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Introduction 

Bone has the capability to adapt to changes in its mechanical loading through a process 

of remodelling [1]. Bone remodelling is a lifelong process whereby old bone is replaced 

by new bone [2]. In adults, approximately 18% of the bony skeleton is replaced annually 

[3]. Remodelling leads to both changes in the density and structure of bone [4].  

Physical exercise is known to cause changes in the structure of bone [5]. For example, 

increased bone mass may be seen in the dominant arm of a tennis player [6]. In this 

case, the remodelling may be considered positive as it enables the individual to 

withstand greater limb loading. However, in instances such as fracture fixation, load-

sharing with an implant may lead to unloading of the bone, a phenomenon known as 

stress protection, and result in undesirable bone loss [7]. This bone loss may lead to 

complications such as screw loosening leading to implant failure or even re-fracture [8]. 

In order to predict bone remodelling related to a particular treatment or implant, it is 

necessary to understand the mechanism of remodelling. To do this, changes in the 

loading conditions of the bone must be related to remodelling changes and relationships 

formulated. Thus, the first step in this approach is to quantify the remodelling changes. 

Calculating the changes due to remodelling requires bone density distributions to be 

quantified prior to intervention and at a subsequent time-point providing sufficient 

time for remodelling changes to occur. Quantitative bone density distributions can be 

determined from computed tomography (CT) scans calibrated with a bone phantom [9]. 

Since a CT scan exposes the subject to ionising radiation, performing a CT scan on 

humans is considered only when it is deemed essential to form a diagnosis. Additionally, 

metal implants can cause artefacts rendering CT data unusable for quantitative analysis. 

Therefore obtaining data from human volunteers for the purpose of quantifying bone 
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remodelling is excluded. Alternatively, large animals (such as sheep) are commonly 

used in orthopaedic research [10-12] and obtaining post-mortem CT scans of bones 

with implants removed is commonplace. Therefore, large animals may be considered a 

suitable model to study implant related changes due to bone remodelling. However, 

obtaining pre-operative CT scans of live animals is often not possible due to the limited 

availability of CT scanners outside the clinical environment. An alternative approach to 

using a pre-operative scan of the same limb may be to use the contra-lateral limb. 

Although the contra-lateral limb has been used previously as a pre-operative control for 

quantifying bone density changes [13-17], it may not be automatically assumed that the 

contra-lateral bone represents the pre-operative condition of the operated bone as this 

approach has not yet been validated. There may be differences in geometry and density 

between left and right which would make such an assumption invalid, particularly as 

density changes are quantified on a smaller scale. The use of the contra-lateral bone as a 

pre-operative control has therefore to be validated.  

The goal of this study was to determine whether the contra-lateral bone may be used as 

a pre-operative control with respect to analyses of implant induced bone remodelling in 

sheep. To address this question, firstly the extent of anatomical similarity between left 

and right ovine tibias was investigated. In the second part of this study, the magnitude 

of implant related bone-remodelling is quantified to demonstrate that it is an order of 

magnitude greater than the inherent contra-lateral differences and thus demonstrate 

the capability to the use the contra-lateral limb to determine patterns of bone 

remodelling. 
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Materials and Methods 

Comparison of left and right tibia  

Eight pairs of ovine tibia were used to determine the inherent geometric and density 

differences between left and right bones. The mean age of the sheep was 5.7 years 

(ranging from 4 years to 7 years) while the mean weight was 39.6 kg. Specimens were 

obtained from animals that had previously undergone a procedure on their right femur 

(multi-fragmentary fracture and soft-tissue injury in the distal third of the femoral 

diaphysis stabilized with an internal plate fixation device). Four weeks after the 

procedure, animals were sacrificed and the left and right tibiae were harvested. 

The tibiae (both left and right placed end-to-end) were scanned using a Philips 

Brilliance 64 CT scanner with 120 kvp and a slice spacing of 0.67 mm resulting in a 

voxel size of 0.41×0.41×0.67 mm. The long axis of the tibiae was visually aligned with 

the long axis of the CT scanner. The bones were scanned together with a bone phantom 

(European Forearm Phantom (EFP), QRM GmbH, Moehrendorf, Germany) to enable 

conversion of Hounsfield Units (HU) to Bone Mineral Density (BMD). The images were 

reconstructed using a sharp convolution kernel and saved in the DICOM format.  

The DICOM files of each bone pair were read into AMIRA software environment (Visage 

Imaging GmbH, Berlin, Germany) where the left and right bones were cropped and 

saved separately. In order to determine the geometric and density differences between 

the left and the corresponding right tibia, the right tibia was mirrored. Surface 

(polygon) models of the outer contour of the tibia pairs were created first using a single 

intensity threshold (200 HU) followed by manual segmentation in order to smooth the 

edges of the outer contour. The surfaces of the paired tibiae were then positioned in the 

same orientation by registering the surfaces of both bones with a reference bone in the 
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desired orientation using RAPIDFORM (INUS Technology, Seoul, Korea). (N.B. It is 

necessary to have all bones in the same orientation for the division into anatomical 

quarters required for the density comparison.) The re-alignment was performed in two 

steps. Firstly, a gross alignment was performed by manually selecting five 

corresponding points on distinct anatomical features. This was followed by a fine 

alignment using the Iterative Closest Point (ICP) algorithm which  uses an automatic 

selection of points during the registration process [18].  

Geometric comparison 

Following alignment, the distance from the outer surface of one tibia to the other (shell-

to-shell deviation) was measured in RAPIDFORM. In this procedure, the difference 

between the two surfaces is quantified on a point-to-point basis. The average shell-to-

shell deviation was determined for the three anatomical regions; the diaphysis and 

proximal and distal regions (Figure 1). The diaphyseal region is determined according 

to the AO Principles of Fracture Management [19] that defines the proximal and distal 

end segments as a square whose sides are the same length as the widest part of the 

epiphysis and the diaphysis forms the remainder. 

Bone density comparison 

The transformation matrix calculated to align the two tibial surfaces previously was 

then applied to align the original DICOM data for the left and right tibia pairs. This 

transformation reorients the bones in the desired orientation. As a result of the 

transformation, the orientation of the CT slices is not perpendicular to the long axis of 

the bone. Therefore, re-slicing of the DICOM data is necessary before comparison. The 

density comparison was then performed using a MATLAB program developed in-house 

(The Mathworks, Inc, USA). The DICOM data in the diaphyseal region of each bone was 
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first divided into discrete volumes, defined by a quarter (i.e. medial, lateral, anterior, 

and posterior) of a transverse slice (Figure 2). Conversion of HU values to bone mineral 

density (BMD) was performed using a relationship between the HU values and apparent 

density of hydroxyapatite determined from the bone phantom. The average BMD in 

each volume was then calculated and the percentage difference between corresponding 

volumes of the left and right tibia pairs were computed. Only BMD values corresponding 

to cortical bone, with an intensity value greater than 600 HU [20] were considered in 

the analysis.  

Comparison of operated and intact contra-lateral tibia  

Specimens were obtained from a parallel study which is only briefly described here. 

Eight sheep underwent a mid-diaphyseal osteotomy of the right tibia to create a 

segmental defect (3 cm). The defect was stabilised with a compression plate (7-hole 

DCP, Synthes AG, Switzerland). Animals were sacrificed 3 months after surgery and the 

fractured and intact contra-lateral tibia were CT scanned together with a bone phantom. 

A density comparison between the fractured and intact pairs (n=8) was performed 

using the procedures described above. Newly formed bone as part of the healing 

process (i.e. callus) was not considered in the analysis. In order to quantify localised 

bone density changes the peak (maximum) percentage density difference in regions in 

close proximity to screw holes and the segmental defect was calculated. 
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Results 

Comparison of left and right tibia  

Geometry comparison 

The differences from the outer surface one tibia to the other, for the whole tibia and the 

different regions separately, are listed in Table 1 for all tibia pairs. Seven out of eight 

pairs had a difference of less than 1 mm for over 90% of the measured points and in the 

diaphyseal region six out of eight pairs had a difference of less than 1 mm for all of the 

measured points. 

The average geometric difference [mean (min - max)] between the entire outer surfaces 

of the tibiae was determined to be 0.37 (0.29 – 0.48) mm. The average deviation for the 

diaphyseal regions was 0.27 (0.16 – 0.37) mm. In the distal and proximal segments the 

average geometric differences were 0.57 (0.32 – 1.11) mm and 0.36 (0.29 – 0.46) mm 

respectively. Figure 1 shows the deviation between the outer surfaces of left and right 

tibiae for one of the pairs. 

Density comparison 

The left and right density differences [mean (max)] in the diaphyseal region of the tibiae 

were 2.26% (8.21) medially, 3.71% (8.25) posteriorly, 2.67% (10.77) anteriorly and 

2.75% (7.57) laterally for all eight pairs. Whilst the maximum density difference 

between a left and corresponding right quarter was 10.77%, the majority (over 90% of 

investigated quarters) had density differences of less than 5% (Figure 3).  
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Comparison of operated and intact contra-lateral tibia  

The percentage density difference between an operated and intact pair for each of the 

four quarters along the length of the diaphysis is shown in Figure 4. The density 

differences were not uniform distributed but rather in close proximity to the segmental 

defect and the location of screw holes from the implant. The maximum density 

differences (up to 50%) occurred in close proximity to the segmental defect and in 

regions in close proximity to the screw holes (up to 30%). The peak density differences 

adjacent to the segmental defect and the screw holes are shown in Figure 5. 

 Discussion 

The goal of this study was to determine whether the contra-lateral bone may be used as 

a pre-operative control with respect to analyses of implant induced bone remodelling in 

sheep. To address this question, firstly the extent of anatomical similarity between left 

and right ovine tibias was investigated. In the second part of this study, the magnitude 

of implant related bone-remodelling is quantified to demonstrate that it is an order of 

magnitude greater than the inherent contra-lateral differences and thus demonstrate 

the capability to the use the contra-lateral limb to determine patterns of bone 

remodelling. 

The investigation of anatomical similarity began with an examination of the geometric 

similarity. The extent of geometric similarity between left and right bones was not 

consistent across the three regions examined. While the diaphyseal and proximal 

regions showed good similarity with average differences less than 0.5 mm, the distal 

regions of the bone showed average differences of up to 1 mm. The similarity for each of 
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the different regions is partly explained by the alignment procedure used. Because of 

the larger surface area of the proximal region, this results in a larger number of points 

from this region that are used in the ICP algorithm for alignment. Therefore, there is an 

alignment bias towards the proximal end. Much of the disparity between the surfaces at 

the distal end can be attributed to length differences between left and right tibia. Since 

the focus in this study, was on the diaphyseal region of the tibia, in which 99% (92 – 

100) of the measured points had a surface deviation of less than 1 mm, the left and right 

tibia can be considered to have a high degree of geometric similarity in the diaphysis.  

A density comparison of the left and right tibiae was then conducted by dividing the 

diaphyseal region of the bone into quarters (medial, lateral, anterior and posterior). The 

majority of quarters (over 90%) yielded density differences of less than 5%. The 

maximum difference determined between corresponding left and right quarters from all 

pairs investigated was 10.7%; however the total percentage of quarters with a density 

difference of greater than 10% was less than 1%. The occurrence of larger density 

differences did not show any recurring pattern for the bone pairs compared.  

Interestingly, the density analysis of the left and right bones found that, the right tibiae 

in all cases tended to have lower (1.78% ± 0.371) density values than the left. It is 

possible that the lower bone density in the right tibia could be the result of a surgical 

procedure (multi-fragmentary fracture and soft-tissue injury) that had been performed 

on the right femur four weeks prior sacrifice. Though loading was not monitored in 

these animals, it is plausible that the operated limbs were subjected to reduced weight 

bearing. Thus, the density comparison of left and right tibia pairs incorporates potential 

density changes due to reduced weight bearing and subsequent remodelling as well as 

the inherent bone differences. It is however unlikely that the reduced weight bearing 
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resulted in significant bone loss in the affected limb for two reasons. Firstly, due to the 

relatively short time period of four weeks and secondly, while the animals may have 

reduced weight bearing during normal gait through limping, the bones were not 

completely unloaded as the animals continued normal activities such as running, 

jumping, standing up and lying down, all activities that can produce high loads on the 

tibia. Therefore, in a worst-case where there may be some short-term effects of 

remodelling; the left and right density differences are of the order of 5%.  

The methods applied in this study are subject to limitations. The comparison of bone 

density in corresponding quarters is subject to the accuracy of alignment of left and 

right bones. Despite the very good alignment, evident in the low geometric differences 

as described above, alignment between the two tibiae is not perfect primarily due to 

differences in tibial length. Because the height of the quarters compared (1 slice 

thickness = 0.67 mm) is less than the length differences (2-3 mm), the possibility exists 

that the compared quarters where slightly offset from one another. Analysis of the 

variation in bone density between neighbouring slices revealed average differences of 

0.30 % ± 0.03 with a maximum difference from all eight pairs of 1.9%. As the difference 

between adjacent quarters (approx 0.5%) is an order of magnitude lower than the left 

and right differences (approx 5%), an axial misalignment of one or two slices is unlikely 

to yield observable differences. Figure 6 shows the percentage difference in density 

between adjacent slices of a tibia for the length of the diaphysis.  

The method to align the tibia in the same orientation requires a transformation 

followed by re-slicing. The re-slicing requires an interpolation of the DICOM data to 

determine values for voxels in the re-sliced data that are located between the original 
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voxel positions. Since there is a high degree of similarity in density between adjacent 

slices, the effects of this interpolation are expected to be minimal.  

Segmentation of the CT data to define the outer and inner surfaces of the cortex of the 

tibia is subject to selection of an appropriate threshold value. Due to partial volume 

effects (PVE) in CT datasets, which  occur predominantly in border regions where bone 

and soft tissue interface, a voxel spanning this region contains a mixture of tissue types 

[21] and the Hounsfield Unit stored in that voxel is an average of the included tissues. 

This makes a clear determination of the bone boundary difficult. While this artefact 

cannot be eliminated, by scanning both paired tibiae in a single CT scan and then 

creating models from these scans with the same intensity threshold, the two bones are 

treated equally and the effects of over or under-estimating the cortical boundary cancel 

out in both the geometric and density comparison. 

Thus far this study has demonstrated that left and right tibial pairs have a high degree 

of geometric similarity and comparable density distributions. For the contra-lateral 

bone to be considered an appropriate control to quantify bone remodelling, it must 

second be demonstrated that the density changes as a result of remodelling are 

substantially greater than any left-right differences. A comparison of operated (3 

months post-surgery) and intact contra-lateral tibia showed substantially larger density 

differences compared to those determined in the left-right comparison. 

The greatest density changes (bone loss) as a result of the osteotomy and plate fixation 

were seen in close proximity to the segmental defect (10-50 %) and the screw holes 

(10-30%). The magnitude of the differences observed where substantially larger than 

the differences between the left and right matched pairs (5%). The location of the 

observed density differences between the operated and the intact contral-lateral tibia 
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where in regions influenced by the defect and plate fixation. As the plate was affixed to 

the medial aspect of the tibia the orientation of the screws was mostly in the medial-

lateral plane. Accordingly, the bone loss adjacent to the screw holes occurred 

predominantly in the medial and lateral quarters.  

The finding of bone loss around the screw holes is in agreement with qualitative studies 

[22-25] examining changes around fracture fixation implants, in which histological and 

radiolographic techniques were used to assess bone density changes due to 

remodelling. Although CT data has been previously used to quantify changes due to 

remodelling [13], the comparison was performed using significantly larger regions (i.e. 

Gruen zones; divided medially and laterally and each region many slices thick) as 

compared to those in the present study (medial, lateral, anterior, posterior, 1 slice 

thick). The techniques applied in this study have further refined CT based evaluation 

methods by increasing their resolution which will be useful in quantifying highly 

localized remodelling changes such as those occurring as a result of fracture fixation. 

In summary, left and right ovine tibiae were found to have a high degree of geometric 

similarity with differences of less than 1.0 mm in surface deviation and density 

difference of less than 5% in the diaphyseal region. The density differences occurring as 

a result of implant related bone remodelling (10-40%) were well above the observed 

contra-lateral differences. Although recent studies in small animal models have 

produced conflicting results as to whether remodelling effects are confined to the bone 

subjected to external loading or whether the contra-lateral is affected through systemic 

neuronal pathways [26, 27], in this study localized implant related remodelling 

produced substantial differences with respect to the contra-lateral bone. 
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Hence, it can be concluded that for the purposes of implant related bone remodelling 

investigations in sheep, the intact contra-lateral tibia may be considered an alternative 

to a pre-operative control, provided that the changes in density due to remodelling yield 

differences greater than 5% and including a margin of safety, only changes greater than 

10% should be considered as a result of remodelling. Although limited to the diaphyseal 

region and only to the cortical bone, this method may be used to quantify the pattern of 

bone remodelling in experimental situations. The quantified patterns of bone 

remodelling may then serve to validate the predictions of numerical algorithms 

simulating bone remodelling. 
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Figure 1: The surface deviation for a left and right tibia pair shown for each region 

(proximal, distal and diaphyseal). The average shell-to-shell deviation is 0.29 mm for 

the proximal, 0.41 mm for the distal and 0.19 mm for the diaphyseal region. Grey 

regions indicate a deviation of less than 1 mm. 

Figure 2:  The CT data is divided into four quarters (medial, lateral, anterior and 

posterior) for determination of density differences. Shown here are transverse cross-

sections of a) intact and b) operated tibia. A compression plate was affixed medially 

with bicortical screws. 

Figure 3: This histogram shows the distribution of analysed volumes in each of density 

difference ranges from the left and right (dark grey) and operated and intact 

comparison (light grey) for all bone pairs (n = 8). 

Figure 4: Shows the percentage density difference 3 months after surgery in all four 

quarters (medial, lateral, anterior and posterior) along the diaphysis for a sheep tibia 

with segmental defect (SD) treated with a compression plate. 

Figure 5: Shows the peak density difference (%) in all quarters around the screw holes 

and the segmental defect (SD) between the operated and intact contra-lateral tibia at 3 

months. 

Figure 6: Shows the percentage density difference between adjacent CT slices of a tibia 

in the medial quarter for one tibia pair. The lateral, anterior and posterior quarters also 

showed density differences of < 2% between adjacent transverse slices along the 

diaphyseal region of the tibia. 
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Table 1: Contains the average distance between the outer surfaces  
(shell/shell deviation) for each tibia pair for the whole tibia and for the proximal, distal 
and diaphyseal regions separately. Additionally, the percentage of measured points 
within a 1 mm tolerance is given in brackets. 

  

Sheep Whole tibia 
(mm) 

  

Proximal 
(mm) 

 

Distal  
(mm) 

 

Diaphyseal  
(mm) 

 
1 0.32 (91%) 0.29 (99%)  0.62 (78%)  0.19 (100%) 

2 0.37 (95%) 0.34 (99%)  0.62 (81%)  0.27 (100%) 

3 0.48 (93%)  0.36 (99%)  1.11 (61%)  0.34 (100%) 

4 0.29 (97%)  0.35 (97%)  0.38 (92%)  0.16 (100%) 

5 0.31 (97%)  0.30 (98%)  0.54 (86%)  0.22 (100%) 

6 0.36 (97%)  0.38 (95%)  0.40 (81%)  0.37 (98%) 

7 0.48 (88%)  0.43 (93%)  0.78 (69%)  0.37 (92%) 

8 0.34 (97%)  0.46 (92%)  0.32 (98%)  0.26 (100%) 
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