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ABSTRACT 

A model for average travel time estimation on signalized urban networks by integrating 

cumulative plots with probe vehicle information is presented. The integration is performed 

with the aim to reduce the relative deviations in the cumulative plots occurred due to mid-link 

sources/sinks. During under-saturated traffic conditions, concept of virtual probe is 

introduced and the accurate travel time can be obtained even with unavailability of real probe. 

For saturated and over-saturated traffic conditions and travel time estimation interval of 360 

seconds: only one probe per estimation interval or 3% of vehicles traversing the link as 

probes has the potential to provide accurate travel time.  

Keywords: Urban travel time, Cumulative plots, Probe vehicles 

 

INTRODUCTION 

Reducing congestion maximizes the efficiency and capacity of the network. Travel time 

information has the potential to reduce congestion on both temporal and spatial scale. For the 

efficient management of the whole network, monitoring traffic conditions of the urban routes 

in addition to the freeways is inevitable for ITS.  

 

Travel time for a vehicle is the time needed to travel from point upstream (u/s) to point 

downstream (d/s) on the network. Here, we are interested in estimating average travel time for 

all the vehicles that departs downstream during certain travel time estimation interval (TEI ).  

 

Literature Review 

Different traffic data retrieval systems used for travel time estimation can be broadly 

categorized into fixed sensors and mobile sensors.    

 

Fixed sensors such as inductive loop detectors provide temporal traffic state information, 

though only point-based. Loop detectors are the oldest and most widely used traffic data 

sources and hence, majority of travel time estimation models are based on detector data. 

Researchers have proposed a number of models with various degrees of complexities ranging 

from simple regression based [1-9], traffic flow theory based [10, 11], pattern recognition 

[12-21], to advance neural network based [22-25].  

 

Regression based, pattern recognition based and neural network based models are data driven 

and are “non transferable”.  

 

Regression based model defines its parameters by “best fitting” the observed data. Such 

models are unable to predict travel time for traffic conditions that are different from those 

assumed in the models formulation. Nevertheless, they are simple and fast to compute and 

perhaps are favorable for transport planning and policy applications. Generally, they are not 

suitable for ITS applications where more accurate and reliable travel time in real-time is 

required. 

 

Neural network based models are more robust than regression based as they utilize the data to 

build the model structure as well as its parameters. These require large number of 

observations and hence are computationally intensive. Moreover, they can be like a black 

box; and care should be taken to verify the reliability of the output and that the model is 
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applied well within the limits for which it is trained. Nevertheless, neural network is applied 

in different engineering discipline and many promising results have been reported in literature. 

 

Pattern recognition models, such as k-NN technique, match the current traffic pattern with 

historical database and can fail to predict travel time for traffic conditions absent in database.  

 

Mobile sensors such as probe vehicle provide accurate travel time for the vehicle. They 

represent the random sample of the population of the vehicles traversing the link. Therefore, 

average travel time estimation for all the vehicles traversing the link can be estimated by 

statistical sampling techniques [26]. Researchers [27] have shown interest to determine 

minimum number of probes during each estimation interval required for statistically 

significant travel time estimation. 

  

Researchers have also applied data fusion techniques [28-33] to fuse data from different 

sources, specifically detector and probe vehicles, with the aim to improve the accuracy and 

reliability of the estimates. 

 

Majority of the above research is limited to freeways, and cannot be applied to urban 

networks, where problem is rather more challenging due to number of reasons for instance: 

vehicle interaction with external control such as signals; significant proportions of flow 

from/to mid-link sources/sinks etc. There are avenues for improvement in travel time 

prediction models especially in terms of transferability and robustness with respect to urban 

complexities.  

 

This paper is structured as follows: first the effect of mid-link sources/sinks on classical 

analytical methodology, based on cumulative plots, for travel time estimation is discussed, 

followed by the relation between the cumulative plots and probe vehicle. Thereafter, 

algorithm steps are discussed. Finally, the results for model testing controlled environment 

are presented.   

 

CUPRITE MODEL  

The classical analytical principle for travel time estimation defines, total travel time (FIGURE 

1 a) for all the N vehicles, that departs during TEI  at the downstream, as area (A) between 

cumulative plots at upstream (CPUS(t)) and at downstream (CPDS(t)). Average travel time per 

vehicle is A/N.  

 

If data from stop-line loop detector (counts) and signal controller (signal green time and red 

time) is available then accurate cumulative plots can be obtained [34] by integrating detector 

data with signal controller data. However, for real application there are certain issues to be 

addressed such as, a) relative deviation in cumulative plots due to mid-link sources and sinks 

(e.g. side street, parking etc.), and detector counting error; and b) unknown real turning 

proportions. Real turning proportions are required to estimate i) proportion of the flow to the 

study link from shared-use lane at upstream intersection and ii) cumulative plot for each 

movement of the multi-lane link. 

 

In this paper, it is assumed that stop-line loop detector and signal controller data is available 

and cumulative plots are generated. The gain/loss of vehicles from mid-link source/sink is 

unknown. The model, CUmulative plots & PRobe Integration for Travel timE estimation 

(CUPRITE), developed in this paper addresses the issue of relative deviation in cumulative 
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plots due to mid-link sources and sinks by integrating the cumulative plots with probe data. 

For under-saturated situation virtual probes are defined and for saturated and over-saturated 

situations real probe data is used.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Classical Analytical Procedure for travel time estimation 

 

       
 

 

(b) Effect of mid-link sink on the classical analytical procedure 
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upstream intersection. 
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intersection. 
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FIGURE 1a) Illustration of classical analytical procedure b) Effect of mid-link sink on the classical 

analytical procedure.  
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Effect of Mid-link Sources/Sinks on Cumulative Plots 

An urban link can have different mid-link infrastructures such as, a side street, parking etc. 

Depending on the time of the day or day of the week, these mid-link infrastructures can act as 

sink, source or both. A significant proportion of the flow can be from/to the mid-link 

source/sink. This proportion is a dynamic entity and varies with time and one can easily 

observe on average around 10% loss (or gain) to a side street.   

 

FIGURE 1 b), presents an example where 300 vehicles are observed at upstream and 10% of 

the vehicles are lost in the mid-link sink (one-way side street) resulting in only 270 vehicles 

observed at downstream. In this example CPUS(t) is overestimated resulting in relative 

deviation from that of CPDS(t). The shaded area in the figure represents the error in travel time 

estimation and if left unchecked, can exponentially grow with time.  

 

For a mid-link source, there will be more counts at downstream than that at upstream, i.e. 

CPUS(t) < CPDS(t). In such situations area between the plots is negative and hence travel time 

cannot be obtained.  

 

Probe vehicle data and Cumulative plots 

Here probe vehicles are the vehicles which can provide time information when at the 

intersection (position where cumulative plots are generated). Generally probe vehicles, such 

as taxi fleets, are equipped with GPS and can provide data for their position and time. To 

address the issues with probe vehicles such as frequency of data, map-matching of data, urban 

cannon etc. is beyond the scope of this paper. We assume that the time when probe is at 

upstream (tUS) and downstream (tDS) intersection can be accurately obtained. 

 

Under First-In-First-Out (FIFO) traffic condition the horizontal distance between the plots 

provides travel time for the i
th

 vehicle and the time when it is at upstream (tCPUS) and 

downstream (tCPDS). If we fix the probe information to the downstream cumulative plot 

(FIGURE 2a) i.e., tDS = tCPDS, then the probe vehicle is the i
th

 vehicle in the cumulative plots 

and we define ∆t = tUS - tCPUS.   

 

If there is no relative deviation in the cumulative plots then for FIFO each ∆t should be zero 

(FIGURE 2b) and for non-FIFO condition (FIGURE 2c) ∆t may or may not be zero. 

However, sum of ∆t for all the vehicles in the cumulative plots should be zero (∑∆t=0). Due 

to this property the area between the plots represents total travel time, as long as all the 

vehicles represented in CPUS(t) are also represented at CPDS(t). 
 

The above property  is when the summation is performed for all the vehicles (populations). 

However, probe vehicles are only a random sample from the population. We make a 

hypothesis that relative deviation in the cumulative plots can be reduced by fixing the probe 

information to CPDS(t) (or CPUS(t)) and redefine CPUS(t) (or CPDS(t))  such that property of 

∑∆t = 0 is satisfied.  

 

In this paper we fix the probe information to CPDS(t) and define the set of points through 

which CPUS(t) should pass. 
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Fixing probe information to downstream intersection cumulative plots 

 

 
Probe vehicle and cumulative plots for FIFO and non-FIFO situation 

 
FIGURE 2 Probe vehicle and cumulative plots.  

 

How to redefine CPUS(t)? 

The information from the probe is utilized to define points through which CPUS(t) should 

pass. Say, we have: a) reference point (tRef, CP(tRef)), i.e., the point in which we have 

confidence that it is a correct point on the plot; and b) point (ttopass, Ytopass) through which 

CPUS(t) should pass. Then, (eq (1) and FIGURE 3, left diagram) we redefine CPUS(t) by 

applying correction on it such that all points on the plot: 

i. before time tRef  have zero correction;  

ii. between tRef  to ttopas are scaled vertically; and 

iii. beyond ttopass are shifted vertically so that the redefined curve is parallel to CPUS(t) 

and is continuous. 
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FIGURE 3 Redefining CPUS(t) based on vertical scaling and shifting. 

 

Let us consider an example. FIGURE 3a, has seven vehicles (CPUS(t)) detected at upstream 

(A to G) and two of them (C and D) are for mid-link sink therefore, at downstream (CPDS(t)) 

only five vehicles are detected. For simplicity assuming FIFO discipline. The rank of vehicles 

E, F and G are 5, 6 and 7 at CPUS(t) and the 3, 4 and 5 at CPDS(t), respectively. The presence 

of mid-link source/sink only affects the rank of the vehicle in the plots which results in 

relative deviation between the plots. In FIGURE 3b, the information for departing vehicle is 

fixed to CPDS(t)  and thereafter CPUS(t) is redefined. Before point B there is no change; 

between B and E it is scaled vertically; and after E it is shifted vertically. The vertical distance 

defines the relative deviation; hence the correction is applied only on the vertical axis and not 

on the horizontal axis. 
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To define the points from where CPUS(t) should pass, CUPRITE considers probe. Also if 

following “conditions for virtual probe” are satisfied then the information is incorporated.  

 

Virtual Probe: 

Virtual probe is defined as virtual vehicle, that during under-saturated traffic flow, departs 

from the downstream at the end of signal green interval and its travel time is free-flow travel 

time of the link. The probe is not real and is defined with the aim of reducing the relative 

deviation amongst the cumulative plots. 

  

Here, traffic signal control cycle is from start of effective red interval (tRS) to end of effective 

green interval (tGE). For under-saturated traffic conditions vehicle queue should vanish at the 

end of each signal cycle and travel time for the vehicle entering the intersection during the 

end of signal cycle should be close to free-flow travel time (tff) of the link. Therefore, during 

under-saturated traffic conditions we can define virtual probe such that it is observed at 

upstream and downstream at time tGE - tff  and tGE, respectively (i.e. for virtual probe tUS = tGE 

- tff  and tDS =  tGE.) (FIGURE 4). Note: virtual probe is only defined if the following 

“conditions for virtual probe ” are met:  

1. Absence of source for significant mid-link delay: Travel time of the virtual probe is 

free-flow travel time of the link, therefore on the study link the following sources for 

significant mid-link delay should be absent:  

a. Mid-link intersection: CPUS(t) and CPDS(t) should be for stop-line location of 

two consecutive intersections. Else, unknown delay at mid-link intersection(s) 

results in non free-flow conditions.  

b. Mid-link on-street bus stop: On-street bus stop blocks the flow of vehicles 

following the bus resulting in non free-flow conditions. 

2. No-Leftover-Queue: Virtual probe is defined only for under-saturated condition with 

logic of zero queue length at the end of signal green interval. Traffic condition is 

defined as under-saturated if counts during the signal cycle (or more specifically 

during signal green time) is less than the corresponding capacity 

i.e.,    GE RSCP t  –  CP t  s*g ; where: CP(t) is the cumulative count at time t; s, g  

and s*g  are saturation flow rate, effective signal green time and capacity, 

respectively
1
. To define the above equation it is assumed that there is no spill-over 

from downstream link. Else, vehicles are restricted to flow resulting in low counts at 

stop-line detector. Capacity is generally not corrected to account for the spill-over 

from downstream link due to which the above equation is satisfied and system 

indicates under-saturated situation. Though, for spill-over cases, queue may or may 

not vanish and hence virtual probe should not be defined. 

3. Presence of relative deviation in cumulative plots: If all the above conditions are 

met, then theoretically relative deviations amongst the cumulative plot exist if 
1 ( ( ))GE US DS GE fft CP CP t t  . tff is a statistical estimator and its actual value can vary 

from driver to driver. Moreover, practically there can be presence of minor mid-link 

delays such as interaction with the vehicles from the mid-link source/sinks/pedestrian, 

etc. Therefore, certain confidence should be taken into account to define if there is a 

presence of relative deviation in cumulative plots. Hence, to define virtual probe the 

following equation should be satisfied: 1 ( ( )) [ , ]US DS GE ff ffCP CP t t t     ; where δ 

                                                 
1 To take into account the error in estimation of capacity we can re-write the equation as: 

   GE RSs*g  CP t  –  CP t     ; where: ∆ is a calibration parameter. 
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is a calibration parameter taking into account the variation in the estimation of tff. It 

can be considered equal to the standard deviation of the estimate of tff.  
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FIGURE 4 Virtual Probe during under-saturated situation. 

 

How to define the points from where the plot should pass? 

Say, we have n probe vehicles and the database for the probe is defined as list of [tUS] and list 

of [tDS] where the size of each list is n. The value of j
th

 element in the list represents the data 

from the j
th

 probe.  

 

The list [tUS] and [tDS] can be appended with additional elements satisfying the “conditions 

for virtual probe”. For this, if the conditions are satisfied then for each under-saturated signal 

cycle: time corresponding to the end of the green time (tGE) is appended to the list [tDS]; and 

(tGE- tff) is appended to the list [tUS].  

 

Following steps defines the points from where CPUS(t) should pass: 

Step1: Sort list [tDS] in ascending order of its values. This is required as the probe 

information is fixed with respect to CPDS(t). 

Step2: Sort list [tUS] in ascending order of its values. This is required to make sure that 

the redefined CPUS : a) is monotonically increasing; and b) satisfies  ∑∆t = 0. 

Step3: The required points through which CPUS(t) should pass are (tUSj, CPDS(tDSj)); 

where tUSj and tDSj are j
th

 value in the sorted list of [tUS] and  [tDS],  respectively. 

 

For better understanding an example is presented in FIGURE 5 where we have four probes 

and corresponding list of [tUS] and [tDS]. The example is for non-FIFO with 

tDS1<tDS2<tDS3<tDS4  and tUS2 <tUS1<tUS4<tUS3.  

 

How to define the reference points? 

CPUS(t) and CPDS(t) are initially two independent cumulative plots. When the traffic condition 

is free-flow (for instance during night) then counts for cumulative plots can be initialized to 

zero. This is the initial reference point (P0).  Say [P1, P2, P3, …, Pn] is the list of n  points 

from where CPUS(t) should pass then for redefining CPUS(t) for point Pi, the reference point is 

Pi-1.  

 



Travel Time Estimation on Urban Networks with mid-link sources and sinks 

A. Bhaskar, E. Chung, A.-G. Dumont   10 

C
u

m
u

la
ti
v
e

 C
o

u
n

t

Time

C
u

m
u

la
ti
v
e

 C
o

u
n

t

Time

tUS2 tUS1 tUS4 tUS3

CPDS(t)

tDS1 tDS2 tDS3 tDS4

tUS2 tUS1 tUS4 tUS3 tDS1 tDS2 tDS3 tDS4

CPDS(t)

(tUS2 ,CPDS(tDS1))

(tUS1 ,CPDS(tDS2))

(tUS4 ,CPDS(tDS3))

(tUS3 ,CPDS(tDS4))

Point through which CPUS(t) should pass

∆t1

∑∆ti=0

∆t2

∆t3

∆t4

 Probe Data

tUS tDS

[tUS] [tUS]

tUS1

tUS2

tUS3

tUS4

tDS1

tDS2

tDS3

tDS4

tDS1

tDS2

tDS3

tDS4

tUS2

tUS1

tUS4

tUS3

tDS1

tDS2

tDS3

tDS4

tUS2

tUS1

tUS4

tUS3

Step 1: Sort [tDS]

Step 2: Sort [tUS]

 (tUS2 ,CPDS(tDS1))

(tUS1 ,CPDS(tDS2))

(tUS4 ,CPDS(tDS3))

(tUS3 ,CPDS(tDS4))

Sorted Lists Required Points

∆t1=-∆t2

∆t3=-∆t4

 

 
 

FIGURE 5 Points from where the plot should pass. 

 

Summary of the Algorithm  

The summary of the algorithm is as follows (FIGURE 6): 

1. Cumulative plots are defined by integrating signal controller data with detector data. 

2. Probe data (list of [tUS] and [tDS] ) is defined by fixing real probe data with CPDS(t). 

3. The above list is appended by virtual probe data if conditions for virtual probe are 

satisfied.  

4. Points through which CPUS(t) should pass are defined.  

5. CPUS(t) is redefined by vertical scaling and shifting the plots so that it passes through 

the points defined in Setp 4.   

6. Finally, average travel time is defined as the ratio of the area between the plots and 

number of vehicles departing.  
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FIGURE 6 CUPRITE architecture. 

MODEL TESTING 

The model is tested under controlled environment using, AIMSUN [35] on a) one lane link 

(FIFO condition) and b) two lane link (non-FIFO condition) between two consecutive 

signalized intersections. On the study link the flow is from three different directions at 

upstream intersection. Only through movement at downstream intersection is considered. 

Bottleneck is at downstream intersection. Vehicles for the mid-link sink (or source) are 

randomly selected from the vehicles traversing the link.  

 

The performance of the model, defined in terms of accuracy (%) (eqn (2)) is evaluated as: 

 

i i
i i i

i

i

i=1to N

actual - estimated
Error =( ); Accuracy =(1- Error )* 100

actual

Error

MAPE =
N

Accuracy(%) = (1 - MAPE )* 100

 (2) 

Where, N is the total number of estimation intervals. Actuali , estimatedi, Errori, and 

Accuracyi are the average actual travel time, average estimated travel time, absolute relative 

error and accuracy for i
th

 estimation interval, respectively. MAPE is the mean absolute 

percentage error. 
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The simulation parameters are:  

a) Signal cycle time = 120 seconds  

b) Scenarios for different flow to capacity ratio in the range of 0.5 to 1.2 at downstream 

intersection.  

c) TEI  = 360 seconds.  

 

Sink percentage is defined as the ratio of vehicles lost in the sink to the vehicle observed at 

upstream. Source percentage is defined as the ratio of vehicles gained from the source to the 

vehicles departing from downstream. In the present analysis 5%, 10%, 15% and 20% of sink 

and source are considered.  

 

Under-saturated Condition: No real probe consideration 

FIGURE 7 represents the data from simulation with no real probe consideration. In the 

present analysis, virtual probes can be defined for under-saturated traffic conditions resulting 

in consistent accuracy of more than 98% and 97% for FIFO and non-FIFO network, 

respectively. It indicates that if conditions for virtual probe are met then travel time can be 

accurately estimated even if real probe is unavailable. 

 

Virtual probe, checks that the relative deviations amongst the cumulative plots are corrected 

during under-saturated (non-congested) traffic conditions. During congestion build-up and 

dissipation (shoulder) process, traffic is from under-saturated to saturated situation and vice 

versa, respectively. The use of virtual probe makes sure that in absence of real probes the 

errors during shoulder conditions is low compared to the case when no correction is applied 

during the under-saturated situation. 

 

For saturated and over-saturated conditions virtual probe does not exist, resulting in 

significant decrease in accuracy, and accuracy can be significantly enhanced by considering 

real probes.   
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FIGURE 7 Simulation for different traffic flow conditions with no real probes.  
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Saturated and Over-saturated Condition 

Probe information is only available after its departure from downstream. Hence, here we 

present the results for online and offline applications of travel time estimation.  

 

Online and offline applications 

Say the current time is tc and we are interested in estimating travel time for all the vehicles 

which have departed during the last TEI seconds. For online application, information available 

until the current time is utilized and any change in the CPUS(t), due to availability of future 

probe data after time tc, is not considered for travel time estimation in the interval from tc -TEI 

to tc. 

 

For offline application we assume that probe vehicle and cumulative plots for all the 

estimation time intervals are available and CPUS(t) is redefined with the complete information. 

Thereafter, travel time for each estimation interval is estimated.  

 

FIGURE 8 represents the cumulative plots (CPUS(t) and CPDS(t)) estimated till the current 

time indicated in the figure. The plots are for a 10% sink case. Actual cumulative plots 

(CPUSactual(t) and CPDSactual(t)) are the accurate cumulative plots to be used for travel time 

estimation. They are obtained from individual simulated vehicles traversing the complete link. 

FIGURE 8a, b and c are for online application and d is for offline.  

a. FIGURE 8a: tc = 7:18:00. Traffic condition is under-saturated therefore, virtual 

probes are used and we can see that redefined CPUS(t) is close to CPUSActual(t). 

b. FIGURE 8b: tc = 7:24:00. Saturated traffic condition with no probe information. As 

saturated traffic condition so, virtual probe cannot be defined. Due to this there is a 

deviation in redefined CPUS(t) from that of CPUSactual(t) (Refer zoomed portion of the 

figure).  

c. FIGURE 8c, tc =7:30:00. Oversaturated traffic condition with probe information. Here, 

there are actually two probes observed at upstream, but only one of them has departed 

from the downstream. Therefore, for the current period only the first probe is 

considered to redefine CPUS(t). Note: as CPUS(t) is redefined, the error in the previous 

estimation interval (7:18:00 to 7:24:00) is also corrected (Refer zoomed portion of the 

figure). For online application to estimate travel time for estimation interval from 

7:18:00 to 7:24:00, the plots represented in FIGURE 8b are considered. However, if 

time series modeling is to be performed and one is interested in time series of travel 

time then the errors performed in the previous intervals can be corrected.   

d. FIGURE 8d, is an example for offline estimation. CPUS(t) is redefined with all the 

probes and travel time for each estimation intervals are estimated. It can be seen that 

redefined CPUS(t) is close to CPUSActual(t) hence, offline estimation should have better 

accuracy than that of online.   
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FIGURE 8 Example for online and offline applications.  
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Minimum probes required 

It is interesting to know the minimum probes required for statistically accurate travel time 

estimation. The performance of the model is evaluated for: 

a) Fixed number n during each estimation interval.  

b) Percentage p of all vehicles traversing the link. This percentage is an indirect 

representation of the market penetration of probes in vehicles traversing the link 

during certain time periods.  

 

While presenting the results, comparison of CUPRITE with model solely based on probe 

data here referred as “Probe-Only” is also provided. “Probe-Only” (eqn (3)) assumes that 

probe represents a random sample from all the vehicles (population) and average of the travel 

times from the probes (ti)  is the representative of the population, given that the sample size 

(np) is at least a minimum value.  

 1 ; 1

pn

i

i

p

p

t

AverageTravelTime n
n

 


 (3) 

Note: Comparison is only possible when at least one probe per estimation interval is present.  

 

Fixed number of probes  

 

10% Sink Case: 

FIGURE 9a and FIGURE 9b represent the accuracy of estimation versus fixed number of 

probes per estimation interval for FIFO and non-FIFO network, respectively. It is observed 

that: 

a) Accuracy from CUPRITE is close to 98% and 95% for FIFO and non-FIFO networks 

with at least one probe per estimation interval. 

b) If we have only a few probes per estimation interval (less than 5 probes) then there is 

significant benefit of integrating probes with cumulative plot. If the number of probes 

per estimation interval is large (more than 10) then the probes are good representative 

of the population of the vehicles and there is little benefit of integrating probes with 

cumulative plots.  

c) As expected, offline application performs better than online application and accuracy 

increases with increase in number of probes for both CUPRITE and Probe-Only.   

 

Comparative Case:  

FIGURE 10 provides comparative results of the accuracy versus fixed number of probes per 

estimation intervals for non-FIFO network under different sink and source percentages.  The 

values of the accuracy are rather stable if at least one probe per estimation interval is available. 

It can be concluded that: if probe data is available then the CUPRITE model is not sensitive to 

the percentage of mid-link sink/source. The results also indicate that only one probe per 

estimation interval has the potential to provide accurate estimates.  

 

As expected, if no probe data is available then the accuracy for CUPRITE model decreases 

with increase in the percentage of the sink or source.  
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FIGURE 9 10% sink results: (a,b) for fixed number of probes per estimation interval (c,d) for p% of vehicles as probes.  
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FIGURE 10 Accuracy versus number of probes for different percentage of mid-link sink (a and b) and source (c and d) from non-FIFO network.
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Reliability of the estimates:  

FIGURE 11a represents standard deviations (σ) of accuracies versus number of probes per 

estimation interval for non-FIFO network. It can be said that higher the σ, lower is the 

reliability of the accuracy estimate and vice versa. It is observed that the reliability of the 

CUPRITE model increases (σ decreases) with increase in number of probes and CUPRITE is 

more reliable than Probe-Only. Hence, integration of cumulative plots and probe not only 

increases the robustness of the travel time estimates using cumulative plots but also 

overcomes the issue of uncertainty in the estimates from the use of probe vehicles.  

 

Percentage p of all vehicles traversing the link 

Here, p% of the vehicles is randomly selected from all the vehicles traversing the link during 

one hour of simulation. There may be certain estimation intervals with no probe information. 

FIGURE 11b represents the distribution of the number of probes per estimation intervals for 

different probe percentage from 10% sink and non-FIFO network. It is observed that around 

5% of probes can cover all the estimation intervals with at least one probe per estimation 

interval, whereas, for less than 3% of probes there can be significantly number of estimation 

intervals with no probe. For instance, 1% probe can have more than 30% of estimation 

intervals with no probe.  

 

For Probe-Only (eqn (3)) travel time cannot be estimated if there is no probe. Therefore, 

travel time for estimation interval with no probe is assumed to be equal to the travel time of 

the previous estimation interval with at least one probe.  

 

FIGURE 9c and FIGURE 9d represent accuracy versus probe percentage for saturated and 

over-saturated conditions. Each of the estimation interval considered may or may not have a 

probe. It is observed that: 

a) For offline Application: The performance is consistent and accuracy is more than 98% 

and 96% for FIFO and non-FIFO network, respectively. As expected offline performs 

better than online. 

b) For online application: there is increase in accuracy from 90% to 98% (FIFO) and 

95% (non-FIFO) for increase in probe from 0% to 3%. This indicates that 3% of the 

vehicles traversing the link as probes have the potential to provide accurate travel time.  

c) Accuracies for Probe-Only increases with increase in probe percentage. For low probe 

percentage (less than 5%) significant large number of estimation intervals is with no 

probe or a few number of probes which accounts for low accuracy. Integration of 

probe with cumulative plots for low probe percentage significantly enhances the 

accuracy.  As percentage of probe increases, the number of probes per estimation 

interval also increases resulting in better accuracy. For instance, 15% probes generally 

provide 10 probes per estimation interval. For such cases, probes are good 

representative of the population of the vehicles and there is little benefit of integrating 

probes with cumulative plots.   

 

The above model testing is for two independent conditions of source and sink. A mid-link 

infrastructure, such as parking, can simultaneously act as both source and sink. If the net loss 

of vehicles to sink and gain of vehicles from source is zero then the issue of relative deviation 

should not exist. In practice, source and sink percentage are dynamic in nature and for a larger 

time period such as one hour or so they may balance each other. Nevertheless, for each travel 

time estimation interval the effect of relative deviation exits and integration of probe vehicles 

with cumulative plots have potential to improve the accuracy.  
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 CONCLUSION 

 The model (CUPRITE) developed in this paper provides encouraging results for 

travel time estimation by integrating data from different sources: cumulative plots and probe 

vehicles. The integration provides better performance than method based on single data 

source only. It overcomes the issue of relative deviation in cumulative plots and uncertainty 

of travel times estimates from a few number of probes (sample size of one or two vehicles). It 

can provide accurate travel time for successive estimation intervals for both offline and online 

applications. 
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