SPECTRAL ANALYSIS OF FRACTIONAL KINETIC EQUATIONS
WITH RANDOM DATA

V. V. ANH AND N. N. LEONENKO

ABSTRACT. We present a spectral representation of the mean-square solution of the
fractional kinetic equation (also known as fractional diffusion equation) with random
initial condition. Gaussian and non-Gaussian limiting distributions of the renormalized
solution of the fractional-in-time and in-space kinetic equation are described in terms of
multiple stochastic integral representations.

1. INTRODUCTION

Fractional diffusion equations/fractional kinetic equations were introduced to describe
physical phenomena such as diffusion in porous media with fractal geometry, kinematics
in viscoelastic media, relaxation processes in complex systems (including viscoelastic ma-
terials, glassy materials, synthetic polymers, biopolymers), propagation of seismic waves,
anomalous diffusion and turbulence (see Caputo [16], Glockle and Nonnenmacher [34],
Mainardi [49, 51], Saichev and Zaslavski [67], Zaslavski [80], Mainardi and Tomirotti [52],
Kobelev et al. [41], Metzler et al. [54], Hilfer [37], and the references therein). These
equations are obtained from the classical diffusion equation by replacing the first and/or
second-order derivative by a fractional derivative (see Oldham and Spanier [58], Samko et
al. [68], Miller and Ross [55], Gorenflo and Mainardi [36], Djrbashian [21], Podlubny [60],
Butzer and Westphal [15] for different types of fractional derivatives, fractional integrals
or fractional operators in general and their properties). In the non-stochastic situation,
fractional diffusion equations/fractional kinetic equations have been studied by Schnei-
der and Wyss [71], Kochubei [42, 43], Fujita [30], Priiss [62], Mainardi [50], Saichev and
Zaslavski [67], Zaslavski [80], Gorenflo et al. [35], and others. A more general fractional
Burgers equation has been considered by Biler et al. [11] (see also Woyczynski [79]).

We are interested in fractional-in-time and in-space diffusion equations with random
initial conditions as models of random fields with singular spectra which describe the
singular and fractal properties of real data arising in applied fields such as turbulence,
hydrology, ecology, geophysics, air pollution, economics and finance. It will be seen that
renormalized solutions of fractional diffusion equations with random data may possess
long-range dependence (LRD) and intermittency.

The fractional operators are natural mathematical objects to describe the LRD and/or
intermittency phenomena. In particular, Gay and Heyde [32] introduced a class of random
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fields that allow LRD via the stochastic operational Laplace equation with fractional
Laplace operator. Anh et al. [5], Angulo et al. [4] introduced a fractional stochastic heat
equation in which the n-dimensional Laplacian A is replaced by a fractional Laplacian
of the form — (I — A)"*(=A)*?, a >0,y > 0, where the operators — (I — A)"?, v >
0 and (—A)a/ * a > 0, are interpreted as inverses of the Bessel and Riesz potentials
respectively. In fact, based on a new concept of duality of generalised random fields
defined on fractional Sobolev spaces introduced in Ruiz-Medina et al. [64], Anh et al. [5]
prove the existence of a class of random fields defined by the equation

W
wlQ

(1.1) (I —A)2(=4)

¢(x) =e(z), e(r) = white noise, z € R",

or equivalently (in the sense of second-order moments) by the spectral density

(1.2) fA) =

C n n
,c>0, = <a<l+—=,v>0 XAeR™
AP (14 A7) 2 2

These random fields were named fractional Riesz-Bessel motion (fRBm). It is noted that
in view of (1.2), fractional Brownian motion (fBm) is a limiting case of fRBm with v = 0,
and fRBm displays LRD (as [A| — 0) of order a for a > 2. It displays second-order
intermittency, i.e, clustering of extreme values, (as |A\| — o0) of order a++. The presence
of the Bessel operator is essential for a study of stationary solutions of (1.1). In fact, this
case requires 0 < a < 5 and a + > 7 ; that is, the condition vy > 0 is necessary. The
parameter of the Bessel operator is also useful in determining suitable conditions for the
spectral density of the solutions of fractional kinetic equations to belong to L; (R™) (see
(3.2) below). The importance of this parameter is discussed after (3.5) below.

On the other hand, random fields with singular spectra can be obtained as rescaled
solutions of the linear diffusion equations with singular initial conditions (see Albeverio
et al. [1], Leonenko and Woyczynski [46], Anh and Leonenko [6, 7, 8]). Recently, several
researchers investigated the Burgers equation with random data which relates to the heat
equation via the Cole-Hopf transformation (see Bulinski and Molchanov [14], Albeverio
et al. [1], Funaki et al. [31], Leonenko and Woyczynski [47], Woyczynski [79], Leonenko
[45], Bertoin [10], Ryan [66], Dermoune et al. [20]). Beghin et al. [9] considered scaling
laws for linear Korteweg-de Vries equation or Airy equation with random data. Anh and
Leonenko [8, 7] presented the theory of renormalization and homogenization of fractional-
in-time or in-space diffusion equation with random data.

Our paper is motivated by the works of Leonenko and Woyczynski [46], Ruiz-Medina
et al. [65], Anh and Leonenko [6, 8, 7] in which Gaussian and non-Gaussian scenarios
are presented for the classical heat equation (Leonenko and Woyczynski [46], Anh and
Leonenko [6]), fractional-in-time diffusion-wave equation (Anh and Leonenko [8, 7]) and
fractional-in-space diffusion equation (Ruiz-Medina et al. [65], Anh and Leonenko [7])
with singular and possibly non-Gaussian initial conditions.

We generalize the results of Anh and Leonenko [6, 8, 7] and Ruiz-Medina et al. [65] to
the fractional-in-time and fractional-in-space diffusion equation and obtain new Gauss-
ian and non-Gaussian scenarios for the renormalized solution of the resulting fractional
diffusion equation with random data. In a sense, our results are the non-Gaussian central
limit theorems for solutions of generalized kinetic equations with singular data (see Taqqu
[75], Dobrushin and Major [24] and others). Note that the renormalization, normalizing
factors, Gaussian and non-Gaussian limiting fields obtained in this paper are new or at
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least in a more general form. The Green functions of generalized kinetic equations as well
as the corresponding spectral representation are also new.

The paper is organized as follows. Sections 2 and 3 provide preliminaries on the
fractional-in-space and in-time diffusion equations with random initial conditions, in-
cluding some new results concerning the Green functions of these equations. Section 4
describes the main results of this paper including spectral representation, Gaussian and
non-Gaussian scaling laws. The proof of these results are given in Section 5.

2. FRACTIONAL KINETIC EQUATION

We consider the following fractional kinetic equation/fractional diffusion equation

0%u o
(2.1) 57— M (I =AY (=0)u, >0
subject to the initial condition
(2.2) u(0,2) =uo(z), xe€R",

where u = u (t,z), 0 <t < T, z € R", is the kinetic field and § € (0,1], v > 0, « > 0
are fractional parameters. We shall concentrate on the case of random initial condition,
that is,

(2.3) up (x) =n(z), =xe€R",
where n () =7 (w,z), w € Q, x € R", is a measurable random field defined on a suitable

complete probability space (2,4, P). Here, A is the n-dimensional Laplace operator,

and the operators — (I — A)7/2 , v >0, and (—A)CW, a > 0, are interpreted as inverses
of the Bessel and Riesz potentials respectively (see Appendix B). Both Bessel and Riesz
potentials are considered to be defined in a weak sense, in frequency domain, in terms of
fractional Sobolev spaces.

The time derivative of order § € (0, 1] is defined as follows:

(2.4) 50 (pfu> (t,z), if B (0,1),

where

(Dfu)(t,m):ﬁ{%/ot(t—ﬂﬁu(T,x)dT—u(?éaC) , 0<t<T,

is the regularized fractional derivative or fractional derivative in the Caputo-Djrbashian
sense (see Caputo [16], Djrbashian and Nersesian [22], Kochubei [42], Djrbashian [21],
Podlubny [60], or Appendix A). The idea of regularization can be found in Caputo [16, 17],
Caputo and Mainardi [18], Gorenflo and Mainardi [36]. Note that fory =0, 5 =1, a = 2,
Eq. (2.1) is the classical linear diffusion equation or heat equation with random initial
condition (see Rosenblatt [63], Anh and Leonenko [6], and others).

In the non-stochastic situation the fractional-in-time diffusion equation, which for-
mally corresponds to Eq. (2.1) with v = 0, @ = 2, has been studied by many authors.
In particular, Schneider and Wyss [71], Schneider [70], Fujita [30], Priiss [62], Engler [26]
considered the fractional integro-differential equations or Volterra-type equations while
Kochubei [42], Hilfer [37], Kostin [44] investigated a Cauchy problem for fractional evo-
lution equations in Banach space with fractional derivatives. Mainardi [49, 50, 51] used
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the fractional derivatives in the Caputo sense to solve the Cauchy problem for the one-
dimensional fractional-in-time diffusion equation (see also Gorenflo and Mainardi [51]).
The fractional-in-space diffusion equation, which formally corresponds to Eq. (2.1) with
B=1v=00< a < 2 was first considered by Feller [29] and then many others
(see Stroock [74] for example) in the context of fractional diffusion leading to a study of
Markov processes or Lévy processes governed by stable distributions (see also Uchaikin
and Zolotarev [77]). Saichev and Zaslavski [67], Kobelev et al. [41], Metzler et al. [54],
Zaslavski [80], Gorenflo et al. [35] proposed the one-dimensional fractional generalization
of the diffusion equation incorporating fractional derivatives with respect to time and
space coordinates. It was introduced to describe anomalous kinetics of simple dynamical
systems with chaotic motion. Hilfer [37] introduced a two-parameter fractional-in-time
diffusion equation.

Hochberg and Orsingher [38], Beghin et al. [9] considered higher-order parabolic equa-
tions, which formally correspond to Eq. (2.1) with 5 =1,y =0,n=1and a = 3,4, ...
They presented solutions of such equations in the form of density functions of iterated
Brownian motion (Hochberg and Orsingher [38]) or Gaussian limiting behaviour of the
rescaled solution of the linear Korteweg-de Vries equation with random data (Beghin et
al. [9]).

We shall extensively use the following entire function of order 1/3 and type 1 :

_Oo 2 1
Z)_jz_;l“(ﬁj+1)’ zeCl3>0.

This function is known as the Mittag-Leffler function (see Erdély et al. [27], pp. 206-212,
or Djrbashian [21]). In particular, for real x > 0, 5 > 0,

(2.5) zh?m+

is infinitely differentiable and completely monotonic if 0 < g < 1, that is,

dk
(1fdﬁ@4 ) >0, 2>0,0<8<1,k=0,1,2,...

For real x > 0 and 5 < 1,

(2.6) By (—z) sin (73) /000 eXP{ (z )1/5} dt

73 t2 + 2t cos (7)) + 1

In particular, for x > 0,

Ey(—a) = e, Eyp(—a) = (1——/ )

From (C.5) and (C.12) in Appendix C, we obtain the following asymptotic expansion:

1)k gt

(2.7) Z ri—gm +° (|x|*N*1)

as x — 00, where < 1 (see also Djrbashian [21], p. 5). We shall recall some important
results on the Mittag-Leffler function (see Djrbashian and Nersesian [22], Theorems 5
and 6, Kochubei [43], Podlubny [60], or Engler [26], Appendix) in the following
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Theorem 1. The function
u(t) = Eg (—at”)

is the unique solution in L,(0,T), p > 1, of the Cauchy problem for the ordinary frac-
tional equation

(2.8) DPu(t) +au(t) =0, u(0)=1,a>0,
where
By (1) = (D? — (RP __u(©®
Du(t) = (D%u) (t) = (R7u) (t) T30

and

1 d ["u(r)dr
RPu) (t) = =——— / e~
RO =505 ), t-r7
is the Riemann-Liouville fractional derivative (see Appendiz A).

Let S = S (R") be the Schwartz space of rapidly decreasing C* (R") -functions with
the dual &' = &’ (R"), which is the space of tempered distributions (see, for example,
Dautray and Lions [19], Vol. 2, Appendix). Consider now Eq. (2.1) subject to the initial
condition
(2.9) ug () =6(x)e S, zeR",

where ¢ (z) is the Dirac delta-function. We shall denote by u = F, [u] the Fourier
transform of a distribution u € S " with respect to the space variable z € R™. In particualr,
let G =G (t,€),t>0,¢ € R being the dual variable of 2 € R", be the Fourier transform
of the fundamental solution (i.e., the Green function) of the Cauchy problem (2.1) and
(2.9). By the Fourier transform with respect to z, (2.1) and (2.9) is equivalent (see
Appendix B) to the Cauchy problem

(2.10) (D/G) (&) = —ulel” (1+1eP)7 G, Go.9) =1

To solve (2.10) we associate with it an ordinary fractional differential equation (2.8)
depending on the parameter

a=plel (1+1¢?)" > 0.

Using standard arguments (see, for example, Dautray and Lions [19], Vol. 5, pp. 8-15)
and Theorem 1 we arrive at the following

Theorem 2. The Cauchy problem (2.10) has a unique solution given by

(2.11) G (t,6) = By (—nt”g" (1 +1¢1)"")

where Eg (—x), x > 0, is the Mittag-Leffler function (2.5) of the negative real argument.
Moreover, for ug(x) € S (orug(z) € S' and has a compact support) the initial value
problem (2.1) and (2.9) has the unique solution

(2.12) u(t,z) = /n G(t,z —y)uo (y)dy,

where the Green function G (t,xz), 0 <t <T, x € R", satisfies (2.11).
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In the next section, we present some explicit expressions for the fundamental solution
G of the initial-value problem (2.1) and (2.9) in terms of H-functions (see Appendix C).
For certain special values of the fractional parameters «, 3 and v, the known results of
Schneider and Wyss [71] and Mainardi [50] are recovered. For a fuller collection of explicit
solutions of pseudo-differential equations in terms of H-functions, see Hilfer [37].

3. THE GREEN FUNCTION

Let G (t,z),0 <t <T,x € R", be the Green function of the fractional kinetic equation
(2.1) whose Fourier transform is given by (2.11). The inverse Fourier transform can be
written as

(3.1) G(t2) = (27) " /

For a > 0,5 € (0,1] and v > 0 such that

0 B, (—,utﬂ A (1 + |A12)”/2) d.

n

(3.2) By (—ut® " (14 A%)") € Ly (RY),
the Green function
(3.3) G (t,x) € L (R").

Clearly, the inverse Fourier transform (3.1) is rotation invariant (in A) and the func-
tion (2.11) is rotation invariant in . Thus, the inverse Fourier transform (3.1) can be
represented by the Hankel method as

(27{-)7”/2 = n/2 (o4 2\7/2 .3
(3.4) G(t,z) = W ; P T n—2)2 (|| p) Ep <—P (1+p%)""t M) dp,

where 7, (z) is the Bessel function of the first kind of order v (see (C.14) in Appendix
C). The Hankel transform (3.4) exists (see, for example, Theorem 1 of Dautray and Lions
[19], Vol. 2, p. 48) for v > 0, 8 € (0,1], a > 0 such that

n/2)— a 2
(3.5) P22 gy (—p (1+ ,02)7/ tﬂu) € L (0,00).

From (2.7) we obtain that for a fixed ¢ € (0, 7] the condition (3.2) holds for every 5 € (0, 1]
if @ + v > n, while the condition (3.5) is satisfied for « +v > (n+ 1) /2. From these
ranges we see the important role of the parameter v in Eq. (2.1).

Remark 1. In fact, (3.1) and (3.4) hold for broader ranges of o, 3 and v if we are able
to prove that G (t,-) € Ly (R™), in which case, we may compute the Fourier transform
of G (t,) by the Hankel method via the same integral formula. In this case, no problem
arises. Otherwise, we may interpret the Hankel transform (3.4) as an Lo ((0,00), pdp)
isometry for a + - > n/2. An analysis of (3.1) or (3.4) is possible also within the
framework of Schwartz distributions.

Remark 2. The Green function (3.1) or (3.4) of the fractional diffusion equation (2.1)
provides the most general form to our knowledge. For the special values 3 = 1 and/or
a = 2 the known results can be recovered.

Let us consider the initial-value problem (2.1) and (2.9) with § = 1 (fractional-in-
space kinetic equation with factorization of the Laplacian). In this case the Mittag-Leffler
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function E; (—x) = e™*, x > 0, and from (3.1) we obtain an explicit expression of the
Green function (see Anh and Leonenko [7]) as

G(t,z) = p(t,zia,7,p)
(3.6) = (27r)_”/ exp {z (A z) — pt |\ (1 + |)\|2)7/2} d\, a>0,v7>0.

For v = 0, & = 2 the Green function (3.6) reduces to the n-dimensional isotropic Gaussian
density

2
(3.7) 1%@%0340ZCNLx%=@WMYW%ﬂp{—%%}-

For v =0,a =1,

n+1\ _.,, —(n+1)/2
p(t.as0.1,00 = (S5 ) w5 2t Gt o

is the density function of the n-dimensional symmetric Cauchy distribution, while for
v=0,a € (0,2],

t : a
(38) p (E’ T; ()’ Q, 1> — (27.(.)”/ eZ(A,x}‘(t/Q)W d\

is the density function of the n—dimensional symmetric stable distribution. For a gen-
eral discussion of stable distributions and processes, see Samorodnitsky and Taqqu [69],
Uchaikin and Zolotarev [77]. Note that for a > 2 the function (3.8) may become negative
for some value of .
It is known (see, for example, Andrews et al. [3], p. 221) that
(3.9) / T, (at) /e PP dt =
0

14
a _a2/4p2

(2p2)l/+1 € ’

Combining (2.6), (3.4) and (3.9) we get the following elegant expression for the Green
function:

Re v > —1.

G (t, :L”) _ sin (Wﬁ) /00 exp {_ |x|2 /4tlu1/ﬂu1/g} du
0

2m3/2 31 /28¢1/2 ul/?8 (u? 4+ 2u cos (7f8) + 1)’
which holds forn = 1,0 < g < 1, a = 28 € (0,2), v = 0. For v = 0, we are able to

give a new explicit expression for the Green function (3.4) in terms of H-functions (see
Appendix C). Applying (C.18) of Appendix C to (3.4) yields

B /2 o0 [ |]” (1,1) (1,0)
G(t,x) = 2" H2,3< (n/2,a/2) (1,1) (LO‘/Q))

20P
o (22 (1 (n/2),0/2) (0,1) (0,a/2)
(3.10) - mn%2<ma 0.1 (0.5 >’

where H%; and H§22 are H-functions defined by (C.1) or (C.3) of Appendix C. From
(C.19) and (C.2) we obtain that (3.10) holds at least for

(3.11) g e (0,1], min(n,2,a) > (n—1) /2, |z|#0.
Remark 3. From the equation (10.1.1) of Srivastava et al. [72] we obtain that forn =1

the function q(u) = aG (t,u), u > 0, is a density function for f € (0,2], 0 < a < 2,
B < . It means that in this region G (t,x) € L (R') and G (t,z) > 0 for all n > 1.
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2, Sk = —]{7,
I'(as/2) to

If we apply the relation (C.5) in Appendix Cwithm =1,n=2,p=3, ¢
k=0,1,2,... B(s) =T'((n—as)/2)T(1—-5),C(s) =T (1—ps),D(s)
(3.10) we get the following series representation:

P (el T+ ak)/2)
(3.12) G(t,x) = i ;(—1) (2%5#) T (1+ k)T (—ak/2)’ B> a.

It should be noted that formula (3.12) was first obtained by Gorenflo et al. [35] for the
case n = 1 by a different method.
In the case < a we obtain from (C.6) the following representation:

S (=Y Ti—a—ak/2)
(3.13) Gt =T 2 () (W) T(1—B—BR)T (o +ak/2)

This formula again was obtained by Gorenflo et al. [35] in the case n = 1. Moreover,
for n = 1, Gorenflo et al. [35] note that if 3 = « the series representation is given by
(3.13) if 0 < t < |z|, and by (3.12) if 0 < |z| < t. Gorenflo et al. [35] found that if § = «,
n = 1 both formulae (3.13) and (3.12) can be simplified to a fractional Cauchy kernel:

1 ]x\ail 1% sin &

G(t,!lf):_ 20 aq a: 200
120 4 2|x|" t* cos & + |z

It should be noted that for 3 = a = 1, n = 1 the above kernel becomes the well-known
Cauchy kernel:

1 ¢
T2+ a2

We shall see below that for the special values of § = 1 and/or o = 2 the known results
can be recovered. For example, if v = 0,a = 2,3 € (0, 1], the Green function (3.10) is

G(t,x) =

reduced to
2 o 2P (D) (1,8)
(3.14) G(tw>—WH3§(m (m/2.1) (L1) (L1) |-
Applying (C.7) to (3.14) yields
o ao (2] (1,8)
(3.15) G(t,x)—WHm (m (n/2,1) (1,1) )

Applying (C.9) with ¢ =1/ to (3.14) we get, for u =1,

3.16 Clra = T g (1277 (L)
(3.16) (t,x)—w L2\ 92/8¢ | (n/2,1/8) (1,1/8) |-

The Green function (3.16) is exactly the Green function (3.4) of Schneider and Wyss
([71]), while the formula (3.15) is the Green function of Kochubei ([42]). For § = 1,
(3.14), (3.15) and (3.16) reduce to (3.7) by using (C.10). Moreover, applying (C.11) with
o= —n/2 to (3.15) we get

(3.17)  G(t,x) = (4mt®) """ H}Y (@ (1=(fn) /2,0)

(0,1) (1—(n/2),1) )

4¢2
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The Green functions (3.15), (3.16) and (3.17) have exponential behaviour as |z| — oo
according to (C.8) and G (t,-) € Ly (R™). This is a probability density in R™ for every
B € (0,1]. Hilfer [37] considered a two-parameter fractional-in-time diffusion equation
and obtained a fundamental solution in terms of H-functions.

The Green function (3.17) coincides with the Green function (1.22) of Schneider ([70]).
This Green function can be written as

_n 1
G(t,z) = (4nt’) /295 (|x|2t_ﬂ1>

(3.18) = /o Gy (ut’, z) (5 (u) du
where G (t, x) is the Green function (3.7) of the ordinary diffusion equation
(3.19) / Co(s)e™™ s 2ds, u >0,
1 1 1,0 (1 - ﬁa ﬂ)
Co(u) = gu™ WP pg (u™'1P) = Hyy <“ (0,1)

and pg (u) is the one-sided stable probability density with Laplace transform (see (C.12))

/ e Pps(t)dt =exp{—p°}, Rep>0.
0

Remark 4. The function (3.19) itself is a probability density with Laplace transform
Eg(—t),t > 0 (see Schneider [70], for example). The behaviour of gs (u) for small u can
be obtained from (C.4) or (C.5) leading to gg(u) ~ [['(1/2) /T (1 —(3/2))]u’, n = 1;
g3 (1) ~ [—1/T (1 - A)]logu, n = 2 g3 (u) ~ [T (/2 — 1) /T (1— B2, 5 > 3. It
asymptotic behaviour for large u > 0 is determined by (C.6) and reads

g5 (u) ~ Cu™ exp {—cu"} with C = (2—3)"?p,

where o =n(1—=0) /22 =B).7=02-8)",v=[B(n+2)-2]/(2(2-5)).

Remark 5. Kochubei [42] presented the singular properties of the fundamental solution
(8.15) with estimates both in t € (0,T] and x € R™. Let ¢; > 0 be positive constants .
Then for t=° |z|> < 1,2 # 0, we have the following estimates: |G (t,x)| < ext™#/2,n =
L |G@tz) < etP[1+n (t_5|x|2)] =2 |Gt zx) <cst Pz n > 3. For
tP 2> > 1, |G (t,2)| < est P2 exp {—c5t_ﬂ/(2_ﬂ) |:U|2/(27’6)} . Kochubei [42] proved that

under some conditions (see (1)-(3) below) the function

(3.20) u(t,z) = / G (tx—y)uo () dy

is the classical solution of the initial-value problem (2.1) and (2.9) with o = 0, v = 2,
B € (0,1], that is,

(i) u(t,-) € C*(R");

(i) (-, z) € C(0,T);

(ili) there exists a fractional integral (I'Pu) (t,z) € C*(0,T), where

(Il_ﬂu) (t,x) = ﬁ/o (t — T)iﬁu(l',’i') dr;
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(iv) the function (3.20) satisfies (2.1) and (2.9).
Moreover

lu(t,z)] < e exp{h |x|2/(2—5>}, 0 < h < p, T/,
he = (2= B) Y DB,

u(t,z) € HA(0,T) if 0 < A+ 03 < 1, B+ X < v, where HZ™(0,T) is the class of
functions f (t), t € (0,T) such that t” f (t) satisfies the Holder condition of order B + A.
The conditions for Kochubei’s theorem are the following:

(1) ug (z),x € R™ is continuous;
(2) up () < crexp {h |x|2/(2_’6)} ,0 < h < p,T8/CB and
(3) up (x) locally satisfies the Holder condition if n > 1.
Some further results on fractional evolution equations can be found in Hilfer [37).

Remark 6. Mainardi [50] (see also Podlubny [60] or Gorenflo et al. [35]) considered the
initial-value problem (2.1) and (2.9) forn =1, v =0, a = 2, where the fractional-in-time
derivative of order 3 € (0,2) is interpreted in the Caputo-Djrbashian sense (see Caputo
[16, 17], Mainardi [50] or Anh and Leonenko [8, 7]). He presented the solution of the
initial-value problem in the form of (3.20) with the Green function

1 = B
21 tx) = ———=M ;= 2
where the function
M (u;v) JE:O T () 1=7) W (—u; —v, v), u>00<v<l,

and the entire function of order 1/ (1 + \)

W (20, 1) = Ty (2) = Hyly (z zeC,

(0,1) (1 = p, A) ) ’
A > —1,u > 0 is known as Wright’s generalized Bessel function (see (C.14) for its
definition). The Fourier transform of (3.21) is of the form (2.11) withy =0, =2, n =1
(see Anh and Leonenko [8] for more details). In particular, M (u;1/2) = exp {—u?/4},
and M (u;1/3) can be expressed in terms of Airy function with positive argument.

Remark 7. Saichev and Zaslawski [67), Zaslavski [80], Hilfer [37] and Kobelev et al.
[41] presented some different forms of the Green functions of fractional-in-time and/or
in-space one-dimensional diffusion equations. They use a different definition of fractional
deriwatives and their reqularizations.

Remark 8. The Green functions (3.4) or (3.5) of the fractional kinetic equation (2.1)
are radial or rotation-invariant, i.e., G (t,x) = G (t,|x]), t >0, z € R™. In general, the
fundamental solutions of higher-order heat-type equations can be not only signed but also
asymmetric (see Fugita [30], Hochberg and Orsingher [38] or Beghin et al. [9] and the
references therein). For example, the fundamental solution of the Airy equation or linear
Korteweg-de Vries equation

ou_ o
ot Ox3
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1s of the form

(3.22) w(t,z) = %%Ai ( \/%

where the Airy function of the first kind (see Bleistein and Handelsman [12])

Ai(w)zi/oocos (Oz$+a—3)d:t r€R?
VT 3)

is asymmetric and signed. Thus the fundamental solution (3.22) has the following as-
ymptotic behaviour:

), t>0,2€R

o 1/44-1/4 { 9

u (t,.ﬁl?) ~ W exp ——$3/2t1/2} , T — 400

3V3

and
—1/44-1/4

2
N COS{3\/§|$|3/2t_1/2—£}, x — +00.

For any t > 0, u(t,z) converges to zero exponentially fast as x — +oo and oscillating
as x — —o0. Thus u(t,x) is asymmetric and signed. We note that the fundamental
solution (3.1) of the second-order equation is non-negative while that of the fourth-order
equation is signed but symmetric. Feller [29], Fujita [30], Uchaikin and Zolotarev [77]
considered the fractional equations whose fundamental solutions are general densities of
stable distributions (not necessarily symmetric). The fundamental solutions u (t,x), t >
0, x € R of the higher-order heat-type equation

du ma1 07U

at_( 1) m=2,3,...

Ox2m ’

have as their Fourier transforms exp {—§2mt} and, fort =1,

u(l,z) = /R1 %exp {izg — &M} de = ﬁz_:(—l)j P((I%j(;;i){?m)x%

The function y (z) = 2mu (1, x) satisfies the ordinary differential equation

|z]

u(t,x) ~

d2mfly m 1
a1~ (T g =0
which is a special case of Turrittin’s equation
dn
d—y —2'y=0, n=0,1,2,..,veC!
:L-TL

(see Kamimoto [40]).

4. SPECTRAL REPRESENTATION AND SCALING LAWS

In this section we discuss the spectral representation of some classes of random fields
which can be interpreted as mean-square solutions of fractional-in-time and in-space
kinetic equations (2.1) with random initial condition (2.3). We obtain new Gaussian and
non-Gaussian scenarios for renormalized solutions of these equations.
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Let n (z), € R", be a real measurable mean-square continuous homogeneous (in the
wide sense) random field with En (z) = 0 and covariance function

(4.1) B (z) = cov (7 (0) 1 (x)) = / Ccos{Aa—y) F (),

where F' is the spectral measure, that is, a bounded non-negative measure on (R, B (R™)) ,
B (R™) being the o-field of Borel sets on R™. In view of Karhunen’s theorem (see, for ex-
ample, Gihman and Skorokhod [33]) there exists a complex-valued orthogonally scattered
random measure Z such that for every x € R", the random field itself has the spectral
representation (P-a.s.)

(4.2) n(z) = / A Z(dN), E|Z(A))=F(A), AcB(RY.

From (2.11), (2.12) and (4.2) we obtain the formal solution of the initial-value problem
(2.1) and (2.3) in the form of L, (€2)-stochastic integral:

utta) = [ n@)Glta-y)dy

(43) = [ ey (<t W (L N Z @),

where Ej is the Mittag-Leffler function (2.5) and 3 € (0,1}, a > 0, v > 0 are fractional
parameters. In addition, by (2.4), (2.8) and (4.3),

Diu = —u/ e [N (14 AP) 2 By (—Mtﬂw“ (1+|/\|2)7/2>Z(d/\)
Rn

= —u(I =AY (=A),

where the fractional derivatives in space are also interpreted in the mean-square sense in
the frequency domain (see Appendix B). Thus we can interpret (4.3) as the mean-square
or Ly (2)-solution of the initial-value problem (2.1) and (2.3).

The covariance function of the random field (4.3) is of the form

(4.4)
cov (u(t,z),u(s,y)) = /

In particular for § = 1 we obtain the following spectral representation of the mean-square
solutions of the fractional-in-space kinetic equation with random data:

ei(A,xfy)Eﬁ (_Mtﬁ |)\|a (1 X |)\|2)’Y/2> Eﬁ <_N5ﬂ |)\|a (1 + |)\|2)‘Y/2> r (d)\) .

n

(4.5) w(t,z) = / exp {i (0 2) — it X" (1+ M)} 2 (0,
while for g € (0,1], v =0, « = 2, (4.3) reduces to
(4.6) w(t,z) = / e (i (0 )} By (—ut? INP) 2 (0)

For g =1, v =0, a =2, both spectral representations (4.5) and (4.6) can be written as

(4.7) w(t,z) = / i =ntA® 7 (1)
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Remark 9. Consider the initial-value problem (2.1) and (2.8) with 5 € (0,1], v = 0,
a = 2 on the set (t,xz) € (0,T] x R™. Suppose that sample paths of the random field
n(z),z € R™ satisfy conditions (1)-(3) of Remark 5. Then there exists a classical solution
of the initial-value problem (2.1) and (2.3) (see Remark 5) and (4.3) satisfies (2.1) with
probability one. An interesting open problem is to generalize this result to the general
equation (2.1).

Remark 10. If n(z),z € R, is a homogeneous Gaussian field with spectral represen-
tation (4.2), then u(t,x), t > 0, x € R", is a homogeneous (in space) Gaussian field
with spectral representation (4.3). If the field n is subordinate to a Gaussian field (see
Dobrushin [23]), then the field (4.3) can be written as a series of Wiener-Ité multiple
integrals with corresponding transfer functions. These transfer functions express the non-
Gaussian structure of the field (4.3). In particular, it is possible to calculate the higher-
order spectra using the diagram formalism and technique of Terdik [76]. We address these
problems in a separate paper.

An open area of investigation is to consider the rescaled solutions of the fractional
kinetic equations (2.1) with random initial conditions and/or random potential. For an
exposition of the heat equation with random potential in terms of Wiener-It6 integrals,
see Nualard and Zakai [56] and Holden et al. [39], for example.

In this paper we shall restrict ourselves to finding the limiting distributions of the
rescaled solutions of the initial-value problem (2.1) and (2.3) in the case where the (non-
Gaussian) random field n (x) = h ({ (x)),z € R", is a local functional of a homogeneous
isotropic Gaussian field ¢ (z),z € R", such that F (h? (£ (0))) < co. The underlying field
€ (z),r € R, is assumed to satisfy the following conditions:

A. The field £ (x),z € R", is a real measurable separable mean-square continuous
homogeneous isotropic Gaussian random field with E¢ (x) = 0 and covariance function
of the form

(4.8) R(z) =cov(£(0),&(z)) = (1+]a>) ™"*, 0<x<nzeR"

Observe that in this case
/ B (z)dx =
and we have a random field with long-range dependence.

Remark 11. Most of the papers devoted to limit theorems for random fields with LRD
have used the covariance function of the form R(x) = L(|z|) /|z|”, 0 < »x < n,z € R",
where L is a slowly varying function for large values of its argument with some additional
properties. Nevertheless, for continuous-parameter random fields, it is not easy to find
exact examples of mon-negative definite continuous functions of the above form. Note
that the class of covariance functions of real-valued homogeneous isotropic random fields
coincides with the class of characteristic functions of symmetric probability distributions.
From the theory of characteristic functions we are currently able to present only example
(4.8) and the covariance function

(4.9) Ri(x)=(1+|z/")", zeR"

where ¢ € (0,1) forn =1, and » € (0,2) for n > 2. The function (4.8) is known as
the Fourier transform of the Bessel potential (see Appendixz B) or characteristic function
of symmetric Bessel distributions (see Oberhettinger [57], p. 156, or Fang et al. [28], p.
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69). The function (4.9) is known as the characteristic function of the Linnik distribution
(see Anderson [2]or Ostrovskii [59]). In this paper we consider the covariance function

(4.8). In principle, our method is applicable to the covariance function (4.9) as well (see
Anh and Loenenko [7) for details).

Under condition A, the covariance function (4.8) has the following spectral represen-
tation:

(4.10) R(z) = / M E(N) dA,

while the field itself can be represented as

(4.11) §w)= [ POV (),

where W is the complex-valued white noise random measure on (R™, B (R™)) such that
EW Q) =a], AeB(RY),

for any A with finite Lebesgue measure |A|. The spectral density f,, (A), A € R™ has the
following exact form (see, for example, Donoghue [25], p. 293):

(4.12) £ O) = F (A) = e, ) K (W) A2,

where
1
c(n,») = [71'”/22(%_”)/2F <g>]
and

1 00 v—1 —1z(s4+1 1 22
(4.13) K, (2)25/0 s' ez (+s)d5:§H§;§ (Z

(v/2.1) (~v/2.1) )

is the modified Bessel function of the third kind of order v (see, for example, Watson
[78]). We note that

(4.14) K, (2)~T ()2 27" 2]0,v>0

and for a large value of z the following approximation holds:

T 42 — 1
4.1 K, (2)=4]=e 2272 [1- ).
(4.15) (2) \/ge z < % + )

Using (4.12) - (4.15) we obtain the following Tauberian representation (see Donoghue
[25], p. 295):

(4.16) L) =c1(n,2) A" (1=6(])])), 0<»x<n, AR,
where 6 (J]A]) — 0 as |A\| — 0, and

(4_17) c1 (n,%) =T (TL ; %> / [ZKW”/QF (g)}

is a Tauberian constant (see Leonenko [45], p. 67).
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Remark 12. The correlation function (4.9) has the spectral representation (4.10) with
spectral density

sin (73¢/2) @-ny2 [ w2y, n
fie ) = sm e N i K2 (| A w) AER

|1 + uxezﬁr%/2|2 ’

for which we can derive the Tauberian representation (4.16), but its asymptotic behaviour
at the origin depends on the arithmetic nature of the parameter » € (0,2) (see Ostrovskii

[59]).
From (4.16) we observe that f,. (\) T oo as |\ — 0 ; thus we have a field with singular
spectrum.

B. The function h : R'— R! is such that
/ h? (u) ¢ (u) du < oo,
RI

where

1
o (u) = e 2 ueR

is the standard Gaussian density.
The (non-linear) function A of condition B may be expanded in the series

(4.18) h(u) = %Hk(u), Cp = /R () () Hi (),

of orthogonal Chebyshev-Hermite polynomials
k

1 d
Hy (u) = (=1)" [p (w)] " e, k=012,
C. There exists an integer m > 1 such that
00:...: m—1 :O, C’m%O

The integer m > 1 will be called the Hermitian rank of the function h (see, for example,
Taqqu [75]).
D. Suppose that the Green function G (t,-) € Ly (R").

Remark 13. For a discussion of condition D in terms of fractional parameters, see
Section 3. For example, condition D holds if a +~ > n, 5 € (0,1].

Our main result is the following

Theorem 3. Let u(t,x), 0<t <T, z €R" be a random field of the form (4.3), where
a>0,0¢€(0,1], v > 0 are fractional parameters of the fractional kinetic equation (2.1)
with the initial condition field n (z) = h (£ (x)), © € R™, where the non-random function
h and random field & (z), x € R", satisfy conditions A, B and C with

» < min (2a,n) /m,

m > 1 being the Hermitian rank of the function h. Suppose that condition D holds. Then
the finite-dimensional distributions of the random field

1 t n
(419) U€<t,$)zmu(g,m), 0<t§T,$ER,
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converge weakly as € — 0 to the finite-dimensional distributions of the random field

( ) ( ) C 12 ( ) ’ e’(:r,MJr...Jr)\m) ( s | ’ )
4.20) Uy (t,z) = —c"" (n, » / ——5 Ep (—pt” [ A+ o+ A
m! Rem (| Aq] .o | Am]) ™72

XW (dAy) . W (dAn), 0<t<T,z€eR"

where Eg is the Mittag-Leffler function (2.5), W is the complex Gaussian white noise
random measure defined by (4.11) and ¢y (n, ) is a constant defined in (4.17).

We shall give the proof in Section 5. Here [ " ... is multiple Wiener-Ito integral with
respect to a Gaussian white noise measure. For definition and properties of these integrals,
see Taqqu [75], Major [53], for example. We should note that the diagonal hyperplanes
Ai ==EM;, 4,5 =1,...,m, 1 # j, are excluded from the domain of integration. The random
field (4.20) is homogeneous in x € R™, that is,

t2)Un(sy) = Soom(nsg [ o2 o ) °)
EU,, (t,z)U, (s,y) = —"(n,x / —Fg (—pt DYIE ST Y b
m o (el o]

(4.21) X Eg (—pus” | A1+ oo 4 Am| ™) dA1...d M.

It is easy to see that EU? (t,z) < oo if 3 < min (2a,n) /m (see (3.3)).

Note that Theorem 3 reduces to the result of Leonenko and Woyczynski [47] for n = 1,
B =1,v=0, a =2, to the result of Anh and Leonenko [6] for n > 1, 5 =1, v = 0,
a = 2, to the result of Anh and Leonenko [8] for n =1, € (0,1], v =0, « = 2. The
special casesn > 1, 3 € (0,1],y=0,a=2,andn > 1, =1,7 >0, @ > 0 of Theorem
3 were considered in Anh and Leonenko [7].

We observe from (4.20) that U (t,x), ¢t > 0, x € R™, is a homogeneous (in z) Gaussian
random field with covariance function (4.21) for m = 1 and spectral density

(4.22) g(A) = Ef (—put” [N%) [N, A eR™,
where
ey = C%cy (n, »).
The spectral density (4.22) behaves as
(4.23) co A", € (0,min (2a,n)),

as |A| — 0. Hence the Gaussian random field U, (¢,x), t > 0, z € R™, which can be
considered as an approximation to the solution of the fractional kinetic equation with
random singular data, displays LRD.

Applying (2.7) to (4.22) yields

Co 1 1
(424) g (A) - ,Utﬁ |)\’n+2a7% + O <|)\‘n+2a%+1>
as |A\| — oo. The component 1/ |\|""*™* indicates the second-order intermittency (see
Anh et al. [5]). The component ¢+# indicates that the relaxation function is non-
exponential.

The random fields U,, (t,x), m > 2, have a non-Gaussian structure. In principle,
it is possible to calculate the higher-order spectral densities of these fields based on
the diagram formalism (see Dobrushin [23]) and the special technique of Terdik ([76]).
These higher-order spectral densities of non-Gaussian fields U, (¢,z), m > 2, also have
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singularities at frequency zero (and on the diagonals \; = —J\;, 4,5 = 1,...,m) and
intermittency-type behaviour at infinity. We address these problems in a separate paper.

The above discussion shows that random fields U,,, defined in (4.20), which can be
considered via Theorem 3 as approximations to the solutions of the fractional kinetic
equation (2.1) with singular data, can be used as models of physical phenomena with im-
portant features such as non-Gaussian marginal distributions, LRD, intermittency and
non-exponential relaxation simultaneously. Moreover the explicit form of the spectral
densities such as (4.22) leads to suitable methods for statistical estimation of the param-
eters of these random fields in the frequency domain (see Leonenko [45] or Leonenko and
Woyczynski [48], among others) and for their simulation.

5. PROOF OF THE MAIN RESULT

Under the conditions of Theorem 3, we have the following Hermite expansion in Lo (2) :

(5.1) u(tr) = [ Ga—phEwd =Y o),

Rn k=m

where by Itd’s formula

v (t,2) :/HG(t,x—y)Hk(f(y))dy

!

nm

(5.2) X ﬁ FY2 )W (dA) .V (d\n)

where [ " means Wiener-Ito integral.
Therefore

1 t =z
(5-3) Ue(t.2) = —gmat (g’ m) = Cmye (4, 2) + Re,

where by the scaling property of Gaussian white noise (W (ad\) L an/2W (dX) , where <
stands for equality of distributions) we have

 (C/m)) (t ac)

Cme (67) = Z5meaVm 2 2o

Con/m) [ ifosra N
= %m%ﬂ//&z/ gz PNt Am) (—u(t/e)ﬂ|)\1+...+)\m| (1+|)\1+...+>\m|2)”/2>

nm

X ﬁ FY2Z) W (dAy) .. W (dAy)

Co/ml) [, N
i—im%ﬂ/;gaz/ gil@rttim) g (—,u(t/s)ﬁ|>\1+...+>\m] el (1+s2ﬁ/“|A1+...+Amy2)”/2>

nm

s [T Y27 (Age?) emm P COW (dAy) .. W (dAm)

Jj=1
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c.,. [ . ) }
e G YR R W LA

(5.4) X {ﬁ |Aj|<%—">/2} {ﬁ (1—0 ()] e%)) } W (dAy) .. W (dAp)

J=1 J=1

where 6 (|A|) is defined in (4.16).
We shall prove that

(5.5) A. = E |Cpe (t,2) = Un (8, 5)}2 — 0, m < min(2a,n),
and

1 > Ck t T
(5.6) varR. = anr; Hyk <g, m) — 0

as € — 0. Then, by Slutsky’s argument, U,, . (¢, ) converges in distribution to Uy, (t, )
and the statement of Theorem 3 can be obtained by the Cramer-Wald argument.
From (5.4) and (4.20) we have
(5.7)
2 i@ Aittdn) B (—ptB Ay + o+ | )|
A< (n) [ | o (i )l
m- nm

(s oo A) dAnd s
(Mg + oo+ M) Qe (M )M

where
Qe (A, Am) = Ty (1= 605 (IM1€7%)) E52 (—put® M+ .. 4 M| )
xE3 (—utﬂ P e e T L o VISR )\m|2)7/2> —1.
Using the property of complete monotonicity of Mittag-Leffler function Ez with 3 < 1
and (4.12), (4.14), (4.15) and (4.16) it follows that Q. (A4, ..., . Ap) is a bounded function

and lim . 0Q¢ (A1, ..., .Amm) = 0. Then by the dominated convergence theorem, we get from
(5.7) lim . oA, = 0. Note that from (2.7) it follows that

A+ Am) (B )
/ }6 L Eﬂ( it |/\1—|—...+)\m| )} d);...d)\,, < oo,

(I A1+ .+ A7

for »x < min (2a,n) /m. Thus, (5.5) holds.
Let us now prove (5.6). It is well known that

(5-8) EHy (€ () Hn (€ (y)) = mléy' [R ()]™
where R is defined by (4.8) and ¢} is the Kronecker symbol. Using (5.8) we get
> Ck t T CI%
(5.9) var Z Hyk (E’ m) < A (t2) Z e
k=m k>m—+1
where

Ami1e (t,x) = /n /n

t T t X
“ <ﬂ—/ - y)‘ ‘G (T/ —”) ‘ R™ (i — 4) dindys
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¢(ezmn)|loGm )

R™ (yy — yo) dyndya + We (t, )

/ 2/04 / 2/a

(510) - A;n+].,€ + Wsa
and
v(r)={z eR":|z|, <r}, |z|,=max{|z],...,|zal}.
Note that
(5.11)
t T -n _ndla i\ p—yeB/ e a «a /2
G (E%) = (2m) "/ /ne (a—ve?l?) g (—utﬁ IA[* (1 + 2> 22) )d)\.

For any b > 0 there exists U > 0 such that R (y1 — y2) < bif |y1 — y2|, > U. Now, let

A= {pev(E ) pev(E) |y -yl <U},
Ny = v (5_2/0‘) X U (5_2/a) \Ay,

Ag = {Z,i:])—yigﬂ/a,yiEU(8_2/O[>,7::1.2: |Zl—22|0>U8ﬂ/a}.
Then from (5.10) and (5.11) we get

= [ oo ()
btz e

2nﬂ/a,¢ ‘I’ b/ /‘ (A, z— z1>E,6 (_Ntﬂ |)\’a (1 _|_82ﬁ/a ’)\|2)’Y/2> d)\‘
Az

| i v/2
. (27]-)_”/ 610"1’22)Eﬁ (_Mtﬂ V| (1 4 26/ |X|2> ) dN
mp/a
" € - m%/2dzldz2
|£28/2 |2 — 25|

(5125 2%y (e) + by (e)

where, by the dominated convergence theorem, lim. o, (¢) = K;, K;, i = 1,2, being
positive constants. From (5.11) we obtain

R™ (y1 — y2) dy1dys

IN

(5.13) i1 /€I < iy () ePTNICTIA) by, (e)

The right-hand side of (5.13) tends to zero as € — 0 since s»m < 2n and b > 0 can be
chosen arbitrary small.
Making again some change of variables we can prove that

(5.14) W./emBle 0, ¢ —0.
From (5.9) - (5.14) we obtain (5.6). The proof of Theorem 3 is then completed.
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APPENDIX A. CAPUTO-DJRBASHIAN’S REGULARIZED FRACTIONAL DERIVATIVE

This appendix is based on Caputo [16], Djrbashian and Nersesian [22] and Djrbashain
([21], Chapter 10), Podlubny [60], Butzer and Westphal [15]. It should be mentioned that
Caputo and Djrbashian independently developed the concept of regularized fractional
derivative without naming it explicitly. Later, the concept was re-discovered by several
authors.

Let f (t) € Ly (0, T) be an arbitrary function. The Riemann-Liouville fractional integral
of order 3 > 0 is defined as

1 t
(A1) RPF () = —— / (t— VP f(r)dr, O<r<T
I'(8) Jo

For any (3 > 0 the functions R™°f (t) € Ly (0,T) and defined almost everywhere. More-
over

}Bin%R—ﬂf t)=f(y), teE,
where E is the set of those points t€ (0,7") for which the functions f (t) and |f (¢)| are
both the derivatives of their primitives (the measure of (0,7") \ E is zero). For example
(A.2) RPA{YT(1+a)}=t""P/T(1+a+p3), a>-1
Let f(t) € Ly (0,T) and let 3,35 > 0. Then
R*ﬁQ (R*ﬂlf (t)) — R ( ﬂlf( )) 51+ﬁ2)f( )
(A.3) ROf(t) = f(t).

Assume (3 > 0 to be a given number and the integer p > 1 to be defined by the inequalities
p—1< 3 <p. For f(t) € L, (0,T) we introduce the function

dtP {R (»—0) f(t)}

which is called the Riemann-Liouville fractional derivative of order § > 0. In particular,
forp=1

ROf () =

RPf(t) {72 Af@)}, 0<p<L

For § = 0 we formally set
R°f {R )=

In particular, using (A.2) gives
RO{t)T (1+a)}=t"P/T(1+a—-pB), a>-1.

Let AC(0,T) be the space of absolutely continuous functions on (0,7). If f(t) €
L1 (0,T), then almost everywhere in ¢t € (0,7

Rﬁl( ﬂzf()) R~ (Ba— /Bl)f(t)’ By>B,>0

and
RO(RT2f(1) =RO%f (1), By>0,20
if the derivative RP1=P2 f (t) exists almost everywhere in (0,7).
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If f(t) € L1 (0,T) and, in addition,
RTPPRIf(t) € ACP(0.T), p-1<B<pp=>1,
then the equality
thi—k
1+, —k)

(A.4) ROREf (1) =R (1) =Y {R=Ff(7)} |r=o I

is true almost everywhere in (0,7") for any (3, > 0. In particular, from (A.4) with 3, =
1— 0, B, =1, we obtain the Caputo-Djrbashian regularized fractional derivative

—(1— d
Dft) = RIS

v [d i@ fo
T [dt )y (t—rp P
£ (0)

= (RPf)(t) - BrO_7)

APPENDIX B. THE BESSEL AND RIESZ POTENTIALS

This appendix is based on Donoghue [25], Stein [73], and Anh et al. [5]. The integral
operator

T, = (1 —A)""?

for v € R, is called the Bessel potential of order v, whose kernel I, is given by

1 1 & 2 ds
I _ —x|z|*/s ,—s/4m (—n+'y)/2_.
(@) (4m)/2 T (7/2) /0 ‘ 7 5

Here, A is the Laplacian. The following proposition gives some fundamental properties
of Bessel potentials.

Proposition 1. For each v € Ry, I, (x) € Ly (R"), and its Fourier transform is

A

Ly =021+, rere
For f € L, (R"),1 < p < o0,

Iy (f) =1y = f
(the convolution of I, and f), and

LyxIg = Iiysp)-
Therefore,

Iy-Is=I(+p, 720,620

On the other hand, the inverse of operator L., is the operator I_., = (I — A)W/ & for~ > 0.
Proof. See Stein [73], pp. 130-135. &
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The Riesz potential is defined by 7, = (—A)fa/2 , 0 < a < n. Then, for f €S (R"),

TG = —= [ = )y

= (Jax [f)(2),
where

w2207 (o)2)
90) =T a)

and

is the Riesz kernel, whose Fourier transform is

o) = (2m) ™2 A, AeR™

APPENDIX C. Fox’s H-FUNCTIONS

We reproduce the definition and the basic properties of Fox’s H-functions (see Braaksma
[13], Srivastava et al. [72] or Prudnikov et al. [61]).
Fox’s H-functions are defined for z € C, z # 0 by the Mellin-Barnes-type integral

g e =y (< G e ) =g [reeas

where h (s) is given by

with

A(s) = T (bj+8;s), B(s) =11 (1—a; —qjs),
C(s) = H?:mHF (1 —b; — ﬂjs) , D(s)= H?anF (aj + ays) .

The integers m,n,p and ¢ satisfy 0 < n < p, 1 < m < ¢, and empty products are
interpreted as unity. The parameters a, ..., o, and [y, ..., 8, are positive real numbers,
whereas a4, ...,a, and by, ..., b, are complex numbers.

In (C.1) 2% = exp {—slog|z| —iarg z} and arg z is not neccessarily the principal value.
The parameters are restricted by the condition P (A) NP (B) = (), where

]_—CLZ—F]C

P(A) = {poles ofF(l—a¢+ais)}:{ €eC;i=1,..,n, kENO},

7

_bi_k’ec; i=1,..,m, keNO},

Bi

P(B) = {polesof T'(b; + B;s)} = {

No ={0,1,2,..}.
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The integral (C.1) converges if one of the following conditions holds (Prudnikov et al.
[61], Braaksma [13], Hilfer [37]):

(C.2a) L =L(c—ioco,c+ioco;P(A),P(B)), |largz| < wr/2, w > 0;
(C.2b) L= L(c—ioco,c+ioco;P(A),P(B)), |largz| =wn/2, w >0, cM < —Re;
(C.2¢) L=L(—oco+iu,—00+iuy;P(A),P(B)), M>0,0<]|z] <o
(C.2d) L=L(—oco+iu;,—00+iuy;P(A),P(B)), M=0,0<|z| <R;
(C.2e)

L=L(—0co+iu,—00+iuy;P(A),P(B)), M=0, |z|] =R, w>0, Rey <0
(C.2f) L = L(oco+ipy,00~+ipy;P(A),P(B)), M <0, 0<|z] < oo;
(C.2g) L=L(co+iy,,00+ iy P(A),P(B)), M =0, |z| > R;
(C.2h) L =L(co+iy,,00+1475;P(A),P(B)), M = 0, 2| =R, w>0, Rey <0,

where p; < po. Here L (21, 29; G1,G2) denotes a contour in the complex plane starting
at z;, ending at 2z, and separating the points in G from those in G2, and the following
expressions are employed:

n p
w =D e ) %+Zﬂ -y 5
j=1 j=n+1 j=m+1
q p

M =Y 8-> a;>0,
j=1 j=1
p q
R = Ha;ajnﬁfia
v o= Zb —Za, p—q)/2+ 1.

The H-functions are analytic for z # 0 and multivalued (single-valued on the Riemann
surface of log z). The H-functions may be represented as the series (Braaksma [13], Hilfer
[37])

(C.3) H;?q"( ‘((Zigll? Z::gp > ZZ% k,ﬁ ZbHRIB,

i=1 k=0

where

HT:L#ZF(’?'—(b-+k)ﬂ‘/ﬁ~)l_[" L(1—a;+ (b + k) ay/5)
Femin T (L= by 4 (0 8) B3/ B3) T T (0 = (bi + K) o /b3)

whenever M > 0, L is as in (C.2a), (C.2b) or (C.2¢), (C.2d), (C.2e) and the poles in
P (A) are simple.
Similarly,

m,n (a17a1) ot —(14o;+k a,
cn (o] s =33 et

i=1 k=0

Cik. =
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where

H?:L#i I'l—a; —(1—a; +k) oz]/a,) | I(b;+(1—a;+k) ﬁj/ai)
Cik = T7p
j:n+1r(aj + (1 —a;+k)oj/o) ] =m+1 ( —bj—(1—ai+k) 63‘/042')
whenever M < 0, L is as given in (C.2a), (C.2b) or (C.2f), (C.2g), (C.2h) and the poles
in P (A) are simple. In particular, if M > 0, we obtain from (C.3) that

- 1 S (-1)"  Bisy —sk
(C.5) Hpq (2) = 5_1;( k!) C(Sk)(D)<3k)z ’

where s, = — (k + b1) /31, k € Ny. To get this representation, one transforms the contour
L into the left loop and uses the residue theorem with the “left” poles. In the case M < 0
one can transform the contour L into the right loop and uses the residue theorem with
the “right” poles to get

(C.6) ar _a; k‘ s D(Sk)z :

where s, = (k+ 1 —a1) /ai, k € Np.

For n = 0, there are cases where H-functions become exponentially small in certain
sectors when |z| becomes large (see Braaksma [13], Egs. (2.16), (2.36), (2.43)). For
m = ¢, we have

(C.7) H? (z) ~ F2/M exp {—zl/MMR’I/M}

for large |z|, uniformly on every closed sector with vertex at the origin contained in
larg z| < wm/2, where

q p
Y= D b= ) atp-a+1)/2
Jj=1 j=1

P q
_ _ _ 1/2)—a; b;—(1/2
F = (27T)(p Q+1)/2R 'y/MM 1/2Ha§ /2)—a; Hﬁjj (/)
j=1 j=1
Symmetries in the parameters of the H-function are detected by regarding the definition
(C1). For example, the H-function is symmetric in the set of pairs (a1, 1), ..., (an, @),

n (an+1> an+1) PRRES) (ap7 ap) ) n (blaﬁl) R (bTrhﬁm) and in (bm+1>ﬁm+1) DR (bq7 6(]) :
We give the following reduction formula:

(C.8)
57 (=] S oy ) = 5 (<] 557 ) ).

The next important identities needed in the paper are

A i s DR Gl i i )

(C.10) H;’;”( ‘ E‘Zi:gi))fff EZS;:)) ) = ety <zc

(a1, caq) ... (ap, cay) >
(b1, cfy) ... (bqvcﬁq) 7
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(C.11)
Lo g ( (a1, 1) ... (ap, a) ) _ gmen ( ’ (a1 + oaq, 1) ... (ap + oy, ) >
p,q (bl,ﬂl)... (bq,ﬂq) (bl—f—Uﬂl,ﬂl)... (bq—f-O'ﬂq,ﬁq) '

Many well-known special functions are included in the class of H-functions. For exam-
ple,

(C.12) 1acb/'gexp{ :El/ﬂ} H&f(

(b.5) ) ’

or the Mittag-Leffler function (2.5)
(0,1) ) /Oo it 10(‘(1—ﬁ5)>
= e "Hyy (t ! dt.
(0,1) (0,5) 0 b (0,1)
For the Bessel function of the first kind of order v we have
= (=D (/27 g [ 2
(C.14) VAGESY =Hyy | —+ :
i KT (b +v+1) w2 (o2
while for Wright’s generalized Bessel function
(= 1)k (@k 1,0 -
1 =H,. .
(C.15) (@ Z FT(I+ A+ vk) 0\ (0,1) (=)

From (5.14) of Srivastava et al. [72] and (C.14) (see also Prudnikov et al. [61], p.355,
relation 2.25.3.2) we get

(C.13) Eg(—z) = Hyy (

a—1 Hmn Q" a17a1) (ap7ap) )d

[} ey (o] Gy o) ’

201 2\"| (1 =<2, 2) (a1, o) ... (ap, o) (1 — 5%, L)
C16 = Hmn+1 Q — 2 72 1 1 Py “p 2 19 ,
€ = s (o) AN
where r,0 > 0; |arg Q| < wr/2, w > 0 (see (C.2));

. a;—1 3
(C.17) Re(a+v)+ r min Re (b;/B;) > 0; Rea+ T max jaj <3
From (C.13), (C.16) and (C.9) we obtain
- /2 1,2 2\"| (1-2,2)(0,1) (0,
/0 P2 Tinszr—1 (pa]) Bs (—pt’p") dp = WHg,z (tﬁﬂ <|?’> ( 2(0,21>) (0,5)(
2n/2 2,1 |£L,”Y (]-7 1) (Lﬂ)

(G.18) = et (—2715% ‘ (n/2,7/2) (1.1) (1,7/2) ) |

From (C.17) we obtain that (C.18) holds for
(C.19) f > 0,min (n,v,2) > (n—1) /2.

The latter condition is equivalent to vy = 0if n =1; v > 1/2ifn =2; v > 1 if n = 3;
v>3/2ifn=4andy>2ifn=>5.
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