Microstructure Characteristics of Nano Solid Waste High Sulfur Cement Based on XRD and FTIR

Zong, Zhi Fang, Long, Hong Ming, , Zhang, Hao, Dong, Wei, Zhou, Xiao Hui, & Ji, Yi Long (2023) Microstructure Characteristics of Nano Solid Waste High Sulfur Cement Based on XRD and FTIR. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 43(6), pp. 1974-1980.

View at publisher

Description

High sulfate content in cement carries risks of volume expansion in late hydration. Nano-TiO2 and nano-SiO2 were used to modify semi-dry flue gas desulfurization ash, which contains a high rate of CaSO3·0.5H2O, and nano-modified semi-dry flue gas desulfurization ash was used to prepare nano-solid waste high sulfur cement, to solve the problem of poor durability caused by high CaSO3·0.5H2O content in the matrix. The ratio of each component in nano-solid waste high sulfur cement was determined according to the stability, water requirement of normal consistency, setting time and compressive strength of nano-solid waste high sulfur cement. LPSA was used to analyze the particle size distribution of raw materials. The water contact angle measurement was used to analyze the wettability of hardened slurry, the XRD was used to analyze the mineral composition of raw material and hardened slurry, the FTIR was used to analyze the change of microstructure of raw material and hardened slurry, the SEM was used to analyze the micromorphology of raw material and hardened slurry. The results show that the particle size distribution range of semi-dry flue gas desulfurization ash is 0.31~127.38 μm, which is wider and finer than that of cement particles, and so can optimize the grading range of cement. The semi-dry flue gas desulfurization ash could delay the setting of cement hydration, prolong the setting time, and reduce the compressive strength, especially with a large amount. Adding nano SiO2 and nano TiO2 can reduce the water requirement of normal consistency of cement matrix and improve its compressive strength. The synergistic modification of 3% nano TiO2 and 2% nano SiO2 can effectively stabilize CaSO3·0.5H2O in semi-dry flue gas desulfurization ash, further stimulating the potential activity of semi-dry flue gas desulfurization ash and improve the mechanical properties of cement hardened slurry. The 28-day compressive strength of modified nano-solid waste high sulfur cement is 64.72 MPa, 83% higher than that of unmodified high sulfur cement and even 16% higher than that of pure cement. The wetting edge angle increases to hydrophobic change, which is conducive to improving durability. XRD analysis results show that the content of AFM-like mineralsin hydration products is shallow, which reduces the risk of expansion. FTIR analysis showed that the stretching vibration peak of -OH contained in Ca(OH)2 in the hydration system was enhanced, further improving the hardened slurry's chemical erosion resistance. SEM analysis shows that the hydration product has uniform texture and fewer microstructure defects. Nano-TiO2 and nano-SiO2 co-modified semi-dry flue gas desulfurization ash can stabilize sulfate and sulfite and are used to prepare high-performance nano solid waste high sulfur cement is beneficial to carbon reduction, energy conservation and environmental protection.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 250627
Item Type: Contribution to Journal (Journal Article)
Refereed: Yes
ORCID iD:
Gui, Yilinorcid.org/0000-0003-3439-3888
Measurements or Duration: 7 pages
Keywords: Cementing material, Microstructure, Nano-modification, Semi-dry flue gas desulfurization, Sulfite
DOI: 10.3964/j.issn.1000-0593(2023)06-1974-07
ISSN: 1000-0593
Pure ID: 172955209
Divisions: Current > QUT Faculties and Divisions > Faculty of Engineering
Current > Schools > School of Civil & Environmental Engineering
Copyright Owner: 2023 Office of Spectroscopy and Spectral Analysis
Copyright Statement: This work is covered by copyright. Unless the document is being made available under a Creative Commons Licence, you must assume that re-use is limited to personal use and that permission from the copyright owner must be obtained for all other uses. If the document is available under a Creative Commons License (or other specified license) then refer to the Licence for details of permitted re-use. It is a condition of access that users recognise and abide by the legal requirements associated with these rights. If you believe that this work infringes copyright please provide details by email to qut.copyright@qut.edu.au
Deposited On: 15 Jul 2024 23:53
Last Modified: 16 Jul 2024 21:07