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ABSTRACT

Automatic labelling of anatomical structures, such as coronary arter-
ies, is critical for diagnosis, yet existing (non-deep learning) methods
are limited by a reliance on prior topological knowledge of the ex-
pected tree-like structures. As the structure such vascular systems is
often difficult to conceptualize, graph-based representations have be-
come popular due to their ability to capture the geometric and topo-
logical properties of the morphology in an orientation-independent
and abstract manner. However, graph-based learning for automated
labeling of tree-like anatomical structures has received limited atten-
tion in the literature. The majority of prior studies have limitations
in the entity graph construction, are dependent on topological struc-
tures, and have limited accuracy due to the anatomical variability be-
tween subjects.In this paper, we propose an intuitive graph represen-
tation method, well suited to use with 3D coordinate data obtained
from angiography scans. We subsequently seek to analyze subject-
specific graphs using geometric deep learning. The proposed models
leverage expert annotated labels from 141 patients to learn repre-
sentations of each coronary segment, while capturing the effects of
anatomical variability within the training data. We investigate differ-
ent variants of so-called message passing neural networks. Through
extensive evaluations, our pipeline achieves a promising weighted
F1-score of 0.805 for labeling coronary artery (13 classes) for a five-
fold cross-validation. Considering the ability of graph models in
dealing with irregular data, and their scalability for data segmenta-
tion, this work highlights the potential of such methods to provide
quantitative evidence to support the decisions of medical experts.

Index Terms— Computed Tomography, Graph Representation,
Graph Neural Networks, Coronary segment.

1. INTRODUCTION

Labelling blood vessels is a critical step in the medical image pro-
cessing pipeline for the diagnosis of cardiovascular diseases [1, 2].
Unlike spheroid-like organs (i.e. the liver or kidney), coronary arter-
ies are divergent, thin, and tenuous. Labeling of the tree-like struc-
tures formed by the arteries is complex, with branches of varying
sizes and different orientations across individuals and viewpoints.

Learning from graphs, termed geometric deep learning or graph-
based deep learning, is an emerging field that deals with irregularly
structured data. Graph learning methods such as Graph Convolu-
tional Networks (GCNs) are powerful tools for the study of non-
Euclidean domains, and have been used to support medical diagno-
sis by representing medical data including brain electrical activity,
anatomical structures, and digital pathology, as graphs [3, 4].

Fig. 1: Overview of the automated coronary artery labelling frame-
work. i) Coronary computed tomography angiography (CCTA) im-
ages from 141 subjects are annotated into 13 segments (classes) fol-
lowing SCCT guidelines. ii) For each CCTA image, a set of coro-
nary artery centerlines for each segment are obtained to define the
nodes, edges and node embeddings. Node features comprise spa-
tial features to characterize the entities. iii) The coronary artery seg-
ments and branches for each subject are transformed into a graph. iv)
The graph representation is processed using geometric deep learning
models for node-level prediction to label the segments.

Traditional non-deep learning methods for coronary artery label-
ing have used 3-dimensional coronary tree models [5]. In [6] the au-
thors used bidirectional tree-structured LSTMs, proposing TreeLab-
Net to aggregate and pass information through the artery tree. Gen-
erally, existing studies achieve high accuracy for the main arteries,
but struggle identifying side branches due to large vascular varia-
tions and a reliance on simple geometric rules. Furthermore, tree-
structured models can only pass messages between nearby layers.
A graph-based method learns and regresses the locations of arteries
directly, and allows for learning of local spatial structures. Graph
models can also propagate and exchange local information across
the whole image to learn semantic relationships between objects [7].

GCNs were investigated by [8] for labeling coronary computed
tomography angiography (CCTA) images. In [8], a network with
five GCN layers is used to learn local and neighborhood features
and optimize the location of nodes in a tubular surface mesh graph.
Later, the same research group proposed a graph attention network
(GAT) for coronary artery segment labeling [9] of a similar coro-
nary artery tree, which showed improved performance on small leaf
branches. In [10], anatomical and morphological features are used
with point cloud deep networks for automatic coronary artery label-
ing. A hybrid method is proposed in [11], where a gated GCN is used
to label the anatomical artery tree and logic-based rules are used to
refine GCN predictions. In [12], a conditional partial-residual GCN
and a hybrid model comprising 3D CNNs followed by bidirectional
LSTMS are jointly trained. The hybrid model extracts features along
each branch to provide conditions for the graph model [12]. The two
parts are trained end-to-end, capturing both local and global spatial



image features.
Geometric deep learning is still in its nascent stages compared

to existing deep learning methods for automated labeling. There
are challenges associated with the entity graph construction and the
complexity of graph training. Developing a standardized mechanism
to leverage centerline information in graph construction is critical
and challenging. Labeling coronary arteries with a GCN requires a
fair representation of a segment’s location to prevent confusion (e.g.
changes in the starting point of centerlines across subjects can de-
grade prediction accuracy). Thus, developing a method to define a
graph from centerlines, that is robust and consistent across subjects
and datasets, is vital.

Regarding the complexity of the vascular structures, methods
that enable the accurate labeling of main arteries and side branches
are required, yet many researchers have observed that proposed
GNNs methods perform poorly for small branches, and may even
completely omit such structures. This is illustrated by previous stud-
ies [9, 11, 12] failing to consider the left posterior lateral branches
(L-PLB) and left posterior descending artery (L-PDA).

In this paper, we propose a geometric deep learning framework
(shown in Fig. 1) for coronary artery labeling to deal with the afore-
mentioned challenges. Using annotated CCTA images from 141 pa-
tients, we first present our method for artery tree graph representa-
tion which efficiently defines the origin and last point of centerline,
and adopt appropriate embeddings incorporating directional vectors
and standard geometric features to represent the characteristics of
coronary artery branches. Next, the generated coronary artery tree is
transformed into a linegraph and fed to a graph network for anatom-
ical labeling of 13 artery segments (classes), resulting in a more
comprehensive set of labels than earlier efforts (9 classes-350 pa-
tients [11], 10 classes-71 patients [9], 11 classes-511 patients [12]).
Our graph representation method using only centrelines achieved
weighted F1-score of 0.805, which is comparable to the node em-
bedding definition of the SOTA method in [12].

The contributions of our work are summarized as follows:
1. We define a standard method for graph representation of coro-

nary arteries. The proposed approach introduces a rule set to
construct a graph from the location and direction of artery
segments using centerlines. In comparison to SOTA [12],
this reduces ambiguity across subjects when mapping coro-
nary artery segments to a graph and significantly improves
the labelling results. In addition, the proposed method can be
easily extended to allow for different node embedding repre-
sentations.

2. We evaluate different graph neural network methods for label-
ing coronary artery segments on a privately collected dataset,
consisting of CCTA scans from 141 patients manually anno-
tated by three experts. We achieve promising results on this
dataset, which includes diversity among subjects, and addi-
tional complexity from the inclusion of complicated segments
with a small number of samples and two additional classes (L-
PLB, L-PDA) not considered in previous works [9, 11, 12].

2. METHOD

In this section, we detail the graph-based labeling system for chal-
lenging and variable anatomical structures such as coronary arteries.
A graph maps regions in the CCTA to nodes in the graph. Then,
the labeling problem can be transformed to one of assigning the cor-
rect label to each node according (node-level prediction). A standard
entity-graph workflow is developed which consists of the following
phases: graph construction (identify nodes, extract embeddings and

Fig. 2: Illustration of the vessel centerline used to extract features.
Each centerline is composed of a list of points obtained via [13].

Fig. 3: Graph-based representation of coronary trees segments. Seg-
ments represent branches after bifurcating. Segments are repre-
sented by multiple nodes in the graph. Visualization of 2 branches of
the right coronary arteries: RCA (orange) and AM (red). The same
color represents a branch, and nodes correspond to a segment

define edges), and graph modelling (applying deep learning graph
models to process the graph). For fair comparison, we (i) adopt a
standard GCN as our graph model to compare node embeddings,
since it is currently the most popular model for labelling anatomical
structures (vasculature systems and organs). ii) employ the proposed
graph representation and embeddings to compare several graph neu-
ral network models, which differ in the way they construct messages,
update a node’s hidden representation, and obtain the graph-level
feature vector, while still following a message passing and readout
process. To obtain node-level predictions, the node embedding is
input to a Multi-Layer Perceptron (MLP).

2.1. Entity-graph construction

In this section, we present our method for graph construction
method, using the initial labeling results. Our coronary artery
graph construction approach is composed of three steps: centerline
extraction, node and edge definition, and feature extraction.

Centerline extraction: We use the method of [13] to extract the
centerline from the CCTA image. This results in a set of centerlines,
each composed of a set of points (see Fig. 2). We resample these cen-
terlines to ensure that points are evenly spaced, and adjacent branch
starting points are merged to reduce unnecessary segmentation.

Node and edge definition: We adopt similar definitions to [12],
and whenever branches bifurcate, we treat the resultant segment as
a new node. As such, one branch may be represented by multiple
nodes in the graph. Here, segments represent branches after bifur-
cating. This representation is illustrated in Fig. 3

To standardize changes in the centerline points in the Cartesian
coordinate system, the author in [6] proposes a spherical coordinate
transform (SCTS2) to convert 3D position coordinates into azimuth
and elevation. Due to the phase and other differences in each CCTA



Table 1: Number of samples of different classes in the dataset. The reported average, max and min highlight the variability in the dataset.

Left Side Right Side
LM LAD LCX R S OM D L-PLB L-PDA RCA AM R-PLB R-PDA Total Avg Max Min

Branches 136 142 140 64 124 159 182 62 39 142 132 167 102 1591 11.36 24 6
Segments 148 502 336 72 194 219 216 82 41 573 321 326 173 3203 22.87 86 15
Left side arteries: left main (LM), left anterior descending (LAD), left circumflex (LCX), Ramus (R), septal artery (S), obtuse margin (OM), diagonal
(D), left posterior lateral branches (L-PLB), left posterior descending artery (L-PDA). Right side arteries: right coronary artery (RCA), right acute
marginal artery (AM), right posterior lateral branches (R-PLB), right posterior descending artery (R-PDA).

image, to obtain the azimuth and elevation, the same x,y,z axes must
be defined for each image. In [6], the center point of the bounding
box enclosing all centerline points is taken as the origin, and the x-
axis and z-axis of the Cartesian coordinate system are the North Pole
and the primary meridian of the spherical coordinate system.

Due to the periodicity of the angle, the range of the angle is
limited to [0, 2π). To overcome instability due to the periodicity,
the authors of [12] propose using an S2 manifold to represent the
angles. This form of spherical coordinate transformation is called
SCTS2, and we use a similar transformation in our approach.

In [12], the authors select the first control point of each branch
as the origin, the z axis is defined as the direction from the first
point to the second point, and the vector pointing from first to the
last point of the centerline lies in the y − z plane. This definition
of the origin and last point may be ambiguous when representing the
global information of the coronary artery as a graph for each subject.
As such, to ensure consistency we consider the first point of the first
centerline of the left branch to be the origin (generally the centerline
of left main), and the definition of the z-axis remains unchanged. We
define the last point of the last centerline of the right branch (right
coronary artery or right posterior descending artery) as the control
point which defines the y − z plane.

Node embeddings: In [12] and [6], the authors use similar fea-
tures based on: i) the direction vector from the first point to the last
point of a segment and the tangential vector to the starting point in
both 3D and S2; and ii) the first point, center point, and last point
of a segment in normalized 3D space and in spherical coordinates.
To better represent the characteristic of coronary arteries, we con-
tinue to use the coordinates of the starting point, the end point and
the midpoint, add the vector between the first point and the second
point, and replace the vector from the starting point to the end point
with the vector from start point to the center point, and the center
point to last point to better capture the shape of the artery.

2.2. Graph models

We consider the following GNN methods for coronary artery la-
belling: (i) GCN proposed by Kipf and Welling [14], which is a
spectral-based GNN with mean pooling aggregation; (ii) GAT graph
attention networks [15], which is a spatial-GCN model incorporat-
ing masked self-attention layers in the graph convolutions, and uses
a neural network to learn neighbor-specific weights; (iii) GIN the
graph isomorphism network [16] is a spatial-GCN that aggregates
neighborhood information by summing the representations of neigh-
boring nodes; and (iv) GraphSAGE which is a spatial-GCN and uses
node embeddings with max-pooling aggregation [17].

3. EXPERIMENTS AND RESULTS

3.1. Dataset and evaluation metrics

We train and test all models on a private dataset containing 141 pa-
tients, collected from Wuhan Union Medical College Hospital be-
tween 2020 and 2022. Data is annotated by three cardiothoracic

Fig. 4: Representations of specific segments, and the connections for
two different subjects in the dataset (left and right boxes). The right
vessel tree, which has 13 segments, is more complete, while the left
tree lacks some vessel segments.

radiologists, each with more than two years of experience, in a two-
stage process. In the first stage, two experts mark each branch sep-
arately. The second stage compares the results, and differences are
discussed and voted upon by three experts to determine the final la-
bel. Finally, the consolidated set of annotations constitute our exper-
imental dataset. To the best of our knowledge, a public dataset for
coronary artery labeling is not presently available.

We used the same definition as [12] to determine branches and
segments. The min (the simplest number of vascular branches), max
(the most complex situation in the dataset), and Avg (the average
number of dataset) branches and segments are given in Table 1 and
are higher than previous work [12] (22, 3, and 13.23 respectively),
demonstrating the complexity of the dataset. To verify our graph
representation method and enable a fair comparison with the SOTA,
we removed the L-PDA and L-PLB branches to create an 11 category
dataset as per [12].

In this work, we follow the Society of Cardiovascular Computed
Tomography (SCCT) guidelines [18] for anatomical labeling of the
coronary arteries, represented by 13 coronary segments (classes).
Previous methods have only used 9 or 11 classes [9, 11, 12]. Seg-
ments are the branches after bifurcating, and graph edges capture re-
lationships between segments. The coronary arteries are composed
of two major parts, the left and right sub-trees, both originating from
the aorta. The left side is typically connected to the aorta by the left
main artery (LM), which divides into two branches, the left anterior
descending artery (LAD) and left circumflex artery (LCX). Multiple
side branches originate from main branches: the ramus (R) and ob-
tuse margin (OM) from the LAD; and the diagonal artery (D) from
the LCX. Some LCX terminals will differentiate into the left pos-
terior descending coronary artery (L-PDA) and left posterior lateral
branch (L-PLB). The main artery of the right sub-tree is the right
coronary artery (RCA), with common side branches such as Acute
marginal branches (AM), right posterior lateral branches (R-PLB)
and the right posterior descending artery (R-PDA) (See Fig 3). De-
tails of our dataset are given in Table 1.

CCTA images are scaled to v = 0.5mm voxel spacing. After
centerline extraction, we adjust the control points on the centerline
to merge very close branches into the same branch, reducing unnec-



essary segmentation. At the same time, we resample control points
such that control points are spaced at the same distance of 10 voxels
as [12].

We use the weighted-F1 (W F1) score to measure perfor-
mance as this is a multi-class classification task with a highly
uneven class distribution. This metric is defined as W F1 =∑13

i=1
2×precisioni×recalli
precisioni+recalli

× wi, where wi is the weight (total
percentage of samples that belong to a class) of the i− th class.

3.2. Experimental setup and implementation details

Data is randomly divided into five equal sized subsets, and models
are evaluated using a 5-fold cross validation. Graph models are im-
plemented using Pytorch geometric [19]. To demonstrate our graph
representation method, we use a model composed of two GCN lay-
ers followed by an FC layer. We use the graph structures (i.e. nodes
and edges) generated by different methods as inputs to the graph net-
works to predict coronary artery labels. To verify the effect of dif-
ferent graph neural networks on the automatic coronary artery label-
ing task, all graph networks (including GAT [15], GIN [16], Graph-
SAGE [17]) use the same structure, and receive the graph generated
by our method as input.

Models were trained for 500 epochs with a batch size of 8, with
categorical cross-entropy loss and the Adam optimizer [20] (with a
learning rate of 1e−3). These hyper-parameters are fine-tuned based
on the performance of the models on the validation set.

3.3. Results and discussion

The performance of our proposed method for graph representation,
and for coronary artery labeling using a variety of graph networks,
are presented in Tables 2 and 3 respectively. Due to the lack of pub-
licly available data and code for related works [8–12], we only com-
pare our proposed method with the node embedding approach used
by the SOTA GNN method of [12], and also note that [12] has al-
ready demonstrated the superiority of their approach over traditional
methods such as [5, 6].

Graph representation and embeddings: We compare the per-
formance of our proposed graph representation for artery labeling
(using 11 and 13 classes) with [12], using a GCN implementation
as per [14]. For a fair comparison, we only considered the posi-
tional features of [12] (global features are excluded) with our node
embeddings, using the same proposed graph representation. Results
in Table 2 show superior performance of our proposed method over
the baseline [12]. Using our proposed repeatable approach with ex-
tra features including directional vectors (see Section 2.1) achieves
better characterizes and representation of coronary artery branches.

Graph network evaluations:
One of our aims in this paper is to demonstrate that our pro-

posed method can achieve competitive performance without relying
on complex graph models that are common in the literature. This
is motivated by the results presented in 2, which clearly demonstrate
the superiority of our graph representation and positional embedding
approach.

For both 11 and 13 classes, GraphSAGE outperforms other
graph-based models. This is due to the dataset’s imbalanced nature,
the small number of subjects, and the training paradigm of Graph-
SAGE. Unlike other graph networks, in each iteration GraphSAGE
runs over a sampled sub-graph in a node-wise scheme, resulting in
high performance on our dataset and some benefits when faced with
imbalanced data (though rare classes remain problematic).

The confusion matrix for the 13-class evaluation obtained from
the application of GraphSAGE is presented in Fig 5. The low per-

Fig. 5: Normalized confusion matrices for labeling segments (13
classes).

Table 2: Comparison of different graph embedding with the pro-
posed graph presentation for labeling coronary artery segments with
a standard GCN model.

Graph representation Node embeddings F1-score (11) F1-score (13)

Our [12] 0.644 0.638
Our Our 0.652 0.654

Table 3: Comparison between graph models with the proposed
graph construction methodology.

Graph Model F1-Score (11) F1-score (13)

GCN 0.652 0.622
GAT 0.648 0.642
GIN 0.664 0.657
GraphSAGE 0.812 0.805

formance of GraphSAGE for R, L-PDA and R-PDA is due to the
very low number of samples for these classes. For instance, only
one third of subjects have R branches, and even fewer show L-PDA
and R-PDA branches. We note that it is difficult even for experts to
label these three branches due to their structures.

4. CONCLUSION

In this study we introduced a graph-based labeling pipeline, includ-
ing a robust graph representation method combined with a Graph-
SAGE network to label segments of coronary arteries from CCTA
scans. Promising results are obtained, and the graph structure has
a high data representation efficiency and strong feature encoding
capacity. The proposed approach has broad potential applicability,
with automatic coronary labeling of use to greatly expedite the pro-
cess of generating the reports which form the basis of diagnosis.

5. COMPLIANCE WITH ETHICAL STANDARDS

The experimental procedures involving human subjects data de-
scribed in this paper were approved by the Research Ethics Board
of Wuhan Union Hospital. Waiver for written patient consent was
sought for the data collection and analysis.
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