|
Jj=2
0(74), G>25
<E(3) £ Cr’ Zt2° 6= O(r*logn), &=25
=t o(r*1h, <25
(4.25)
Multiplying by 7 both sides of (4.15), we have
1,4 3—29"(,j) 2-20 0~ ;1 g\, 1-20~, ;5
T 7_(77 7eN)+ o ; m,en T j:2(77 7eN)+ 2 j=2(77 7eN)

] 1

10 ~~3—20 , 2-20 ., 1-20 , ., )
0 P+ 315, = == = P |+ T3k

IN
[V

<T<I|n - e>|2+||nt<tle>||2)

"L/ 3 29 2-20 5, 1-20
+ TZ <| = o+ ?773 2= ne(tno)l|* + ||7lt(tn—9)|2>
(4.26)

2

+ o Z||eN||2<E“ +CON 4 L ZH 2,
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TZ<T’Y2 1Zw(1 72) ))
T 1 (1=72) k12 - 72
§§|w Zw k12 + ;mn
T n
STZQTW 1Zw“ it = Dy ()| + 1105 (e »e>|2> 3

<E@,+CON"M 4 %Z ek, (4.27)
T (Bj_g,ely) < BV + BEP g+ BY + - Z lled |12 (4.28)
j=1

Combining (4.16), (4.26)-(4.28), when n > 2 we get

1, 1 1 2 3) m
Rl < SlleklP + B2 + B2y + By + ON 72" TZHeNH?
j=1
(4.29)

Similarly, when n = 1 we can easily get the following estimates
ley|? < EL, + EP + E®) 4 ON—2m, (4.30)
Using Gronwall’s inequality (Lemma 2.2), we obtain
leR | < Crt + Ot 4 Or?7 2=t 4 Cp20 2Rl L ONT2, (4.31)
where C' is independent of n and 7. C'is defined by

G { (V/logn), 6 =25 06=—-—y1+25, and o =—vy+25

4.32
o(1), otherwise. (4.32)

Finally, by using triangle inequality and (2.3), we get Theorem 4.4. [

5. Analysis for non-smooth solutions

The solutions of FDEs are not generally regular with respect to time. We can
see from (3.6), in the case of o < 3, the discretization of (3.4) and (3.5) can
not obtain second order convergence in time. To obtain the optimal conver-
gence rate in this case, we refer [12, 35] and there are some other interesting
approaches to deal with the problems with non-smooth solutions, interested
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readers are referred to references [38, 39]. We rewrite the approximation of
(3.1) and (3.3) as follows

m
D&tu(t 9) = D eu 4+ 777 Z wh)
(5.1)

m

— 1 ;
Ug(tn—g) R uly+7 ! Z wiz (u? — u®),
j=1

where w,(?j), wfllz are starting weights. Above approximation holds exactly

for u(t) = t°~ with o, < 3 and the starting weights can be derived by solving
following linear systems respectively.

M40 _ o Llor+ v o
Zw ati" = F(U _|_1_ Zw U

anJ?T:TJTtZT—_Gl_tTT7 n=1
320 1-20
U'r or—1 o o o
anj JT=Tont 5 tor+(2—-20)t7 1 — Tt”_” n>?2
(5.2)

We rewrite fully discrete scheme of (1.1) with the approximation (5.1)
with correction terms

Casen=1:
ul, — ul 1 & 1 ;
(NTN70> + p wal;(ugv —uly,v)
Jj=1
— 7 1Zw(1 ) (0x auky — 0, Uy, Opv) — 77 1Zw(l ") (Dpuly — Dpuly, Dpv)
k=0 j=1
1
— 2l ngl:kvz) (Uﬁv _ U?\n _ el Zwu "/2) 9\[70) + (fl_e,v),
(5.3)
Casen > 2:
3-20 2-20, ., 1-20, .4 1 ) o
2 (U‘Nﬂv)_ T (U’N 7U)+T(UN ’U)+Tz:lwnj(uN_uN7 )
=
N IZ 7 (9,uky — 0,0, v) — 771 12 U (Ol — Duy, D)
=1
e 1Zw(1 72) UN—UN7 _772 1Zw(1 ’Yz) —UN7 ) (fn 0 v).

(5.4)



13

Remark 2. Adding correction terms don’t affect the stability. We just
need to move the adding terms to the right hand of the equation (5.3) and

(5.4), replace f*~¢ with f»=¢—1 =Dy 1w(1)(“N —ud )T 12 (1 'YI)A(
uly) — 77! Zj LW (1 72)(uN u%), then the proof of stablhty is the same
as the proof in Theorem 4.3.

6. Fast algorithm

(7)

The coefficients wy,'’ can be expressed as integrals by

T+l

: / en(TA)F, (N)dA, (6.1)
r

2,
where e, (2) = qo(2)ro(2)", Fy(A) =X, qo(z) = 1iz and 7o(z) = 1= [12].
Given a base B, B is a positive integer and B > 1, we split the tlme domam
into a sequence of fast growing intervals :

w&w) —

I, = [B'"7 17, (2B' — 2)1]. (6.2)
To approximate the weights, we choose a Talbot contour I" [36]

K
(—m,m) = T:9— o(9) = ?((ﬁcot(ﬂ) + ikY)v + o), (6.3)

l

see the Fig. 1(a). By (6.1), we can obtain

K
! l !
W =t ST WV, (AP E, (), nr ey (6.4)
j=—K

0}

where the weights w,;” and quadrature points )\gl) are given by

i T
wy) = 72(K7+1)9/(19j)’ N = o(0)), 95 = KJ+ 1 (6.5)

By subtracting (6.4) from (3.2) and taking the absolute value, we obtain
their absolute approximation error. We take B = 5, ;(I = 1,2,3,4,5), and
K = 15 and 35, respectively. The absolute approximation error is shown in
Fig. 1(b).

Fig. 1(b) shows the approximation using (6.4) for first few weights has
large error, so we need to consider the formula (3.2) for calculating the first
few weights.

Firstly we choose suitable points b, (I = 0,1,---,L) to split (3.1) into
L + 1 sums, where L is the smallest integer satisfying n + 2 < 2B%, and
n=by>by>--->bp_1>b,=0.

L bi—1—-1
D"G T Vw(v)(u — 0 )+ 77 VZ Z f;’)ku fuo) (6.6)
1=1 k=b

We have [(n — b1 + 1)7,(n —b;)7] C I; and b; (I =0,1,---,L) add
B! every B! steps. Given B = 2 and B = 3, the relation between b; and I,
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Im ¥

Absolute error
3
B

1018

1020

20 L L L L L . 1028
P R R 10° 10’ 102 10° 10

Fig. 1. (a) Talbot contour, (b) Absolute approximation error.

is indicated in Fig. 2, b; is the ordinate where the solid line intersects with
different colored regions.

Fig. 2. (a) For B = 2, (bo, b, b2, b3, ba)=(24, 22,20, 16,0), (b) For
B =3, (bo, b1, ba, b3, by)=(110, 108, 99, 81, 0).

For more detailed information on points b;, we refer readers to the ref-
erence [37].

For convenience, we define v,(ll)7 as
T_Vw(()v)(u" —u?), =0,
o) = bl (6.7)

7 T Z wgy_)k(uk —u%), 1=1,2,---,L.
k=b;
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Next, combining (6.4), (6.7) and the definition for e, (z), we have (for
1>0)

bi_1—1
vfw ~~ i w§l) T lzlz en_k(T)\;l))(uk — uo) Fv(/\g-l))
J‘};K b (6.8)
= > wlrg D)y B0,
j=—K
where y; is given following
bi_1—1
i =y b AN =1 3 e (PAY) (W - ). (6.9)
k=b,

Because y; (b, bi—1, )\gl)) has a recursive structure, we can make use of
it to accelerate computation further,

by —1

3 (br, bs, /\y)) =r > e(bsfl)fk:(T/\y))(uk —u®) + 4 (b, bs, Ag'l))
k=b, (6.10)

=ro(TA) PPy (01, b AL) + 95 (b b, A).

We first store y; of the last time step for [ =1,2,---, L, then we judge
whether y; has been stored when we calculate next time step. Give an example
to describe it, for B =3 and n = 110, as depicted in Fig. 2(b), we store

y;(108,110, XY, 1;(99,108,A%)), 4;(81,99,A%), 4;(0,81,A("), (6.11)
then, for n = 111, we need to calculate
y; (108,111, AM), 4/;(99,108, A1), y;(81,99, A7), 4;(0,81,AY),  (6.12)

and we can find only the first term has not stored. So we need merely to
calculate the first term for n = 111 to accelerate the computation.

The first few weights obtained by (6.4) are poor (see Fig. 2(b)), For
1=0,1,2,--- ,k, we use (3.2) to calculate the weights and for | = k+1,--- , L,
we use (6.4) to calculate the weights. Combine (6.6),(6.7) and (6.8),we derive

k L
no, l l
DIfu=7% ol + D o)
=0

I=k+1
) L (6.13)
) n—(bj—1—-1 l l
D S ST L S CON O N9 DN ON )
1=0 I=k+1j=—K

Using (6.13), we can easily rewrite the fully discrete scheme with the
fast algorithm.
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7. Numerical experiments

In this section, we design four cases to verify effectiveness of our method in

solving the fractional cable equation. The basis function is ¢(x) =
N. For Yok, € P, ok =

Lj+2(,’13), .7 = 07 17 RN}
the frequency coeflicient.

Case 1: We consider (1.1) with homogeneous initial condition ®¢(z)

N—2
Z OUN¢J

(x), where ¥

is

0, ®1(z) = 0. Its exact solution is u(z,t) = t*sin(7z) and the forcing term
is f(.%‘,t) — (4t3 + m’I'(5) 3 4

T(44+1)

L'(5)
L4+

72)

1, L =1 and the results are indicated i 1n Table 1-3.

Table 1. Errors and temporal convergence orders with v; = 0.1,
2 = 0.3, and 6 = 0.2.

T [|[E(N,7)|[l2 Order ||E(N,7)||lec Order Time(s)
276 1.091633e-03 1. 846247e-04 0. 245754
2=7 2. 744767e-04 1.99 4. 642145¢-05 1. 99 0. 672443
278 6.881590e-05 2.00 1.163864e-05 2. 00 2. 577600
279 1.722861e-05 2.00 2. 913825¢-06 2. 00 11. 333679
2710 4.310235¢-06 2.00 7.289776e-07 2. 00 55. 777426

Table 2. Errors and temporal convergence orders with v; = 0.4,
v2 = 0.6, and 6 = 0.5.

T [|[E(N,7)|l2 Order ||E(N,7)||lcoc Order Time(s)
276 2. 352760e-03 3. 979155e-04 0. 236521
277 5.918420e-04 1.99 1. 000965¢-04 1. 99 0. 737517
278 1.484186e-04 2.00 2. 510160e-05 2. 00 2. 701757
279 3.716199¢-05 2.00 6. 285101e-06 2. 00 11. 047976
2710 9.297673e-06 2.00 1. 572489%-06 2. 00 55. 935405

Table 3. Errors and temporal convergence orders with 1 = 0.8,
v2 = 0.7, and 6 = 0.9.

T [|[E(N,7)|l2 Order ||[E(N,7)||lec Order Time(s)
26 1.077429¢-02 1. 822225e-03 0. 247115
277 2.730838¢-03 1.99 4. 618588¢-04 1.98 0. 708011
278  6.873984e-04 2.00 1.162577e-04 2. 00 2. 612621
279 1.724376e-04 2.00 2. 916388¢-05 2. 00 11. 671898
2710 4.318303e-05 2.00 7.303423e-06 2. 00 53. 581065

t3772) sin(rx). Let N = 100, T =

To inspect the spatial accuracy, we take 7 = 0.001 to eliminate the error
in temporal direction. Fig. 3 shows that when vy, = 0.3,v2 = 0.7,0 = 0.5, the
error decreases exponentially, that is, the spectral accuracy, which verifies our
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Fig. 3. v1 = 0.3,72 = 0.7,0 = 0.5 for Example 1 at T'=1
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‘

error
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Fig. 4. L*° error for Example 1 at N = 7.

theoretical analysis. Fig. 4 shows the L> error at T'=1, N = 7 for Example
1.

Case 2: We consider the (1.1) with non-homogeneous initial condition
®o(x) = sin(rz), ®1(x) = 0. Its exact solution is u(z,t) = (t* + 1) sin(7z)
and the forcing term is f(x,t) = (4¢3 + F’T(41:r(5) 3t %t%"’?) sin(7z).
Let N =100, T'=1 and L = 1. The responding results are shown in Table
4-6. We can see that the numerical scheme is still applicable to the equations
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with non-homogeneous initial conditions, which reflects the stability of our
method.

Table 4. Errors and temporal convergence orders with v; = 0.7,
v2 = 0.8, and § = 0.6.

T [|[E(N,7)|[l2 Order ||E(N,7)||lec Order Time(s)

1/40 4. 038357e-03

1/80 1.025594e-03 1.98

1/160 2. 584151e-04 1. 99
6
1

152599e-03 0. 050131
466764e-04 1. 98 0. 134863
377415e-04 1. 99 0. 447734
456890e-05 1. 99 2. 270288
658372e-06 2. 00 14. 674638

1/320 . 485714e-05 1. 99
1/640 . 624621e-05 2. 00

® W= otN

Table 5. Errors and temporal convergence orders with v; = 0.7,
v2 = 0.6, and 6 = 0.5.

T [|[E(N,7)|[l2 Order ||E(N,7)||lec Order Time(s)
1/40 2. 866934e-03 1. 528181e-03 0. 045444
1/80  7.266525e-04 1.98  3.873282e-04 1.98 0. 135609
1/160 1.829122e-04 1.99 9.749519e-05 1.99 0. 407822
1/320 4. 588503e-05 2.00 2.445592e-05 2. 00 2. 216844
1/640 1.149112e-05 2.00 6. 123674e-06 2. 00 15. 022102

Table 6. Errors and temporal convergence orders with v = 0.4,
v2 = 0.4, and 6 = 0.3.

T [|[E(N,7)|l2 Order ||E(N,7)||lcc Order Time(s)
1/40 1. 821326e-04 9. 704045e-05 0. 019041
1/80 4. 509651e-05 2. 02 2.400473e-05 2. 02 0. 116742
1/160 1.122625e-05 2.01 5.957047e-06 2. 01 0. 467209
1/320 2. 812157e-06 2. 01 1. 474675e-06 2. 01 2. 243742
1/640 7.264002e-07 2.03 3. 600262e-07 2. 03 13. 807315

Case 3: We consider the solution of (1.1) is non-smooth. Let (1.1) with
homogeneous initial condition ®g(z) = 0, ®1(x) = 0. Its exact solution is
u(w,t) = (t* +13) Sin(wx) which is non-smooth, and the responding forcing

torm is f(2,t) = (46 + Rkt 4 (fGlsve 4 3¢ 4 ZIO) g3 4

%m‘”z) sin(mz). Let N =100, T =1, and L = 1. Table 7-9 compare

the results using (3.7), (3.8) and (5.3), (5.4). Because the solution is weak
regular, the convergence rate is not optimal and with correction terms it is
better than the results of scheme (3.7), (3.8). By adding the correction terms,
we can overcome the weak regularity and get the optimal convergence rate,
which reflects the efficiency of our method.
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Table 7. Temporal convergence orders with v; = 0.2, v2 = 0.3, and
0 =0.3.

T Standard Order Correction Order

1/20 6. 751578e-04

1/40 1.915618e-04 1.82
1/80 5.464577e-05 1. 81
1/160 1. 587941e-05 1.78
1/320 4. 731055e-06 1. 75

. 708209e-04

. 497156e-04 1. 93
. 835545e-05 1. 96
. 661586e-06 1. 99
. 391077e-06 2. 01

N © W~ ot

Table 8. Temporal convergence orders with v; = 0.3, 2 = 0.4, and
0 =0.2.

T Standard Order Correction Order

1/20 1. 447964e-03

1/40 3. 829940e-04 1. 92
1/80 1.017298e-04 1.91
1/160 2. 743734e-05 1. 89
1/320 7.578011e-06 1. 86

. 306379e-03

. 295222e-04 1. 99
. 223244e-05 2. 00
. 049203e-05 2. 00
. 144713e-06 1. 99

LN 00 W

Table 9. Temporal convergence orders with 41 = 0.6, v2 = 0.8, and

6=0.2.
T Standard Order Correction Order
1/20 1. 251645e-04 6. 758207e-05
1/40 4. 632530e-05 1.43 2. 660304e-05 1. 35
1/80 1.646001e-05 1.49 8.013154e-06 1.73
1/160 5. 815174e-06 1. 50 2. 084598e-06 1.94
1/320 2. 057686e-06 1.50 5.163438e-07 2.01

Case 4: We consider using fast algorithm to solve the (1.1). Let (1.1)
with homogeneous initial condition ®q(x) = 0, ®1(z) = 0. Its exact solution
and the responding forcing term are the same as with the first case.

We apply fast algorithm for solving (1.1) and choose B = 5 as our basis.
Let N =100, T =1 and L = 1. For convenience, we use the symbol Fasty
for (6.4) with 2K + 1 approximation points. Ug denote the solutions obtained
by the standard method and Up denote the solutions obtained by the fast

algorithm. We take y = v, = v = 1—;9 and the pointwise error is
E(y,M) = max |Us — Up|. (7.1)
t=to, -\t ,x=T1, TN

As shown in Table 10, when K = 15, the pointwise error is about 10~7, and
in the case of the same numbers of time stepping, the fast algorithm can
save significantly computation time. When K = 35, the pointwise error is
about 1071* which indicates our method can get high accuracy while saving
computation time. We plot the exact solution and the numerical solution in
M = 1000, v = 0.5, 8 = 0.25 and K = 35, as shown in Fig. 5(a) and Fig.
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Table 10. Pointwise error with v =1 = 72, and = 15X,

5 M Standard  Fastis E(v, M) Fastss E(v,M)

0.5 1x103 20. 78s 8.37s 1.56782E-07 17.28s 6. 09513E-14
2x10%  161.94s 25.01s 2. 51764E-07 48. 44s 1. 34559E-13
3x 103 568.29s 42.01s 3.24574E-07 83.51s 1. 86859E-13
4x10% 1305.80s 61.43s 3.97923E-07 116. 53s 1. 92960E-13

0.8 1x10% 20.72s 8.47s 8.88695E-08 17.28s 2.00950E-14
2 x 103 162.69s 21.85s  8.68453E-08 44.98s 5.73988E-14
3x10%  560.18s 39.84s  9.79511E-08 77.72s 4.51867E-14
4x10% 1414.12s  59.53s  8.64079E-08 116.06s  6.96125E-14

0.2 1x103 21.88s 9.27s 1.09855E-06 17.11s 8.07179E-14
2 x 103 160.17s 22.36s  1.93400E-06 52.25s 1.84527E-13
3 x 103 559.55s 43.46s  2.66548E-06 88.96s 3.58885E-13
4x10% 1303.94s 67.39s 3.30004E-06 128.67s  3.67707E-13

5(b), the corresponding error contour is shown in Fig. 5(c). To see the time
complexity of the fast algorithm, we plot the double logarithmic chart, see
Fig. 5(d). We can clearly see the fast algorithm have reduced computation
work from O(M?) to O(M log M).

8. Conclusion

In this study, we have developed a fast time stepping Legendre spectral
method for solving the fractional Cable equation. We analyze the stability
and convergence of our method. For non-smooth solutions, correction terms
are considered. In addition, we accelerate the calculation by the fast algo-
rithm. Numerical experiments confirm efficiency and less time-consumption
of our method. Our method can be extended to solve other fractional sub-
diffusion equations and fractional wave equations, and it is feasible to solve
higher dimensions cases.
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