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1 IMPACT OF TRAFFIC OSCILLATIONS ON FREEWAY CRASH 

OCCURRENCES 

1.1 Introduction 

The safety implications of oscillations have been studied largely by evaluating the 

significance of speed deviations on the likelihood of crash occurrence, though most 

existing studies did not make an explicit distinction between congested and uncongested 

traffic. Some early studies (Lave 1985; Solomon 1964) report that larger speed deviations 

increase the probability of certain types of crashes (e.g., rear-end crashes). Many 

researchers have challenged this finding; Davis (2002) provides contradictory empirical 

evidence. Debates continue today, as existing studies exhibit shortcomings in data 

resolution and methodology. Moreover, only a few studies (Noland and Quddus 2005; 

Shefer 1997) have investigated the characteristics of crashes in traffic congestion, and 

they used low-resolution traffic data (e.g., hourly or daily flow), which do not capture 

oscillatory driving conditions.  

The present study seeks to understand the impact of traffic oscillations on the 

likelihood of freeway crash occurrences by analyzing event-based crash data and high-

resolution (20 seconds) traffic data on a freeway segment. Oscillations are measured as 

variations in congested flow, speed and occupancy (a dimensionless measure of density) 

over a certain period. A matched case-control design is adopted in which a case 

corresponds to the traffic condition prior to a crash. The matched control corresponds to 

the conditions in the same location on a day when a crash did not occur after controlling 

for geometry, weather and the presence of congestion. The exposures of interest are the 
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average traffic state (e.g., average speed) and magnitude of oscillations (e.g., speed 

variations). Conditional logistic regression models were developed based on samples of 

cases and matched controls. The modeling results show not only that speed variations 

have a significant impact on (rear-end) crash occurrences but that these variations are 

more significant than average traffic states.  

This chapter is organized as follows. The following section discusses previous 

research related to the present study. Chapter 2.3 describes in detail the features of the 

study site and the efforts to process the crash and traffic data. The design of the case-

control study and the subsequent modeling efforts are explained in chapters 2.4 and 2.5, 

respectively. Chapter 2.6 evaluates and interprets the models.  

1.2 Background 

Three types of relevant literature are reviewed. The author first discusses previous 

studies that examined the impacts of speed variance and/or congestion on traffic safety. 

The review revealed that contradictory results have been reported primarily due to 

limitations in data resolution and analysis methodology. In light of this finding, various 

methods to relate crash characteristics to traffic features are reviewed. Finally, the author 

provides a brief background of the case-control design and a rationale for selecting this 

method for the present study.  

1.2.1 Impact of Speed Variance and Congestion on Traffic Safety 

Solomon (1964) appears to be the first study to report that speed variations have a 

larger impact on crash occurrences than average speed. However, his findings received 

little attention until Lave (1985) claimed in a controversial paper that once one controls 
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for speed variations, average speed has little impact on highway safety. Several studies 

(Davis 2002; Fowles and Loeb 1989; Lave 1989; Levy and Asch 1989; Synder 1989) 

followed, debating Lave’s claim. Levy and Asch (1989) found that the mean and variance 

of speeds were actually correlated, thus disputing Lave’s finding. Synder (1989) 

distinguished between fast and slow vehicles, examining the significance of the speed 

variance in each group and comparing the average speeds between the two groups. He 

found that average traffic speed is an important determinant of highway fatalities and that 

speed variance is important for fast vehicles only. More recently, Malyshkina and 

Mannering (2008) conducted a before-and-after study to assess the severity of accidents 

in relation to the increased speed limits (65 to 70 mph (105 to 113 km/h)) in 2005 on 

some rural interstates in Indiana. They found that the increased speed limits did not have 

a statistically significant effect on the severity of accidents.   

The aforementioned studies used data that were highly aggregated temporally and 

spatially (e.g., annual statewide data) and may be subject to an ecological fallacy, as 

noted by Davis (2002). Moreover, no distinction was made between congested and 

uncongested traffic, even though traffic properties in the two regimes are not the same 

and may have different impacts on traffic safety.  

Fewer studies have examined the effect of traffic congestion on crash occurrences. 

Shefer et al. (1997) suggest that crash frequency increases in congestion due to increased 

interactions among vehicles, while crash severity decreases because of the lower speeds 

of congested traffic. However, they used simulated data to test the performance of their 

model, which undermines its validity. Noland and Quddus (2005) report conflicting 
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results based on the analysis of enumeration district data for London, UK, which imply 

that congestion in urban areas is unlikely to reduce crash severity and frequency. Wang et 

al. (2009) confirm this finding using the congestion index (CI), which is defined as the 

ratio of difference in actual and free-flow travel times to the free-flow travel time, to 

measure the congestion level of a motorway near London, UK. However, the congestion 

index was calculated from hourly data averaged over a year. Thus, the data resolutions of 

these studies were not adequate to analyze the effect of oscillatory traffic flow in 

congestion. 

It is evident that existing studies report inconsistent findings on the effect of speed 

variance and congestion on crashes; this seems attributable to limited data resolution and 

analytical methods. Moreover, it appears that there has been limited effort, if any, to 

investigate the effect of traffic oscillations on freeway traffic safety.  

In the following section, the author briefly reviews methods to relate crash 

characteristics to traffic features in order to adopt a statistically sound methodology.  

1.2.2 Methods to Relate Crash Characteristics to Traffic Features 

For decades, researchers have used various methods to relate crash characteristics to 

traffic features. Many pioneering studies tried to establish a connection between crash 

and traffic conditions based on aggregated data (e.g., Lave 1985; Solomon 1964). In 

essence, they related aggregated indicators of traffic conditions, such as speed deviations 

(e.g., the annual 85th percentile speed minus the annual average speed), to crash 

frequency. As mentioned previously, using highly aggregated data, such as annually 

averaged data, can result in biased findings that are open to interpretation. 
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Another common method uses the speeds of individual vehicles to compare a crash-

involved vehicle to other vehicles (e.g., Cirillo 1968; Research Triangle Institute 1970). 

This method imposes a great challenge on data collection endeavors, as the trajectories of 

vehicles in crashes are necessary to measure pre-crash speeds (Xin et al. 2008). 

Some researchers have attempted to use individual drivers’ accident histories (Fildes 

and Rumbold 1991; Tilden et al. 1936) by sampling the speeds of selected drivers at a 

particular location and then analyzing their crash histories. This approach has been 

criticized for selection bias in the data collection as well as privacy issues (Kloeden et al. 

1997).  

Finally, some traffic safety studies borrow the case-control design pioneered in the 

field of epidemiology (Kloeden et al. 1997; Abdel-Aty et al. 2005). This method is 

suitable for safety-related research, as a crash is a rare event. The next section discusses 

case-control design in greater detail.  

1.2.3 Review of the Case Control Design 

The case-control design is an efficient method to study rare events that is particularly 

prevalent in epidemiology (Manski 1995; Manski 1995; Schlesselman and Stolley 1982) 

due to its simplicity, cost-effectiveness, and theoretical soundness. The central idea of the 

case-control study is to compare two groups, one with the outcome of interest (such as 

disease, death, crash) and one without it, by incorporating potential explanatory factors 

(exposures) (Cornfield et al. 1959; Cornfield 1951; Fisher 1958a; Fisher 1958b). 

Cornfield (1951) proved theoretically the validity of the case-control method and 

demonstrated its effectiveness using epidemiological examples. The theoretical details of 
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the case-control method are beyond the scope of this paper; interested readers should 

refer to (Breslow and Day 1980; Cornfield et al. 1959; Cornfield 1951; Schlesselman and 

Stolley 1982) for more in-depth discussions.  

The most natural way to use a case-control design to study traffic safety is at the 

individual vehicle level. A vehicle involved in a crash is taken as a case, and other 

vehicles at the crash scene or in similar situations (but not involved in a crash) are taken 

as controls. The first notable case-control study in the traffic literature is Kloeden et 

al.(1997), which examined the relationship between speed in uninterrupted traffic flow 

and the risk of a casualty crash. More recently, Davis et al. (2006) used a case-control 

design to investigate the effect of speed in run-off-road crashes.  

Although employing a case-control design at an individual vehicle level is ideal, 

collecting data for individual vehicles is difficult in practice. For example, the pre-crash 

speed of a vehicle is usually estimated using crash reconstruction methods. However, 

these reconstruction methods are often quite complex, and the estimated speed is subject 

to bias, as noted by (Davis et al. 2006). In an effort to remedy this shortcoming, Abdel-

Aty et al. (2005) developed a case-control design using 5-minute aggregated data from 

inductive loop detectors to develop a logistic model for multi-vehicle crashes. However, 

they did not distinguish un-congested and congested traffic regime and did not focus on 

oscillations in congestion.  

Of note, some studies have employed case-control designs to examine the safety 

impact of certain risk factors. Gross and Jovanis (2007) provide a review of case-control 

studies used in the highway safety literature. They also developed a matched case-control 
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design to quantify the effect of road geometry such as lane and shoulder widths. 

However, traffic operational features (oscillations in particular) were not examined in 

their study. 

In the present study, a case-control design is implemented in combination with event-

based crash data and high-resolution (20-second) traffic data to examine the impact of 

traffic oscillations in congestion on the likelihood of crash occurrence.  

1.3 Study Site and Data Processing 

The study site was a 12-mile (19-km) section (mileposts 296.26 to 307.9) in the 

northbound direction on I-5 in Portland, OR (see Figure 1 for a schematic). This location 

was selected among other freeway corridors in the region based on several criteria: extent 

of congestion and oscillations, spacing of loop detector stations, traffic data quality, crash 

data availability, and crash sample size. Note that this segment contains three lanes, and 

from mileposts 303 to 306 the left-most lane is dedicated to High Occupancy Vehicles 

(HOV). The HOV lane is limited to vehicles with at least two passengers from 3 to 6 p.m. 

on weekdays. Spacings between loop detector stations range from 0.34 to 2.37 miles (0.6 

to 3.9 km) with an average of about 1.06 miles (1.7 km). Data from the loop detectors 

(vehicle count, occupancy and time-mean speed during each 20-second interval) are 

available from Portland Oregon Regional Transportation Archive Listing (PORTAL 

2009).  
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Figure 1.1 Schematic of the study site, northbound I-5, Portland, OR 

 

Loop detectors (black squares in Figure 1.1) measure traffic conditions at 12 locations 

on the selected freeway segment. Notably, “influence areas” are defined that are bounded 

by the midpoints between neighboring stations. The shaded area in Figure 1 is an 

example of an influence area. A corresponds to the midpoint between Broadway St. and 

Morrison Bridge, and B corresponds to the midpoint between Broadway St. and Going St. 

Table 1.1 provides more detailed information on the influence areas of the study segment.  

Table 1.1   

Mileposts of loop detector stations and influence areas 

ID Milepost Location Description Influence Area 
1 296.26 Spring Garden St.  (295.72 -296.43) 
2 296.6 Multnomah Blvd.  (296.43 - 296.97) 
3 297.33 Bertha Blvd  (296.97 - 298.52) 
4 299.7 Macadam Ave.  (298.52 - 300.40) 
5 301.09 Morrison Bridge  (300.40 - 301.80) 
6 302.5 Broadway St.  (301.80 - 303.19) 
7 303.88 Going St.  (303.19 - 304.14) 
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8 304.4 Alberta St.  (304.14 - 304.76) 
9 305.12 Portland Blvd.  (304.76 - 305.82) 
10 306.51 Denver Ave.  (305.82 - 306.99) 
11 307.46 Martin Dr.  (306.99 - 307.68) 
12 307.9 Jantzen Dr.  (307.68 - 307.9) 

 

It is assumed that traffic conditions (including oscillations) are the same within each 

influence area and are represented by the measurements taken at the corresponding 

detector station. This assumption was made due to the inherent limitation of loop 

detectors, which measure traffic conditions at specific points rather than over space. 

Moreover, the exact locations of crashes are unknown, and thus, it is not straightforward 

to estimate oscillations at the exact crash location. Nevertheless, it is found that the 

assumption of uniform oscillations within an influence area is quite reasonable as 

demonstrated later in this section. 

The speed contour plot in Figure 1.2 illustrates the average traffic conditions of the 

study section during weekdays in January 2006. Time and space (in terms of mileposts) 

are shown on the x- and y-axes, respectively, and the color scale represents the estimated 

time-mean speeds over the month according to the legend in the figure. A distinct 

congestion pattern, which is marked by the dark time-space regions, occurs during p.m. 

peak hours (defined as 4:00 – 6:00 p.m.). Congestion starts around 3:00 p.m. and ends 

around 6:00 p.m. The bottleneck for this congestion is located downstream of milepost 

307, and the resulting queue propagates to about milepost 296. Moreover, congestion is 

present recurrently on this segment such that more than 85 percent of the p.m. peak hours 

on weekdays exhibit congestion on this freeway stretch.  
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Figure 1.2 Speed contour for the study segment: Weekdays in January 2006  

During the congested periods, traffic oscillations were examined visually using time-

series speed plots to confirm their presence and amplitudes. For instance, Figure 1.3 

shows speed over time (4:30 – 5:30 p.m.) at Jantzen Dr. on May 14, 2007. The plot 

exhibits a recurring pattern of acceleration followed by deceleration with the speed 

ranging from around 12 to 37 mph (19 to 60 km/h). The figure also shows varied 

oscillation amplitudes such that some periods exhibit larger speed variations (e.g., 4:50 – 

5:00 p.m.) than others (e.g., 5:20 – 5:30 p.m.).  
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Figure 1.3 Speed time series plot at milepost 307.9 on May 14, 2007  

Traffic data from loop detectors often contain invalid data (e.g., missing value, 

negative value, and non-zero speed with zero count) due to malfunctioning detectors, 

communication failures, and other reasons. Figure 1.4 presents monthly percentages of 

valid traffic data during p.m. peak hours in 2004-2007 for each detector station. The 

monthly percentages of valid data are shaded according the color scale shown in the 

legend: darker regions correspond to lower data quality; traffic data for 2004 were 

available only in September, October, and November. The figure indicates that the 

percentage of valid data is reasonably good (mostly larger than 90 percent) for the 

selected study segment. Note that days with invalid traffic data prior to crashes were 

excluded in the further analysis.  

Crash-related data are obtained from two databases maintained by the Oregon 

Department of Transportation (ODOT); the statewide Crash Data System (CDS) contains 

all reported crashes on public roads in Oregon and the incident database records all 



12 

freeway incidents in the Portland Metropolitan area as logged by the Traffic Management 

and Operations Center (TMOC).  Crashes in the CDS are recorded to the nearest hour 

while the incident data is at much higher resolution (minutes).  CDS was used to identify 

crashes, and the incident data were used to confirm the crashes and retrieve more detailed 

information about the crashes. A total of 242 crashes were reported in the study segment 

during the evening peak periods in 2004 to 2007. Several steps were taken to obtain or 

estimate the occurrence times of these crashes. The occurrence times were extracted from 

the incident database since the incident database provides more accurate incident 

occurrence times than the crash database. For crashes missing from the incident database, 

20-second traffic data were used to estimate the occurrence times based on the 

assumption that a crash in queued traffic will be reflected in the traffic characteristics 

(e.g., a sharp speed drop (increase) at an upstream (downstream) detector station). 

 

Figure 1.4 Data quality map of northbound I-5 during p.m. peak hours 
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Figure 1.5 demonstrates this assumption using time-series speeds at the detector 

stations immediately upstream (Macadam Ave.) and downstream (Morrison Bridge) of a 

crash that occurred at milepost 300.31. According to the crash database, this crash 

occurred sometime between 4 and 5 p.m. on April 26, 2006. The time-series speed at the 

upstream detector station (Figure 1.5(a)) initially displays relatively moderate congestion 

with a speed of 45 mph (73 km/h). However, around 4:20 p.m. (marked by a star in the 

figure), the speed decreases markedly to around 10-15 mph (16-25 km/h), marking the 

arrival of the disturbance due to the crash downstream. The opposite trend is observed at 

the downstream location (Figure 1.5(b)), which is initially characterized by a congested 

speed of about 30 mph (49 km/h). However, around 4:18 p.m., the speed increases to 

about 55-60 mph (89-97 km/h), marking the arrival of the crash-induced disturbance. 

Since this crash occurred in the influence area of the loop station at Macadam Ave. (see 

Table 1), data from this upstream station taken prior to 4:20 p.m. are used to represent 

pre-crash traffic conditions. Crashes whose occurrence times could not be determined 

from the incident database or traffic data were excluded from the analysis. (Traffic data 

from the days of these crashes were also excluded.) A total of 194 crashes remained (out 

of 242).  
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(a) 

 

(b) 

Figure 1.5 Illustration of crash occurrence time estimation  

The remaining 194 crash events were further scrutinized and removed if they met any 

of the following three criteria: (1) the crash occurred in an uncongested condition; (2) 

traffic data before the crash are invalid; or (3) an involved driver was impaired by 
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drugs/alcohol. After these filtering processes, a total of 82 crashes remained; these were 

used in the analysis.  

The majority of the 82 crashes were rear-end crashes (71 out of 82), which seems 

reasonable. Nine sideswipe-overtaking crashes (vehicles traveling in the same direction 

on parallel paths collide) and one fixed or other object crash (a vehicle strikes a fixed or 

other object on the roadway or off roadway) were observed. One crash was coded as a 

turning movement crash, but inspection of the entire crash record indicates that this was 

probably mis-coded. The crash occurred on the mainline in the vicinity of an exit ramp. 

Both vehicles were traveling in the same direction and likely collided when a vehicle 

made a maneuver towards the exit ramp (the reason for the turn code). As all these 

crashes can occur due to oscillations, all 82 crashes were included in the analysis. (The 

descriptions of the turning-movement and fixed or other object crashes were not clear 

enough to determine if the crashes were potentially induced by oscillations. To be on the 

conservative side, these crashes were included in the analysis. Nevertheless, these crashes 

are unlikely to affect the results significantly since there were only two crashes of these 

crash types.) 

Finally, the 82 crash events were linked to traffic data based on their mileposts and the 

corresponding influence areas. Of note, this study used 1-minute moving averages of 

traffic measures (e.g., speed) to smooth out noise while preserving the underlying trend. 

Measurements from all lanes were also combined to incorporate influences from adjacent 

lanes and maximize the sample size because Abdel-Aty et al. (2005) pointed out that a 

sample size can be maximized by using measurements taken in other lanes in case of a 
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malfunctioning loop. Weather information (e.g., rainfall) was obtained from PORTAL 

(2009) and incorporated into the crash and traffic data.  

To verify the assumption of uniform oscillations within each influence area, 

oscillations were sampled during a 10-minute period (around 5 p.m.) each day at the most 

downstream location and measured the amplitude of oscillations by taking the standard 

deviation of speeds. Note that the duration of 10 minutes was used since oscillations 

typically exhibited a comparative period. This is further elaborated in the following 

section. The amplitudes of the sampled oscillations were then traced at all upstream 

locations by accounting for the oscillation propagation speed. As noted in Mauch and 

Cassidy (2002) and Ahn and Cassidy (2007), oscillations in congestion propagate 

upstream against traffic flow at nearly constant speeds independent of traffic states. The 

propagation speed from one detector station to the immediately upstream station was 

estimated using the cross-correlation technique. The basic idea is to search for a time lag 

which maximizes the correlation coefficient between the time series from two detector 

stations. The optimal time lag corresponds to the travel time of oscillations between the 

two locations. The propagation speed corresponding to the optimal time lag was found to 

be around 12 mph.  

Figure 1.6 shows the basic statistics (e.g., average and standard deviations) of 

oscillations amplitude at each detector station for all crash-free days, as well as the spatial 

distribution of the identified crashes. The bars stand for number of crashes; the solid line 

is for average oscillations and the dotted lines are variations of oscillations over time 

bounded by one standard deviation. The figure shows that the average amplitudes of 
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oscillations are reasonably stable over space, such that they did not deviate more than 0.4 

mph within each influence area on average. The largest difference of 0.8 mph is observed 

at the Multnomah station based on linearly interpolated amplitudes, though only 4 

crashes occurred within this influence area. Thus, it seems reasonable to assume that 

oscillations within an influence area can be reasonably approximated by the oscillations 

measured at the corresponding loop detector station.  

 

Figure 1.6 Spatial distributions of oscillations and number of crashes sampled  

1.4 Methodology: Case Control Design 

The matched case-control method was selected to study the relationship between 

traffic oscillations and crash occurrences in congestion.  Many previous studies 

(mentioned in the Background section) found that crash occurrences are significantly 

associated with exogenous factors such as traffic conditions (e.g. speed), roadway 

characteristics (e.g. pavement conditions, speed limits, geometric features), and 

environmental conditions (e.g., weather).  Thus, these factors have been incorporated in 
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the modeling.  Since the primary objective of this study is to quantify the impact of traffic 

operational features, the factors related to roadway and environmental conditions are 

controlled in the matched case-control design.  

Two types of exposure variables are considered for traffic conditions, one for average 

traffic states and one for oscillations during a period of time (10 minutes, as explained 

below) prior to the crashes. Potential measures of oscillations include the standard 

deviations of speed, count, and occupancy. The mean speed, count and occupancy are 

used as measures of average traffic states.   

The measurement duration of the explanatory variables was determined based on their 

temporal characteristics: an ideal duration would be long enough to capture at least one 

oscillation cycle but short enough to preclude changes in longer-term average traffic 

states. The ideal sampling duration was determined using oblique curves of cumulative 

time-mean speed. Time-series plots of count, occupancy and speed typically display a 

large amount of noise, making it difficult to identify different traffic states and the times 

of state changes. To smooth the noise in the data and better reveal the underlying trends, 

cumulative curves of traffic observations are constructed on an oblique time axis. This 

technique is described in detail in Munoz and Daganzo (2002). On an orthogonal axis, an 

oblique curve is obtained by taking the difference between the cumulative speed at time t, 

V(t), and its background reduction, V0 * (t-t0), where V0 is a scaling factor and t0 is the 

starting time of the curve. Figure 1.7 presents an oblique curve of cumulative speed, V(x, 

t) – V0 * (t-t0), versus time, t, at Jantzen Dr. between 4:30 and 5:30 p.m. on May 14, 
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2007. The figure shows a series of oscillations with a cyclic pattern of an increase in 

slope (i.e., speed) followed by a decrease.  

To get some basic idea on the duration of typical oscillations, short time fourier 

transform (STFT) is implemented for the speed data at Jantzen Dr. between 4:30 and 5:30 

p.m. on May 14, 2007. Power spectral density (PSD) estimated by STFT is shown as in 

Figure 1.8. PSD is a function of frequency and measures amount of power (energy) per 

unit (density) of frequency. In this figure, the brightness represents the energy contained 

in a specific frequency. Judging from the figure, most of energy concentrates on a 

frequency of around 0.0016 Hz (the dash-dotted line in the figure), which corresponds to 

10 minutes per cycle. Therefore, oscillations typically have a period of about 10 minutes; 

this was used as the sampling duration for this study. 

 

Figure 1.7 Oblique curve of cumulative speed at Jantzen Dr.  
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(between 4:30 and 5:30 p.m. on May 14, 2007) 

 

 

Figure 1.8 STFT plot of the speed data at Jantzen Dr. 

(between 4:30 and 5:30 p.m. on May 14, 2007) 

In the literature, it has been reported that crash occurrence times are often rounded to 

the nearest 5 minutes (Golob and Recker 2003; Kockelman and Ma 2007). In such cases, 

traffic data within the 5 minutes before each crash should be excluded from the analysis 

to avoid “cause and effect” ambiguity. The dataset was inspected to assess if the crash 

occurrence times were rounded to the nearest 5 minutes in Oregon. The analysis shows 

that the majority (68 out of 82) of the crash occurrence times are not in multiples of 5 

minutes. Therefore, the author believe that the crash occurrence times used in this 
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research were not rounded to the nearest 5 minutes and thus, did not further exclude any 

data.  

The dependent variable is binary (crash-prone or not-crash-prone traffic conditions). 

Of note, the cases here are not the crashes themselves, but the traffic conditions 

immediately before the crash occurrences, while the controls are congested traffic 

conditions under which no crash has occurred.  

To control for the potential impacts of other factors on crash occurrences, several 

confounding variables, time of day, location, weather, and presence of congestion, are 

used to limit the selection of controls. Of note, each location is treated as a unique 

geometric factor to be conservative. For instance, a crash occurred in the influence area 

of the Broadway St. detector station at 4:11 p.m. on the rainy day of October 6, 2005. 

Measurements taken from 4:01 to 4:11 p.m. on this day are used as a case. Then, 

measurements are taken at the same location during the same period on the crash-free 

days in 2004 to 2007 that exhibited congestion (average speed less than 50 mph (81 

km/h)) and similar weather conditions. These extracted measurements are used as 

potential candidates for controls. Among the candidates, n observations are randomly 

selected as the controls for that particular crash (case). In this study, about 1,000 

candidate controls are available for each case. All legitimate controls were stored for the 

model evaluation, as discussed in Section 6. 

The above procedure is applied to each crash, resulting in the 82 cases matched with 

82×n controls. It is difficult to theoretically determine the optimal control-to-case ratio. 

As a rule of thumb, a control-to-case ratio around 4:1 is recommended since the statistical 
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power generally does not increase significantly beyond a 4:1 ratio (Ghosh and Chen 

2002; Hennekens and Buring 1987; Schlesselman and Stolley 1982). Therefore, the 

control-to-case ratio of 4:1 was implemented in this study.   

The modeling efforts essentially consist of two main phases: 1) model development 

using a set of sampled controls and 2) model evaluation via repeated model developments 

using different samples of controls and sensitivity analysis with respect to the control-to-

case ratio (4:1 to 7:1). The latter is designed to evaluate the consistency of modeling 

results with respect to multiple (unique) control samples and control-to-case ratios. These 

efforts are presented in detail in Section 5 and Section 6. 

1.5 Model Development  

Conditional logistic regression is employed to model the association between traffic 

oscillations and crash occurrences in the study segment. This is a standard technique for 

analyzing matched case-control data. Conditional inference can be adopted easily in the 

conventional (unconditional) logistic regression model if the constant for each stratum is 

excluded in the estimation by treating it as a “nuisance” parameter (Hosmer and 

Lemeshow 2004). Estimates from a conditional logistic regression have been proven to 

be consistent and asymptotically normally distributed. Cox and Hinkley (1974) provide 

the mathematical details of conditional likelihood analysis.  

Conditional logistic regression analysis is implemented in Stata®/IC10 (StataCorp 

2009) by using average and the standard deviations of flow, density or speed as potential 

explanatory variables of average traffic states and oscillations. It is well acknowledged in 

the literature that the control-to-case ratio should be around 4:1, as cited in the previous 
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section, since 80 percent of the maximum efficiency can be obtained around that ratio. 

Table 1.2 lists all the potential explanatory variables and their basic statistics. In this 

table, the average speed is calculated across all travel lanes at all detector stations during 

the ten-minute periods right before the crash occurrences; the average count is the 

average number of vehicles per lane per 20 seconds at all detector stations during the ten-

minute periods right before the crash occurrences; the average occupancy is the average 

percentage of time that the detectors are occupied by vehicles across all travel lanes 

during the ten-minute periods right before the crash occurrences; Std. dev. of speed  is the 

standard deviation of speed during the ten-minute periods right before the crash 

occurrences; and std. dev. of count and std. dev. of occupancy are similarly defined. The 

average speed is about 25 mph (40 km/h), indicating heavy congestion. The mean 

amplitude of traffic oscillations in terms of the standard deviation of speed is 5 mph (8 

km/h). The standard deviation of oscillations (also in terms of standard deviation of 

speed) is 3 mph (5 km/h), but ranges from 0.3 mph (0.5 km/h) to nearly 20 mph (32 

km/h), confirming that the samples (a total of 82 cases and 328 controls) contain 

variations in traffic oscillations.  

 

 

 

 

 

Table 1.2  
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Basic statistics of the potential explanatory variables  

(4:1 control-to-case ratio) 

Potential Variable Mean Std. Dev. Min 
25% 
Percentile 

75% 
Percentile 

Max 

Average speed 24.743 11.237 2.303 16.542 30.448 49.938 
Average count 5.294 1.656 0.703 4.072 6.444 9.559 
Average occupancy 20.955 14.913 0.486 4.968 33.401 64.294 
Std. dev. of speed 4.982 3.057 0.327 2.928 6.015 19.957 
Std. dev. of count 0.894 0.402 0.0993 0.595 1.098 2.460 
Std. dev. of occupancy 4.364 3.829 0.380 1.233 6.386 30.609 

 

A sound model development practice was followed. Namely, different combinations 

of potential explanatory factors were incorporated via conditional logistic regression, 

following a univariate analysis. However, since flow, density and speed are highly 

correlated in congested traffic (e.g., transitioning into a more congested state is typically 

accompanied by decreases in flow and speed and an increase in occupancy), only one of 

them is used to represent average traffic state or oscillations in the modeling process. 

Therefore, two exposure variables (one for oscillations and one for average traffic state) 

are included. Furthermore, as supported by previous studies, an interaction term is not 

considered for the lack of a strong theoretical insight.   

There are many criticisms (Good and Hardin 2006; Johnson 1999; Sterne and Smith 

2001) of over-emphasizing significance tests, such as the p-values of individual 

parameters and (Pseudo) R2, to evaluate models, as these tests can be arbitrarily 

manipulated (by changing the sample size or adding unnecessary variables, for example) 

and are difficult to interpret correctly. Thus, the performance of each model was 

evaluated based on the theoretical soundness (e.g., signs of estimated coefficients), the p-
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value for the overall model, R2 and likelihood ratio tests, rather than the statistical 

significance of each estimated parameter. Of note, the threshold p-value for the overall 

model performance is set to 0.1; models with overall p-values less than 0.1 were 

considered as candidates for the best model. Finally, a model with the best performance 

was selected.  

Table 1.3 shows the statistics of the best model for a set of sampled controls with 4:1 

control-to-case ratio. The result shows that the odds ratio for the standard deviation of 

speed is about 1.096, with a 95 percent confidence interval of 1.016 to 1.183. This 

implies that if the standard deviation of speed increases by one additional unit (1 mph in 

this case), the odds ratio of a crash occurrence would increase by 9.6 percent. 

Table 1.3  

Results from the conditional logistic regression analysis 

(4:1 control-to-case ratio) 

Crash_prone Odds Ratio Std. Err. Z P>|z| 95% Confidence Interval (CI) 
Std. dev. of speed 1.096 .0424 2.37 0.02 1.016 1.183 
Number of observations=410; LR chi2(1) = 5.37; Prob > chi2 =0.0205; Log likelihood = -129.29 

 

Since the independent variables in the model are continuous, the linearity assumption 

in the logistic model has been tested using fractional polynomials (FP), as recommended 

by Hosmer and Lemeshow (2004). The fractional polynomials allow us to build several 

models with different power functions of a continuous explanatory variable and then to 

choose the most suitable one by conducting the partial likelihood ratio test. The analysis 

indicates that keeping the continuous variables linear in the logistic model is appropriate 
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for the range of data (e.g., speeds). The details of this analysis are provided in Appendix 

A.  

Several techniques (e.g., computing residual variation, leverage) can be used to detect 

potential outliers in a conditional logistic regression (Hosmer and Lemeshow 2004). 

However, removing outliers potentially can lead to over-fitting, which diminishes the 

effectiveness of the model (Washington et al. 2003). Therefore, all data points are 

included in the modeling efforts and evaluate the effectiveness of the model using 

different samples of controls, as described in the following section.  

1.6 Model Evaluation and Interpretation 

Evaluation of statistical models for consistency prior to interpretation is essential since 

they are often subject to measurement errors, selection bias, invalid design, and/or human 

errors. Ideally, cases and controls should be free of any sources of bias, such as 

construction, lane closure, and other incidents. This issue was not directly addressed in 

the analysis given the extensive data collection efforts involved. Instead, the model was 

evaluated by re-sampling controls for each case and repeating the model development 

process (described in Section 2.5) to find the best models based on the newly drawn 

samples and conducting a sensitivity analysis with respect to the case-to-control ratio. For 

the former, twenty different sets of controls were sampled from the pool of candidate 

controls for the control-to-case ratio 4:1. Note that sampling the same control more than 

once is unlikely since each case has about 1,000 candidate controls. The best model for 

each re-sampled dataset was obtained according to the criteria described in Section 2.5. 
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Table 1.4 presents the modeling results from the 20 different runs for the control-to-

case ratio of 4:1. In this table, avg_occ is average occupancy; std_spd is standard 

deviation of speed; avg_cnt is average count, and N/A means not available. 

The result indicates that in 18 out of 20 runs (90 percent), the standard deviation of 

speed is significant, and its odds ratio is fairly consistent throughout the runs. Notably, 

the average odds ratio is 1.084 with a minimum of 1.066 and maximum of 1.119, which 

is fairly a tight bound. Moreover, the average lower and upper limits of the 95 percent 

confidence intervals are 1.003 and 1.171, respectively. For the study segment, an 

additional unit increase in the standard deviation of speed increases the odds ratio of 

crash occurrence by an average of 8.4 percent. This indicates that an average day is about 

1.49 times (calculated as (1+0.084) 4.982 = 1.49) more likely to have a crash than the day 

without any oscillations since the average standard deviation of speed on the study 

corridor is about 4.982 mph (see Table 1.2). This magnitude of impact seems reasonable 

and quite significant since many other factors, such as human factors and vehicle 

conditions, also impact crash occurrences (Hauer 1997). 

 

 

 

 

Table 1.4 

 Model evaluation results (4:1 control-to-case ratio) 

Run Variables Odds Ratio 95% CI
1 std_spd 1.096 (1.016, 1.183)
2 std_spd 1.066 (0.988, 1.151) 
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3 avg_occ 1.030 (1.002, 1.058) 
std_spd 1.119 (1.029, 1.216) 

4 std_spd 1.070 (0.988, 1.160) 
5 std_spd 1.090 (1.010, 1.177) 
6 std_spd 1.069 (0.994, 1.149) 
7 std_spd 1.077 (1.001, 1.160) 
8 std_spd 1.079 (1.006,1.158) 
9 avg_occ 1.020 (0.997, 1.043) 

std_spd 1.071 (0.991, 1.157) 
10 avg_occ 1.025 (0.997, 1.054) 

std_spd 1.094 (1.010, 1.185) 
11 avg_occ 1.028 (0.999, 1.058) 

std_spd 1.118 (1.029, 1.215) 
12 avg_occ 1.019 (0.995, 1.042) 

std_spd 1.089 (1.008, 1.176) 
13 avg_occ 1.020 (0.996, 1.044) 

std_spd 1.077 (0.995, 1.165) 
14 std_spd 1.081 (1.002, 1.166) 
15 N/A N/A N/A 
16 avg_cnt 0.809 (0.646, 1.013) 

std_spd 1.089 (1.005, 1.179) 
17 avg_occ 1.017 (0.994, 1.041) 

std_spd 1.069 (0.994, 1.150) 
18 avg_occ 1.021 (0.994, 1.050) 

std_spd 1.081 (0.997, 1.172) 
19 avg_occ 1.026 (0.999, 1.053) 
20 std_spd 1.078 (0.998, 1.165) 
Average std_spd 1.084 (1.003, 1.171)

 

It is also notable that the average occupancy is significant only 9 times in the 20 runs. 

Thus, it is reasonable to conclude that speed variations in queued traffic (i.e., oscillations) 

have a larger impact on crash occurrence than average traffic states. Nevertheless, the 

average odds ratio for occupancy (around 1.02) is qualitatively consistent: it implies that 

the likelihood of crash occurrence increases as congestion becomes more severe. 

Now the author turns attention to the sensitivity analysis of the modeling results 

shown in Table 1.4 with increasing control-to-case ratios. If the model results are robust, 

we expect similar or more consistent results for larger control-to-case ratios since the 
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statistical power is expected to increase. To verify this, additional controls were sampled 

and added to the controls for the 4:1 ratio; for example, for the 5:1 ratio, one additional 

control for each case was randomly sampled from the pool of candidates and added to the 

existing four controls. For each run and each increased control-to-case ratio, a best model 

was re-developed based on the criteria described in Section 5 to examine the consistency 

of models in terms of significant explanatory variables, odds ratios, and confidence 

intervals. The results of this sensitivity analysis are summarized in Table 1.5 for the 

control-to-case ratios of 4:1 to 7:1. In this table, avg_occ is average occupancy; std_spd is 

standard deviation of speed; avg_cnt is average count, and N/A means not available. 

Table 1.5 reports the number of runs in which the standard deviation of speed (i.e., 

amplitude of oscillations) and average occupancy, speed, and count were significant over 

20 different control samples for each control-to-case ratio. The table also reports the 

average odds ratios and average confidence intervals for the standard deviation of speed. 

The model results for the standard deviation of speed are quite consistent for different 

control samples, and the consistency improves with increasing ratios, as expected. More 

specifically, the standard deviation of speed is significant in more than 18 runs for all 

ratios, and the number of significant runs increases from 18 (90 percent of the runs) to 20 

(100 percent of the runs) as the ratio increases from 4:1 to 7:1. Moreover, the average 

odds ratios for the standard deviation of speed are consistently around 1.08 for different 

control-to-case ratios, and the average 95 percent confidence intervals tighten as the ratio 

increases. Thus, the results strongly support the existence of relation between oscillations 

(measured by the standard deviation of speed) and crash occurrences. To the contrary, 
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other variables for average traffic states appeared to be significant in less than 10 runs, 

and the consistency does not improve with increasing control-to-case ratios. The results 

imply that traffic oscillations are more significantly associated with crash occurrences 

than average traffic states. The details of individual runs for each control-to-case ratio are 

presented in Table B1 in Appendix B. 

Table 1.5  

Model evaluation results for different control-to-case ratios  

(4:1 to 7:1) 

 Standard Deviation of Speed Number of Significant Runs out of 20 

Control-to-Case 
Ratio 

Average 
Odds Ratio 

Average 
 95% CI 

std_spd avg_occ avg_spd avg_cnt 

4:1 1.084 1.003 1.171 18  9 0 1 
5:1 1.080 1.002 1.165 18  4 1 1 
6:1 1.080 1.003 1.163 19  8 1 1 
7:1 1.081 1.005 1.162 20 5 3 0 
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APPENDIX A 

THE FRACTIONAL POLYNOMIAL ANALYSIS  

For illustration purposes, the standard deviation of speed is used to explain the 

fractional polynomial analysis used in this research. For the model, a fractional 

polynomial of degree  for the standard deviation of speed, 

. .  ; , … , , is defined as 

. .  ; , … ,

. .  . .   

Where, 

 denote powers (integer or fractional); and 

 . .  
ln . .       0 

. .      0
 

For a given degree (e.g., ), the best fitting powers  , … ,  are obtained by 

choosing the model with the smallest deviance. Royston and Altman (1994) provide more 

technical details of the fractional polynomial analysis. 

The simplest functional form of log relative ratio in the standard deviation of speed is 

linear which corresponds to an FP of first degree ( 1) with a power of one ( 1). 

The author has tested a second-degree (see Table A1 for the result) and a first-degree (see 

Table A2) fractional polynomials. Higher-degree fractional polynomials are not 

considered to keep the model parsimonious.   

Table A1 shows that . .  ; 0.5,0  model has the smallest 

deviance of 253.922 and is better than the model without any variables. However, no 

significant performance improvement is gained compared 
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to . .  ; 2  with deviance 258.316 at the 95 percent confidence 

level (p-value=0.111). Note that p-value in this table is from deviance difference 

comparing reported model with m = 2 model. 

Table A1  

Summary of the second-degree FP comparisons for std. dev. of speed 

Degree of FP, m Powers Degree of Freedom Deviance Dev. Dif. P 
0 
(Not in model) 

N/A 0 263.948 10.026 0.04 

1 1 1 258.582 4.66 0.198 
1 2 2 258.316 4.393 0.111 
2 -0.5,0 4 253.922 N/A N/A 

 

Similarly, according to Table A2, the performance of . .  ; 2  

model is not significantly better than the performance of the simple linear model at the 95 

percent confidence level (p-value=0.606). Thus, the analysis indicates that it is 

appropriate to keep the standard deviation of speed linear in the logistic regression model. 

Note that p-value in this table is from deviance difference comparing reported model with 

m = 1 model. 

Table A2  

Summary of the first-degree FP comparisons for std. dev. of speed 

Degree of FP, m Powers Degree of Freedom Deviance Dev. Dif. P 
0  
(Not in model) 

N/A 0 263.948 5.632 0.06 

1 1 1 258.582 0.266 0.606 
1 2 2 258.316 N/A N/A 

 

This procedure has been applied to other variables, which resulted in the same 

conclusion. 
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APPENDIX B 

MODEL EVALUATION RESULTS FOR OTHER CONTROL-TO-CASE RATIOS 
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Table B1  
Model evaluation results (5:1 to 7:1 control-to-case ratios) 

control-to-case ratio 5:1 6:1 7:1 

Run Variables OR 95% CI OR 95% CI OR 95% CI 

1 std_spd 1.101 (1.020,1.190) 1.093 (1.018,1.172) 1.084 (1.008,1.165) 

2 std_spd 1.062 (0.986,1.143) 1.062 (0.987,1.144) 1.08 (1.002,1.165) 

3 std_spd 1.081 (1.003,1.165) 1.116 (1.033,1.206) 1.092 (1.016,1.174) 

 avg_occ   1.027 (1.000,1.054) 1.018 (0.997,1.040) 

4 std_spd 1.079 (0.997,1.168) 1.075 (0.997,1.158) 1.093 (1.011,1.181) 

5 std_spd 1.090 (1.013,1.174) 1.077 (1.002,1.157) 1.088 (1.012,1.170) 

6 std_spd 1.069 (0.992,1.150) 1.080 (1.009,1.157) 1.084 (1.012,1.161) 

7 std_spd 1.080 (1.005,1.161) 1.077 (1.002,1.157) 1.075 (1.002,1.153) 

8 std_spd 1.076 (1.002,1.154) 1.085 (1.012,1.165) 1.066 (0.996,1.140) 

9 std_spd 1.071 (0.994,1.154) 1.080 (1.001,1.165) 1.069 (0.994,1.150) 

 avg_occ 1.018 (0.996,1.041) 1.018 (0.995,1.042)   

10 std_spd 1.089 (1.009,1.176) 1.088 (1.006,1.177) 1.082 (1.005,1.164) 

 avg_occ   1.024 (0.999,1.051)   

11 std_spd 1.121 (1.034,1.215) 1.078 (1.002,1.16) 1.085 (1.011,1.164) 

 avg_occ 1.026 (0.999,1.054)     

12 std_spd 1.081 (1.005,1.161) 1.074 (0.999,1.155) 1.085 (1.009,1.167) 

 avg_occ   1.017 (0.997,1.038) 1.02 (0.998,1.043) 

13 std_spd 1.066 (0.991,1.147) 1.072 (0.991,1.161) 1.068 (0.994,1.147) 

 avg_occ     1.020 (0.997,1.044) 

 avg_spd   0.981 (0.958,1.004)   

14 std_spd 1.066 (0.990,1.147) 1.074 (0.998,1.156) 1.062 (0.991,1.137) 

15 std_spd   1.071 (0.994,1.154) 1.080 (1.001,1.164) 

 avg_occ   1.020 (0.995,1.044) 1.028 (1.000,1.056) 

16 std_spd 1.096 (1.014,1.185) 1.078 (0.997,1.166) 1.107 (1.019,1.202) 

 avg_cnt 0.804 (0.645,1.003) 0.822 (0.662,1.019)   

 avg_spd     0.978 (0.956,1.001) 

17 std_spd 1.070 (0.994,1.151) 1.070 (0.996,1.149) 1.087 (1.010,1.170) 

 avg_spd 0.980 (0.958,1.003)   0.981 (0.959,1.004) 

 avg_occ   1.019 (0.996,1.043)   

18 std_spd 1.083 (1.001,1.173) 1.074 (0.996,1.16) 1.077 (0.997,1.162) 

 avg_occ 1.024 (0.997,1.053) 1.021 (0.995,1.05)   

 avg_spd     0.982 (0.960,1.005) 

19 std_spd     1.071 (0.998,1.150) 

 avg_occ 1.022 (0.997,1.048) 1.020 (0.996,1.044) 1.023 (0.998,1.049) 

20 std_spd 1.067 (0.989,1.150) 1.093 (1.013,1.178) 1.075 (1.002,1.153) 



47 

Note that the blank cell in this table means that the corresponding variable did not 

appear in the final model. OR stands for odds ratio. 

 


