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Abstract 
 

The road network is a critical element of our infrastructure that facilitates social mobility 

and supports economic growth. However, the rising number of global crashes on our roads 

that leads to countless injuries and loss of lives remains a significant concern for 

governments and transport engineering professionals. To address this pressing issue, road 

safety analysis has long been a crucial component of infrastructure planning guidelines 

designed by transportation engineering professionals.  

Traditional crash-based safety analysis techniques often employed by transport 

engineers suffer from limitations such as underreporting, logging errors, and limited 

behavioural information. Contrasting to crash-based data used for such modelling, a 

growing interest in utilising traffic conflicts and linking them to crashes has been noticed; 

however, recent studies have evaluated road user crash risk using traffic conflicts at either 

single or multiple but scattered intersections. Comparatively, less attention has been paid 

to corridor-wide safety because of data collection scalability limitations. While these 

studies have provided valuable insights, they often fail to capture the complexities and 

interdependencies of crash mechanisms along transportation corridors. As most road user 

journeys are not limited to a single intersection and comprise multiple road segments 

forming a corridor, road safety analysis at a corridor level becomes paramount. With 

multiple recent autonomous vehicle trials on public roads generating massive amounts of 

road user data, the use of such rich information to resolve data collection scalability issues 

and perform corridor-wide safety analysis is somewhat limited where it appears to be most 

relevant.  

This thesis proposes an extreme value theory modelling framework to estimate 

corridor-wide pedestrian crash risk using autonomous vehicle sensor data. In particular, the 

study estimates two extreme value models, including Block Maxima extreme sampling 

approach relating to Generalised Extreme Value distribution and Peak Over Threshold 

extreme sampling approach relating to Generalised Pareto distribution. The autonomous 

vehicle data for model estimation was obtained from a publicly available source, 

Argoverse. Their autonomous vehicle fleet, operating in six different cities in the USA, is 

equipped with two 64 beams synchronised LiDAR sensors, a cluster of seven high-

resolution cameras, and a pair of stereo-vison high-resolution cameras to capture 
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surrounding road users’ information. Through a case study of a selected transportation 

corridor focussing on an arterial corridor in Miami, USA, this thesis assesses the application 

of the proposed corridor-wide road safety analysis framework. A subset of the Argoverse 

dataset focusing on the selected corridor was used to extract vehicle trajectories and 

pedestrians within a range of 200 m from the autonomous vehicles that travelled along the 

corridor. From these trajectories, vehicle-pedestrian conflicts were recognised and 

measured using the conflict indicator known as post-encroachment time, which refers to 

the time difference between the first road user exiting an encroachment zone (the area 

where two road users have a possibility of a conflict) and a subsequent road user entering 

the same encroachment zone. Several covariates characterising vehicle-pedestrian 

interactions were also extracted from the data to introduce non-stationarity to the Extreme 

Value Theory models. Both Block Maxima and Peak Over Threshold sampling-based 

models were estimated in the Bayesian framework. The estimated models were used to 

interpret the interplay of the crash risk and various covariates, such as pedestrian speed, 

vehicle speed, pedestrian count, and vehicle count, which can help to develop effective 

strategies to reduce crashes and enhance transportation safety on a larger scale.  

Models using both Block Maxima and Peak Over Threshold extreme sampling 

techniques were found to estimate the observed crashes well. Notably, the Block Maxima 

sampling-based model was found to be more accurate than Peak Over Threshold sampling-

based model based on mean crash estimates as well as confidence intervals. The findings 

of this research highlight the need for a holistic approach to road safety analysis, 

considering the entire corridor rather than isolated segments. Autonomous vehicle sensor 

data can be used to identify pedestrian crash zones on a transport network.  
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Introduction  1 

Chapter 1 Introduction   

1.1.Background 

Road safety analysis is a critical aspect of the transportation engineering discipline that 

examines road-user interactions and works towards reducing the frequency and severity of 

road crashes. The importance of road safety analysis becomes quickly apparent when 

looking at the global cause of death statistics. Road crashes are the global leading cause of 

death in children aged between 5 and 14 and one of the top three causes for the age group 

of 15 to 49 (IHME, 2021). With the exceedingly high number of lives lost in road crashes, 

increasing number of vehicles on the roads every year, and the growing complexity of 

transportation systems, addressing road safety concerns has become a pressing issue 

worldwide.  

Traditionally, road safety analysis has been focused on reactive methods, which 

involve studying individual crash sites or specific intersections after crashes occur. These 

studies rely on crash data and historical records to identify underlying patterns, contributing 

factors and devise remedial measures. While such an approach has provided valuable 

insights into the causes of crashes and guided local safety interventions at specific 

locations, they often remain limited in their effectiveness in mitigating fundamental causes 

of crashes due to shortcomings of historical crash datasets. These historical crash datasets 

often require large-scale data collection programmes to gather sufficient information for 

meaningful analysis, which can take years' worth of time to accumulate (Wu and Xu, 2018).  

Also, researchers have often reported that crash data suffer from under-reporting, limited 

sample size, and unobserved heterogeneity (Ali et al., 2023a). 

The reactive approach to road safety analysis poses several other challenges and 

limitations. Firstly by design, it emphasizes the remediation of a problem after incidents 

have already taken place rather than taking preventive measures to avoid crashes altogether. 

This reactive nature of analysis leads to a cycle of blackspot location identification, 

countermeasure implementation, and a waiting period for the next blackspot to appear 

before further actions can be taken. Therefore, this approach may overlook the underlying 

causes of crashes and fail to break the above-mentioned cycle. Secondly, a crash data-based 

reactive road safety approach often fails to capture the complex interactions and 

interdependencies of traffic movements by multiple road users along transportation 

corridors. A transport network is an interconnected system of roads with diverse 
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characteristics, including varying traffic volumes, trip purposes, roadway geometries, 

environmental conditions, and driver behaviour. Road safety analysis on an isolated 

segment or at a specific intersection neglects the broader influence of corridor-related 

contributing factors. This limitation restricts the effectiveness of the implemented 

countermeasures, as they may not address the underlying systemic issues leading to crashes 

along the corridor. Moreover, the reactive nature of road safety analysis leads to inefficient 

allocation of resources. With limited resources and a lack of a comprehensive 

understanding of the crash risk factors across an entire corridor, transportation agencies 

face challenges in identifying and prioritizing high-risk locations solely based on historical 

crash data, often resulting in suboptimal resource allocation and potential missed 

opportunities for proactive safety interventions. 

In recent years, the limitations of the reactive road safety approach have spurred the 

development of proactive safety analysis methods. Proactive approaches aim to identify 

potential road safety issues before they lead to crashes, allowing for much quicker 

interventions and prevention strategies. Examples of proactive safety analysis approaches 

beyond others include predictive models, simulation techniques, and proactive safety audits 

to assess the safety performance of transportation corridors and identify crash risk areas. 

While proactive safety analysis techniques show promise in their ability to anticipate and 

mitigate crash risks, they are not without their own limitations. 

Predictive models utilise historical crash data and statistical techniques to forecast 

future crash frequency and identify blackspot areas. However, these models heavily rely on 

the assumptions determined from analysing past crash trends. These assumptions may not 

hold true if there are significant changes in traffic demand, infrastructure, or driver 

behaviour.  

Simulation models, on the other hand, simulate traffic operations and interactions 

to assess road safety performance. These models allow for scenario testing and evaluation 

of different network design options or safety interventions. However, simulation models 

require massive data inputs and extensive calibration to produce reliable results. The quality 

and availability of data, such as traffic volume and driver behaviour, can significantly 

impact the accuracy and applicability of the model results.  

Moreover, both predictive and simulation models have limitations in considering 

the human element of road safety. Driver behaviour, perception, and decision-making are 
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inherently complex and challenging to model accurately. The variability in human 

behaviour and the influence of factors such as distraction, fatigue, and impairment pose 

significant challenges in predicting and simulating road safety outcomes. 

One prominent proactive safety framework in particular, based on traffic conflict 

information, has gained much popularity in the past decade. This approach, which uses 

traffic conflicts as spatial/temporal proximity of crashes, was first conceptualised by 

Swedish researchers in the late 1970s. Hydén (1987) expanded on that work and 

categorised different scenarios observed in a typical traffic stream into Hyden’s Safety 

Pyramid conceptual framework. Hyden’s Safety Pyramid establishes a link between traffic 

conflicts and traffic crashes and provides a theoretical foundation for valuable proactive 

safety analysis tools. It illustrates the hierarchical relationship between various types of 

road events, ranging from undisturbed traffic operations, near-miss incidents, and conflicts 

to actual crashes with varying degrees of severity, as illustrated below in Figure 1.1 

According to Hyden’s Safety Pyramid, near-miss incidents and conflicts are precursors to 

crashes and occur more frequently than crashes, making them reliable indicators of 

potential safety issues. Conflict-based studies can capture near-miss incidents, which serve 

as valuable indicators of potential crash hotspots and can inform measures to improve 

safety. Emerging technologies such as autonomous vehicles might introduce new types of 

incidences and challenges. These crashes could still be influenced by human factors and 

the mass scale adoption of the technology is still long way away. Additionally, the 

fundamental relationship between crashes, conflicts and road operations will remain 

unchanged. Hence, Hyden’s theoretical framework is well suited to assess emerging vehicle 

technologies such as autonomous vehicles (Ali et al., 2023a). 

 

Figure. 1.1. Hyden’s safety pyramid (Hydén, 1987). 
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Over time, several statistical models have been developed to mathematically 

explore the correlation between conflicts and road crashes, as illustrated by Hyden’s safety 

pyramid. These include causal models, probabilistic models, and extreme value models, 

among others. For this study, the focus will be on utilizing extreme value models due to 

their unique advantages. Extreme value models are particularly suitable for analysing rare 

events with severe consequences, such as financial risk, natural disaster risk, and crash risk. 

From the context of the study, the models allow the identification of high-risk locations or 

situations that may not be apparent from traditional reactive approaches. To do so, extreme 

value models provide insights into the tail distribution of conflicts, capturing the infrequent 

road conflict events to predict potentially catastrophic crashes and inform safety 

interventions. Notably, conflict processing for extreme value theory analysis has made 

significant advancements in recent years. Researchers have developed robust video 

analytics tools for conflict extraction to establish a relationship between conflicts and 

crashes (Ali et al., 2023b; Arun et al., 2022; Arun et al., 2021a; Zheng et al., 2018). While 

conflict-based analysis provides significant insights into crash risk frequency and severity, 

collecting and analysing conflict data can be labour-intensive and time-consuming, making 

it less feasible for large-scale implementation. 

The integration of emerging technologies, such as autonomous vehicle sensor data, 

can significantly contribute to conflict-based safety analysis. Different from labour-

intensive conventional conflict data collection techniques requiring constant oversight, 

autonomous vehicles are equipped with a wide array of sensors, including LiDAR, radar, 

and cameras. These sensors continuously monitor the surrounding environment and capture 

detailed information about road users, objects, and potential conflicts. By leveraging this 

rich sensor data, transportation professionals can gain a more comprehensive understanding 

of interactions and conflicts between autonomous vehicles, pedestrians, cyclists, and 

conventional vehicles. The detail-oriented and real-time nature of autonomous vehicle 

sensor data generates scope for an unprecedented level of precision in conflict-based safety 

model outcomes. It enables the detection of subtle conflicts and near-miss events that may 

go unnoticed by human observers or traditional data collection methods. Furthermore, as 

autonomous vehicle technology advances and more autonomous vehicles share the road, 

the collective data from the sensors of these vehicles can provide valuable insights into 

overall traffic patterns, emerging conflict hotspots, and potential areas for road safety 

improvement. This study contributes to the ongoing progress in conflict-based extreme 
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value theory models by building upon these developments and advancing the methodology 

in the large-scale corridor-wide application of pedestrian safety analysis. 

1.2.Research motivation and needs 

After identifying the limitations of current crash risk analysis techniques, further research 

was conducted on global road safety statistics to focus on a specific research question as a 

part of this study. Looking at the crash data collected by multiple international 

organizations and collated by World Health Organization, more than half of all road 

network-related deaths are among vulnerable road users: pedestrians, cyclists, and 

motorcyclists (WHO, 2022). Of all the vulnerable road users, pedestrians face a much 

higher crash risk in the current car-dominant road environment (Khayesi, 2020). This crash 

risk is hypothesised to be differential with advancements in vehicle technologies such as 

connected vehicles (Ali et al., 2022b). Even though pedestrians represent a fraction of 

kilometres travelled on the road network, they still account for more than one in five road 

fatalities globally (WHO, 2023). In general, the average per kilometre pedestrian fatality 

risk is nine times higher compared to a car occupant (Job, 2020). With that differential risk 

in mind, this research focuses on understanding the pedestrian crash risk by applying 

corridor-wide conflict-based safety analysis techniques using autonomous vehicle sensor 

data.  

 

Figure. 1.2. Global road fatalities by road user type in 2016 (WHO, 2023). 
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Pedestrian trips encompass multiple road sections, such as intersections and mid-

blocks, that collectively form a corridor. They have very high network access and mobility 

and often exhibit unpredictable, erratic, and haphazard movements. This behaviour 

challenges the effectiveness of the traditional spot-safety approach, which primarily 

focuses on intersections, as it may fail to identify the true underlying pedestrian crash risk 

on the corridor. To that extent, an analysis of crash records in the state of Queensland, 

Australia, reveals that a significant proportion of pedestrian fatalities over the past two 

decades, around 78%, occurred away from intersections (TMR, 2022). Recognizing a clear 

need for a more comprehensive pedestrian crash risk assessment strategy, our research 

question aims to investigate how corridor-wide conflict-based safety analysis, independent 

of historical crash history, can better assist with it.  

Despite their potential benefits, conflict-based safety studies have seen limited scale 

application in practice. One major reason is the resource-intensive nature of data collection 

and processing required for such studies. For instance, conducting field observations or 

recording videos to capture conflicts often involves significant time, personnel, and 

financial investments. Installation of video cameras at multiple locations, data collection 

over a period of time, and then data processing requires significant equipment, workforce, 

and computing power. This resource-intensive process can be a barrier to widespread 

implementation, especially for large-scale studies covering extensive road networks. In this 

regard, autonomous vehicle data holds promise as a potential substitute for traditional data 

collection techniques. Autonomous vehicles are fitted with an array of sensors, such as 

LiDAR, radar, and cameras, which continuously capture detailed information about their 

surrounding environment, including pedestrians, cyclists, and other vehicles. This rich 

sensor data can be leveraged to track objects, identify and analyse conflicts, providing a 

cost-effective and efficient alternative to manual data collection. By utilizing autonomous 

vehicle data, researchers can potentially overcome the resource limitations associated with 

traditional methods and scale up conflict-based safety studies to a corridor-wide level. Very 

recently, several empirical autonomous vehicle datasets such as KITTI (Geiger et al., 

2013), Argo (Wilson et al., 2021), Lyft (Kesten et al., 2019), Waymo (Sun et al., 2020), 

nuScenes (Caesar et al., 2019) have been made publicly available providing access to 

autonomous vehicle sensor data that can help us to understand traffic safety better. 

Interestingly, despite the potential advantages of using autonomous vehicle sensor data for 

conflict-based safety analysis, there is a notable absence of studies exploring these datasets' 
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application at a corridor-wide scale. Thus, there is a clear research gap and opportunity to 

conduct a corridor-wide conflict-based pedestrian safety analysis study utilizing 

autonomous vehicle sensor data. 

The following inference can be drawn from the above discussion regarding 

pedestrian safety analysis. First, crash-based statistical models have been frequently used 

in literature for analysing pedestrian safety either at mid-blocks or signalised intersections. 

These models predominantly utilise police and government authority-reported data, with 

well-known limitations such as crash under-reporting and limited availability of 

behavioural information. Second, recognising issues with police-reported data, extreme 

value theory models have been developed to assess pedestrian safety using traffic conflicts. 

Third, several data collection methods have been used to obtain traffic conflicts, with video 

data predominantly used at one or multiple scattered intersections. Finally, recent vehicle 

technologies such as autonomous vehicles present unprecedented opportunities to better 

understand traffic safety, and a few applications related to pedestrian safety can be found. 

However, our understanding remains elusive about fully leveraging the capabilities of 

autonomous vehicle sensor data for analysing pedestrian safety at a corridor level, and this 

data has not received due attention in the literature. This research gap motivates the present 

study. 

1.3.Research objectives and questions 

This research proposes a framework to estimate extreme value theory-based corridor-wide 

pedestrian crash risk model using autonomous vehicle sensor data. In order to fulfil the 

aim, Block Maxima and Peak Over Threshold extreme sampling techniques are used.  

 Based on the research gaps identified through the literature review and the aim of 

the study outlined above, this study aims to answer the following research questions: 

- RQ1: How to process and interpret autonomous vehicle sensor data in a meaningful 

way? 

- RQ2: How to extract road user conflict information from autonomous vehicle 

sensor data and check the quality of the output? 

- RQ3: How can the Extreme Value Theory modelling technique be applied to a 

corridor-wide safety assessment framework? 

To effectively address the research questions and achieve the overarching goal of this study, 

the following tasks need to be accomplished:  
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- Task 1: To develop autonomous vehicle sensor data processing methodology for 

extraction of road user trajectories and conflict indicators (corresponds to RQ1 and 

RQ2) 

- Task 2: To propose a corridor-wide crash risk analysis framework based on Extreme 

Value Theory (corresponds to RQ2 and RQ3) 

Research contribution 

The study contributes to the literature by establishing the efficacy of extreme value models 

for corridor-wide safety studies. By utilizing these models, the study intends to demonstrate 

their effectiveness in capturing rare and severe events, thereby enhancing our 

understanding of high-risk locations along a corridor. Second, by utilising extensive 

autonomous vehicle sensor data, the study offers a unique opportunity to explore conflict-

based safety analysis on a larger scale, which has been identified as a research gap in a 

review study by Ali et al. (2023a). Also, the framework offers the following benefits: 1) it 

facilitates the identification and prioritization of crash-prone locations, enabling targeted 

interventions to prevent crashes before they occur, and 2) it utilises extensive autonomous 

vehicle sensor data to enhance our understanding of conflicts and safety dynamics and 

efficient detection of crash-prone locations on a transport corridor. 

1.4.Thesis outline 

This thesis is structured to comprehensively explore the research topic and present a logical 

progression of ideas.  

Chapter 2 serves as the literature review, offering a comprehensive survey of 

existing studies and the progression from crash-based to conflict-based safety analysis. This 

chapter aims to establish a strong theoretical foundation and provide a clear context for the 

research gap in the existing literature and the research contribution of this study.  

Chapter 3 draws a brief outline of the methodology and framework used in the 

study. Following that, the chapter introduces extreme value modelling techniques in the 

context of this study. It elaborates on the mathematical underpinnings of extreme value 

modelling and demonstrates its application in analysing conflict data derived from 

autonomous vehicle datasets. It showcases the methodology employed in the study, 

including the statistical models used and any specific considerations or adaptations made 

for the corridor-wide analysis. Overall, the chapter lays the theoretical foundation for the 

following chapters and how they link back to the study methodology. 
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Chapter 4 focuses on the autonomous vehicle datasets considered in the study. It 

delves into the selected dataset's details, its characteristics, data collection methods, and 

any pre-processing steps taken to ensure data quality. This chapter serves as a crucial link 

between the theoretical framework established in Chapter 3 and the empirical analysis 

conducted in the following chapters. 

In Chapter 5, the focus shifts to the evaluation of the calibrated model’s 

performance. This chapter presents the results and findings obtained from the application 

of extreme value models to conflict data. It assesses the model’s ability to capture and 

predict rare and severe events, providing insights into high-risk locations along the corridor.  

Finally, Chapter 6 concludes the thesis by summarizing the key findings, discussing 

their implications, and highlighting the contributions of the study to the field of road safety 

analysis. This chapter also presents recommendations for future research and suggests 

potential avenues for the practical application of the research outcome. 
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Chapter 2 Literature review 

Given the focus of the research question for this study is pedestrian safety, this section provides 

a concise overview of the pedestrian safety literature, with more comprehensive reviews 

available in earlier studies. For detailed information on specific topics, readers are directed to 

separate reviews such as those focused on traffic conflict measures (Arun et al. (2021b) and 

Arun et al. (2021c)), general traffic conflict modelling (Zheng et al., 2021), and extreme value 

theory models (Ali et al., 2023a). 

2.1. Crash-based pedestrian safety studies  

Crash-based pedestrian safety studies analyse traffic crash data to identify factors contributing 

to pedestrian injuries and fatalities. Pedestrian safety studies typically gather crash data through 

extensive data collection programs or use existing crash data to develop statistical regression 

models to evaluate pedestrian crash safety. In past studies, multiple statistical regression 

models such as the chi-square statistical test, least square regression analysis, and binary 

logistic regression have been used to develop crash-based pedestrian safety models. The 

following section highlights a representative sample of studies that use crash-based safety 

analysis followed by a few critical limitations of crash based techniques which led to 

development of conflict based safety analysis techniques. 

 Ammar et al. (2022) developed a chi-square statistical test-based model to study and 

examine pedestrian crash data from the United States. The study focused on serious pedestrian 

injury and fatality instances at intersections for a decade. The crash data was collected at 

intersections from the General Estimates System (GES) for 2013-2015 and the Crash Report 

Sampling System (CRSS) for 2016-2018. The study discovered that the overall pedestrian 

crash risk increased from 2013 to 2018. Moreover, the study analysed identified key factors 

influencing pedestrian crash severity. Two logistic regression models were used, and 14 

explanatory variables were considered. The results revealed that pedestrian age, lighting 

condition, vehicle body type, and vehicle pre-crash movement were significant factors in both 

datasets. Older pedestrians had a higher likelihood of severe or fatal injuries compared to 

children. Crashes occurring during dark lighting conditions had a significantly higher 

probability of serious or fatal outcomes. Light trucks and buses were associated with a higher 

risk of severe or fatal crashes than passenger cars. Additionally, the study found differences in 

the impact of some factors between the two datasets, such as the age group of 56-65, vehicle 

pre-crash manoeuvres, and pedestrian actions prior to the crash. The findings of the study 
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suggest the need for interventions to improve pedestrian safety at intersections, including 

infrastructure improvements, regulations, and increasing visibility for both pedestrians and 

drivers, especially during nighttime conditions.  

In another study in the state of Texas, US, Bernhardt and Kockelman (2021) analysed 

the factors leading to pedestrian crashes using an ordinary least-square (OLS) regression 

analysis to formulate right-of-way measures to mediate those contributing factors. The study 

analysed pedestrian crash counts, and pedestrian deaths per vehicle miles travelled (VMT) and 

per walking miles travelled (WMT) in Texas counties from 2010 to 2018. The models 

incorporated demographic, climate, and roadway factors across 254 counties using data from 

databases such as CRIS database, United States Census Bureau, Texas Association of Counties, 

and PRISM Climate Group. The use of ordinary least-squares regression allowed for efficient 

processing and comprehension of large amounts of data at the county level. VMT and WMT 

measures were employed to normalize crash counts and control for the scale effects. The study 

examined the influence of speed, darkness, distracted drivers and pedestrians, the presence of 

signals and crosswalks, climate, and homelessness on pedestrian crashes. The findings revealed 

that higher speeds and darkness increased the severity of crashes, while the presence of 

pedestrian facilities and appropriate crossing behaviour reduced crash rates. Climate and 

weather, such as warmer temperatures and precipitation, were associated with increased 

pedestrian activity and crash rates. Additionally, homelessness emerged as an important factor 

in pedestrian crashes, warranting further attention in pedestrian safety discussions.  

Gooch et al. (2022) aimed to identify risk factors associated with severe pedestrian 

crashes on specific road segments in Massachusetts through a systematic safety analysis. The 

researchers used geolocated crash data from the Massachusetts Registry of Motor Vehicles and 

roadway data from the Massachusetts Road Inventory to focus on midblock locations and 

included driveways, non-junction areas, and unknown or unreported junction types. Binary 

logistic regression models were developed for each facility type to assess the probability of 

severe pedestrian crashes based on various independent variables. The results showed several 

significant risk factors across different facility types. Variables such as the number of lanes, 

traffic volume, and the presence of a median/barrier were positively correlated with the 

probability of severe pedestrian crashes. Higher employment density, population density, and 

a higher proportion of employment in certain industries were also associated with an increased 

likelihood of crashes. Additionally, lower median household income and the presence of 

environmental justice indicators (indicating socioeconomic disparities) were positively 
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correlated with crash probability, highlighting equity issues in pedestrian safety. Transit stop 

presence and density were positively associated with the likelihood of severe pedestrian 

crashes.  

Escobar et al. (2021) estimated that over 20% of the road-crossing manoeuvres could 

be classified as potential traffic conflicts in a pedestrian road-crossing behaviour analysis study 

using logistical regression modelling. The study focused on analysing pedestrian behaviour at 

critical points in Manizales, Colombia, to understand the factors contributing to road incidents. 

The researchers conducted direct observations at seven selected points, including road 

intersections and mobility corridors, and recorded various aspects of pedestrian behaviour, such 

as crossing behaviour, distractions while crossing, interaction with traffic, and crossing speed. 

A total of 33,561 pedestrians were observed during the study, and it was found that 65.19% of 

pedestrians crossed at designated locations, while the rest engaged in risky behaviours such as 

crossing at non-designated locations or diagonally. Children exhibited the highest proportion 

of risky behaviour, while older adults tended to use diagonal trajectories. The analysis also 

revealed variations in pedestrian behaviour based on the specific locations analysed, network 

typology, and intersection type. Furthermore, pedestrians were frequently observed being 

distracted while crossing, with talking to other pedestrians and using headphones being the 

most common distractions. The study also examined pedestrians' interaction with motorized 

road actors, with crossing in low traffic conditions being the most prevalent behaviour. The 

findings highlight the importance of considering pedestrian behaviour, age groups, and specific 

location characteristics when designing road safety interventions.  

Peng et al. (2020) analysed pedestrian crashes and the corresponding contributing 

factors using a structural equation model. This study used structural equation modelling (SEM) 

to analyse pedestrian paths and investigate various factors directly or indirectly affecting the 

injury severity in vehicle-pedestrian crashes at mid-blocks. The study utilized two models: a 

multinomial logit model to examine the effects of variables on the pre-crash behaviour of 

pedestrians and an ordered logit model to uncover the associations between injury severity and 

contributing factors, including pre-crash behaviour. The analysis revealed several significant 

findings. The age of pedestrians was found to be correlated with pre-crash behaviours, with 

older pedestrians less likely to engage in rushing or running into the road but more likely to 

conduct improper crossings. The number of lanes and environmental conditions, such as 

nighttime and wet surface conditions, also influenced pre-crash behaviours. Regarding injury 

severity, certain pre-crash behaviours increased the likelihood of injuries with varying severity 
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ranging from non-incapacitating, non-incapacitating evident injuries to incapacitating and fatal 

injuries. Vehicle type, the first point of impact, and speed limit were significant factors 

affecting injury severity, with heavier vehicles and impacts on the sides of the vehicle 

increasing the likelihood of more severe injuries. As mentioned above, the study also calculated 

the indirect effects of explanatory variables on injury severity through pre-crash behaviours. 

The results showed that older pedestrians had a higher likelihood of severe injuries, and higher 

speed limits and nighttime conditions increased the probability of more severe injuries. The 

findings suggest the importance of considering both direct and indirect effects of factors on 

injury severity to improve pedestrian safety in mid-block crashes.  

Different from the statistical studies above, there are several descriptive studies to test 

the influence of certain explanatory variables on pedestrian crash risk. To this end, Bendak et 

al. (2021) aimed their study at understanding the impact of various contributing factors on 

pedestrians’ road crossing behaviour using Chi-squared modelling. The study aimed to analyze 

pedestrian behaviours at signalized crosswalks in Sharjah, UAE, using direct roadside 

observations. Data on various pedestrian behaviours, socio-demographic factors, and road 

details were collected at ten crosswalks. A total of 708 pedestrians were observed, and their 

behaviours were recorded. The average walking speed was 1.22 m/s, slightly faster than 

reported in previous studies. Gender, age, day of the week, the number of people waiting, type 

of pedestrian lights, walking with children, temperature, green light duration, and the number 

of lanes were found to have significant effects on pedestrian behaviours. Males were more 

likely to chat and cross on red, while females walked slower. Pedestrians between 16 and 39 

years of age were more likely to use mobile phones when crossing and also cross on the red 

signal. Walking speed and looking around before crossing were affected by the day of the week. 

Pedestrians crossing with larger groups walked slower. Mid-block crosswalks had higher rates 

of looking around and faster walking speeds than road intersection crosswalks. Pedestrians 

walking with children had slower walking speeds and were less likely to use mobile phones. 

Pedestrians walked faster, crossed on red more often, and used mobile phones less frequently 

at higher temperatures. Crosswalks with shorter green times and longer red times had higher 

rates of walking outside designated areas and crossing on red. Pedestrians were more likely to 

cross on red at crosswalks with fewer lanes. Pedestrians crossing on red walked faster, and 

those carrying loads walked slower than others. In the study, over seventeen per cent of the 

pedestrians at least partially undertook the road-crossing manoeuvres during the red signal, 

creating a higher probability of a conflict. The findings provide valuable insights into 



14  Literature review 

pedestrian behaviour and can inform the development of strategies to improve pedestrian 

safety.  

  The studies mentioned above primarily focused on individual or handful signalised 

intersections or mid-blocks, with limited attention given to pedestrian safety analysis at a 

corridor level. However, there is a need to examine pedestrian safety within the context of 

entire corridors. (Hong et al., 2016) introduced a novel approach by developing a spatially 

autoregressive and heteroskedastic space-time pedestrian exposure model. The study employed 

a methodology that included tests for spatial dependency, endogeneity, heteroscedasticity, 

density, and time occupancy. This model incorporated spatial lags and endogenous network 

topologies, capturing the stochastic network design effects in estimating pedestrian safety. 

Their work aimed to provide a more comprehensive understanding of pedestrian safety by 

considering the complexities of the entire corridor rather than individual isolated points of 

analysis. The results of the tests confirmed the presence of spatial autocorrelation, indicating 

that crosswalks in downtown Seattle exhibit similar characteristics in terms of density and time 

occupancy. The study addressed the issues of endogeneity and weak instruments by using 

instrumental variables, conducting various tests, and accounting for heteroscedasticity in 

developing the spatial model. The proposed SARAR model with exogenous and endogenous 

regressors accounted for these statistical issues. The results of the SARAR models showed that 

endogenous network topology measures and other exogenous variables significantly 

influenced pedestrian area density. Factors such as network connectivity, proximity to other 

crosswalks, and trip generation volumes from nearby facilities were found to be significant. 

The models also revealed positive spatial effects, indicating the influence of neighbouring 

crosswalks on density. The study provided insights into the relationship between network 

characteristics and pedestrian density, highlighting the importance of considering spatial 

dynamics in urban planning and design.  

Despite the simplicity of crash-based regression analysis and its strength in establishing 

causal relationships and providing detailed insights into pedestrian safety, there are several 

limitations associated with this approach. Issues such as limited accessibility to crash data 

(Ismail et al., 2011) and data quality concerns, including geographical imprecision, 

underreporting, and data logging errors (Zheng et al., 2021), hinder the reliability and accuracy 

of the models. Furthermore, due to the relatively low frequency of pedestrian-vehicle crashes 

compared to other types of crashes, there has been a growing recognition of the need for 

alternative approaches to analyse and improve pedestrian safety. As a result, there is a growing 
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interest towards conflict-based safety analysis methods (Arun et al., 2021b), which offer a 

different perspective by focusing on traffic conflicts as indicators of potential crash risk rather 

than solely relying on crash data. 

2.2.Conflict-based pedestrian safety studies  

Looking at the literature available in the field of proactive conflict-based safety, several 

techniques have been devised to assess vehicle-to-vehicle conflicts in past studies. For 

example, Zheng and Sayed (2020) applied the Extreme Value Theory framework and proposed 

a real-time crash risk prediction approach for signalized intersections.  

On the other hand, when it comes to modelling vehicle-to-pedestrian conflicts, the 

literature offers relatively fewer modelling techniques. Among the modelling techniques 

employed for vehicle-to-pedestrian conflicts, some notable approaches are listed below: 

Guo et al. (2020) developed an extreme value theory model with a peak-over-threshold 

extreme sampling technique designed for before-and-after safety assessments. The study 

quantified the effects of implementing Leading Pedestrian Intervals (LPIs) at two intersections 

in the central business district in Vancouver to enhance pedestrian safety. Leading pedestrian 

interval is additional green time given to pedestrians to cross an intersection before left-turning 

vehicles start moving, reducing conflicts between pedestrians and vehicles. The study collected 

data before and after the implementation of LPI in early July 2018. Control sites with similar 

characteristics and geographic proximity were chosen to account for unobserved bias. Video 

data collection periods were kept consistent for both before and after intervention periods to 

ensure consistency. The data were analyzed using automated traffic conflict analysis 

techniques. The study used the Peak Over Threshold (POT) approach based on the Generalized 

Pareto Distribution to estimate treatment effects. A hierarchical Bayesian model was used to 

estimate Generalized Pareto Distribution parameters, and the Deviance Information Criterion 

was used to select the best-fitted model. The results showed a significant reduction in extreme-

serious conflicts, ranging from 18.1% to 20.9%. This reduction indicates improved safety after 

implementing mitigation measures. The study highlighted certain limitations, including the 

small size of the dataset and the need for additional research on varying environments and long-

term effects. 

Sun et al. (2022) applied the game theory framework. The study conducted a field 

survey to analyze pedestrians' traffic characteristics and crossing behaviours on unsignalised 

crosswalks. For the study, three typical unsignalised sections with crosswalks were selected in 
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Beijing, China. The study found that the average walking speed of pedestrians crossing the 

street was 1.25 m/s, with the peak concentration at 1.1-1.3 m/s. In this study, pedestrian age 

had the greatest influence on walking speed, with slower speeds observed in older pedestrians. 

Male pedestrians had higher walking speeds than females, and faster vehicle speeds led to faster 

pedestrian crossing speeds. The study also found that pedestrians often needed to pause 

multiple times to safely cross the street, with about 15% of pedestrians pausing three or more 

times. The waiting time for crossing was influenced by the number of pauses, with 70.18% of 

waiting times falling in the range of 10-30 seconds. Pedestrians became less risk-averse as the 

waiting time increased, leading to behaviours such as rushing to cross the street. Risk 

assessment and waiting delay were important factors influencing pedestrian crossing decisions, 

with pedestrians judging the distance from vehicles, crossing pace, acceptable crossing gap, 

and crossing mode to make their decisions. Pedestrian and driver behaviour characteristics and 

the psychological characteristics of pedestrians when crossing the street were also analysed. 

The findings of this study provide valuable insights for understanding and addressing the 

challenges associated with unsignalised pedestrian crossings. 

Ghadirzadeh et al. (2022) used the multinomial logit framework. The study examined 

pedestrians' crossing behaviours and risk-taking tendencies using two conflict indicators: Post-

encroachment Time (PET) and Time to Collision (TTC). PET represents the time difference 

between the first road user leaving the conflict point and the second road user reaching that 

point, while TTC indicates the expected time for two road users to collide if their current speed 

and direction remain unchanged. The research selected five pedestrian crossings in Qazvin, 

Iran, and collected data through video recordings. A total of 752 pedestrians were analysed, 

and their characteristics and behaviours were extracted. Based on the TTC and PET indexes, 

the study used a binary logit model to estimate pedestrians' risk-taking behaviours. The results 

showed that running pedestrians, the presence of companions, and weather conditions 

significantly influenced risk-taking tendencies. Additionally, pedestrians' age and gender also 

showed differences in crossing behaviours. The study concluded that pedestrians' risk-taking 

behaviours are influenced by various factors, including their individual characteristics, 

environmental conditions, and interactions with other road users. The findings contribute to a 

better understanding of pedestrian behaviours and can inform the design of safer pedestrian 

crossings. 

Li et al. (2021) used the fuzzy cellular automata framework. The study conducted a 

simulation experiment to analyse the safety and efficiency of non-signalised midblock 
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crosswalks. Two key factors, proportions of obedient drivers and traffic flow rate, were 

investigated. Safety was measured using the Time Difference to Collision (TDTC) indicator, 

which represents potential conflicts between pedestrians and vehicles. Efficiency was 

evaluated using the Deceleration Occurrences caused by Conflicts (DOC) indicator, which 

indicates the frequency of conflicts between pedestrians and vehicles. The simulation results 

showed that stricter traffic rules led to fewer serious conflicts but increased vehicle-stopping 

occurrences, reducing traffic efficiency. Higher traffic flow rates increased conflict severity, 

while pedestrian flow rates had minimal impact on efficiency. Based on the findings, two 

policy insights were provided: promoting drivers' yielding behaviour and suggesting the 

installation of midblock zebra crosswalks in areas with frequent unauthorized midblock 

crossings. The study identified a minimum pedestrian flow rate of 290 per hour for installing 

midblock zebra crosswalks. The research concluded that the Fuzzy Cellular Automaton (FCA) 

model effectively represented pedestrian-vehicle interactions and provided valuable insights 

for traffic management at non-signalized midblock crosswalks. Future research could consider 

incorporating pedestrians' swerving behaviours, vehicles' lane-changing behaviours, and 

different yielding behaviours of vehicle types to enhance the realism of the traffic conditions. 

Santhosh et al. (2020) used the Pedestrian Vehicle Conflict Analysis Framework. Their 

study aimed to examine conflicts between vehicles and pedestrians using a video-graphic 

method and both manual and simulation-based data analysis techniques. The study areas were 

chosen based on high vehicular and pedestrian volumes during peak hours, making the findings 

applicable to similar locations in Asian countries. Data collection involved capturing factors 

related to pedestrians, vehicles, and collisions through field studies and video-graphic surveys. 

The analysis focused on volume and speed data to determine the causes of conflicts, employing 

the Pedestrian Vehicle Conflicts Analysis (PVCA) method, which involved three steps: conflict 

identification, classification based on severity factors, and determination of conflict severity 

grade. The study found that two-wheelers and male adults constituted the majority of the 

volume in both intersections studied in the research. The conflicts were classified as slight and 

serious, with more serious conflicts occurring during morning peak hours due to the aggressive 

nature of pedestrians. Pedestrian-vehicle simulation using VISSIM software was conducted to 

analyse conflicts and recommend countermeasures. The simulation results showed a good fit 

with observed data, and the Surrogate Safety Assessment Model (SSAM) was used to validate 

the conflicts obtained from the field. To reduce conflicts, rerouting pedestrian volumes and 

restricting crossing paths were suggested as mitigation measures. A comparison between the 
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unsignalised T and X intersections revealed that converting an uncontrolled intersection into a 

controlled intersection reduced conflicts. The study concluded that conflicts at unsignalised 

intersections depend on pedestrian and vehicular volumes, and a combination of manual and 

simulation methods provides detailed insights into conflict causes and severity. The future 

scope of the work includes assessing conflict severity solely through simulation-based 

techniques.  

The above models briefly highlight some of the conflict-based pedestrian safety models 

that have been used in the past literature. However, for the purposes of this study, the focus lies 

specifically on utilizing extreme value theory. The following section will delve deeper into the 

past literature focused on the application of the Extreme Value Theory in conflict-based 

pedestrian safety studies. The following section will highlight contributions from some 

representative studies to shed light on the existing research regarding pedestrian safety analysis 

using extreme value theory.  

Fu and Sayed (2021) focused on developing a crash estimation method using traffic 

conflict indicators. Three conflict indicators, namely Minimum Time to Collision (MTTC), 

Post-Encroachment Time (PET), and Deceleration Rate to Avoid Collision (DRAC), were 

used. The study employed extreme value models to estimate the risk of crashes based on the 

distribution of these conflict indicators. The crash risk was determined by calculating the 

probability of at least one indicator value exceeding its corresponding boundary value. The 

data for the study were collected from video footage and crash data obtained from four 

signalized intersections in Surrey, British Columbia. Various univariate, bivariate, and 

trivariate Bayesian hierarchical Extreme Value Models were developed and estimated using 

the data. The best-fitted models were selected based on their goodness-of-fit to statistical 

criteria. The results showed that traffic volume, shock wave area, and platoon ratio significantly 

influenced the crash risk. The estimated crash rates from the models were compared with the 

observed crash rates, and the models provided reasonable estimates within the 95% confidence 

intervals. Overall, the study demonstrated the applicability of the proposed crash estimation 

method using traffic conflict indicators and highlighted the importance of considering multiple 

indicators in crash risk assessment.  

Ali et al. (2023b) proposed a real-time crash risk framework aimed at enhancing 

pedestrian safety at signalized intersections. By utilizing a Bayesian generalised extreme value 

model, they were able to establish a strong correlation between observed and predicted crashes. 
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Furthermore, the study involved the generation of separate generalised extreme value 

distributions, allowing for insights into both risky and safe signal cycles.  

A study conducted by Alozi and Hussein (2022) took a different approach by leveraging 

two autonomous vehicle datasets collected from different locations in the United States and 

Singapore. Their focus was on modelling autonomous-pedestrian interactions through the 

development of a peak-over-threshold model. By incorporating various covariates such as 

turning movements and conflict speeds, the study estimated the expected number of collisions 

between autonomous vehicles and pedestrians, ranging from 2.3 to 5.5 per million vehicle 

kilometres travelled.  

Similarly, a recent study by Arun et al. (2023) explored leading pedestrian intervals 

using a Bayesian quantile regression analysis. By estimating conflict thresholds and 

incorporating them into a Bayesian peak-over-threshold model, the researchers were able to 

assess the effectiveness of leading pedestrian intervals and their impact on pedestrian safety. 

2.3.Conflict data collection methods  

Data collection is a crucial aspect of conflict studies, and various techniques have been 

employed to gather traffic conflict information in the past decade. These techniques may vary 

vastly from one another and include examples such as driving simulators, video analytics, 

numerical simulations, connected vehicles, and autonomous vehicle probe data. Each method 

offers unique advantages and has been explained through representative studies described 

below. 

Driving simulators provide controlled environments for collecting high-quality 

trajectory data and detailed driver demographics. For instance, Tarko (2012) proposes a new 

approach to modelling traffic interactions and crash causality. The study utilized a driving 

simulator experiment to estimate a peak-over-threshold model for road departures and near-

departures, using data from four participants. The conflict severity was measured using a 

continuous measure of interaction severity. The proposed approach used the minimum time-

to-collision (MTTC) as a measure of collision proximity and introduced the notion of collision 

proximity. The study suggested using various measures, such as post-encroachment time and 

minimum Euclidian distance, to calculate the interaction severity. The approach also 

incorporated an exposure-based model that related the frequency of crashes to the frequency 

of all vehicle interactions. The study used the Generalized Pareto distribution to model the tail 

behaviour of the severity distribution and estimated the frequency of crashes. The study 
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contributed towards a better understanding of the causality of the crash by appropriately 

capturing associated variables. The study emphasized the need to consider a continuum of 

traffic events and develop a plausible mechanism that connects different types of events to 

better understand crash occurrence. As seen with the above example, datasets from these 

simulator-based studies are often based on a limited sample size with an unrepresentative 

sample population causing unintended biases. Such a limited sample size in simulator studies 

is a common constraint that can impact final model performance. 

Video-based conflict analysis studies analyse videos captured from intersections or 

freeway segments to extract meaningful data for model development. (Ali et al., 2023b) 

proposed a real-time crash risk estimation framework for vehicle-pedestrian interactions at 

signalized intersections. Unlike previous studies that commonly rely on static data sources, this 

study collected uninterrupted video recordings of vehicle movements at intersections and 

processed them using an AI-based video analytics platform. The extracted trajectory data and 

conflicts from the videos were fused with loop detector data containing information about 

traffic signal timing. The framework utilized an Extreme Value Theory approach to estimate 

crash risk by extrapolating frequently observed events (traffic conflicts) to rare events 

(crashes). The study addressed three key challenges in modelling traffic conflicts using 

Extreme Value Theory: small sample size, time-varying unobserved heterogeneity and 

capturing crash risk variation across different signal cycles and sites. A Bayesian Generalized 

Extreme Value model was developed, and the model parameters were estimated using a 

Bayesian estimation procedure. The study evaluated the model using the Deviance Information 

Criterion (DIC) and compared multiple models to select the best one based on local and global 

goodness-of-fit measures. The proposed framework was tested on three signalized intersections 

in Queensland, Australia. The study also collected crash data for benchmarking the models. 

The used video data processed through an AI platform to estimate generalised extreme value 

models for pedestrian safety demonstrated a close match with observed crashes. Covariates 

were extracted from the video footage and loop detector data to be included in the Extreme 

Value models. The study provides insights into the correlation between different covariates. 

Overall, the framework offers a proactive approach to estimating crash risk in real-time based 

on conflict indicators. Despite the high cost associated with data collection and processing, this 

method is frequently employed in the literature. However, this data collection method's time, 

labour and cost-intensive nature has limited the past studies to only a handful of locations. 
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Numerical simulations, conducted using microsimulation tools like AIMSUN/VISSIM, 

allow for the design of specific road facilities/interactions to assess safety. Wang et al. (2018) 

aimed to evaluate intersection safety by combining microscopic traffic simulation and Extreme 

Value Theory. Ten urban signalized intersections in Shanghai were selected, and field data, 

including traffic volumes and crash records, were collected. Simulation models were developed 

using a commercial microscopic simulation package (VISSIM) and calibrated using a measure 

of effectiveness and safety. Extreme Value Theory was used to develop empirical annualized 

crash frequency based on simulated conflicts and field conflicts. The results showed that the 

simulation-based empirical annualized crash frequency using the full-calibration strategy, 

performed the best in estimating crash frequency, especially for crossing and rear-end conflicts. 

The field-based empirical annualized crash frequency also showed good performance for rear-

end conflicts but was not as effective for crossing and lane change conflicts. The time-to-

collision-based measures performed poorly compared to the empirical annualized crash 

frequency. Overall, the study demonstrated the feasibility of using simulation-based empirical 

annualized crash frequency derived from Extreme Value Theory for intersection safety 

evaluation. However, most importantly, microsimulation lacks the human factor, which 

significantly influences driving behaviour and safety (Sharma et al., 2018). 

LiDAR-based conflict analysis studies analyse point cloud data captured from 

intersections or freeway segments to extract meaningful data for model development. For 

example, (Wu et al., 2018) focused on the processing of roadside LiDAR data for the extraction 

of vehicle and pedestrian trajectories, as well as the identification of near-crash events between 

vehicles and pedestrians. The VLP-16 LiDAR sensor by Velodyne LiDAR™ was used for data 

collection, which generates a 360° 3D point cloud. Various algorithms were developed to 

perform background filtering, lane identification, object clustering, object classification, and 

data association. The trajectories of road users were successfully obtained, and the accuracy of 

object classification exceeded 93%. For near-crash identification, a novel method was 

introduced that considers the time difference to the point of intersection, the distance between 

stopped vehicles and pedestrians, and the speed-distance profile of vehicles. This method 

provided a systemic approach to identifying vehicle-pedestrian near-crashes. The study 

demonstrated the feasibility and effectiveness of using roadside LiDAR data to analyse road 

user behaviour and enhance safety analysis at intersections. 

Autonomous vehicles equipped with advanced sensors have the capability to capture 

detailed information about their surroundings. Hu et al. (2022) processed Waymo data, recently 
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made publicly available for research purposes by Waymo (Sun et al., 2020), and demonstrated 

its application in analysing traffic safety. One advantage of autonomous vehicle data is the 

potential for network-level analysis, as these vehicles act as probes, collecting data for all road 

users in their catchment zone. However, there is limited evidence of applying autonomous 

vehicle data for corridor-level pedestrian safety.  

2.4.Autonomous vehicle sensor data-based pedestrian safety studies  

Various past studies have utilised autonomous vehicle sensor data to analyse pedestrian safety, 

providing valuable insights into the interactions between autonomous vehicles and pedestrians. 

Some notable research papers in this domain are described below. 

Kutela et al. (2022) aimed to gain a deeper understanding of the patterns and underlying 

factors associated with autonomous vehicle (AV) crashes involving Vulnerable Road Users 

(VRUs). They employed text network analysis to map and analyse the narratives of 252 AV 

crashes involving VRUs, including pedestrians, bicyclists, and electric scooter users. The 

findings revealed that bicyclists and electric scooter users were more frequently involved in 

AV crashes directly, while pedestrians were predominantly involved indirectly. Direct AV 

crashes involving VRUs often occurred when the AVs were in autonomous mode, with the 

rear-left side of the AV being the most commonly affected. On the other hand, indirectly 

involved crashes resulted in more significant damages, particularly to the rear bumper of the 

AV. To predict VRU-involved crashes, the researchers utilized four classifiers, with the 

Random Forest classifier demonstrating the best performance. The important features for 

classification encompassed variables such as crosswalks, streets, and specific vehicle actions 

like turning and stopping. Similarly, Liu et al. (2021) conducted studies using data from the 

California Department of Motor Vehicles to identify and analyse autonomous vehicle-

pedestrian conflicts. Although these studies did not specifically develop extreme value theory 

models, they provided important insights into the determinants of such conflicts. 

Beauchamp et al. (2022) focused on data collected from dedicated autonomous shuttles 

in Quebec, Canada. The study aimed to assess the safety of automated vehicles by comparing 

their interactions with other road users to those of human drivers. The methodology involved 

collecting video data of AV shuttles operating in Quebec, Canada. User trajectories were 

extracted and classified into pedestrians, cyclists, motorized vehicles, and AV shuttles. 

Trajectories were then clustered to predict road user motion and identify control vehicles for 

the comparison. Interactions between AV shuttles and other road users were analysed using 
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various safety indicators, including speed, acceleration, time-to-collision (TTC), and post-

encroachment time (PET). Statistical models were used to explore the associations between 

variables and safety indicators. They developed extreme value models for autonomous vehicle-

pedestrian interactions, considering conflict measures such as time-to-collision, post-

encroachment time, headway, and speed difference. The study found that autonomous shuttles 

exhibited safer behaviour than conventional vehicles, with lower operational speeds and 

acceleration. The findings provided insights into AVs' safety performance and interactions with 

different types of road users, helping inform future AV development and deployment efforts. 

Alozi and Hussein (2022) employed empirical autonomous vehicle datasets from Lyft 

and nuScenes to investigate autonomous vehicle-pedestrian interactions. The study applied an 

Extreme Value Theory to analyse two autonomous vehicle datasets and predict pedestrian 

collisions. The datasets included trajectory data, LiDAR point clouds, and annotated video data 

collected from AV fleets operated by Motional and Lyft. The datasets were pre-processed to 

extract AV-pedestrian conflicts and calculate two conflict indicators, namely Post-

Encroachment Time (PET) and Time-to-Collision (TTC). A total of 726 AV-pedestrian 

conflicts were identified, and the means and standard deviations of the conflict indicators were 

reported. The study also analysed a manually driven vehicle (MDV) dataset to validate the 

accuracy of the predicted collisions. The results showed that the Extreme Value Theory models 

could reasonably estimate the number of MDV-pedestrian collisions at signalized intersections. 

Covariates such as vehicle speed and pedestrian speed improved the accuracy of the models. 

The same Extreme Value Theory methodology was then applied to the AV data, and the 

expected number of AV-pedestrian collisions per million vehicle kilometres travelled (VKT) 

was estimated. The results indicated higher collision rates compared to MDV-pedestrian 

collisions, which can be attributed to the urban environment and the abundance of crosswalks 

and intersections. The study estimated a range of 2.3 to 5.5 autonomous vehicle-pedestrian 

collisions per million vehicle kilometres, depending on the specific model used. The study 

discussed the limitations of using trajectory data and highlighted the value of the Extreme 

Value Theory approach as a proactive method for predicting collisions.  

However, the application of autonomous vehicle sensor data to assess pedestrian safety 

at a corridor level is an area that remains relatively unexplored. While these studies have shed 

light on the interactions between autonomous vehicles and pedestrians, further research is 

needed to fully leverage the potential of autonomous vehicle data for corridor-level pedestrian 

safety analysis. 
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2.5.Traffic conflict measures for pedestrian safety  

Assessing pedestrian safety using traffic conflicts necessitates selecting suitable measures that 

effectively capture vehicle-pedestrian interactions (Arun et al., 2021b). It is crucial to select 

appropriate, theoretically justified conflict measures for assessing the specific conflict. 

Researchers must consider the specific research objectives, the nature of the interactions being 

examined, and the desired level of detail in the analysis. Past researchers have employed a 

range of conflict measures to examine various aspects, such as the complexity of evasive 

manoeuvres, object proximity, and crash severity (Kaparias et al., 2010; Laureshyn et al., 

2010). 

 Some of the notable examples of conflict indicators used in the literature are listed 

below in Table 2.1. The table also briefly summarises the definition of the conflict measure 

along with some example studies in which those conflict indicators were predominantly used. 

For a detailed review of traffic conflict measures, refer to past studies that have extensively 

covered the topic (Ali et al., 2023a; Arun et al., 2021b; Arun et al., 2021c). 

Table 2.1. Traffic conflict indicators and their definitions. 
Conflict Measure Definition Example Study 

Post-Encroachment 

Time (PET) 

The time gap between when a conflicting vehicle exits the 

potential collision zone and when the subject vehicle, which 

has the right of way, reaches the potential collision point. 

Alozi and Hussein 

(2022) 

Time to Collision 

(TTC) 

Time to collision between two vehicles under consistent 

collision course and speed differential. 

Sobhani et al. 

(2013) 

Gap Time (Gap)  In a leading-following scenario, it refers to the duration 

between the rear of the leading vehicle crossing a point 

on the road and the front of the following vehicle. 

Pawar and Patil 

(2017) 

Modified Time to 

Collision (MTTC)  

A modified version of TTC that estimates the time to 

collision based on the relative speed and relative 

acceleration of the interacting vehicles. 

Essa and Sayed 

(2019) 

Time Exposed TTC 

(TET) 

Cumulative duration, over a specified time period, for 

which the time to collision (TTC) value between two 

interacting vehicles remains below the TTC threshold 

for conflicts. 

Rahman et al. 

(2019) 

Yaw Rate (YR)  The angular velocity of a road user's rotation around the 

z-axis or the rate at which the heading angle changes. 

 Tageldin et al. 

(2015) 
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Time to Avoid a 

Collision 

(TTAvoid) 

The time interval between the detection of a potential 

collision and the moment just before the collision is 

avoided. 

Li et al. (2018) 

Time to Brake 

(TTB)  

The time period preceding the need for full braking to 

avoid a collision. 

Char and Serre 

(2020) 

Safety Index (Saf. 

I)  

An index that combines the probability and severity of 

conflicts, calculated by weighting the released kinetic 

energy of a hypothetical crash by the Post Encroachment 

Time (PET). 

Ismail et al. 

(2011) 

Time Headway 

(TH) 

The time duration between the front or rear of the 

leading vehicle and the front or rear of the following 

vehicle crossing a specific point on the road. 

Zhao et al. (2020) 

Required 

Deceleration Rate 

(RDR)  

The rate of deceleration required for a vehicle to safely 

stop, considering the time headway between the subject 

vehicle and the conflicting vehicle equal to the PET. 

Guido et al. 

(2011) 

Rear-end Crash 

Potential (RECP) 

A temporal measure calculated based on the headway, 

the driver's perception-reaction time, and the time 

required for braking. 

Weng and Meng 

(2014) 

Lateral 

Acceleration / 

Deceleration (Lat 

A / Lat D)  

The instantaneous acceleration or deceleration of a 

vehicle in the lateral direction of motion. 

Guo et al. (2010) 

Kinetic Energy 

Loss per Unit Mass 

(DKE)  

The kinetic energy released as a result of a collision 

between vehicles of similar masses. 

Ma et al. (2018) 

Jerk  The rate at which acceleration changes over time. Hu et al. (2022) 

Encroachment 

Time (ET) 

The duration in which an offending vehicle violates the 

right-of-way of another vehicle. 

Zhang et al. 

(2012) 

 

Among the diverse pool of conflict measures utilized in pedestrian safety studies, 

temporal proximity measures have emerged as the most commonly adopted in the literature 

(Ghadirzadeh et al., 2022; Santhosh et al., 2020). These measures include post-encroachment 

time, which assesses the duration between a pedestrian leaving the encroachment area and a 

vehicle subsequently entering the same area, and time-to-collision, which quantifies the 
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temporal distance to a potential collision between a vehicle and a pedestrian if their velocities 

remain unchanged.  

It is crucial to select appropriate conflict measures that are theoretically justified for 

assessing pedestrian safety. Researchers must consider the specific research objectives, the 

nature of the interactions being examined, and the desired level of detail and accuracy in the 

analysis. The choice of conflict measures should align with the research framework and 

contribute to a comprehensive understanding of vehicle-pedestrian conflicts and their 

implications for pedestrian safety. In conclusion, researchers must carefully consider the 

theoretical justifications and applicability of these measures to ensure meaningful and accurate 

assessments of pedestrian safety. 

2.6.Summary and research gaps 

Based on a comprehensive review of the literature, the following key insights can be drawn 

regarding pedestrian safety. Firstly, studies in the field have commonly relied on crash-based 

statistical models, primarily focusing on both mid-blocks and signalized intersections. 

However, these models predominantly utilize police-reported data, which may suffer from 

limitations such as under-reporting and a lack of detailed behavioural information. Secondly, 

to address the limitations of police-reported data, researchers have increasingly turned to traffic 

conflict-based pedestrian safety assessment frameworks such as extreme value theory models. 

This approach provides an alternative perspective that offers valuable insights into pedestrian 

safety beyond traditional crash-based analysis. Thirdly, various methods have been employed 

for collecting data on traffic conflicts, with video data being the most prominently utilized, 

particularly at intersections. This approach allows for extracting meaningful information about 

conflicts for efficient extraction of road user trajectories and other behavioural information. 

Lastly, recent advancements in vehicle technologies, such as autonomous vehicles, present 

unprecedented opportunities to enhance our understanding of traffic safety, including 

pedestrian safety. While a few applications of autonomous vehicle data concerning pedestrian 

safety can be found in the literature, there is still a lack of comprehensive exploration and 

utilization of autonomous vehicle data for analysing pedestrian safety at a corridor level. This 

research gap serves as a key motivation for the present study, aiming to address this knowledge 

limitation and harness the potential of autonomous vehicle data for corridor-level pedestrian 

safety analysis.
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Chapter 3 Methodology 

The methodology employed in this study comprises several key steps to achieve the objectives 

and address the research questions laid out at the end of section 1. Figure 3.1 below illustrates 

the overall framework of the methodology adopted in this research. 

 

Figure. 3.1. The proposed pedestrian crash risk assessment framework using autonomous 

vehicle sensor data. 

The first step involves the collection and pre-processing of autonomous vehicle data. 

This step includes activities such as blending multiple data files, ensuring data quality through 

thorough checks, georeferencing the data to establish spatial references, and applying filters to 

remove any irrelevant or noisy data. 

Next, in the second step, the data is prepared for the application of extreme value theory 

modelling. This step includes extracting object trajectories from the autonomous vehicle data, 

analysing object trajectory pairs from each scenario to identify potential traffic conflicts, and 



28  Methodology 

identifying relevant covariates information that may influence the occurrence of extreme 

events.  

The third step centres around the development of the extreme value theory model. This 

step involves fitting the model to the input data, conducting tests to assess the influence of 

covariates on extreme events, and selecting the most appropriate model based on statistical 

criteria and local goodness-of-fit measures. 

Finally, in the fourth step, the developed model is thoroughly evaluated. Global goodness-

of-fit assessment based on real-life observed data from the study corridor is conducted to 

evaluate the model's overall performance. 

3.1.Autonomous vehicle data and pre-processing 

This section succinctly describes the steps involved in collating and pre-processing the 

Autonomous Vehicle sensor data as received from Argoverse. The collation and pre-processing 

steps generate output which is used for the extraction of conflict data along with other relevant 

information used in the extreme value model development process.  

The first step involves creating a folder directory that maps all 250,000 unique episode 

IDs. This directory serves as a systematic reference index of the data, allowing easy access and 

retrieval of specific episodes for analysis. Next, the hierarchal structure of the Argoverse 

dataset is transformed into a tabular data frame format for the scenario data within each episode. 

This conversion enables a more structured representation of the data, facilitating efficient data 

manipulation and analysis. From the scenario data, all object trajectories are constructed using 

the available 110 frames in each episode. These trajectories capture the movement and paths 

of various objects, such as vehicles, pedestrians, and cyclists, throughout the duration of the 

scenario. To ensure compatibility and consistency between all the available episodes, the 

trajectories are converted from the local coordinate reference system to the widely used 

WGS84 reference system. This conversion aligns the data with the global coordinate system, 

allowing for seamless integration and comparison with other geospatial data sources. In order 

to filter and focus on objects within the study area, the converted trajectories are plotted on a 

geo-referenced map. This visualization helps identify and select the objects that fall within the 

specific geographical region of the study area. Further detailed information on data pre-

processing can be found in Chapter 4. 
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3.2.Extreme Value Model input data processing 

The autonomous vehicle data processing steps begin by loading the scenario file and map file 

that have been filtered to include only the episodes within the study area, as determined in the 

previous step. To ensure the quality and accuracy of object annotation, trajectory sanity checks 

are performed. This step involves cross-referencing the geographical and contextual 

information gathered from the combination of map data and scenario data. Any incorrect or 

erroneous object annotations are corrected during this step. Next, two data frames are created 

to separate the pedestrian and vehicle information extracted from each scenario. These data 

frames contain the trajectories of the identified pedestrians and vehicles, which will be used 

for further analysis. The pedestrian and vehicle trajectories are overlaid in pairs in order to 

identify potential conflicts. Next, the encroachment zone is defined using the pedestrian and 

vehicle object dimensions and velocity vectors. This encroachment zone helps determine the 

critical space where conflicts may occur. Following that, important parameters such as post-

encroachment time, vehicle velocity, acceleration, and other supplementary information are 

calculated and stored. Post-encroachment time for two conflicting road users refers to the time 

difference between the instance the first road user exits the course of the second traffic 

participant, also known as the encroachment zone, and the following road user enters the same 

course as illustrated in Figure 3.2. These parameters provide additional insights into the 

dynamics of the interactions between pedestrians and vehicles. Covariates, which are additional 

factors that may influence the occurrence of conflicts, are extracted from the data. These 

covariates include the total pedestrian count, vehicle count, average pedestrian speed, average 

vehicle speed, and other relevant variables. These covariates are utilized in non-stationary 

extreme value theory models. Finally, all the processed data, including trajectories, 

encroachment information, covariates, and other relevant data, are exported to a CSV and shape 

file. This file serves as the input for fitting extreme value theory models based on the processed 

data.  
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 Figure. 3.2. Post-encroachment time illustration. 

Further detailed discussion on the data processing step is provided in Chapter 4 after briefly 

introducing the dataset used in the study. 

3.3.Extreme Value Model development 

Extreme Value Model introduction 

Extreme value modelling is a statistical technique for analysing and modelling rare and extreme 

events. These events, often referred to as "extremes", occur infrequently but have a significant 

impact when they do occur. Examples of such events include large floods, severe storms, rare 

disease outbreaks, and extreme financial market fluctuations. Understanding and predicting 

these extreme events is crucial for risk assessment, decision-making, and developing 

appropriate mitigation strategies. 

The extreme value modelling technique focuses on analysing the tail-end characteristics 

of a distribution where extreme events are located. Traditional statistical methods, such as 

Gaussian or normal distribution models, are inadequate for accurately capturing extreme tails. 

On the other hand, extreme value modelling is specifically designed to model the distribution 

of extreme values, providing more reliable estimates and insights into extreme events. The field 

of extreme value modelling encompasses various statistical approaches to sample extreme 

events from a given dataset. The two most widely used approaches in the literature are  block 

maxima and peak over threshold sampling approaches. Block maxima extreme sampling 

approach based on generalized extreme value distribution, Peak-over-threshold extreme 

sampling approach based on generalized Pareto distribution and their application in this study 

are described in further detail in the model development section.  
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Extreme value modelling finds applications across numerous disciplines, including 

finance, hydrology, climate science, engineering, and environmental risk assessment. In 

finance, for instance, extreme value models help estimate the risk associated with rare events 

and evaluate the tail risk of financial portfolios. In hydrology, these models are used to analyse 

and predict extreme river flows or rainfall intensities, aiding in the design of flood protection 

measures and water resource management strategies. In the realm of road safety, extreme 

events encompass severe and rare traffic incidents that have the potential to cause significant 

harm and damage. Traditional statistical methods, such as Gaussian or normal distribution 

models, fail to accurately capture the extreme tail behaviour where these events lie. Extreme 

value modelling, on the other hand, specifically addresses this limitation by concentrating on 

the analysis of extreme values. It offers statistical tools and techniques to estimate the 

probabilities, magnitudes, and frequencies of rare and severe traffic incidents, thus enhancing 

our understanding of road safety risks and providing a solid foundation for proactive safety 

analysis and intervention. This property makes extreme value theory a perfect mathematical 

tool to underpin the conflict-based pedestrian safety framework developed in this study. 

The following sections will briefly overview the mathematical details of extreme value theory, 

the modelling methodology, and the covariates used in this research project. 

Model development 

At the heart of the modelling section of this study's framework lies the application of Extreme 

Value Theory, which enables the estimation of rare events, such as crashes, based on more 

frequently observed events, like traffic conflicts. To achieve this, it is crucial to sample extreme 

events from the available data, which forms a vital step in the modelling process. The literature 

commonly employs two sampling approaches: Block Maxima and Peak Over Threshold (Ali 

et al., 2023a). This study aims to utilize both of these modelling approaches and provides a 

detailed explanation of their implementation. 

The Block Maxima approach involves sampling extreme event observations from fixed 

time or space blocks. Selecting the appropriate block interval is crucial for obtaining a well-

fitted model. In video analytics-based studies, where observation periods can span from days 

to months, this approach is straightforward to apply by selecting different block sizes, such as 

5 minutes, 10 minutes, or 20 minutes. However, when using autonomous vehicle data, a 

challenge arises due to the format of the empirical autonomous vehicle datasets, which provide 

short episodes of data rather than continuous streams. In this study, the Block Maxima 
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approach is applied at the episode level, with each episode lasting 11 seconds. The maximum 

value of the conflict indicator from each episode is considered an extreme event, and the 

negated post-encroachment time serves as a conflict indicator for modelling vehicle-pedestrian 

safety. To apply the Block Maxima approach, consider 𝑥1,  𝑥2 … 𝑥𝑛 are a sequence of random 

and independent variables with a common distribution function, with 𝑀𝑛 =

 𝑚𝑎𝑥[𝑥1,  𝑥2 … 𝑥𝑛] providing block maximum of n values, and will lead to generalised extreme 

value distribution when n → ∞. Mathematically, the generalised extreme value distribution 

function can be expressed as 

𝐺(𝑥) = exp {− [1 +  𝜉 (
𝑥− 𝜇

𝜎
)]

−1
𝜉⁄

},      (3.1) 

where 𝜇, 𝜎, and ξ are the location, scale, and shape parameters of the generalised extreme value 

distribution, respectively. 

Another sampling approach is the event-based Peak Over Threshold method. In this 

approach, observations above a predetermined threshold are considered extreme events. 

Determining the threshold is vital to the model's performance as it affects the sample size and 

target curve used in the model fitting process. Setting a low threshold may result in an 

abundance of observations, violating the asymptotic assumption, while a very high threshold 

may lead to insufficient sample size for reliable model estimation. Threshold determination is 

typically carried out using mean residual life plots and threshold stability plots (Coles, 2001), 

which are further discussed in subsequent sections. 

Succinctly, conflict extremes identified from a series of observations can be used to 

estimate a Peak Over Threshold sampling-based model. Assume that 𝑥1,  𝑥2 … 𝑥𝑛 represents 

independent and identically distributed random observations, the cumulative distribution 

function of exceedances X over the threshold u can be obtained as 

𝐹𝑢 (𝑥) =  𝑃(𝑋 −  𝑢 ≤  𝑥|𝑋 >  𝑢).       (3.2) 

The distribution can be approximated as generalised Pareto distribution for a 

sufficiently high value of threshold u as 

𝐺(𝑦) =  1 −  (1 +  
𝜉𝑦

𝜎
)

−1
𝜉⁄

 , 𝜉 ≠  0     (3.3) 

where 𝜎 and ξ are the scale and shape parameters of Generalised Pareto distribution, 

respectively. 
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However, practical challenges needed to be addressed when applying extreme value 

theory models to this study, which will be discussed in detail in Chapter 5 under the section 

Model Development.  

In order to apply extreme value theory models to the context of this study, some 

practical challenges need to be considered. Vehicle-pedestrian interactions are highly 

influenced by several determinants, such as traffic volume and pedestrian volume, and not 

accounting for the effects of those covariates can lead to time-varying unobserved 

heterogeneity issues, which is likely to affect model performance. As such, several covariates 

affecting vehicle-pedestrian interactions are incorporated into the model to handle the non-

stationarity of traffic conflict extremes and capture unobserved heterogeneity. To this end, the 

Block Maxima and Peak Over Threshold sampling-based models are parameterised with the 

strict assumption that the scale parameter must be positive, ∅ = 𝑙𝑜𝑔 𝜎 . If zij represents ith 

episode maximum for episode j, the Generalised Extreme Value distribution and the 

Generalised Pareto distribution can be represented by Eq. (3.4) and Eq. (3.5), respectively. 

𝐺(𝑧𝑖𝑗 < 𝑧|𝜇𝑖𝑗, 𝜙𝑖𝑗 , 𝜉𝑖𝑗) = 𝑒𝑥𝑝 {− [1 + 𝜉𝑖𝑗 (
𝑧−𝜇𝑖𝑗

𝑒𝑥𝑝 (𝜙𝑖𝑗)
)]

−1/𝜉𝑖𝑗

}.    (3.4) 

𝐺(𝑧𝑖𝑗 < 𝑧|𝜙𝑖𝑗 , 𝜉𝑖𝑗) = 1 − [1 + (
𝜉𝑖𝑗 𝑧

exp(𝜙𝑖𝑗)
)]

−
1

𝜉𝑖𝑗 .      (3.5) 

Several covariates are included in modelling parameters using identity link functions as 

(

𝜇ij = 𝛼μ0 +  𝛼μ1𝑿 + 𝜀μj

𝜙ij = 𝛼𝜙0 + 𝛼𝜙1𝒀 + 𝜀𝜙j

𝜉ij = 𝛼𝜉0 + 𝜀𝜉j                      

),        (3.6) 

where, 𝛼μ0, 𝛼𝜙0, and 𝛼𝜉0 are model parameter intercept terms, 𝛼𝜇1 and 𝛼𝜙1 are parameter 

estimates for the covariate vectors X and Y,  respectively and 𝜀𝜇𝑗, 𝜀𝜙𝑗, and 𝜀𝜉𝑗 are random error 

terms. 

The Bayesian parameter estimation approach is adopted in this study, which 

mathematically captures observed data, abstraction of observed data, and the inherent 

uncertainty of model parameters (Smith, 2020). Further, the Bayesian model estimation 

procedure offers flexibility in estimating posterior distribution by specifying priors in 
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parameter estimation1. Due to no prior information on distribution parameters, normally 

distributed priors with zero mean and large variance are used. Markov Chain Monte Carlo 

simulation with Gibbs sampling technique is used to obtain the posterior distribution of model 

parameters. 

Model covariates 

Unobserved heterogeneity is a common problem that limits the performance of stationary 

extreme value models due to underlying mechanisms that drive traffic conflicts. Covariates 

play a crucial role in extreme value models, providing valuable insights into the factors that 

influence conflicts. These covariates capture the characteristics and dynamics of the system 

under study, enabling a deeper understanding of the underlying factors contributing to extreme 

outcomes. By incorporating covariates into the modelling process, it becomes possible to 

account for the effects of various factors on the occurrence and severity of rare events. 

Covariates can range from basic characteristics such as traffic volume and road geometry to 

more complex factors like weather conditions and driver behaviour. This study focused on four 

covariates in particular to capture the characteristics of extreme events. 

The "vehicle volume in an episode" covariate quantifies the total number of vehicles 

present in the conflict episode within a specified distance from the encroachment zone. This 

information reflects the level of traffic and potential interactions among vehicles near the 

conflict area. 

The "pedestrian volume in an episode" covariate represents the total number of 

pedestrians present in the episode within the defined proximity to the encroachment zone. This 

covariate helps capture the presence and volume of pedestrians in the vicinity of the conflict, 

which is an important factor influencing the likelihood of vehicle-pedestrian interactions. 

The "average vehicle speed" covariate calculates the average speed of all moving 

vehicles in the episode. This covariate provides insights into the general speed behaviour of 

vehicles in the vicinity of the conflict, which can influence the severity and outcome of 

potential conflict. 

Similarly, the "average pedestrian speed" covariate computes the average speed of all 

moving pedestrians in the episode. This covariate captures the typical walking speed of 

 
1 Bayesian extreme value modelling technique incorporated processed conflict data from the entire corridor, 

thereby resolving data scarcity and non-stationarity problem. 
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pedestrians near the conflict area, which can affect the time available for vehicles to respond 

and avoid collisions. 

3.4.Model performance evaluation  

The methodology for evaluating model performance involves both local and global 

assessments. Locally, the deviance information criterion (DIC) is utilized to measure the 

model's goodness of fit. This criterion compares the model's complexity and fits the observed 

data, providing insight into its local performance.  

Local model performance 

Several models are estimated and compared in this study, and to determine the best model, 

Deviance Information Criterion is used as a model goodness-of-fit. Mathematically,  

𝐷𝐼𝐶 = D  + 𝑝𝑑,        (3.7) 

where D  and 𝑝𝑑  are posterior mean deviation and the effective number of model parameters, 

respectively. The model with the least deviance information criterion is preferred over its 

competing models. 

3.5.Model validation 

Globally, the model is evaluated by comparing its predictions against observed crashes and 

their corresponding confidence intervals. This comprehensive approach allows for a thorough 

evaluation of the model's performance at both the local and global levels, ensuring a robust 

assessment of its predictive capabilities. 

Global model performance 

The developed models are used to estimate crashes for a specified period, which are compared 

with historical crash records. Specifically, the mean crash estimates and confidence intervals 

of the estimated crashes are compared to those of observed crashes, whereby the mean crashes 

can be computed as 

 𝑁 =
�̃�

𝑇
𝑅𝐶,          (3.8) 

where N is the expected number of crashes for the duration �̃�, T is the observational period, 

and RC denotes the risk of a crash. To understand the uncertainty associated with crash 

estimates and compare that to the observed one, the confidence intervals are calculated. For the 

observed crashes, the Poisson confidence interval for the true mean is estimated as 
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1

2𝑦
𝜒2𝑛,(1−𝛼

2⁄ )
2 < 𝜆 <

1

2𝑦
𝜒(2𝑛+1),𝛼 2⁄

2 ,       (3.9) 

Where y is the number of years of observation, n is the number of observed events, 𝜒2 is the 

chi-square critical value and α is the significance level. However, the confidence interval for 

model crash estimates is obtained using a simulation process (Songchitruksa and Tarko, 2006). 

As the model estimations are a scalar function of the parameters and are assumed to follow 

normal distribution under regularity conditions, confidence intervals can be obtained from the 

quantiles of the empirical distributions obtained from the simulation process. One hundred 

thousand simulations are set to run, and upper and lower bounds based on a 95% confidence 

interval are obtained.  
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Chapter 4 Autonomous vehicle dataset 

The advent of autonomous vehicle technology has brought about significant advancements in 

transportation research and development. One of the key resources associated with 

Autonomous vehicles is the extensive amount of sensor data they collect during their operation. 

These datasets can provide a valuable means for researchers and practitioners to gain insights 

into various aspects of transportation, including safety analysis, mobility patterns, and 

infrastructure planning. In recent years, several autonomous vehicle companies and research 

initiatives have made efforts to share their collected data with the wider community, leading to 

the availability of publicly accessible datasets. 

One prominent example of publicly available autonomous vehicle sensor datasets is 

Waymo's Open Dataset. Waymo, a leading autonomous vehicle company, has released a 

substantial collection of sensor data captured from their self-driving vehicles. This dataset 

encompasses diverse driving scenarios, including urban environments, highways, and 

challenging weather conditions. It includes high-resolution sensor data such as lidar point 

clouds, camera images, and radar data, enabling researchers to analyse and develop advanced 

algorithms for perception, localization, and mapping. 

Another significant source of autonomous vehicle sensor data is the Lyft Level 5 

autonomous vehicle dataset. Lyft, a well-known ride-sharing platform, has created a dataset 

containing sensor data collected from their autonomous vehicles. This dataset includes lidar, 

camera, and other sensor data captured during real-world driving operations. The dataset covers 

a range of urban driving scenarios and offers a valuable resource for researchers working on 

perception and navigation algorithms, as well as for evaluating the performance of autonomous 

vehicle systems. 

Argoverse is yet another noteworthy initiative in the field of autonomous vehicle 

datasets. Argoverse has released a large-scale dataset comprising high-definition maps, sensor 

data, and vehicle trajectories collected from their autonomous vehicle research fleet. This 

dataset focuses on complex urban environments and provides rich information for tasks such 

as motion forecasting, scene understanding, and behaviour prediction. 

These publicly available autonomous vehicle sensor datasets offer researchers and 

practitioners the opportunity to explore real-world autonomous vehicle data, which was 

previously limited in accessibility. They allow for the development and evaluation of advanced 
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algorithms and methodologies, contributing to the progress of autonomous vehicle technology 

and its applications in various domains, including transportation safety, urban planning, and 

intelligent transportation systems. 

The following section will briefly describe the datasets that were explored for this 

study, along with a quick explanation of factors that played a critical role in the selection of the 

final dataset used in the study. The methodology used to process the data to make it fit for 

conflict-based modelling purposes is also described in the following sections. 

4.1.Publicly available datasets  

Waymo dataset 

The Waymo dataset includes high-definition object trajectories produced using an onboard 

perception system alongside stationary and non-stationary map features that offer perspective 

for the road environment. Object trajectories are sampled at a rate of 10Hz and contain 

information such as the object's bounding box (including 3D centre point, heading, length, 

width, and height) and velocity vector. However, due to sensor limitations or occlusions, there 

are some missing measurements for some time steps, which are indicated by a valid flag. The 

map data consists of polylines and polygons representing lane centres, speed bumps, lane 

boundaries, stop signs, road edges, crosswalks, and traffic signals, including the lanes they 

control. The map features also store specific data related to different feature types, such as the 

type of lane boundary (e.g., broken white or double yellow). 

In the dataset, 20-second segments are compiled from various road user interactions. 

These segments are further divided into 9.1-second scenes consisting of 91 steps at 10Hz. The 

data is then split into a 70% training set, a 15% validation set, and a 15% test set. Two versions 

of the validation and test sets are available in the dataset: the standard and interactive versions. 

Both versions focus on the 9.1-second scene with a focus on different objects. For research 

requiring longer time frames, the original 20-second scenarios are also made available. 

An illustration of the object information available from scenes in the dataset is provided 

in Figure 4.1 below.  
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Figure. 4.1. Waymo Dataset example episode [Copyright © 2020, IEEE]. 

Argoverse 2 motion dataset 

The Argoverse 2 Motion Forecasting dataset provides a collection of prediction episodes 

gathered from a self-driving fleet. The dataset comprises 250,000 non-overlapping episodes, 

randomly split into 80% for training, 10% for validation, and 10% for testing. These episodes 

are mined from six distinct urban driving environments in the United States. The dataset 

includes a total of 10 object types, with five falling into the dynamic category (e.g., vehicles, 

pedestrians) and five into the static category (e.g., buildings, road signs). 

Each episode in the dataset consists of a local vector map and 11 seconds of trajectory 

data (captured at a frequency of 10 Hz) for all tracks observed by the ego-vehicle within the 

local environment. In each episode, a single track is designated as the "focal agent," ensuring 

that its observations are complete throughout the entire duration of the episode. The selection 

of the focal agent aims to maximize interesting interactions with map features and nearby 

actors.  

Additionally, a subset of tracks is identified as "scored actors" to evaluate multi-agent 

forecasting. These actors are carefully chosen to guarantee episode relevance and minimum 

data quality threshold. 

An illustration of the object information available from scenes in the dataset is provided 

in Figure 4.2 below. 
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Figure. 4.2. Argoverse Dataset example episode [Adapted from (Wilson et al., 2023)]. 

Lyft dataset 

The dataset encompasses a collection of 170,000 scenes, each lasting 25 seconds, resulting in 

a cumulative log duration of over 1,118 hours. These scenes were recorded by a fleet of self-

driving vehicles following a predetermined route. The dataset includes data from various 

perception sensors, including seven cameras, 3 LiDARs, and five radars.  

Specifically, one LiDAR is positioned on the vehicle's roof, while two LiDARs are 

mounted on the front bumper. The roof-mounted LiDAR features 64 channels and rotates at a 

frequency of 10 Hz, whereas the bumper-mounted LiDARs have 40 channels. The seven 

cameras, situated on the roof, collectively offer a 360° horizontal field of view. Additionally, 

four radars are installed on the roof, with one radar placed on the forward-facing front bumper. 

Data collection for this dataset took place between October 2019 and March 2020, 

specifically during daytime hours between 8 AM and 4 PM. For each scene, the observable 

road users were detected, including pedestrians, vehicles, and cyclists.  

Each road user is internally assigned a 2.5D cuboid, along with information such as 

velocity, acceleration, yaw, yaw rate, and class label. Lyft’s proprietary perception system was 

employed to detect these traffic participants. The system fuses data from multiple sensor 

modalities to provide a comprehensive 360° view of the surrounding environment for self-

driving vehicles.  

The dataset was split into training, test, and validation sets, employing an 83-7-10% 

ratio. Each self-driving vehicle contributes data exclusively to one set. The dataset is encoded 

in n-dimensional compressed zarr arrays. 

An illustration of the object information available from scenes in the dataset is provided 

in Figure 4.3 below. 
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Figure. 4.3. Lyft Dataset example episode [Adapted from (Houston et al., 2020)]. 

Dataset comparison 

Several empirical autonomous vehicle datasets have been developed to facilitate research and 

development in the field of autonomous driving. Prominent datasets include Lyft Level 5 

autonomous vehicle dataset, Waymo Open Dataset, Argoverse Dataset, NuScenes Dataset, and 

Yandex Self-Driving Car Dataset. These datasets vary in terms of scale, sensor modalities, data 

collection environments, and annotation details. The Lyft dataset provides high-quality sensor 

data captured by a fleet of AVs, while the Waymo dataset offers diverse sensor data and 

detailed annotations. The Argoverse dataset focuses on urban episodes with high-definition 

maps, and the NuScenes dataset covers a wide range of urban driving environments. The 

Yandex dataset provides data from a Russian perspective, capturing unique driving conditions. 

Table 4.1 below summarises key comparisons for a few datasets from a growing list of 

options available in the space of autonomous vehicle research. 

Table 4.1. Key autonomous vehicle dataset comparison. 
Measure Lyft Waymo NuScene Yandex Argoverse 2 

No. of Episodes 170k 104k 41k 600k 250k 

Total Time 1118h 574h 5.5h 1667h 763h 

Episode Duration 25s 9.1s 8s 10s 11s 

Sampling Rate 10Hz 10Hz 2Hz 5Hz 10Hz 

No of Cities 1 6 2 6 6 

Unique Roadways 10km 1750km - - 2220km 

No. of Object Class 3 3 1 2 5 

 

The following section will highlight the dataset selected for this research and the 

reasons behind the choice. It will discuss the dataset layout and structure in further detail. 

4.2.Dataset selected for the research 

The study utilises the publicly available Argoverse 2 dataset as a source of autonomous vehicle 

sensor data. Argoverse conducted autonomous vehicle trials across six cities in the United 

States and released multiple datasets from these trials. Encompassing a significant geographic 
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area across six diverse cities, the Argoverse 2 dataset spans over 2,000+ km. It features a 

comprehensive object taxonomy with ten distinct classes covering both static and dynamic 

actors. Specifically, the study focuses on the Argoverse 2 Motion Forecasting Dataset, which 

comprises a curated collection of 250,000 episodes. Each episode spans a duration of 11 

seconds and provides the 2D, birds-eye-view centre point and trajectory information of each 

tracked object, collected at a frequency of 10 Hz. The curation process involves a thorough 

analysis of a massive amount of driving data obtained from the fleet of autonomous test 

vehicles with a focus on identifying segments that present the most challenging and atypical 

behaviour, particularly from road users relevant to the driving decision selection process of the 

autonomous vehicle. The dataset captures a wide range of interactions, including complex 

manoeuvres such as vehicles yielding to pedestrians at crosswalks, buses at multi-lane 

intersections, and cyclists navigating through dense city streets. The diversity and long duration 

of episodes incentivize the development of methods that excel in ensuring safety in challenging 

and rare situations. Researchers and developers can leverage this dataset to advance the 

performance and robustness of motion forecasting algorithms for autonomous vehicles, 

addressing real-world complexities and promoting the development of a safer road network. 

Why Argoverse? 

This section will delve into the factors that guided the decision-making process when selecting 

a particular autonomous vehicle dataset over alternative options. The key factors such as 

dataset size, geographic coverage, and object diversity which formed the criteria to choose the 

dataset most suitable for the research objectives, are outlined below. 

Expansive roadway coverage 

The dataset generated by the Argo fleet covers an extensive roadway network, which spans a 

total of more than 2200 km. This wide coverage ensures that the dataset captures a diverse 

range of driving environments, including various road types, traffic conditions, and 

geographical regions. The extensive coverage enhances the dataset's representativeness. 

Diverse road user annotation 

The dataset maps and annotates five road user classes, including buses and bicycles. This rich 

representation of various road user classes allows for multi-user safety analysis, enabling 

researchers to examine interactions, behaviours, and potential conflicts between different types 

of road users.  
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Embedded geo-information 

The third reason is the embedded geo-information within the dataset. The dataset provides geo-

referenced data, allowing for easy comparison and integration with other data sources. The 

inclusion of geo-information facilitates the alignment of the dataset with external geographic 

data, such as maps or satellite imagery, enabling a more comprehensive analysis.  

Argoverse autonomous vehicle sensor setup 

The data was collected using a fleet of hybrid vehicles that were fully integrated with Argo's 

artificial intelligence self-driving technology, classified as Level 4 according to the Society of 

Automotive Engineers (SAE). SAE states that L4 vehicle can perform all driving tasks and 

monitor the environment without human intervention, but only within specific operational 

design domains (ODD). Level 4 vehicles can operate autonomously in certain conditions or 

environments, such as a specific city or highway. Argoverse did not comment on the 

connectivity level of their autonomous vehicles, hence the vehicles are assumed not to be 

connected/communicating to each other. The vehicles, as shown in Figure 4.4, were equipped 

with two roof-mounted LiDAR sensors (model number VLP-32C) with 64 beams in total, 

offering an unobstructed range of 200 meters. These LiDAR sensors generated an average point 

cloud of approximately 107,000 points per second at a frequency of 10 Hz. Additionally, the 

fleet had seven high-resolution cameras and two front-facing stereo cameras recording at a 

frequency of 20 Hz, providing a combined 360° field of view. The sensor setup used in the 

Argoverse fleet is depicted in the Figure 4.4 below. 

 

Figure. 4.4. Typical Argoverse autonomous vehicle [Adapted from (Wilson et al., 2021)]. 

Figure 4.5 below shows an example of Argo autonomous vehicle fleet vehicle 

manoeuvring on a public road in Texas, US. The LiDAR sensors, the stereo cameras and the 

ring cameras generate synchronous data. The left-side figure depicts a bird’s eye view of the 
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point cloud generated by LiDAR sensors mounted on the roof of the vehicle. The right-side 

figure depicts the rear-left ring camera feed overlayed with non-stationary points from the 

LiDAR point-could. This information is then processed through a self-supervised machine 

learning algorithm by Argoverse to annotate different objects detected and their trajectories 

recorded along the route. 

    

(a) LiDAR output           (b) Camera output 

Figure. 4.5. Example of sensor output from Argoverse [Adapted from (Wilson et al., 2021)]. 

Argoverse data format 

The Argoverse dataset is encoded in a proprietary hierarchical format, and the study employed 

Agro's open-source API to decode the data into a structured tabular format. Each decoded 

episode contains object-related information and map-context information, which are merged 

together to obtain detailed data for analysis.  

The map file is provided in a json hierarchical structure. The file contains map log id 

unique to each episode and individual classified object vector boundaries for drivable areas, 

pedestrian crossings, lane boundaries for each lane and lane markings type information. It also 

contains relational information on the geospatial relation between lanes such as left neighbour, 

right neighbour, predecessor, successor, etc. All this information is stored in a city-specific 

geo-coordinate system, which can be converted to various global coordinate reference systems 

using a transformation matrix provided by Argoverse. The content of a typical map file from 

an episode is illustrated in Figure 4.6 below. 
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 Figure. 4.6. Static map information from a typical episode. 

The scenario file is provided in a paraquet hierarchical structure. It contains a unique 

scenario id for each episode or snippet consistent with the map log id in the map file. This 

enables the matching and mapping of two files to generate road user trajectories. The scenario 

file contains detailed nanoseconds timestamps of each frame captured by the sensors. For all 

the objects identified and labelled in a scenario, individual tracks with unique track id and 

object location, velocity, acceleration and heading details are included. The content of a typical 

scenario file from an episode is illustrated in Figure 4.7 below.  

 

 Figure. 4.7. Scenario object information from a typical episode. 

All 250,000 episodes in the database were processed to extract starting position of 

Autonomous vehicles for all six cities. Figure 4.8 geographically illustrates all the scenarios 

extracted from the database.  
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Figure. 4.8. Argoverse dataset area coverage across six cities in the US. 

Further analysis of the number of episodes and the geographical coverage of the fleet 

movement in the cities helped shortlist the study area. Table 4.2 below summarises the episode 

count and area coverage for all six cities. Miami was shortlisted as it had the highest count of 

episodes and the widest area coverage. 

Table 4.2. Argoverse Motion Forecast dataset properties by city. 

City Total Episodes Total Area Covered (km2) 

Austin 52919 27 

Detroit 30084 37 

Miami 67358 44 

Pittsburgh 53305 25 

San Francisco 14594 25 

Washington DC  31642 27 

 

4.3.Data processing methodology 

The data processing methodology is set up to effectively handle the autonomous vehicle sensor 

data from Argoverse, called data pre-processing here onwards, and extract the relevant 

information from the dataset to estimate extreme value models, called data processing here 

onwards. 

The data pre-processing stage involves several steps to combine and analyse the 

Argoverse dataset that provides extensive geographical coverage and a substantial amount of 

travel data. These pre-processing steps ensure the data is organized, standardized, and ready 

for subsequent analysis. The following steps are undertaken to transform the data for the 

research project: 
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1) Episode Mapping: In the process of working with autonomous vehicle data, one of the 

initial steps is episode mapping. This involves creating a directory that maps all the 

unique episode IDs present in the dataset. Organizing the episodes in a structured 

manner makes it easier to access and analyse specific episodes during the subsequent 

data processing and modelling stages. 

2) Scenario and Map File Decoding: The scenario and map files need to be decoded to 

extract relevant information from autonomous vehicle datasets. Decoding involves 

converting the proprietary hierarchical format of the data into a more accessible and 

standardized tabular structure. Decoding the files improves the interpretability and 

further processing time for the data. Figure 4.9 below demonstrates a visual example of 

one episode's map and scenario files.  

     

(a) Episode map file                                           (b) Episode scenario file 

Figure. 4.9. Argoverse 2 dataset files visual representation. 

3) Data Collation and Visualization Generation: After decoding the scenario and map 

files, each episode's data must be collated and combined into a comprehensive dataset. 

This step involves merging the relevant information from the scenario and map files. 

Additionally, birds’ eye view motion trajectory visualizations are generated to provide 

a better understanding of the data and aid in identifying object motion in each episode. 

4) Trajectory Construction: One of the key components of autonomous vehicle data 

analysis is constructing object trajectories. This step involves extracting and tracking 

the movement of objects, such as vehicles or pedestrians, throughout the duration of an 
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episode. To do so, the position coordinates of all the objects are tracked throughout an 

episode and joined together to construct the trajectories. 

5) Coordinate Reference System Conversion: Autonomous vehicle data comes in a local 

coordinate reference system specific to each individual city. To facilitate comparisons 

and integration with other geospatial datasets, the dataset is converted into a common 

coordinate reference system, WGS84. This conversion ensures consistency and enables 

spatial analysis and visualization across different datasets, such as crash datasets. Figure 

4.10 represents all the objects detected from the dataset from Miami City plotted over 

a geo-referenced map. 

 

 Figure. 4.10. Starting position of all objects in the Miami city dataset. 

6) Study Area Selection: To define the scope and focus of the investigation, a corridor was 

selected to form the focus of the study. The study area city selection was based on the 

maximum number of varied traffic interaction episodes. Miami, Florida, was selected 

as the city of focus as it provided the maximum number of total episodes with the widest 

area coverage. As the study primarily focuses on pedestrian safety, all the object 

trajectories from over 67 thousand episodes in Miami were plotted on a geo-referenced 

map to select a study corridor with rich pedestrian activity, as seen in Figure 4.11. This 

led to the selection of Alton Road between 6th Street and 17th Street in Miami Beach 

(see the green area in Figure 4.11). This 19 km corridor comprised 15 intersections and 

14 mid-blocks classified into 15 sub-sections. A total of 6,533 episodes were filtered 

from the Miami dataset for corridor analysis. 
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Figure. 4.11. Study corridor with a zoomed example of one sub-section. 

 After selecting the study area, data processing steps are implemented to analyse the pre-

processed data. This process involves steps such as loading the data, analysing object 

trajectories, estimating conflict indicators, and extracting covariates. These data processing 

steps lay the foundation for subsequent modelling and analysis, allowing for a comprehensive 

understanding of the pedestrian crash risk within the selected study area. The following steps 

are undertaken in data processing for the research project: 

1) Study Area Scenario and Map Loading: Once all the episodes in the dataset were tagged 

in or out of the study area, map and scenario files from the relevant episodes were 

loaded for further analysis. From over 67,000 episodes, comprising more than 

3,300,000 individual object trajectories, a total of 6,533 episodes were loaded for 

corridor analysis consisting of more than 410,000 object trajectories. A typical example 

can be seen in Figure 4.12, which illustrates study area trajectories with a zoomed-in 

example of one sub-section. 
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Figure. 4.12. Object trajectories extracted with a zoomed example of one sub-section. 

2) Trajectory Analysis: The analysis of the dataset highlighted inconsistencies between 

object labels and their corresponding trajectories. Vehicles engaged in roadside parking 

manoeuvres and complex movements within mixed-use areas like parking lots and 

driveways generated unrealistic trajectories. For instance, the trajectories of drivers or 

passengers exiting parked vehicles often overlapped with the vehicle's trajectory. To 

address these issues and eliminate inconsistencies and noise, driveable areas and 

pedestrian crossing boundaries were extracted from map layers, which provided 

detailed information about driving lanes and designated pedestrian areas. This 

information was integrated into our algorithm for conducting sanity checks to ensure 

accurate and reliable object labels. 

3) Object Class-based DataFrame Definition: Object class-based data frames are created 

to facilitate further analysis. This step involves segregating the data broadly into two 

classes pedestrians and other vehicles. Each object class contains the list of the objects 

identified in an episode belonging to that class and relevant attributes such as 

trajectories. All object trajectories from the two class objects are compared with each 

other to identify potential conflicts. For example, Figure 4.13 plots a potentially 

conflicting object pair of a pedestrian (highlighted in red) and a car (highlighted in blue) 

from one of the episodes. 
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Figure. 4.13. Intersecting trajectory pair identification. 

4) Encroachment Area Definition: The encroachment area refers to the zone within which 

a conflict or potential collision occurs. It is defined based on various factors, such as 

object dimensions, velocity, and trajectories. As Argoverse only provides centroid 

information for all the objects identified, standard dimensions for different object 

classes such as bus, car, and pedestrian were assumed. The encroachment area was used 

to calculate the post-encroachment time in the next step, which was used as the conflict 

indicator in the study. 

5) Conflict Indicator Extraction: The post-encroachment time conflict indicator is 

extracted from the data to quantify and measure conflicts. Post-encroachment time 

refers to the duration between the moment two objects (e.g., a vehicle and a pedestrian) 

cross their encroachment zone. To determine the post-encroachment time, the positions, 

dimensions, and velocities of the objects are considered. From Figure 3.2 above in the 

previous section, post-encroachment time = t2 – t1 

6) Covariate Extraction: Covariates are additional factors or variables that may influence 

or contribute to conflicts or safety risks. These covariates are extracted from the 

scenario data, such as the number of vehicles and pedestrians present in an episode and 

the average speeds of vehicles and pedestrians in an episode. By including covariates 

in the analysis, the accuracy and reliability of the models was enhanced. 

7) Data Export for Modelling: After extracting the necessary information, the data is 

exported in a suitable format for modelling purposes. This step typically involves 
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exporting the data into a structured file, a CSV (comma-separated values) format, that 

can be easily imported into modelling software.  

The final processed dataset from the study area had a total of 581 pedestrian-vehicle 

conflicts from 474 unique episodes. At each episode level, Table 4.3 shows the list of covariates 

that were extracted and used as input in the model for handling non-stationary. 

Table 4.3. Statistical summary for conflict indicator and traffic flow variables. 
Parameter Mean Standard deviation Minimum Maximum 

Post encroachment time (s) 3.6 2.01 1.2 6 

Vehicle volume in the episode 19.8 6.43 5 41 

Pedestrian volume in the episode 3.1 2.36 1 13 

Vehicle speed (m/s) 5.49 3.22 0 17.38 

Pedestrian speed (m/s) 1.39 0.92 0 6.91 

 

4.4.Crash dataset 

The Florida Department of Transportation Crash Data Dashboard is a publicly available 

resource that visually represents general crash statistics in Florida. It presents the data in the 

form of graphs and charts, providing an overview of various types of traffic crashes reported 

by law enforcement. The dashboard encompasses all public roadways in Florida and allows 

users to filter the data based on criteria such as year, county, or pre-selected crash types. The 

information is refreshed monthly, but it can take law enforcement agencies up to 90 days to 

report crashes. The data source for the dashboard is the crash forms submitted by law 

enforcement agencies, and it is maintained by FLHSMV. The dashboard provides official, 

finalized data and statistics for all reported traffic crashes, making it a valuable tool for 

visualization and analysis. The data encompassed detailed information about each reported 

crash, including the location, time, weather conditions, types of vehicles involved, road user 

details, collision type, number of injuries or deaths, intoxication details, lighting, and severity 

of injuries. The FLHSMV website interface and its content, when filtered for pedestrian crashes 

between 2014-2020, is illustrated in Figure 4.14 below. 
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Figure. 4.14. Pedestrian crashes in Miami (2014-2020). 

Pedestrian crash data for the study area were obtained from the Florida Department of 

Transportation (FLHSMV, 2022) to validate the developed extreme value theory models. 

Seven-year crash data (2014-2020) was extracted to provide valuable insights into traffic 

crashes and their characteristics around the study area. To accurately compare model results, 

the crashes within the study area involving pedestrians were filtered from the dataset. 
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Chapter 5 Results and discussion 

5.1.Local model performance 

The local model performance section, as described earlier in methodology section 3.4, provides 

an evaluation of the model's performance at a local level. Several models are estimated and 

compared in this study, and this section presents the results obtained through the application of 

the deviance information criterion as a measure of model fit. The deviance information 

criterion allows us to assess the goodness of fit of the model by considering both its complexity 

and how well it explains the observed data. The section also discusses the interpretation of the 

results obtained from the comparison of the local performance of various models developed in 

the study. 

Block Maxima sampling-based model 

Several Bayesian Block Maxima sampling-based models are developed and estimated in the 

Bayesian framework. Past studies used 50,000-100,000 simulation iterations with two chains 

for model convergence and posterior distribution estimation (Ali et al., 2022b; Kamel et al., 

2022). Using the upper limit from the examples above, this study ran two chains with 100,000 

iterations, whereby the first 50,000 were discarded as burn-in, and the remaining were used to 

calculate the posterior distributions of the model parameters. The convergence of the model 

was assessed using two diagnostics. First, a visual inspection of trace plots indicates that the 

chains are well-mixed, as illustrated in Figure 5.1. Second, the Gelman-Rubin statistic value 

for each parameter was calculated and found to be less than 1.1, reflecting the model 

convergence. 
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Figure. 5.1. An example trace plot for visual inspection. 

Table 5.1 presents the deviance information criterion values used for comparing the 

three generalised extreme value models estimated in this study. All non-stationary models with 

location/scale parameters give a better fit (lower deviance information criterion values) than 

the stationarity model. Incorporating covariates in model estimation captures the variation in 

the data better, provides more insights into vehicle-pedestrian interactions, and thereby 

improves model goodness-of-fit. Comparing three possibilities of incorporating covariates 

(i.e., location, scale, and combined), covariates for a model with only scale parameter 

parameterisation were statistically insignificant and hence the model is not reported in Table 

5.1. Out of the other two possibilities, the model with covariates incorporated into the location 

parameter possesses the lowest deviance information criterion value and is thus selected in the 

study. 

The covariates incorporated in the analysis are pedestrian volume, vehicle volume, 

average pedestrian speed and average vehicle speed. The sign and magnitude of mean estimate 

of covariates in Table 5.1 can be used to interpret their impact on overall crash risk. Negative 
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sign indicates inverse correlation with crash risk and greater magnitude indicates greater impact 

on overall crash risk. Further detailed discussion on selected models and their covariates can 

be found in Discussion section below. 

Table 5.1. Summary of the Generalised Extreme Value model estimation results. 

Model Parameter 
Location Scale Shape DIC 

𝜇0 𝜇𝑃𝐶 𝜇𝑉𝐶  𝜇𝑃𝑆 𝜇𝑉𝑆 ∅0 ∅𝑉𝐶  𝜉0   

Stationary 

mean -3.803 ― ― ― ― 0.102 ― -0.295 

396

7 

s.d. 0.149 ― ― ― ― 0.036 ― 0.059 

2.5% -3.950 ― ― ― ― 0.059 ― -0.350 

97.5% -3.658 ― ― ― ― 0.103 ― -0.233 

Location 

parametrisation 

mean -3.074 -0.098 -0.022 -0.076 0.175 0.081 ― -0.276 

385

0 

s.d. 0.443 0.062 0.022 0.042 0.138 0.036 ― 0.054 

2.5% -2.653 -0.037 -0.000 -0.034 0.31 0.116 ― -0.222 

97.5% -3.522 -0.158 -0.043 -0.116 0.039 0.046 ― -0.327 

Scale and 

location 

parameterisation 

mean -3.389 -0.101 ― -0.07 0.17 0.366 -0.014 -0.282 

386

0 

s.d. 0.404 0.059 ― 0.044 0.137 0.182 0.012 0.055 

2.5% -2.991 -0.043 ― -0.027 0.307 0.534 -0.002 -0.332 

97.5% -3.783 -0.16 ― -0.112 0.037 0.178 -0.025 -0.223 

Abbreviations: PC = pedestrian volume; VC = vehicle volume; PS = average pedestrian speed; VS = average 

vehicle speed; DIC = Deviance Information Criterion; s.d. = standard deviation. 

Figure 5.2 shows the goodness-of-fit of the selected model, which was used to further 

assess the model performance by performing a visual inspection of the probability density 

function of the empirical and modelled negated post encroachment time. These plots indicate 

that the model is reasonably well-fitted to the observed data because (a) the observations are 

found to lie along the line of equality (Figure 5.2 (a)) and (b) the modelled and observed curves 

(Figure 5.2 (b)) are very close to each other. 

    

(a) modelled versus observed quartile plot                        (b) probability density plot 

Figure. 5.2. Generalised extreme value model goodness-of-fit diagnostics. 
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 For the Block Maxima sampling-based models, the model with covariates in the 

location parameter outperforms other competing models in terms of both local and global 

goodness-of-fit measures. In a similar comparison of lane-changing crash risk, Ali et al. 

(2022a) concluded that the model with covariates in the location parameter performed better 

than other models. 

Peak Over Threshold sampling-based model 

A dataset de-clustering process is applied for the Peak Over Threshold sampling-based model 

to account for any serial dependence. Pedestrian-vehicle conflicts involving common road 

users are identified and classified as clusters of dependent events, and only the highest extreme 

from the clusters is selected. An integral component of the model is the threshold, which needs 

to be appropriately determined. Following Coles (2001), the threshold is obtained using two 

plots: mean residual plot and modified scale and shape parameter plots. The mean residual life 

plot (Figure 5.3 (a)) exhibits linear behaviour in the sections between -3.7 and -2.8. However, 

the threshold needs to be based on the combination of all three plots. The shape and scale plots 

are constant between -3.0 and -2.6. Thus, the overlapping region between -3.0 s and -2.8 s is 

the ideal threshold range. The threshold is selected as the maximum value of the intersection 

of the three ranges, which is -2.8 s for this study, yielding 175 exceedance values.  

 

(a) Mean residual Plot 

    

       (b) Shape parameter stability plot               (c) Modified scale parameter stability plot 

Figure. 5.3. Diagnostic plots for the Peak Over Threshold sampling-based model. 
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Table 5.2 presents the deviance information criterion values used for comparing the 

four Peak Over Threshold sampling-based models estimated in this study. The non-stationary 

models contain pedestrian and vehicle volume as covariates, whereas covariates regarding their 

speed were found to be insignificant and thus omitted from the parsimonious model. Akin to 

the Block Maxima sampling-based model, all non-stationary models reveal a better fit (lower 

deviance information criterion values) than the stationarity model. The model with covariates 

related to the volume of pedestrians and vehicles shows the best fit out of all the competing 

models based on the lowest lower deviance information criterion value. 

Table 5.2. Summary of the Generalised Pareto model estimation results. 

Model Parameter 
Scale Shape DIC 

∅0 ∅𝑃𝐶 ∅𝑉𝐶  𝜉0   

Stationary 

mean -0.064 ― ― -0.209 

605 
s.d. 0.027 ― ― 0.158 

2.5% -0.164 ― ― -0.351 

97.5% -0.007 ― ― -0.040 

Pedestrian 

volume 

mean 0.283 -0.08 ― -0.274 

586 
s.d. 0.087 0.062 ― 0.164 

2.5% 0.202 -0.133 ― -0.422 

97.5% 0.373 -0.01 ― -0.1 

Vehicle 

volume 

mean 0.379 ― -0.04 -0.292 

569 
s.d. 0.380 ― 0.026 0.131 

2.5% 0.003 ― -0.064 -0.407 

97.5% 0.748 ― -0.013 -0.15 

Pedestrian and 

vehicle 

volumes 

mean 0.455 -0.056 -0.033 -0.322 

565 
s.d. 0.42 0.071 0.027 0.155 

2.5% 0.011 -0.102 -0.058 -0.457 

97.5% 0.835 -0.001 -0.005 -0.154 

Abbreviations: PC = pedestrian volume; VC = vehicle volume; DIC = Deviance Information Criterion; s.d. = 

standard deviation. 

Figure 5.4 shows the goodness-of-fit of the selected model, which is used to further 

assess the model performance using the probability density plot and quartile comparison plot 

of the empirical and modelled negated post encroachment time. The following observations 

can be made when visually inspecting the graphs below; Figure 5.4 (a) indicates reasonable 

proximity of observations to the line-of-equity, and Figure 5.4 (b) shows that the modelled and 

observed probability density curves are very close to each other. 
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(a) modelled versus observed quartile plot                        (b) probability density plot 

Figure. 5.4. Best-fit Generalised Pareto model (pedestrian and vehicle volume). 

 For the Peak Over Threshold sampling-based models, the model with covariates 

relating to pedestrian and vehicle volume outperforms other competing models in terms of both 

local and global goodness-of-fit measures. Note that using two measures has shown to 

rigorously improve the model performance, see Hussain et al. (2022) for more details. 

Discussion 

 All model covariates are statistically significant as assessed by Bayesian credible 

intervals and logically, providing insights into vehicle-pedestrian interactions. The number of 

vehicles and pedestrians used as covariates in the study denotes the total count of vehicles and 

pedestrians respectively present within a 100m radius circle of the conflict in each 

snippet/episode. Both vehicle and pedestrian counts are found to be negatively associated with 

crash risk. Different from some other studies in the past (where road user volume data collected 

is an indicator of risk exposure (Ali et al., 2023b)), both vehicle and pedestrian count captured 

in this study are an indicator of the overall road traffic situation. A higher vehicle count in a 

snippet/episode represents a lower level of service that translates to lower travel speeds and 

better driver attention when compared to a low vehicle count. Also, pedestrians are less likely 

to cross the road from non-designated pedestrian crossings in high vehicle count situations, 

further reducing the risk of a collision. The study concurs with the safety-in-number 

phenomenon, implying a larger number of pedestrians in a snippet/scenario are easier to spot 

for drivers making the pedestrians present in that episode less likely to be the victim of a crash. 

On the other hand, the average speed of vehicles in the episode is found to be positively 

associated with the crash risk. Vehicles travelling at faster speeds are likely to exhibit harsh 

braking whilst interacting with pedestrians (Ali et al., 2022b), increasing the chances of being 

engaged in pedestrian crashes (Haque and Washington, 2015). Song et al. (2017) investigated 

multiple factors influencing vehicle-pedestrian crashes and concluded that the vehicle’s speed 
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had the highest correlation with crash risk as drivers travelling at a higher speed require a longer 

time to apply brakes in emergencies. The average walking speed of pedestrians is found to be 

negatively correlated with crash risk, implying that slow-walking pedestrians are more likely 

to be involved in a crash. A high pedestrian walk speed would minimise the interaction between 

pedestrians and other vehicles, thereby reducing the crash risk.  

 Using these goodness-of-fit measures for comparing the Block Maxima and Peak Over 

Threshold sampling-based models, this study finds that the former model generates better 

pedestrian crash risk estimates. More specifically, the confidence interval of the Peak Over 

Threshold sampling-based model is found to be about four times wider confidence interval than 

the Block Maxima sampling-based model. This finding is in contrast with most of the literature 

whereby Peak Over Threshold sampling-based models are often reported to outperform Block 

Maxima sampling-based models (see Hussain et al. (2022) and Zheng et al. (2014)), and this 

better performance is attributed to better utilisation of data. In practice, the data characteristics 

and the specific research objectives can determine which method is more suitable for a given 

analysis. Bücher and Zhou (2021) compared the two sampling approaches to better understand 

their differences. They summarised that the data-generating process could affect the 

convergence rate of the two methods with no general winner identifiable between the two 

approaches. They also pointed out that under independent identically distributed scenario 

assumption for a time series data (as is the case in this study), Block Maxima sampling works 

because the extremes are approximately Generalised Extreme Value-distributed and are 

sufficiently distant from each other to bear low serial dependence. In summary, there is no 

overall clear winner between the two sampling techniques, but the reasons mentioned above 

can provide some insights into the outcomes specific to this study. 

5.2.Global model performance 

The global model performance section, as described earlier in methodology section 3.4, focuses 

on evaluating the model's performance against real-life observed crash data. This section 

presents the results obtained through model simulations for the modelled crash confidence 

interval and compares them with the observed crash confidence interval obtained using the 

Poisson confidence interval statistical method as described in Eq. 3.5 in the earlier section.  

 Estimation results from the Block Maxima and Peak Over Threshold sampling-based 

models and their comparison to the observed crashes are presented in Table 5.3. To estimate 

crash frequency from selected models for a given duration �̃�, Eq. 3.8 was used. The confidence 
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interval of estimate crashes was calculated using a simulation process. The observed crashes 

were sourced from Florida DOT database as described in chapter 4.4. The confidence interval 

for observed crashes was calculated using the Poisson confidence interval for true mean as 

described in Eq. 3.9. The results suggest that the Block Maxima sampling-based model 

outperforms the Peak Over Threshold sampling-based model when compared to observed 

crashes. The relative error (calculated as the estimated crashes – observed crashes) of the Block 

Maxima sampling-based model is 15%, whereas the corresponding error of the Peak Over 

Threshold sampling-based model is 90%, suggesting a six-fold higher error in the Peak Over 

Threshold sampling-based model. From Table 5.3, it is also evident that confidence intervals 

for both models are wider, which can be attributed to the relatively small dataset size within 

the study area. However, the confidence interval of the Block Maxima sampling-based model 

is relatively narrower compared to its counterpart.  

Table 5.3. Estimation of crash frequencies by the developed extreme value models. 

 Pedestrians are a vulnerable road user group exposed to a significant risk of injuries 

and fatalities, requiring elevated research efforts to understand the determinants of pedestrian 

crashes and to devise targeted countermeasures. Conventionally, pedestrian safety is assessed 

using the reactive approach based on police-reported data, requiring unusually high (and slowly 

accruing) pedestrian crashes. Another issue with such data is the lack of information about 

crashes occurring at a corridor level. Overcoming this research need, this study presents a 

framework that leverages autonomous vehicle data to estimate corridor-wide pedestrian-

vehicle crash risk. The underpinning of this framework is Bayesian generalised non-stationary 

modelling approach. Applying the framework to freely available Argoverse autonomous 

vehicle Level 4 data, the Block Maxima and Peak Over Threshold sampling-based models are 

estimated, with the mean estimated crashes of the Block Maxima sampling-based model being 

within a 15% error margin of the observed crashes. Due to the limited sample size, the 

confidence intervals of both models are wider than the observed confidence interval, whereas 

a comparison of the confidence intervals of both models suggests that the Block Maxima 

sampling-based model possesses a narrower confidence interval than its competing model. In 

Model Annual crashes Confidence interval 
Relative crash error 

(against observed) 

Crash confidence interval 

comparison (against observed) 

Block Maxima 8.1 (0, 116.1) 15% 10 times observed 

Peak Over Threshold 13.3 (0, 406.0) 90% 35 times observed  

Observed Crashes 7 (2.81,14.42) -  
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summary, our results confirmed the efficacy of the proposed framework for estimating vehicle-

pedestrian crashes at a corridor level with reasonable accuracy. 

To summarise, this study is the first application—to the best of the authors’ 

knowledge—of utilising publicly available autonomous vehicle sensor data for assessing 

corridor-level pedestrian safety. A multi-sensor setup on autonomous vehicles used for data 

collection in this study and data integration from multiple sources can resolve most trajectory 

processing errors commonly seen in data-capturing practices (Wu et al., 2018). Extreme value 

theory models developed in this study show the capability of combining data of multiple 

intersection intersections and mid-block sections along the study corridor, which can improve 

crash estimation efficiency in a real-world application.
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Chapter 6 Conclusion and recommendations 

This study is one of the first to apply open-source autonomous vehicle sensor data to conduct 

a corridor-wide pedestrian safety analysis. The data processing framework is modular and 

scalable to larger problem sets. The study developed traffic conflict-based univariate extreme 

value models for vehicle-pedestrian safety analysis along an urban corridor. Best-fitted models 

were then compared against observed crash data from the same corridor. The study successfully 

demonstrated that a robust data processing and filtering framework could extract useful 

trajectory information from autonomous vehicle sensor data. The study successfully developed 

a combined safety model for intersections and mid-block sections which have typically been 

dealt with separate models in past research (Kamel et al., 2022). As autonomous vehicles 

become mainstream and their adoption rate increase, autonomous vehicle sensor data has an 

inherent potential to deal with data sparsity issues from traditional video analytics data sources.  

 This study answered the following research questions through the proposed framework 

and its implementation: 

- How to process and interpret autonomous vehicle sensor data in a meaningful way? 

The raw autonomous vehicle data extracted from Argoverse, including over 250,000 

episodes, was organised, indexed, and categorised to facilitate its usage. The dataset 

was then converted to a tabular data frame structure for efficient processing. Object 

trajectories were constructed from all the episodes to capture the movement of various 

road users, and the coordinate reference system was transformed to allow data 

integration from multiple sources. This process generated a standardised data output 

from the process that has universal interpretability and does not require any special 

tools/software for usage. 

- How to extract pedestrian-vehicle conflict information from autonomous vehicle sensor 

data and check the quality of the output? 

The dataset was split into two data frames containing pedestrian trajectories and vehicle 

trajectories, respectively. Overlaying trajectories of each possible pair of objects from 

two data frames, the potential conflicts were identified. Subsequently, an encroachment 

zone was defined for the potential conflicting trajectories to extract conflict indicator 

information. In order to ensure the quality of trajectory data, trajectory sanity checks 
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involving cross-referencing geographical and contextual information from map data 

and scenario data were performed. 

- How to apply Extreme Value Theory modelling technique for a corridor-wide safety 

assessment framework? 

An Extreme Value Theory model was developed using 581 unique traffic conflict 

observations collected using autonomous vehicle data along a 19-kilometre-long study 

corridor. Fitted models estimated using two extreme value sampling techniques, block 

maxima and peak-over-threshold, were assessed using deviance information criteria 

and model validation against observed crashes. Various modelling covariates, such as 

pedestrian count, vehicle count, average pedestrian speed, and average vehicle speed, 

were introduced to address the model’s unobserved heterogeneity. The results 

demonstrate that the models generated a reasonable fit against the observed crash data 

along the corridor. The best-performing model estimated annual crashes within 15% of 

the observed crashes, demonstrating the applicability of this technique for a corridor-

level analysis. 

The future scope of improvement to work done in this study includes testing safety 

metrics incorporating a more comprehensive array of factors influencing crash risk across a 

corridor to improve focus on key problem areas on a network. This work determined that the 

data annotation algorithm used by data providers still has room for improvement. Research on 

handling mislabelled data more efficiently would improve the real-time application prospects 

of such models. More research is needed to understand the difference in the interaction between 

autonomous vehicle-autonomous vehicle and autonomous vehicle-other road users. As the 

penetration rate in this dataset was shallow, no autonomous vehicle-autonomous vehicle 

interaction samples were available. 

Furthermore, research should be undertaken to understand the impact of an increase in 

quantity and change in autonomous vehicle sensor data format as the dataset is still primitive, 

only providing discrete episode outputs instead of a continuous data stream. In the future, using 

autonomous vehicle sensor data supplemented with additional data sources can aid in 

developing a network-wide safety model incorporating multiple road user interactions. 

Furthermore, future studies can incorporate other corridor-based variables such as lane 

attributes, traffic manoeuvre counts. The crash severity aspect can be included into the model 

structure by employing multivariate model structure with conflict indicator dedicated to crash 
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severity. This extension of the model will enable a more comprehensive understanding of the 

potential factors influencing the severity of the crashes, which can improve the effectiveness 

and focus of road safety interventions.  
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