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Abstract. We present a novel approach for preprocessing systems of
polynomial equations via graph partitioning. The variable-sharing graph
of a system of polynomial equations is defined. If such graph is discon-
nected, then the corresponding system of equations can be split into
smaller ones that can be solved individually. This can provide a tremen-
dous speed-up in computing the solution to the system, but is unlikely
to occur either randomly or in applications. However, by deleting certain
vertices on the graph, the variable-sharing graph could be disconnected
in a balanced fashion, and in turn the system of polynomial equations
would be separated into smaller systems of near-equal sizes. In graph the-
ory terms, this process is equivalent to finding balanced vertex partitions
with minimum-weight vertex separators. The techniques of finding these
vertex partitions are discussed, and experiments are performed to eval-
uate its practicality for general graphs and systems of polynomial equa-
tions. Applications of this approach in algebraic cryptanalysis on sym-
metric ciphers are presented: For the QUAD family of stream ciphers, we
show how a malicious party can manufacture conforming systems that
can be easily broken. For the stream ciphers Bivium and Trivium, we
achieve significant speedups in algebraic attacks against them, mainly
in a partial key guess scenario. In each of these cases, the systems of
polynomial equations involved are well-suited to our graph partitioning
method. These results may open a new avenue for evaluating the security
of symmetric ciphers against algebraic attacks.

1 Introduction

There has been a long history of the use of graph theory in solving systems of
equations. Graph partitioning techniques are applied to processes such as re-
ordering variables in matrices to reduce fill-in for sparse systems [19, Ch. 7] and
partitioning a finite element mesh across nodes in parallel computations [42].
These techniques primarily focus on linear systems over the real or complex
numbers. In this paper, we apply similar graph theory techniques to systems of



multivariate polynomial equations, and develop methods of partitioning these
systems into ones of smaller sizes via their “variable-sharing” graphs. These
techniques are intended to work over any field, finite or infinite, but are particu-
larly suited to GF(2) for use in algebraic cryptanalysis of symmetric ciphers. In
most algebraic cryptanalysis, the symmetric ciphers are described by systems of
polynomial equations over GF(2) or its algebraic extensions. The graph theory
methods introduced in this paper can be used to improve the efficiency of solving
these systems of equations, which would translate to a reduction of the security
of these ciphers. This will be exemplified with the QUAD [9], Bivium [48] and
Trivium [20] stream ciphers.

Computing the solution to a system of multivariate polynomial equations is
an NP-hard problem [5, Ch. 3.9]. A variety of solution techniques have been de-
veloped for solving these polynomial systems over finite fields, such as lineariza-
tion and XL [18], Gröbner bases, and resultants [6, Ch. 12], as well as recent
ones such as SAT-solvers [7], Vielhaber’s AIDA [50], Raddum-Semaev method
[47], and the triangulation algorithm [35]. Over the real and complex numbers,
numerical techniques are also known, but require the field to be ordered and
complete—GF(2) is neither. The graph partitioning method introduced in this
paper could be a novel addition to the variety of methods available, principally
as a preprocessor.

From a multivariate polynomial system of equations, a variable-sharing graph
is constructed with a vertex for each variable in the system, and an edge between
two vertices if and only if those variables appear together in any equation in the
system. Clearly, if the graph is disconnected, the system can be split into two sep-
arate systems of smaller sizes, and they can be solved for individually. However,
even if the graph is connected, we show that it may be possible to disconnect the
graph by eliminating a few variables by, for example, guessing their values when
computing over a small finite field, and thereby splitting the remaining system.
This suggests a divide-and-conquer approach to solving systems of equations.
When the polynomial terms in the system of equations are very sparse, we show
that the system can usually be reduced to a set of smaller systems, whose solu-
tions can be computed individually in much less time. It should be noted that
for large finite fields, and infinite fields as well, the technique of resultants can
be used to achieve similar objectives [53].

In order for a partition of a system to be productive, the minimum number
of variables should be eliminated, and the two subsystems must be approxi-
mately equal in size. This ensures that the benefit of partitioning the system is
maximised. These conditions lead to the problem of finding a balanced vertex
partition with a minimum-weight vertex separator on its variable-sharing graph,
which is an NP-hard problem [31, 43]. Nevertheless, heuristic algorithms can
often find near-optimal partitions efficiently [32].

In this paper, we offer two cryptographic applications of vertex partitioning
arising from the algebraic cryptanalysis of stream ciphers, where both achieve
positive results. First, we describe a method whereby a manufacturer of a sparse
implementation of QUAD [9], a provably-secure infinite family of stream ciphers,



could “poison” the polynomial system in the cipher, and thereby enable messages
transmitted with it to be read by the manufacturer. Second, we present an
algebraic cryptanalysis of Trivium [20], a profiled stream cipher in the eSTREAM
project, as well as its reduced versions Bivium-A and Bivium-B, and discuss the
implications of graph partitioning methods on solving the corresponding systems
of equations. Improvements to partial key guess attacks against Trivium and
Bivium are observed.

Section 2 introduces the necessary background in graph theory and graph
partitioning. Section 3 shows how a system of polynomial equations can be split
into ones of smaller sizes using graph partitioning methods. Section 4 provides
results for some partitioning experiments and analyses the feasibility of equation
solving via graph partitioning methods. Section 5 presents the applications of
graph partitioning methods on the algebraic cryptanalysis of QUAD, Bivium
and Trivium. Conclusions will be drawn in Section 6. In Appendix A, we discuss
the possibility for vertex connectivities of variable-sharing graphs becoming a
security criterion for symmetric ciphers.

2 Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. Two vertices
vi, vj ∈ V are connected if there is a path from vi to vj through edges in E.
A disconnected graph is a graph where there exists at least one pair of vertices
that is not connected, or if the graph has only one vertex. A graph G1 = (V1, E1)
with vertex set V1 ⊆ V and edge set E1 ⊆ E is called a subgraph of G. Given
a graph G, subgraphs of G can be obtained by removing vertices and edges
from G. Let G = (V,E) be a graph with k vertices and l edges, such that
V = {v1, v2, . . . , vk−1, vk}, E = {(vi1 , vj1), (vi2 , vj2), . . . , (vil

, vjl
)}. Removing a

vertex vk from V forms a subgraph G1 = (V1, E1) with V1 = {v1, v2, . . . , vk−1}
and E1 = {(vi, vj) ∈ E | vk /∈ {vi, vj}}. We call G1 the subgraph of G induced
by the vertex set (V − {vk}).

Let G1 = (V1, E1) and G2 = (V2, E2) be two subgraphs of G. G1, G2 are
considered disjoint if no vertices in G1 are connected to vertices in G2. Clearly,
the condition V1 ∩ V2 = ∅ is necessary but insufficient.

2.1 Graph Connectivity

The goal of partitioning a graph is to make the graph disconnected by removing
some of its vertices or edges. The number of vertices or edges that needs to be
removed to disconnect a graph are its vertex- or edge-connectivities respectively.

Definition 2.1. The vertex connectivity κ(G) of a graph G is the minimum
number of vertices that must be removed to disconnect G.

Definition 2.2. The edge connectivity λ(G) of G is the minimum number of
edges that must be removed to disconnect G.



Clearly, a disjoint graph has vertex connectivity zero. On the other extreme,
a complete graph Kn, where all n vertices are connected to each other, has
vertex connectivity (n − 1). The removal of all but one vertex from Kn results
in a graph consisting of a single vertex, which is considered to be disconnected.

2.2 Graph Partitioning

The process of removing vertices or edges to disconnect a graph is called ver-
tex partitioning or edge partitioning respectively. All non-empty graphs admit
trivial vertex and edge partitions, where all connections to a single vertex are
removed. This is obviously not useful for most applications. In this paper, we
only consider balanced partitions with minimum-weight separators, in which a
graph is separated into subgraphs of roughly equal sizes by removing as few
vertices or edges as possible. More specifically, our primary focus is on balanced
vertex partitions.

Definition 2.3. Let G = (V,E) be a graph. A vertex partition (V1, C, V2) of
G is a partition of V into mutually exclusive and collectively exhaustive sets of
vertices V1, C, V2, where V1, V2 are non-empty, and where no edges exist between
vertices in V1 and vertices in V2. The removal of C causes the subgraphs induced
by V1 and V2 to be disjoint, hence C is called the vertex separator.

For a balanced vertex partition, we require V1 and V2 to be of similar size.
For a minimum-weight separator, we also require that C be small. This is to
ensure that the vertex partition obtained is useful for applications.

Definition 2.4. Let G = (V,E) be a graph, and (V1, C, V2) be a vertex partition
of G with vertex separator C. If max(|V1|, |V2|) ≤ α|V |, then G is said to have
an α-vertex separator.

The problem of finding α-vertex separators is known to be NP-hard [31, 43].

Definition 2.5. Let G = (V,E) be a graph. If (V1, C, V2) is a vertex partition
of G, then define

β =
max(|V1|, |V2|)

|V1| + |V2|
=

max(|V1|, |V2|)

|V | − |C|
=

α|V |

|V | − |C|

to be the balance of the vertex partition. Note further if |C| ≪ |V | then α ≈ β.

Suppose the balance of a vertex partition of G into (V1, C, V2) is β, then the
partition also satisfies max(|V1|, |V2|) = β(|V1| + |V2|) ≤ β|V |, and hence the G
has a β-vertex separator. Therefore, theorems that apply to α-vertex separators
would also apply to vertex partitions with balance β. See [43] for more details
of α-vertex separators. Several theorems governing the existence of α-vertex
separators have been shown in [3, 27, 38, 41].

Figure 1 presents examples of balanced and unbalanced partitions, and their
respective β values. The vertex separators C are circled, with the partitioned
vertices V1, V2 outside. The removal of the vertices in the separators disconnects
the graphs. For a balanced partition, β should be close to 1/2.
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Fig. 1. Balanced and Unbalanced Vertex Partitions

2.3 Partitioning Algorithms and Software

While balanced partitioning is an NP-hard problem, a variety of heuristic algo-
rithms have been found to be very efficient in finding near-optimal partitions.

One efficient scheme for balanced graph partitioning is called multilevel par-
titioning. Suppose a graph G0 is to be partitioned. Firstly, G0 “coarsened”
progressively into simpler graphs G1, G2, . . . , Gr by contracting adjacent ver-
tices. The process of choosing vertices for contraction is called matching. After
reaching a graph Gr with the desired level of simplicity, a partitioning is per-
formed. The result is then progressively refined back through the chain of graphs
Gr−1, Gr−2, . . . , G0. At each refining step, a contracted vertices are expanded
and partitioned. The output is then a partition of G0. Details of multilevel
partitioning can be found in [30, 32]. Examples of partitioning and refinement
algorithms include the ones by Kerighan-Lin [34] and Fiduccia-Mattheyses [25].

Balanced edge partitioning is widely used in scientific and engineering appli-
cations, such as electric circuit design [49], parallel matrix computations [37], and
finite element analysis [42]. Software packages are readily available for computing
balanced edge partitions using a variety of algorithms [8, 11, 26, 29, 44, 45, 51].
On the other hand, balanced vertex partitioning has fewer applications, one of
which being variable reordering in linear systems [19]. We are not aware of pub-
licly available software that could be used for directly computing balanced vertex
partitions with minimum-weight vertex separators.

This is also true for multilevel vertex-partitioning algorithms. Therefore, we
have chosen to compute vertex partitionings through the use of the multilevel
edge-partitioning software Metis [33] for our study. The Matlab interface Mesh-
part [28] to Metis is used to access the algorithms. It also contains a routine to
convert an edge partition found by Metis to a vertex partition. We have also
implemented an alternative greedy algorithm for this task. Both are used for
the experiments in Section 4 and for the algebraic cryptanalysis of Trivium in
Section 5.2.

Unless otherwise stated, from here on we will only consider the problem of
balanced vertex partitioning with minimum-weight vertex separators (sometimes
simply referred to as vertex partitioning or partitioning) and its applications to
solving systems of multivariate polynomial equations.



3 Partitioning Polynomial Systems

In this section, our method for partitioning systems of multivariate polynomal
equations by finding balanced vertex partitions of their variable-sharing graphs
is described.

Definition 3.1. Let F be the polynomial system

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fm(x1, x2, . . . , xn) = 0

of m polynomial equations in the variables x1, x2, . . . , xn. The variable-sharing
graph G = (V,E) of F is obtained by creating a vertex vi ∈ V for each variable
xi, and creating an edge (vi, vj) ∈ E if two variables xi, xj appear together (with
non-zero coefficient) in any polynomial fk.

Example 3.1. Suppose we have the following quadratic system of equations over
GF(2), where the variables x1, x2, . . . , x5 are known to take values in GF(2).

x1x3 + x1 + x5 = 1

x2x4 + x4x5 = 0

x1x5 + x3x5 = 1

x2x5 + x2 + x4 = 0

x2 + x4x5 = 1

(1)

The corresponding variable-sharing graph G and a balanced vertex partition is
shown in Figure 2.

v4v3

v2v1

v5 v4v3

v2

v5

v1

V1 C V2G(V,E)

vertex

partition

Fig. 2. Variable-sharing graph of the quadratic system (1) and a vertex partition.

The quadratic system can then be partitioned into two systems of equations
with the common variable x5 as follows.

x1x3 + x1 + x5 = 1 x2x4 + x4x5 = 0

x1x5 + x3x5 = 1 x2x5 + x2 + x4 = 0

x2 + x4x5 = 1

(2)



Since x5 ∈ GF(2), we can substitute all possible values of x5 into (1) and compute
solutions to the reduced systems to give

x5 = 0 ⇒ no solution

x5 = 1 ⇒ (x1, x3) = (0, 1), (x2, x4) = (1, 0)

⇒ x = (0, 1, 1, 0, 1)

The solution obtained is the same as if we had directly computed the solution to
the full system of equations. However, the systems have been reduced to having
less than half the number of variables compared to the the original, at the cost
of applying guesses to one variable.

This method of guessing and solving will be used for the algebraic crypt-
analysis of the Trivium stream cipher in Section 5. For simplicity, from here
on we might use the terms for variables and vertices interchangeably to denote
the variables in the polynomial systems of equations and their corresponding
vertices in the variable-sharing graphs, provided there are no ambiguities.

4 Graph Partitioning Experiments

To evaluate the practicality of partitioning large systems of equations, experi-
ments have been performed on random graphs of different sizes resembling typ-
ical variable-sharing graphs. These experiments were run on a Pentium M 1.4
GHz CPU with 1 GB of RAM using the Meshpart [28] Matlab interface to the
Metis [33] partitioning software.

Definition 4.1. Let G = (V,E) be a graph. The degree deg(v) of a vertex v ∈ V
is the number of edges e ∈ E incident upon (connecting to) v.

Definition 4.2. The density ρ(G) of a graph G = (V,E) is the ratio of the
number of edges |E| in G to the maximum possible number 1

2
|V |(|V | − 1) of

edges in G.

In each experiment, random graphs G = (V,E) are generated, each with
prescribed number of vertices |V |, number of edges |E|, and average degree d
of its vertices. Their densities ρ are also computed. For each graph, a vertex
partition is performed to give (V1, C, V2), where C is the vertex separator. The
balance measure β is then computed, and the time required is also noted. Some
experimental results are shown in Table 1.

It can be observed from Table 1 that the graph of β is likely to be correlated
with the average degree d of the graphs. Small vertex separators can be obtained
when the number of edges is a small factor of the number of vertices. At d = 16,
the value of β is near its upper bound of 1, which means that those partitions
are unlikely to be useful. Since the maximum number of edges for a graph of size
n is O(n2), the edge density must be smaller with a larger graph for practical
partitions. This is a reasonable assumption for polynomial systems, since certain
sparse systems have only a small number of variables in each equation, regardless



Table 1. Vertex Partitioning Experiments

|V | |E| ρ d |C| |V1| |V2| β Time

64 64 0.0308 2 5 31 28 0.5254 61.26 ms

64 128 0.0615 4 15 30 19 0.6122 63.06 ms

64 256 0.1231 8 26 28 10 0.7368 80.95 ms

64 512 0.2462 16 32 3 29 0.9063 67.36 ms

128 128 0.0155 2 7 64 57 0.5289 64.80 ms

128 256 0.0310 4 28 60 40 0.6000 66.73 ms

128 512 0.0620 8 55 45 28 0.6164 63.27 ms

128 1024 0.1240 16 62 63 3 0.9545 83.51 ms

1024 1024 0.0020 2 51 508 465 0.5221 74.58 ms

1024 2048 0.0039 4 222 482 320 0.6010 90.05 ms

1024 4096 0.0078 8 418 355 251 0.5858 113.66 ms

1024 8192 0.0156 16 509 511 4 0.9922 168.55 ms

4096 4096 0.0005 2 183 2039 1874 0.5211 122.48 ms

4096 8192 0.0010 4 877 1903 1316 0.5912 175.20 ms

4096 16384 0.0020 8 1697 1539 860 0.6415 289.24 ms

4096 32768 0.0039 16 2037 2047 12 0.9942 548.75 ms

of the total number of variables in the system. This fact is true for the case of
Trivium in Section 5. One could say that the weight or length (i.e. the number
of terms) of the polynomials should be short for useful cuts to be guaranteed.

It is also noted that the time required to compute vertex partitions are quite
short for the practical graph sizes considered. Therefore, we can safely assume
that the time complexity of the partitioning algorithm is negligible compared to
that required to solve the partitioned equation systems, which in the worst case
is exponential in the number of variables and the maximum degree.

5 Applications to Algebraic Cryptanalysis

A bit-based stream cipher can be thought of as an internal state s ∈ GF(2)n

and two maps, g : GF(2)n → GF(2)n and f : GF(2)n → GF(2). At each clock
tick, st+1 = g(st), and so g can be called the state-update function. Also at
each clock tick f(st) = zt is outputted, and this is called the keystream. Given
plaintext bits p1, p2, . . ., the stream cipher encrypts them using the keystream
into ciphertext bits c1, c2, . . . via ct = pt+zt, with the addition being over GF(2).

At the start of an encryption, a key-initialisation phase would take place,
whereby a secret key k and a known initialisation vector IV are used to set s to
its secret initial state s0. The cipher then begins its keystream generation phase,
and outputs a series of keystream bits z1, z2, . . ., as explained above.

By the Universal Mapping Theorem [6, Th. 72], since f and g are maps
from finite sets to finite sets, we know that they can be written as polynomial
systems of equations over any field, but GF(2) is most useful to us. Since stream
ciphers are traditionally designed for implementation in digital circuits, where



there are economic motivations to keep the gate-count low, f and g can often
be represented by very simple polynomial functions. Then, if both pt and ct

are known for enough timesteps, one can write a system of equations based on
zt = pt + ct using f and g. This forms the foundation of algebraic cryptanalysis.

To perform an algebraic cryptanalysis of the stream cipher, the cipher is first
described as a system of equations. Its variables usually correspond to the bits
in the key k or the initial state s0. If the variables are from k, solving the system
is called “key recovery”, and the cipher is immediately broken. If the variables
are from s0, solving the system is called “state recovery”, and the key could be
derived from the solution, whose difficulty depends on the specific cipher design.

Every attack on every cipher has its nuances, and so above description is nec-
essarily vague. For an overview of algebraic cryptanalysis, see [6]. For techniques
of algebraic cryptanalysis on specific types of ciphers, see [17, 16, 15, 2, 54]. Some
uses of graph theory for algebraic attacks can also be found in [48, 52]. In this
section, two applications of our equation partitioning to algebraic cryptanaly-
sis are presented. Firstly, we show a malicious use of the stream cipher QUAD
[9]. Then, we describe and perform an algebraic cryptanalysis to the stream
cipher Trivium [20] and its variants Bivium-A and Bivium-B [48]. We discuss
only the equations arising from the cipher, and refer the reader to the respective
references of these ciphers for their design and implementation details.

5.1 QUAD

The stream-cipher family QUAD is given in [9]. The security of QUAD is based
on the Multivariate Quadratic (MQ) problem. The heart of the cipher is a ran-
dom system of kn quadratic equations in n variables over a finite field GF(q).
Usually, we have q = 2, but implementations with q = 2s have also been dis-
cussed [55]. This system of equations is not secret, but publicly known, and there
are criteria for these equations, such as those relating to rank, which we omit
here. In a different context, QUAD has been analyzed in [55, 4], and [6, Ch. 5.2].

Equations of QUAD The authors of QUAD recommend k = 2 and n ≥ 160, so
it is assumed that we have a randomly generated system of 2n = 320 equations in
n = 160 unknowns. The system is to be drawn uniformly from all those possible,
which is to say that the coefficients can be thought of as generated by fair coins.

Each quadratic equation is a map GF(2)n → GF(2), so the first set of n
equations form a map GF(2)n → GF(2)n called f1, and the second set of n
equations also form a map of the same dimensions called f2. The internal state
is a vector s of 160 bits. The first 160 equations are evaluated at s, and the
resulting vector f1(st) = st+1 becomes the new state. The second 160 equations
are evaluated to become the output of that timestep zt = f2(st). The vector zt is
added to the next n bits of the plaintext pt over GF(2), and is transmitted as the
ciphertext ct = pt +zt. (Each bit is added independently, without carries.) There
is also an elaborate setup stage which maps the secret key and an initialization
vector to the initial state s0.



Finding a pre-image under the maps f1, f2 i.e. finding si given si+1 and zi, is
equivalent to solving a quadratic system of 2n equations in n unknowns, and is
NP-hard [5, Ch. 3.9]. This is further complicated by the fact that the adversary
would not have si+1, but rather only zi + pi.

Given a known-plaintext scenario, where the attacker knows both the plain-
text p1, p2 . . . , pn and ciphertext c1, c2, . . . , cn, one can write the following system
of equations.

c1 + p1 = z1 = f2(s1)

c2 + p2 = z2 = f2(s2) = f2(f1(s1))

... =
...

ct + pt = zt = f2(st) = f2(f1(f1(f1(· · · f1(
︸ ︷︷ ︸

t−1 times

s1) · · · ))))

The interesting fact here is that f2(f1(f1(· · · f1(s1) · · · )))) and higher iterates
might be quite dense even if f1 is sparse. The authors of QUAD have excellent
security arguments when the polynomial system is generated by fair coins. In this
case, the variable-sharing graph of the cipher will have density close to that of a
complete graph, and our graph partition method will have little use. However,
it will have on average 6440.5 monomials per equation or roughly 2 million in
the system, which would require a large gate count or would be slow in software.
Thus, in their conference presentation, the authors of QUAD mention that a
slightly sparse f might still be secure against algebraic attacks, because of the
repeated iterations and the general difficulty of the MQ problem. Nevertheless, in
this case, if a sparse system can be chosen such that it contains a small balanced
vertex separator, then the cipher can be made insecure by a malicious attacker
as follows.

Poisoned Equations and QUAD One could imagine the following scenario,
which is inspired by Jacques Patarin’s system “Oil and Vinegar” [36]. A malicious
manufacturer does not generate the system at random, but rather creates a
system that is sparse and has vertex connectivity of 20, for some vertex partition
with β ≈ 0.6. Our experiments in Section 4 show that this is a feasible partition.
The malicious manufacturer would claim that the system is sparse for efficiency
reasons and it might have a considerably faster encryption throughput than a
QUAD system with quadratic equations generated by fair coins.

Some separator of 20 vertices divides the variable sharing graph into roughly
56 and 84 vertices. This means that an attacker would need only to know the
plaintext and ciphertext of one 160-bit sequence, and solve the equation

f2(f1(f1(· · · f1(f1(
︸ ︷︷ ︸

i−1 times

s1)) · · · ))) = pt + ct

.



For any guess of the key, this would be solving 56 equations in 56 unknowns
and 84 equations in 84 unknowns. Such a problem is certainly trivial for a SAT-
solver, as shown in [7], [5, Ch. 3] and [6, Ch. 7]. Only 220 such systems would
need to be solved, and with a massive parallel network, such as BOINC [1], this
would be feasible [12], although experiments would be required for confirmation.

Remedy to Poisoned Systems for QUAD While finding a balanced vertex
partition of a graph G is NP-hard, calculating the vertex connectivity κ(G) is
easier. If κ(G) > 80, for example, then there is no vertex partition, balanced or
otherwise, with fewer than 80 vertices in the vertex separator. Then, by calcu-
lating κ(G), a manufacturer of QUAD could prove that they are not poisoning
the quadratic system. There are also techniques to generate functions with veri-
fiable randomness [14], which could be used to construct polynomial systems of
equations for QUAD, such that they are provably not poisoned.

5.2 Trivium

Trivium [20] is a bit-based stream cipher in the eSTREAM project portfolio for
hardware implementation with an 80-bit key, 80-bit initialization vector, and a
288-bit internal state. As at the end of the eSTREAM project, after three phases
of expert and community reviews, no feasible attacks faster than an exhaustive
key search on the full implementation of Trivium were found. However, Trivium
without key initialisation, as well as its reduced versions Bivium-A and Bivium-
B with a 177-bit internal state, admit attacks faster than exhaustive key search.
Cryptanalytic results on Trivium and Bivium have been presented in [10, 21, 22,
23, 39, 40, 46, 50].

Equation Construction The equations governing keystream generation from
the initial state s0 can be found in [20] for Trivium and [48] for Bivium. In
the algebraic cryptanalysis presented in this paper, we do not consider the ini-
tialisation phase from the key k and initialisation vector IV , and hence we are
performing state recovery of the cipher.

Trivium can be described as a system of 288 multivariate polynomial equa-
tions in 288 variables, but we found that this is too dense for partitioning to
be useful. Instead, we use the system of quadratic equations presented in [48],
which contains more variables, but is very sparse. The quadratic system of Triv-
ium consists of 954 sparse quadratic equations in 954 variables, and observed
keystream from 288 clocks. Similarly, the polynomial system of Bivium-A and
Bivium-B consists of 399 sparse quadratic equations in 399 variables, and ob-
served keystream from 177 clocks. We attempt to solve these equations via par-
titioning.

Equation Partitioning The sparse quadratic equations for Trivium and Bivium
are constructed as per [48], and their variable-sharing graphs are then computed.



Figure 3 shows the adjacency matrix for the variable-sharing graph of Trivium.
The sparsity of this matrix appears promising for a reasonable partition. Graphs
for Bivium are of similar sparsity.
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Fig. 3. Graph Adjacency Matrix of Trivium Equations

Partitioning these variable-sharing graphs G = (V,E) into vertex sets V1, V2

and vertex separator C with [33] as in Section 4 gives the results shown in
Table 2. From these results, it seems that both of the Bivium ciphers admit very

Table 2. Partitioning Equations of Bivium-A, Bivium-B and Trivium

State Number of
Cipher Size Variables |C| |V1| |V2| β

Bivium-A 177 399 96 156 147 0.5149

Bivium-B 177 399 14 128 127 0.5020

Trivium 288 954 288 476 190 0.7147

balanced partitions, whereas Trivium did not. Nevertheless, using our alternative
greedy algorithm for converting edge partitions from the Metis software to vertex
partitions, we were able to find a balanced partition for Trivium with |C| = 295
and β ≈ 0.5, at the cost of having a larger vertex separator.

The sizes of the vertex separators C are the number of variables that must
be eliminated to separate the systems into two. In algebraic attacks, this corre-
sponds to the number of variables whose values are to be discovered or guessed
at a complexity of 2|C|. The process of guessing certain bits in order to find a
solution is called partial key guessing. If the guessed bits are correct, then solving
the remaining system would lead to the solution.



Table 3. Partial Key Guessing on Trivium and Bivium

Cipher All Guesses in |C| n m q Time Memory

Bivium-A No 24 422 193 26 s 42 MB

Bivium-A No 20 421 200 195 s 234 MB

Bivium-A No 18 417 203 2558 s 843 MB

Bivium-A Yes 18 417 195 80 s 127 MB

Bivium-A Yes 16 415 201 1101 s 751 MB

Bivium-A Yes 14 413 202 2023 s 1200 MB

Bivium-B No 80 479 143 392 s 1044 MB

Bivium-B No 78 477 146 740 s 1044 MB

Bivium-B No 76 475 141 1213 s 1044 MB

Bivium-B Yes 70 469 132 12 s 62 MB

Bivium-B Yes 66 465 136 623 s 546 MB

Bivium-B Yes 62 461 141 3066 s 1569 MB

Trivium No 280 1333 329 13 s 80 MB

Trivium No 272 1224 343 155 s 554 MB

Trivium No 264 1217 344 594 s 1569 MB

Trivium Yes 178 1130 499 18 s 596 MB

Trivium Yes 176 1127 499 4511 s 1875 MB

Trivium Yes 174 1126 501 10543 s 3150 MB

For Trivium, the separator size is at least the internal state size, so a partition
on the equation system is not useful, as guessing the variables in the separator is
as costly as an exhaustive search on the initial state. For Bivium and Bivium-A,
the separator sizes are less than the internal state size, but larger than the key
size of 80-bits. This means that the time complexity of partial key guessing on
all bits of the separators would be higher than that of a brute-force search on
the key, but lower than a brute-force search on the initial state.

Partial Key Guessing and Perforated Systems However, we can attempt
to guess fewer bits than the size of the separator C. The remaining system would
not be separated, but it can still be solved. Since it is close to being partitioned,
we will call such systems “perforated”. We have discovered by experiments that
partial key guesses on subsets of bits in C provide significant advantages over
those on random bits, in that the reduced polynomials systems are much eas-
ier to solve. The experiments were performed using Magma 2.12 [13] with its
implementation of the Gröbner basis algorithm F4 [24] for solving the reduced
polynomial systems. The results are shown in Table 3, where n is the number of
bits guessed, m is the number of equations resulting from the guess, with q of
them being quadratic. Correct guesses are always used to reduce the polynomial
systems, which means that the time and memory use presented are for solving
the entire system arriving at a unique solution. All values are averaged over 10
individual runs.



The experimental results show that the time required for partial key guess-
ing on n bits is reduced significantly if those bits are taken from the separator.
This means that, by finding partitions to the system of equations, we have re-
duced the resistance of these ciphers to algebraic cryptanalysis, since a feasible
partial-key-guess attack can potentially be launched on fewer bits with this ex-
tra information. For example, with Bivium-B, the time to compute a solution
by guessing 78 bits randomly is roughly equivalent to that by guessing 66 bits in
the separator. Hence, the time complexity for an attack on Bivium-B is reduced
from 278TB to 266TB with the use of the separator, where TB denotes the time
complexity required to compute a solution to a reduced system of Bivium-B.
For Trivium, the improvement is even more pronunced. The time complexity
could be reduced from 2280TC to 2178TC , which TC denotes the time complexity
required to compute a solution to a reduced system of Trivium.

In an actual algebraic attack, many of the guesses will result in inconsistent
equations with no solutions, which can be checked and discarded easily. This
means that the time required to process a guess is at most TB or TC . A full
attack attempt was launched on Bivium-A with a partial key guess on 20 bits
in its separator. About 200, 000 guesses of out the possible 220 were made, with
each guess taking on average about 0.15 seconds to process. This is much faster
than the 45 seconds required from the experimental results to process a correct
guess to completion.

Although the time complexity for the algebraic attack on Trivium is signif-
icantly reduced through our partitioning method, it is still much higher than
that of exhaustive key search, which is 280. On the other hand, this method
applied on Bivium-A and Bivium-B may be faster than exhaustive key search,
depending on the time complexity of solving the reduced equation systems.

A Bit-Leakage Attack There is another scenario whereby the graph parti-
tioning would provide an advantage to algebraic cryptanalysis. Suppose by some
means, accidental or deliberate, some bits of the internal state of a cipher could
be leaked to an attacker. This would occur in a side-channel attack setting. If
the attacker could control which bits are leaked, then the best choices would be
those variables in the separator. If all bits in the separator are leaked, then the
equation system is immediately split into two, and the time complexity of solving
for the remaining bits is significantly reduced. If only some bits in the separator
are leaked, we have shown in the earlier experiments that this leads to faster
attacks than if an equal amount of random bits are leaked. This also means that
if bits can be leaked from the separator, fewer of them would be needed before
the system of equations can be solved in a reasonable time, compared to the case
where bits are leaked randomly.

6 Conclusions

In this paper, the concept of a variable-sharing graph of a system of polynomial
equations was defined. It has been shown that this concept can be used to break



systems of polynomial equations into pieces, which can be solved separately,
provided that the graph has a vertex partition satisfying various requirements:
namely that the vertex separator should be small, and the partition should be
balanced. We also presented methods for finding the partition, and methods for
using the partition to solve polynomial systems of equations over GF(2).It has
been shown that balanced vertex partitions are feasible to obtain for some sparse
systems of polynomial equations. Experiments on random graphs of reasonable
size and sparsity, resembling variable-sharing graphs of equation systems, have
been performed.

The practicality of this partitioning technique has been demonstrated in the
algebraic cryptanalysis of the stream cipher Trivium and its reduced versions,
where we have found balanced partitions of useful sizes. These partitions pro-
vide information for launching more effective algebraic attacks with partial key
guessing, and improves the attack time by at least a few orders of magnitude.
Furthermore, we show how the partitioning technique can be used to poison
the provably secure stream cipher QUAD, so that a malicious manufacturer can
recover the keystream much more efficiently.

As discussed earlier, this paper has provided a novel technique for preprocess-
ing large sparse systems of equations, which could be used together with popular
techniques such as Gröbner basis methods to significantly reduce the time for
computing solutions to these systems. It has also been shown that this technique
provides improvements to algebraic cryptanalysis, and further research into this
area is warranted, since there may be security implications for other ciphers that
are susceptible to this technique.
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A New Criterion for Symmetric Ciphers?

In this paper, we have shown that the graph partitioning method works partic-
ularly well when the equation systems describing these ciphers are sparse. This,
in turn, means that the vertex connectivities of their variable-sharing graphs are
low. Therefore, for maximum protection against an algebraic attack of this kind,
a cipher should be designed such that its variable-sharing graph is close to being a
complete graph, and hence does not admit any useful balanced vertex partition.
The vertex connectivity could become the measure of this criterion, although
care must be taken to account for the effects of variable relabelling techniques.
Further research would be needed to refine this possible new criterion.


