Vestibular signals of self-motion modulate global motion perception

, Verstraten, Frans A.J., MacDougall, Hamish, & Alais, David (2017) Vestibular signals of self-motion modulate global motion perception. Vision Research, 130, pp. 22-30.

Open access copy at publisher website

Description

Certain visual stimuli can have two possible interpretations. These perceptual interpretations may alternate stochastically, a phenomenon known as bistability. Some classes of bistable stimuli, including binocular rivalry, are sensitive to bias from input through other modalities, such as sound and touch. Here, we address the question whether bistable visual motion stimuli, known as plaids, are affected by vestibular input that is caused by self-motion. In Experiment 1, we show that a vestibular self-motion signal biases the interpretation of the bistable plaid, increasing or decreasing the likelihood of the plaid being perceived as globally coherent or transparently sliding depending on the relationship between self-motion and global visual motion directions. In Experiment 2, we find that when the vestibular direction is orthogonal to the visual direction, the vestibular self-motion signal also biases the direction of one-dimensional motion. This interaction suggests that the effect in Experiment 1 is due to the self-motion vector adding to the visual motion vectors. Together, this demonstrates that the perception of visual motion direction can be systematically affected by concurrent but uninformative and task-irrelevant vestibular input caused by self-motion.

Impact and interest:

8 citations in Scopus
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 247914
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
Measurements or Duration: 9 pages
Keywords: Bistable, Motion, Plaids, Vestibular
DOI: 10.1016/j.visres.2016.11.002
ISSN: 0042-6989
Pure ID: 166711573
Copyright Owner: 2016 Elsevier Ltd.
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 11 Apr 2024 05:01
Last Modified: 30 May 2024 17:37