The isotopic composition of Zn in natural materials

(2008) The isotopic composition of Zn in natural materials. PhD thesis, UNSPECIFIED.

View at publisher

Description

The isotopic composition of the Zn minerals and igneous rocks agreed with that of the absolute reference material, which makes it possible to consider this reference material as being representative of “bulk Earth” Zn. Significant and consistent fractionation of ~+0.3 U+2030 per amu were found in 5 sediments from a range of localities. The consistency of this is attributed to conveyor type oceanic circulations effects. The results from the two metamorphic samples indicate that the fractionation of Zn in these rocks is the same as found in igneous rocks but are different from the Zn found in sedimentary rocks. This supports the widely held assumption that high temperature and pressure processes do not fractionate the isotopic composition of chalcophile elements, such as has been found for Cd. Clay sample TILL-3 appears to exhibit a consistently slightly positive Zn fractionation of +0.12 ± 0.10 U+2030 amu-1, although inside the uncertainties of both igneous and sedimentary rocks, which is not surprising since Till is thought to be a formed from a range of mixed glacial sediments The isotopic composition of Zn was measured in two plants and one animal sample. The fractionation of (-0.088 ± 0.070 U+2030 amu-1) of Zn in the Rice (a C3 type plant material) sample suggested that Zn may be used to study Zn systematics in plants. The result obtained for MURST-Iss-A2 (Antarctic Krill) was +0.21 ± 0.11 U+2030 amu-1 relative to the laboratory standard which is similar to the average Zn fractionation results of +0.281 ± 0.083 U+2030 amu-1 obtained for marine sediments

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 245073
Item Type: Thesis (PhD)
Refereed: No
Keywords: Dissertations, Academic
Pure ID: 152369653
Copyright Owner: Consult author(s) regarding copyright matters
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 11 Dec 2023 06:46
Last Modified: 03 Mar 2024 13:43