This is the accepted version of this conference paper:

© Copyright 2010 Please consult the authors.
We argue that the sustained successful operation of an ES is determined by, and is dependent on, multiple organizational stakeholders. The single greatest organizational barrier to EIS success and achieving widespread organizational benefits can be attributed to the way in which different sub-cultures treat data critical to EIS operation. Building on Lee & Strong’s (2004) data roles we incorporate Schien’s (1996) cultural framework along with DeLone and McLean’s (2003) dimensions of IS success, unpacking the underlying drivers of behaviors as they relate to EIS data. Further, we explain the origins of data based conflict resulting in poor EIS data utilization.

Keywords: Information technology, knowledge management, organizational performance, technology
We argue that the sustained successful operation of an ES is determined by, and is dependent on, multiple organizational stakeholders. The single greatest organizational barrier to EIS success and achieving widespread organizational benefits can be attributed to the way in which different sub-cultures treat data critical to EIS operation. Building on Lee & Strong’s (2004) data roles we incorporate Schien’s (1996) cultural framework along with DeLone and McLean’s (2003) dimensions of IS success, unpacking the underlying drivers of behaviors as they relate to EIS data. Further, we explain the origins of data based conflict resulting in poor EIS data utilization.

Keywords: Data Quality, Data Roles, Data Utility
Enterprise Information Systems (EIS) are pervasive technologies that have had significant impacts on the management of many organisations. It has been reported that between forty eight and sixty four billion dollars (US) are spent on enterprise resource planning (ERP) applications annually, yet forty percent of organisations fail to achieve expected outcomes from their ERP investments, with suggestions that over twenty percent of ERP projects are abandoned (Beatty & Williams 2006). Many of these projects are abandoned as a result of poor implementation, disruption to existing processes and organisational failure to acquire and utilize the data required to operate the system effectively.

Enterprise systems are standardised software packages designed to integrate the information and process flows of an organization through a single software solution, capable of operating across departmental and functional boundaries (Davenport, 1998). These system types support multiple functions within an organization by offering “an underlying integrated database that stores master and transactional data in a consistent way and with controlled redundancy” (Klaus et al., 2000; p.143). Klaus et al. (2000) suggest, therefore, that it provides the infrastructure and capacity to integrate data and process flows within and between organizational functions, forcibly promoting a greater level of interdependence between organizational functions from both a procedural and data communication perspective. While vendors such as SAP are synonymous with such a software solution since their inception, numerous ES versions are now available to organizations.

A predominant area of IS and ERP research has been directed at identifying issues surrounding software implementations that cause or inhibit failure. An IS project is considered to have failed if the solution does not integrate well with the business environment, lacks consistency between the initial requirements and final solution, or simply does not make business sense. However there appears to be very little in the literature that discusses the long-term measures of a project’s success in terms of what the project has really achieved and its ongoing consequences for the organisation. Anecdotal evidence suggests that
many IS projects lauded as “successes”, have produced less than optimal results for the implementing organisation and Lorenzo et al. (2009) highlight that in some cases success is declared prematurely so that the poorly performing project can move out of organisational scrutiny. These partial successes can be seen in IS development projects when a group such as IS professionals views the project as a success while operational staff see it as a failure (Standing 1998). Amoako-Gyampah (2004) found significant differences between the perceptions of managers and end users, with end users mainly concerned about how an ERP facilitates their daily jobs rather than whether it provides integrated data required by managers.

The issue of how to measure success or failure is not trivial, as the success or failure of an IS is seen as a matter of perception, depending on which actor is performing the assessment (Middleton 1995) and can change over time (Myers 1994). This means that managers need to be aware that their perceived benefits of technology are not necessarily shared by all stakeholders (Amoako-Gyampah 2004). One area that has examined long term measures of IS success is data quality (DQ) research, as a major area of contention in most EIS projects is the quality of data in the system. Data is central to the performance of operating processes, decision making and inter-organizational cooperation (Batini, Cappiello, Franchalanci and Maurino, 2009) therefore, is potentially one of the key determinants of sustained EIS success. However despite the potentially significant role played by data quality and data utility in EIS success there has been very little serious consideration as to the role played by data other than in its capacity as a commodity populating system processes.

Fundamentally we argue that in many instances EIS failure after implementation stems from poor data utilization directly resulting from the divergent way in which various organisational sub-cultures treat, interpret and use data. We present a theoretically derived explanation as to why EIS often fail to deliver anticipated outcomes maintaining that different organizational sub-cultures vary significantly in their approach to data issues. Drawing from previous work concerned with sub-culture attributes and
affiliation, along with emerging work concerning data roles and data quality attributes we offer a deep explanation as to why EIS systems often fail to fulfill their potential. In essence our framework provides support for the idea that sub-cultural affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility. These divergent perspectives drive negative perceptions of both data and ultimately system utility, which eventually leads to EIS failure. This insight is considered a significant contribution in our ability understand how to better utilise EIS within organisations and how managers in organisations must begin to addresses underlying concerns with poorly performing EIS.

DATA QUALITY AND DATA UTILITY

As discussed this paper presents a framework and model that examines the fundamental differences in the way users differentiate between EIS data utility and DQ and how this impacts the treatment of EIS data. As such, in a departure from previous authors we do not use the terms DQ and data utility interchangeably. Rather we argue that the IS/IT group responsible for the EIS are the only group to regard DQ in absolute and narrow terms, a result of their enabling role in the organization. We acknowledge that other key groups also have a narrow focus of DQ, determined primarily by their job role and we assert that these groups are more interested in how useful the data is to their function, rather than absolute measures of DQ.

Wang and Strong (1996: 5) define DQ as “data fit for use by data consumers”. While in principle we agree with the ‘fit for purpose’ sentiment we also consider it to be limited in focus, contributing to poor outcomes associated with EIS implementations. DQ is an issue that is dealt with by all roles within the organization but defining DQ only in relation to those who consume it fails to recognize other key groups that are responsible for the production and management of data within an organization and groups within
organization can perform multiple roles in the DQ process simultaneously. As we will discuss, each organizational group has differing data needs at a localized level while also being responsible for producing data for other organizational groups - data for which they have no vested interest, have little understanding and see little value. These divergent interests and competing values in relation to how data is measured, evaluated and used, is at the core of EIS DQ and management issues.

While there is widespread acknowledgment of the differing needs of data users, little work has been carried out to examine the implications on DQ and data utilization. Few authors have significantly progressed Lee & Strong’s (2004) work identifying the data roles (data consumers, custodians and collectors) and little work has been published on the base assumptions of each of these data roles and the origins of their resulting behaviors. The limited exploration of Lee & Strong’s (2004) data roles has a number of significant consequences for those interested in improving the use of EIS data within organizations. Firstly, there is minimal consideration in the literature of the underlying values, attitudes and beliefs that drive data related behaviors in each data role. Secondly, despite the gains made in DQ research over the last decade there remains a limited understanding of the divergent data requirements at various levels of the organization. Failing to understand the inter-relationships between drivers of data behavior and other factors has the potential consequence of failing to recognize the root cause of poor EIS data utilization.

Lee & Strong’s (2004) data roles make a tacit assumption that the data management process is linear, moving from producer to consumer. The often widely acknowledged input-process-output base assumption of the data process accompanying the triple role model is simplistic and fails to take into account DQ’s relationship with data utility (Orr, 1998). Figure 1 presents a “simple” model of DQ that represents the predominant linear way in which DQ issues are treated within the literature. In this model an assumption is made about the progression of data through the organization. We add two precursors to this model, reflecting the influence that subculture and base priorities have on each roles as related to
data. The remainder of paper discusses this further, presenting a complex model of DQ and data utilization that better reflects the nature of EIS data use within organizations.

Insert Figure 1 about here

CULTURAL AFFILIATION, BASE PRIORITIES & INCENTIVIZED BEHAVIORS

Previous research has identified a range of factors that contribute to poor performance or failures of EIS, including poor communication, lack of support from executives, user dissatisfaction and cultural differences (Calisir, Gumusson and Bayram, 2009). In order to understand the differences in the way in which individuals treat EIS data it is important to understand the base origins of their attitudes, perceptions and behaviours. As Hussain and Hafeez (2009) point out, in implementing EIS managers need to be aware of the views, attitudes and behaviours of all stakeholders and acknowledge that these are deep rooted and difficult to change. Building on Schien’s (1996) early work on occupational sub-cultures together with Lee & Strong’s (2004) idea of data roles we extend the discussion surrounding the management and utilization of data within organizations. We present a framework in Table 1, that in part explains why EIS fail to achieve their full potential despite improvements in technology and organizational change processes. The current theme in the literature suggests the way DQ is treated and perceived reflects differing needs depending on context and we continue this theme by providing clear insight as to how each group perceives the data flow process, attributes importance to different data types and most importantly, why individuals think and act the way they do in relation to the generation, flow and use of data in an EIS. We articulate the relationship between data quality, data utility and organizational outcomes relating to the use of EIS data and we begin to demonstrate some of the issues that need to be addressed to optimise EIS use and improve data quality.
According to Schien (1996), problems with learning, communication, and implementation of decisions are evident when the assumptions, values and behaviours of each culture within an organisation are not well aligned. He suggests that understanding that each culture is different and having a common plan that everyone can understand will improve effectiveness and efficiency. Expanding on this Schien (1996) further describes an operator culture, an engineering culture and an executive culture as three primary sub-cultures in an organisational context which are the starting point of our framework (Table 1). The way in which each subculture treats and uses data results in a disconnect between what data is produced, how it is captured, manipulated, stored, transferred and perceived, which in turn has implications for the way in which data issues are communicated and actioned. Understanding the base priorities of each sub-culture is fundamental to understanding how individuals treat and use EIS data.

Operators interact with technology in any production process, such as sales, or on the floor in a chemical plant. The operator culture regards human interaction, communication, trust, teamwork and innovation as essential for problem solving and completing tasks efficiently. Those bound by an operator culture are primarily interested in whether the technology helps them achieve their operational goals and improves employee centric outcomes. In an EIS context this will often relate to the input of data into an EIS, often as a by-product of day-to-day activities. Key drivers of base priorities exhibited by operator cultures are the structural and institutional elements that incentivise behaviour, which have a direct impact on how EIS data is perceived and treated.

The engineering culture attempts to design humans out of systems, over-design for safety and involves designing technology, systems and processes while being responsible for understanding how they should be used in organisational contexts. The engineering culture may include the engineering and IT/IS fraternities but can also be associated with those concerned with process and command-and-control
elements of organisations, such as line supervisors and middle-management from technical backgrounds.

In an EIS context the IS/IT engineering cultures are responsible for the ongoing maintenance and running of the system and they are likely to provide technical advice and be the primary point of contact with system suppliers. Consistent with their orientation this subculture’s most immediate priorities lie with ensuring the system is performing to specification while responding to incentivised targets that typically prioritise system availability, accessibility and technically orientated performance measures such as down-time.

The executive culture is associated with those having a vested interest in maintaining or improving the financial well-being of the organisation, achieving a return on investment and reducing the risk of operations. The reasoning articulated by executive’s responsible for funding the adoption of EIS technology typically revolve around efficiency, cost reductions, responsiveness and control; the representations of which manifest themselves in changes to work processes, job design, information and data flows (Davenport, 1998; Koch, 2001; O’Mahoney & Barley, 1999) thereby meeting the operational and strategic aims of an organization. The knowledge management capacity of EIS technology (Davenport, 2000) allows those affiliated with the executive culture to better manage the affairs of the organization from either an internal corporate governance perspective or externally in terms of strategic direction. All of these elements resonate strongly with an executive culture that is incentivized to minimize labor costs, maximize profits and reduce operational risk to ensure organizational survival.

DATA QUALITY ORIENTATION

In order to extend the model further we use DeLone and McLean’s (2003) revised dimensions of information systems success as measures of data utility. Considering DeLone and McLean’s (2003) model in light of data and its use within organizations is an effective measure of data utility and is broad enough to capture the interests of all three major subcultures. The revised DeLone and McLean model
(2003) includes six interrelated dimensions of information systems success: information quality, system quality, service quality, intention to use, user satisfaction, and organizational impact as dimensions to measure IS effectiveness. In effect these can be used as a proxy measure of data utility, and we argue that these six dimensions of utility are not equally valued and that each sub-culture will place different levels of importance on these dimensions based on their sub-cultural affiliation, their data role and data needs.

Combining Schien’s (1996) work with that of Lee and Strong (2004) allows us to identify the drivers of behaviours typically associated with each of the three data roles and consider the impact these have on the data needs of individuals. Marrying organizational sub-cultures with data roles is consistent with the idea put forward by Wang (1998) that the movement of data throughout an organization is akin to a production assembly line - from raw material to processed product, from raw data input (operator / collector) on to data curation and report generation (Engineer / custodians) through to report interpretation and action (executive / consumers). While this is in part a simplistic treatment of EIS data flows within an organization it useful when considering the data needs of each subculture and provides insight into their differing priorities in relation to the data they generate and use. Simply, we can identify close associations between the executive subculture and the role of data consumers, between engineering cultures and data custodians, and between operator cultures and data collection roles.

Operator Cultures and Data Collection

Arguably, driving the success of an EIS are those that generate and/or collect the data that these systems require. Lee and Strong (2004) describe data collectors as knowledgeable about data collection processes in relation to collecting accurate and complete data and tend consider why people need these data. This complements Schien’s (1996) depiction of operator cultures that tend to appreciate the inter-dependent nature of organizational operations and are aware of the implications of breakdowns in cross-functional cooperation. However, as supported by Wenrich and Ahmad (2009), those associated with an operator culture will only highly value data that has a direct impact on their actions and daily performance
requirements and will consider EIS to be successful if it improves job performance or convenience. Therefore the operator subculture is hypothesised to have a data quality orientation aligned with DeLone & McLean’s (2002) *Individual impact; use and user satisfaction and (micro) information quality*. The micro information quality orientation is critical to EIS success due to operators being largely interested (given their base assumptions) on data that is of immediate use to them in their work tasks. They have no vested interest in macro information quality as required by executives as in most cases they have little knowledge or understanding of how data is used outside their own occupational boundary (Lee & Strong, 2004).

Engineering Culture and Data Custody

Once collected, data responsibility shifts to data custodians, who are typically responsible for data storage, maintenance and distribution. They may also be knowledgeable about making data accessible but often may not understand the optimal delivery mechanisms required. Lee and Strong (2004) observed that data custodians are primarily concerned with what data they should be storing and try to ensure required fields are completely filled. These behaviors are consistent with the characteristics of engineering sub-cultures who are primarily concerned with system effectiveness, are pragmatic perfectionists and prefer linear, rational solutions to problems (Schien, 1996). However, we believe that the term data custodian is limiting and fails to take into account several other critical functions carried out in this categorization. Rather data custodians are enablers, providing the necessary technological infrastructure for the rest of the organization. As enablers their quality orientation as shown in Table 1 considers systems quality, service quality and finally, data quality which highlights there propensity to manipulate and cleanse the data to improve its quality. From an EIS data perspective the engineering culture, as data enablers, are systems and data driven, demonstrating a need for highly structured data rather than text based contextual data which may be of more interest and use to the operator culture. They strongly correlate (and possibly even conceptualize) DQ with accuracy and by nature consider anything less than 100% accurate to be of poor quality (Klien & Callahan, 2007). The engineering culture’s
preoccupation with *System, Service and Data Quality* has significant implications for the organization and the data needs of the other sub-cultures. The narrow focus on data quality, rather than data utility as preferred by the operator and executive cultures may be a trigger for conflict.

Executive Cultures and Data Consumption

Consumers are the final link in the data flow process and are interested specifically in data utilization, typically focusing on how they can use data to make it relevant to their tasks (Lee & Strong, 2004). Again the descriptions of those categorized in a data consumer role resonate strongly with those characteristics attributed to the executive sub-culture. Those driven by an executive culture are cited to be concerned more with macro-organizational information and Table 1 illustrates that they view DQ in terms of the *organizational impact*, the *quality of the information* and the level of *user satisfaction*. Executives are concerned with aggregate measures of data such as enterprise level KPIs and they require data to meet a level of accuracy which allows a decision be made with some degree of confidence, therefore, data consumed by the executive sub-culture is harder to package and evaluate than data dealt with by the engineering culture who categorize data quality in a multitude of ways (Wang & Strong, 1996). While engineers typically view data as discrete, package-able and electronically transmittable, executive cultures view information as holistic, complex, imprecise and dynamic. As Pijpers and Monfort (2006) point out, executives are indifferent to EIS tools as long as individual executives receive the information they need to make decision they do not concern themselves with how it was obtained and managed.

In summary, by using DeLone and McLean’s (2003) measures of IS/IT success as measures of data utility we can attribute specific measures attributed to each user role depending on their data needs, base assumptions and sub-cultural affiliation and we argue that in operational terms data quality is not absolute. We go further to suggest that only one subculture within organizations - the engineers are really interested in absolute data quality, executives and operators are merely interested in relative data quality
that will give them varying degrees of utility and that quality in of itself is meaningless to these two subcultures. Consistent with the overall theme of our proposed framework we suggest that data users place importance on different dimensions of utility depending on their sub-cultural affiliation and data role. Consequently our framework provides a clear explanation for the failure of organizations to effective utilize EIS data demonstrating that these failures primarily stem from conflicting perspectives between each sub-culture in terms of the treatment and use of EIS data.

DISCUSSION & CONCLUSION

This paper attempts to answer the question of why EIS so often fail to fulfill their potential. We have argued that the failure of EIS to produce significant organisational outcomes can be attributed to poor data utilization and conflict over whether the data contained within an EIS is ‘quality’. Our framework suggests that operators will show a preference for collecting data that is not in a format valued or useable by an EIS and due to its localized nature and of little relevance to executives. Conversely the engineering subculture aims to produce data that is primarily accurate and complete, neither of which are highly valued or readily consumed by the executive sub-culture. Finally the executive values data that has high perceived utility (e.g. relevance and accessibility) to help them make decisions, but are dependent on both operators and engineers to provide the aggregate data they require. Unfortunately all three sub-groups, bound by their cultural biases that are reinforced by structural and institutional roles, work at cross-purposes, all the while talking about ‘data quality,’ but with different expectations and perceptions of data quality. This institutionalized pattern of behavior becomes cyclical and this complex relationship between cultural affiliation, data role, data needs, data quality and data utility is reflected in Figure 2. This theoretically derived model builds on the model presented in Figure 1, and is considered a more accurate reflection of the relationship between EIS systems, the data used to populated them and the individuals that interact with it.

Insert Table 2 about here
By effectively combining the work from the culture, data quality and information systems literatures this paper makes a number of significant contributions to both the data quality and EIS literatures. One, we move beyond the basic categorisation of Lee and Strong’s (2004) data roles by clearly articulating the behavioural and attitudinal drivers of each of the data roles and we consider the implications of these differing perspectives on EIS success. For example, given the values of the engineering subculture and the manner in which they are incentivised within organizations it is reasonable to predict that they value DQ dimensions such as accuracy and completeness. Following our argument it is likely that data consumers are more likely to value accessibility and relevance over elements such as accuracy and completeness. Again Lee & Strong’s (2004) data supports our assertion with data consumers prioritizing relevance above the other four measures of data quality (accessibility, timeliness, accuracy, and completeness).

Our second major contribution is the way in which we have unpacked the distinction and relationship between data quality and data utility. Ballou, Madnick & Wang (2003) readily acknowledge that defining data quality as “fitness for use” is largely determined by the end user rather than any particular property of the data itself and further, that “perfect data” is perhaps an unattainable goal. Our work extends this basic idea two-fold. Firstly, we both broaden and deepen the discussion to differentiate clearly between utility and quality by determining the process by which they are treated by different populations. Secondly, our insight via the work of Schien (1996) suggests that while perfect data is not only incredibly difficult to achieve (Ballou et al., 2003) it is most likely irrelevant to most organizational populations other than the engineering culture. As such our work demonstrates that the ultimate goal is not to strive for ever more “quality” data, but to understand and communicate the divergent views and needs relating to EIS data. Finally our work extends the already valuable work of DeLone and Mclean (2003) applying it in a data quality context to demonstrate the varying orientations that each subculture has in relation to how they evaluate data in terms of utility and quality.
Our analysis provides a number of potentially profitable areas of research to be undertaken. Model testing is required to validate our complex model of behavioural drivers and extend our framework to consider other potential drivers of data needs and data related behavior. Additional work is also required to better understand the way in which Lee and Strong’s (2004) data roles are enacted in organisations. At a more practical level, practitioners and academics may wish to invest resources into identifying interventions best suited to overcoming the disparate views reflected by each organisational subculture. Finally what will allow an organisation to overcome the dissonance in data needs and quality orientation evident between data roles and cultural affiliations? Practitioners and researchers would benefit greatly from the identification of individuals, mechanisms, events or tools that may act as “boundary spanners – bridges to a common ground / common understanding that various different groups base their data interactions around (Bechky, 2003). Our considerations further highlight the need to move beyond technological solutions to ‘data quality problems’ to increase focus on organisational, structural and cultural interventions that address the differing needs and perspectives held by each subculture.

Fundamentally our treatment of data quality issues in the context of EIS takes the position that in many instances, EIS failure after implementation stems from poor data utilization resulting from the way in which people perceive the data. We have presented a theoretically derived explanation as to why EIS often fail to deliver anticipated outcomes and further, maintain that different organizational sub-cultures vary significantly in their approach to data issues. Our framework provides support for the idea that sub-cultural affiliation dictates the assumptions and core values held by individuals, driving their data needs and their perceptions of data quality and utility. These divergent perspectives lie at the heart of poor EIS use that eventually lead to EIS failure. This insight is considered a significant contribution in its ability understand how to better utilise EIS within organisations and how managers in organisation must begin to addresses underlying concerns with poorly performing EIS. The data intensive nature of ES means that any data related conflict limits the ability of the system to produce optimal outcomes. In drawing together
different literatures relating to culture, data quality and IT/IS success we provide deep insight into the origins of data related conflict and a theoretically supported explanation as to why EIS are consistently seen to fail to deliver on their full potential by many stakeholders.

REFERENCES

Figure 1: A Simple Model Of Behavioral Drivers Of EIS Optimization
Figure 2: A Complex Model of Behavioral Drivers of EIS Optimization
<table>
<thead>
<tr>
<th>Subculture</th>
<th>Base Priorities</th>
<th>Data Role</th>
<th>Data needs</th>
<th>Quality Orientation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive</td>
<td>Strategic determination</td>
<td>Decision making</td>
<td>Scanning</td>
<td>Resource distribution</td>
</tr>
<tr>
<td></td>
<td>“Is it providing a return on investment?”</td>
<td>Data Consumers (Interpretation & enacting)</td>
<td>Concerned more with information than data Aggregate data (information)</td>
<td>Organizational impact</td>
</tr>
<tr>
<td></td>
<td>“Is the risk of operating the asset acceptable?”</td>
<td></td>
<td>KPIs at an enterprise level Longitudinal / future trending data</td>
<td>User satisfaction (Macro)</td>
</tr>
<tr>
<td></td>
<td>How can we survive?</td>
<td></td>
<td></td>
<td>Information Quality</td>
</tr>
<tr>
<td>Engineer</td>
<td>Infrastructure & asset provision</td>
<td>Enabling Control / Compliance</td>
<td>“How do I reduce the dependence on organic elements?”</td>
<td>Current system data Process flow efficiency Focus on storage, conversion & report generation Data manipulation</td>
</tr>
<tr>
<td></td>
<td>“Is it performing to specification?”</td>
<td>Data enablers (Analysis & distribution)</td>
<td></td>
<td>System Quality</td>
</tr>
<tr>
<td></td>
<td>“Can it be improved?”</td>
<td></td>
<td></td>
<td>Service Quality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data Quality</td>
</tr>
<tr>
<td>Operator</td>
<td>Production Revenue generation</td>
<td>Direct action Customer interaction</td>
<td>“Is my professional standing linked to its operation?”</td>
<td>Localized performance data Idiosyncratic / historical notations at an asset level</td>
</tr>
<tr>
<td></td>
<td>“Does it run when I need it?”</td>
<td>Data collectors (Generation & input)</td>
<td></td>
<td>Individual Impact</td>
</tr>
<tr>
<td></td>
<td>“Is it safe to use?”</td>
<td></td>
<td>Historical contextual data orientation</td>
<td>Use & User satisfaction (Micro)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Information Quality</td>
</tr>
</tbody>
</table>