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Purpose 

To investigate whether wearing different presbyopic vision corrections alters the 

pattern of eye and head movements when viewing and responding to driving-

related traffic scenes. 

 

Methods 

Participants included 20 presbyopes (mean age: 56.1 ± 5.7 years) who had no 

experience of wearing presbyopic vision corrections, apart from single vision 

reading spectacles. Each participant wore five different vision corrections: 

distance single vision lenses (SV), progressive addition spectacle lenses (PAL), 

bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses 

(MTF CL). For each visual condition, participants were required to view 

videotape recordings of traffic scenes, track a reference vehicle and identify a 

series of peripherally presented targets. Digital numerical display panels were 

also included as near visual stimuli (simulating the visual displays of a vehicle 

speedometer and radio). Eye and head movements were measured and the 

accuracy of target recognition was also recorded. 
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Results    

The path length of eye movements while viewing and responding to driving-

related traffic scenes was significantly longer when wearing BIF and PAL than 

MV and MTF CL (both p≤ 0.013). The path length of head movements was 

greater with SV, BIF and PAL than MV and MTF CL (all p<0.001). Target 

recognition and brake response times were not significantly affected by vision 

correction, while target recognition was less accurate when the near stimulus 

was located at eccentricities inferiorly and to the left, rather than directly below 

the primary position of gaze (all p=0.008), regardless of vision correction.  

 

Conclusions  

Different presbyopic vision corrections alter eye and head movement patterns. 

The longer path length of eye and head movements and greater number of 

saccades associated with the spectacle presbyopic corrections, may affect 

some aspects of driving performance. 

 

Key words: Eye and head movements; driving; presbyopic vision correction; 

progressive addition lens; bifocal spectacles; monovision; multifocal contact 
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Text 

Most developed countries across the world are experiencing a rapid and 

disproportionate growth in the number of older adults, leading to an increasingly 

aged population.1 With increasing age, visual functions such as visual acuity 

(VA),2 contrast sensitivity,2, 3 stereopsis2 and visual field sensitivity4 are impaired. 

These visual changes may be relevant to the driving safety of the elderly 

population, given that it is estimated that vision is used to acquire more than 

90% of the information required for driving.5  

In addition to these visual function changes, presbyopia affects 

individuals from the age of 40-45 years, resulting in difficulty in accurately 

focusing on near objects.6 A range of optical aids are available to provide clear 

near vision for presbyopes. Spectacle options include bifocal spectacle lenses 

(BIF), progressive addition lenses (PAL), while contact lens options include 

monovision (MV) and multifocal contact lenses (MTF CL). Each type of vision 

correction has different optical characteristics aimed at providing functional near 

vision in addition to providing clear distance vision.  
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While presbyopic corrections are designed to improve visual 

performance, they can also affect the eye and head movement patterns of 

wearers. Han et al7 found that horizontal and vertical head movements were 

greater with PAL and reading eye movement parameters such as reading rate, 

number of saccades and fixation was significantly worse with PAL than with 

single vision lenses (SV). Progressive addition lenses also resulted in a slowing 

of eye movement velocities and longer times to stabilize the gaze for fixation 

than did SV.7, 8 When BIF were worn for reading small-sized print, head 

movements were smaller compared to those recorded with PAL.9  

These changes in eye and head movement patterns are likely to have 

implications for driving safety, given that the visual tasks for driving include a 

range of dynamic search tasks. Eye and head movements are important for 

monitoring of the forward traffic scene in order to avoid potential hazards, 

allowing the driver to obtain information from their visual field that is useful to 

driving.10 In addition, detection and recognition of specific traffic signs requires a 

combination of both eye and head movements to maintain sufficient stability of 

the retinal image. This is assisted through the vestibular-ocular reflex (VOR) 

which generates eye movements in the opposite direction to head movements, 
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thus maintaining the image on the fovea. It has been suggested that some 

optical aids may interfere with the operation of VOR, for example, PAL wearers 

may compensate by using fewer eye movements and more head movements.11 

Steering performance is also believed to be highly related to eye movements.12   

In this study we aimed to investigate the influence of different 

presbyopic corrections on driving-related eye and head movements. A range of 

approaches have been used in previous studies to investigate driving 

performance. These have included driving simulators,13, 14 open-road 

assessments15, 16 and closed-road circuit assessments,17, 18 each with their own 

advantages and disadvantages in terms of validity, accessibility and 

convenience. For the purposes of this study, we selected a laboratory-based 

driving simulator which allowed us to track the eye and head movements of 

participants while they viewed and responded to projected video images of real 

traffic scenes on a wide screen. The tracking quality of eye and head 

movements in this environment was high because vibrations and lighting 

conditions can be controlled and stabilised to an extent that is not possible 

under real world driving conditions. However, it is acknowledged that simulators 

do not necessarily represent all aspects of real world driving, particularly the 
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environmental lighting conditions and level of risk involved. However, despite 

these drawbacks, simulators have been widely used because of their 

advantages of control of weather, lighting and different road traffic conditions, 

and because they are economical to run.13, 19  

Eye and head movements were measured when wearing different 

presbyopic corrections, while viewing and responding to dynamic moving stimuli 

composed of video recordings of real traffic scenes and simulated in-vehicle 

devices (radio and speedometer). In addition, suburban road and freeway 

conditions were examined to reflect the variety of driving conditions 

encountered by drivers. Day and night-time video recordings were also used as 

there have been reports of poorer visual performance for presbyopic contact 

lens wearers at night due to haloes and ghosting.20, 21  

 

METHODS 

Participants 

Twenty two individuals were recruited to participate in this study, 

however, two participants were unable to complete the experimental sessions 

because they reported sensations of motion sickness when watching the 
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videotape recordings of dynamic traffic scenes. The age range of the 20 

participants for whom complete data were collected was between 47 and 67 

years (mean age of 56.1 ± 5.7). All participants were screened for their 

suitability to participate in the study by clinical examination and none of the 

participants had previously worn contact lenses. Inclusion criteria were (1) no 

previous experience of wearing any types of presbyopic vision correction except 

for single vision reading spectacles, (2) no ocular pathology such as cataract, 

glaucoma or age-related maculopathy which might influence driving 

performance,22 (3) no head or neck mobility problems, (4) holding a valid 

driver’s licence, (5) aged 45 to 70 years, (6) best sphere refractive error within 

the range of ±1.00D with less than -0.75D of astigmatism, (7) unaided visual 

acuity better than 20/30 in each eye and (8) no visual field defects as assessed 

using the 76-point suprathreshold visual field test (Humphrey Field Analyzer). 

Informed consent was obtained from all participants and the research protocol 

was approved by the Queensland University of Technology, Human Research 

Ethics Committee.  

 

Presbyopic vision corrections 
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The study involved a repeated measures design using five different 

visual optical corrections; SV, PAL, BIF, MV and MTF CL. Participants were 

required to view videotape recordings of dynamic traffic scenes, to identify 

peripherally presented targets and to report numbers presented on two 

simulated in-vehicle devices (radio and speedometer). They were allowed to 

move their eyes and head freely while their head and eye movements were 

recorded. Eye and head movements were compared across vision corrections. 

As five visual corrections were assessed for each participant, it was not 

feasible to make individual prescriptions for each participant. Instead, plano 

lenses were prescribed for distance viewing and a +2.50 D addition was 

prescribed for near for all participants (note that participants were selected to 

have best sphere refractive error < ± 1D). All spectacle lenses were mounted in 

the frames provided with the “Essilor Presbyte demonstration kit”. As every 

individual had a slightly different interpupillary distance and optical centre height, 

the use of the frame from the demonstration kit allowed these two variables to 

be easily adjusted for each participant. 

While it is acknowledged that the optical corrections were not optimal for 

all participants, group mean vision measured for the participants with the 
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presbyopic vision corrections used in the study was 20/20-3 ± 2 letters (0.06 

logMAR ± 0.04) for the MTF CL, 20/20-1 ± 1.5 letters (0.02 logMAR ± 0.03) for 

the MV CL and 20/20-1 ± 1.5 letters (0.02 logMAR ± 0.03) for the spectacles. 

The vision of all participants met driver licensing standards of 20/40 when 

wearing all of the presbyopic corrections.   

Given that the maximum viewing distance of each participant to the 

screen was 2 m and the smallest target size was 2 cm, the minimum acuity 

required to discriminate the peripheral targets in the driving videotapes was 

20/125-1 (0.82 logMAR), so all targets were above threshold for all participants 

for all viewing conditions. 

A 28 mm diameter flat top design bifocal lens was used for the BIF 

condition. For the PAL lens condition we used a commonly used design, which 

is reported to have an intermediate corridor width of 3.5 mm when the near 

addition reaches +1.25D,23 (for a typical +2.00 near addition) with the width of 

the distance zone being approximately 10.5 mm at the level of the fitting cross. 

For the MV condition, a disposable soft contact lens was used. The 

dominant eye was fitted with a plano contact lens for distance vision and the 

non-dominant eye with the near prescription (+2.50 D), following the 



 12

conventional approach for prescribing monovision.24 Eye dominance was 

determined by the directional dominance (sighting test), where participants were 

asked to extend their arms and form a small hole with both hands and 

binocularly centre a distance target in that hole.25 

The MTF CL selected was a simultaneous vision multifocal contact 

design with a plano power for distance and an addition for near which is the 

spherical equivalent of the near spectacle prescription.  This design has an 

aspheric center-near design, where the maximum plus power is in the centre of 

the lens, progressing to more minus in the periphery. 

During the contact lens assessments, 15 minutes of settling time was 

allowed before commencing the driving-related assessment and new lenses 

were used for each participant.  

 

 

 

Distance targets 

Participants were required to view videotape footage of real, moving 

traffic scenes projected onto a screen. The reason for using real moving traffic 
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scenes rather than abstract moving patterns was to create a realistic dynamic 

driving environment including retinal flow,26 where the eye and head fixations 

reflect those made in the real world. To further enhance the realism of the visual 

simulation, the participant was also provided with a brake pedal and steering 

wheel from a gaming set. Participants were asked to press the brake pedal 

when the brake lights of the reference car were applied to maintain their 

concentration on the reference car; braking reaction times were recorded for 

each vision correction condition.  

The video recordings were made using a digital camcorder (DCR-TRV 

30E PAL, SONY) mounted on the roof of a research vehicle (1998 Nissan 

Maxima). Day and night-time (headlamps on low beam) recordings of real traffic 

scenes were made of the same routes in a local suburban road and on a 

freeway. Although the traffic conditions during day and night-time were different, 

the same route was followed and the same peripheral targets were selected. 

The video recordings were made while following another car which was a white 

station wagon (Holden Commodore), defined here as the reference car, which 

the participants had to track throughout the experimental procedures. This 

approach of using a reference car has been used in previous studies. For 
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example, Roge et al14 incorporated a “car-following” task in a simulator, where 

participants focused on the back window of a leading car and were required to 

detect colour changes in a luminous signal presented in the visual field. In this 

study, the reference car served as a uniform start and end point for all eye and 

head movement measurements to maximise comparability of visual tasks 

across participants. The video recordings of the traffic scenes were edited into 

approximately 1.5 minutes long sequences using computer software (Adobe 

Premiere Pro V2.0) based on the frequency of road signs present in the footage 

and other targets-of-interest such as traffic lights and pedestrians. Yellow rings 

(of diameter 15cm subtending a visual angle of 4.3°) were superimposed on 

sections of the video footage to highlight objects which were important to driving 

safety (i.e. speed and stop signs), and served as dynamic peripheral targets 

which participants were required to identify. The yellow rings were presented for 

1.6 seconds as it has been reported that drivers do not usually look away from 

the road ahead for more than an average of 1.6 seconds.27 The number of signs 

in the suburban and freeway footage which could be highlighted in each 1.5 

minute clip was slightly different (five targets for suburban and seven targets for 

freeway). Out of these targets, four different peripheral targets that were 
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presented more than 15° from the reference car in each video recording were 

selected.28 The remaining targets (one in the suburban videorecording and two 

in the freeway videorecording) were located less than 15° from the reference 

car and served to maintain participant attention.  

In total, four sets of video recordings were made with the following 

combinations (day-suburban, night-suburban, day-freeway, night-freeway). In 

addition, a one minute video sequence was created to instruct the participants 

and provide a practice run for participants.  

In summary, the participant was instructed to fixate and track the 

reference car, and to report the type/identity of the traffic signs along the road 

side (e.g. stop sign or speed limit), defined here as the peripheral targets 

(encircled by the yellow ring), when they appeared in the video recordings. 

Reaction times in response to the onset of the brake lights of the reference car 

were measured by calculating the time between the onset of the brake light of 

the reference car on the video recordings and activation of a light-emitting-diode 

(LED) connected to the brake pedal and pressed by the participants.  

 

Near targets 
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Two digital numeric display panels (alphanumeric dot matrix liquid crystal 

display module, Electus distribution Pty Ltd, Australia) were created as near 

targets to simulate the numbers on a radio and speedometer in a vehicle. The 

visual display area of the module was 65 (width) x 16 (height) mm and the 

character size of each number was 2.78 (W) x 4.89 (H) mm (which reflects the 

character size of the odometer in our research vehicle of approximately 3 (W) x 

5 (H) mm) corresponding to a visual angle of 0.2 x 0.3 degrees, with a 5:1 

luminance ratio (i.e. number to background). The digital numeric display panel 

was then programmed to present a series of two or three random numbers for 

1.6 sec duration. One panel was placed in the typical location of the 

speedometer (22 degrees downwards with the assumption that the eyes were 

120 cm above ground level) and located behind the steering wheel so that it 

was viewed through the gap in the steering wheel, thereby enhancing the 

realism of the speedometer simulation. The other panel was placed in the 

typical location of a radio, in the centre panel (37 degrees down and 48 degrees 

to the left from the eye position of a right-hand drive car) (Fig. 1). The digital 

numeric display panels were each activated twice (i.e. four times in total) during 

each video clip and this was accompanied by a computer-generated voice 
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saying either “radio” or “speedometer” to prompt the participant to view the 

relevant near target. The participant’s task was to view the appropriate display 

panel and report the number presented. We intended to measure eye and head 

movements for this task but this was not feasible, as the participants’ eye and 

head movements were frequently beyond the measurement range of the 

recording instrumentation. 

 

Laboratory set-up and procedures 

The participants were seated 2 m away from the screen on which the 

video footage was presented by digital projector (NEC, VT540G, Japan) placed 

1.4 m behind the participant (Fig. 1). Screen dimensions were 2 m horizontal 

and 1.3 m vertical, subtending a horizontal visual angle of 52° and a vertical 

angle of 36° at the participant. Instructions regar ding the tasks were given to 

each participant and a practice video recording was viewed to allow 

familiarization with the tasks. The order of wearing the presbyopic vision 

corrections and type of video footage (night, day, suburban, freeway) was 

randomly assigned for each participant to minimize order and learning effects. 

When a daytime video recording was viewed, the laboratory overhead light was 
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turned on giving a room illuminance of 236 lux. During night-time recording 

viewing, the same light was turned off giving a room illuminance of 1.3 lux 

(Topcon IM-2D photometer, Japan). These lighting conditions were used to 

simulate as closely as possible those pupil sizes encountered when driving 

under day and night-time conditions. Mean pupil sizes of all participants under 

day and night-time simulated driving conditions were 3.8 ± 0.8 (SD) mm and 5.1 

± 0.7 (SD) mm respectively, which are similar to those reported by Hough29 for 

a similar age group for day and night conditions. 

 

Figure 1 to appear here.  

 

Recording of eye and head movements 

Eye and head movements were recorded using the faceLAB® V4.5 

system at a rate of 60Hz (Seeing Machines Pty Ltd, Lyneham, ACT).30, 31 This 

system consists of a pair of cameras (Sony FCB-EX480B) for eye and head 

tracking and a SceneCamera (1/4" Charged-Coupled Device (CCD) camera) to 

record the front viewing scenes. 
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The cameras were positioned approximately 70cm from the participants 

with 20cm separation to view the participant’s face from different angles. The 

participant’s face was illuminated by two sets of lighting pods (emitting infrared 

radiation) and the system captured the details of the participant’s face using 

templates on the basis of luminance contrast (i.e. edge of lips, eyes or other 

features such as black dots which were drawn on participant’s faces to improve 

tracking). Head tracking was achieved by the system finding the relative 

position of these templates and facial features and calculating head position. 

For eye tracking, the system tracks the iris and/or the pupil, depending on which 

anatomical feature provides the best contrast. By combining the information of 

eye tracking with head position, the eye direction was determined.   

The SceneCamera records the scene which the person is viewing. The 

eye and head position data generated by the faceLAB® is then overlayed onto 

the recorded scene from the SceneCamera and data is produced in x, y 

coordinate format (Fig. 2). Typical static accuracy provided by the manufacturer 

(under ideal conditions) is ± 1° of rotational error for head tracking, and ± 5° 

rotational error for eye tracking, when there are no head movements. The 

faceLAB® system generated a tracking confidence level, which indicated how 
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well eye position was being tracked, with the four levels of confidence from 3 

(highest) to 0 (lowest); only data having the two highest confidence levels (2 

and 3) were used for analysis. 

 

Figure 2 to appear here.   

 

Analysis 

There were five primary outcome measures derived in the analysis.  

(1) Path length of eye and head movements for distance peripheral targets, 

(2) Number of saccades made for distance peripheral targets, 

(3) Percentage of distance peripheral targets (encircled by the yellow ring) 

correctly recognized, 

(4) Percentage of near targets (radio and speedometer numbers) correctly 

recognized, and 

(5) Braking reaction times. 

The path length of eye and head movements when searching and naming 

the peripheral targets encircled by yellow rings was calculated by summation of 

the distances between the individual x, y coordinates data generated 
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sequentially by the faceLAB® system. The data for analysis were extracted from 

a time period commencing 0.5 seconds before the yellow rings (highlighting the 

distance peripheral target) appeared and ending 0.5 seconds after they 

disappeared. Thus, a total of 2.6 seconds of data (as the yellow rings were 

displayed for 1.6 seconds), were analysed for each stimulus using separate 

repeated measures ANOVAs.  

The number of saccadic eye movements were counted using an automatic 

saccadic detection algorithm (proprietary to faceLAB®) based on a difference in 

gaze rotation angle between two successive frames.  

The number of distance peripheral targets correctly recognized was 

counted and converted into a percentage correct value. In addition, the number 

of near targets correctly recognized (speedometer and radio) was recorded, 

rather than path length of eye and head movements due to the limited tracking 

range of the system.   

 The outcome measures were analysed using repeated measures 

ANOVAs with correction type (SV, BIF, PAL, MV and MTF CL) as the within-

subjects variable. Where Mauchly’s test was significant, and sphericity could not 

be assumed, the Greenhouse Geisser correction was used. 
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RESULTS 

Path length of eye and head movements when tracking the distance targets 

Initial multivariate ANOVA analysis indicated that the day and night results for 

eye and head movements were not significantly different (eye path length: 

mean 3.44 ± 0.27 m (SE) for day and 3.23 ± 0.22 m for night; head path length: 

mean 1.71 ± 0.17 m for day and 1.61± 0.17 m for night) and there were no 

interactions between correction type and day versus night (eye: F(4,16)=0.93, 

p=0.47; head: F(4,16)=0.56, p=0.70). In addition, no effect was found between 

the suburban and freeway driving scenes on eye (F(1,19)=2.27, p=0.15) and 

head (F(1,19)=0.561, p=0.46) path length. Therefore, all data were 

subsequently pooled.  

The type of correction worn had a significant effect on eye movements (F 

(2.59, 49.17) =6.04, p=0.002, Greenhouse-Geisser correction). The path length 

of eye movements was significantly greater when wearing BIF and PAL than 

MV and MTF CL (p≤ 0.013). Also, SV resulted in significantly more eye 

movements than MV (p=0.028) (Fig. 3).  
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Head movements were also significantly affected by the vision correction 

worn (F (2.21, 42.01) =13.95, p<0.001, Greenhouse-Geisser correction), such 

that the path length of head movements was greater when wearing PAL, BIF 

and SV than MV and MTF CL (all p<0.001). However, there were no significant 

differences in eye or head movements between the different spectacle lenses, 

even though there was a trend for greater head movements with PAL than BIF 

and the least head movement with SV (Fig. 3).  

 

Figure 3 to appear here.   

 

Number of saccades  

Overall, the effect of correction type on the number of saccades made to view 

the distance peripheral stimuli approached significance (p=0.058 with a 

Greenhouse-Geisser correction). If significance is accepted, then pairwise 

comparisons indicated that PAL and BIF resulted in a significantly greater 

number of saccades than MV (p≤ 0.043). 

 

Table 1 to appear here.  
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Accuracy of identification of distance targets  

There was no difference in the accuracy of recognition of distance peripheral 

targets between correction types (p=0.52). For all vision correction types more 

than 91% of distance targets were correctly identified with an overall mean of 

92.4 ± 1.6 (SE) % correctly identified.  

 

Accuracy of targets correctly identified for near visual display  

Vision correction type had a significant effect on the accuracy of recognizing the 

near targets (F (4, 16) =9.04, p=0.001). Pairwise comparisons revealed that 

accuracy of recognizing the digital number on the near targets was poorer with 

SV than with all other vision corrections (p≤ 0.014). Progressive addition lenses 

led to significantly better accuracy than MTF CL (p=0.043), while there was no 

difference found amongst the BIF, MV and MTF CL. Overall, the recognition 

accuracy for the speedometer target was significantly higher than for the radio 

target for all correction types (F (1, 19) =8.88, p=0.008, mean difference = 11%, 

p=0.008). However, there was no interaction between vision correction type and 

the type of near target (i.e. radio or speedometer location) (Fig. 4). 
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Figure 4 to appear here.   

 

Reaction time to brake 

There was no significant difference in braking time in response to braking of the 

reference car between vision corrections (F (4, 76) =0.80, p=0.53), with an 

overall mean braking time of 0.72 ± 0.17 seconds.   

 

DISCUSSION 

This study demonstrates that presbyopic correction wear can affect the 

extent of eye and head movements when viewing dynamic stimuli that 

represent normal driving environments. The type of correction also influences 

the accuracy of identifying targets in the near peripheral field (simulating the 

location of the radio and speedometer), but not for distance targets.  

When the participants wore a spectacle correction (including SV, BIF 

and PAL), the path lengths of head and eye movements were longer than when 

wearing presbyopic contact lenses. However, there were no significant 

differences amongst the spectacles lens types. This may be explained in part by 
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the fact that presbyopic contact lenses have a wider corrected field of view than 

presbyopic spectacle corrections.32 Also the absence of a spectacle frame in 

the peripheral field may contribute to the smaller range of head and eye 

movements required to identify peripheral targets with contact lens options, 

because the spectacle frames obscure parts of the visual field.33 Proudlock et 

al34 also failed to find significant differences in eye and head movements 

amongst SV wearers and PAL wearers. 

 Conversely, Han et al7 reported that PAL wear resulted in larger head 

movements compared with SV when reading near text, despite there being no 

significant differences in eye movements. However, in Han et al’s7 study, 

participants viewed reading materials at 60 cm, requiring them to view through 

the intermediate section of the lens (corridor) to achieve clear focus, which 

limited the visual field and increased head movements when reading horizontal 

text. Another study indicated that performance on wide field reading tasks at 

intermediate distances (64cm) was poorer when wearing PAL than SV.35 In our 

study, distance targets were presented at 2 m, allowing participants to look 

through the distance portions of the PAL, where the field of view would be 

equivalent to that of a SV lens.  
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 When comparing the day and night-time data, no significant differences 

were found in the path length of eye and head movements. Conversely, in a 

simulator study by Crundall et al,36 search patterns were greater during the day 

than the night-time for normal driving tasks, but when a car-following task was 

introduced, the search pattern was more restricted during daytime than night-

time.  

As all participants in this study were naïve wearers, having not previously 

worn a presbyopic vision correction, their results may not necessarily reflect 

those of adapted presbyopic correction wearers. There have, however, been 

only a limited number of studies which have considered how adaptation to 

presbyopic corrections might impact on performance. Han et al7 found no 

significant differences in reading eye and head movements for either adapted or 

novice PAL wearers, however, their sample size was relatively small. Hutchings 

et al37, however, found that as participants adapted to PALs wear they 

employed more head movements when undertaking a discrimination task at 

distances of 2 m and 45 cm and when reading text.  

Both MV wearers38 and MTF CL wearers39 report significantly improved 

subjective visual performance after a period of lens wear ranging from days to 
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weeks. However various objective measures of visual performance fail to show 

significant improvement over similar time periods.38-40 It is thus conceivable that 

subjects’ visual performance with presbyopic contact lens corrections do 

improve after adaptation in ways that have not yet been established. It is 

possible that this improvement in visual performance and perceptual 

adaptations may alter eye and head movement patterns in adapted wearers.  

 The increased number of saccadic eye movements made when wearing 

BIF and PAL compared to MV might be predicted to delay target recognition as 

the visual system suppresses perception during each saccade.41 Our failure to 

find any differences in the accuracy of target recognition between correction 

types may have arisen because the size of the targets was typically large 

(requiring a VA of approximately 20/125), all were conspicuous because of the 

yellow ring highlighting the target, with ample time given for target recognition. 

Previous studies have shown slight reductions in VA and contrast sensitivity 

associated with MV and MTF CL compared to spectacle lens wear.24, 42, 43 

However, these reductions are small compared to the size of the distance 

targets used in this study.  
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 Not surprisingly, more errors were made when reporting the digital 

numeric display panels (near targets) when SV distance corrections were worn 

compared to the other presbyopic corrections, but there were no significant 

differences between presbyopic corrections. Similarly Markovits,44 found the 

accuracy of target recognition at 280cm, 83cm and 40cm was not affected by 

either PAL or BIF wear for targets within the central 10.6°, even though PALs 

resulted in a significantly shorter time to recognize the target at the intermediate 

viewing distance (83cm). Instead, the location of near targets is a more 

important factor. When the near target was located vertically downwards 

(speedometer), recognition accuracy was higher than when the near target was 

located both vertically downward and horizontally to the left (radio). Wittman et 

al45 also found that when the display is not positioned near the line of sight, it 

can have a detrimental effect on reaction times. This finding has implications for 

the in-vehicle environment as the number of in-vehicle devices, such as 

navigation and audio systems, is increasing. These devices are often controlled 

by touch, which requires eye, head and hand coordination. Under normal 

driving conditions, if more time is spent looking at areas other than the forwards 

scene, and at least one hand is used for controlling devices rather than steering, 
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the driver will have less ability to avoid potential collisions. Therefore, not only is 

attention divided amongst several tasks (poor divided attention ability is known 

to be associated with unsafe driving),46 but the time required to physically bring 

fixation back to the forward traffic scene and the hands to the appropriate 

steering movements may be enough to affect response times when a hazard 

appear, given that slower response times are associated with unsafe driving.46  

 Reaction times to the onset of the reference car braking light were not 

significantly different between correction types in this study. Brown et al47 also 

found no difference in reaction times when wearing six types of presbyopic 

contact lens correction, BIF and trifocal spectacle lenses, where participants 

were required to report the configuration of three-dot LED targets at three 

different distances.  

Real-world driving involves the processing of a combination of sensory 

inputs including visual, auditory, vestibular and tactile. The difference between 

the simulated laboratory environment and the real driving condition is an 

important limitation of this study. For example, the simulation used in this study 

did not seek to replicate the sensation of vehicle motion experienced while 

driving and the visual representation of the night-time driving environment lacks 
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fidelity in terms of the glare and reduced contrast experienced under these 

conditions. However, the data from this study provides high quality eye and 

head movement data for participants viewing footage of real driving scenes 

when wearing different presbyopic corrections. This study thus provides 

important baseline data and motivation for future studies undertaken in real 

world driving environments aimed at better understanding the role of presbyopic 

corrections on driving performance and to investigate these effects in both 

adapted and unadapted wearers. 

 

CONCLUSIONS 

Different presbyopic vision corrections can alter eye and head movement 

patterns in a simulated driving environment. The larger eye and head 

movements resulting from different corrections may negatively impact on the 

driver’s attentional load and reaction times. As aging is associated with 

increased restrictions in eye and head movements,34, 48 this may make it 

physically more difficult for older drivers who have impaired oculomotor and 

head function to make the larger eye and head movements required by some 

presbyopic corrections during driving. Higher numbers of saccades may also 



 32

impact on target recognition, because of suppression of perception during 

saccades. Moreover, although driving is mainly a distance vision task, frequent 

gaze changes occur to view in-vehicle devices and these need to be considered 

when prescribing presbyopic vision corrections. The effect of different 

presbyopic vision corrections on real world driving performance and older driver 

characteristics is therefore an important area for further research.  
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Figures Legend  

 

FIGURE 1. Experimental set-up and relative location of screen and near targets 

  

FIGURE 2. Eye and head movement paths superimposed on the scene as 

viewed by a typical participant when looking at the speed limit sign (peripheral 

target indicated by the yellow ring). The blue circles indicate eye position and 

the red triangles indicate head position. 

 

FIGURE 3. Mean (SE) of path length of eye and head movement when looking 

at distance targets (SV=Single vision lenses, BIF=Bifocal spectacle lenses, 

PAL=Progressive addition lenses, MV=Monovision, and MTF CL=Multifocal 

contact lenses) 

 

FIGURE 4. Mean (SE) of accuracy of targets correctly recognized for near 

digital numeric display  
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Table Legend 

Table 1. Means (SD) of measures 


