Discipline of Mathematical Sciences

Queensland University of Technology

Bayesian Methodology for Genetics of
Complex Diseases

Carla Chia-Ming Chen

Bachelor of Science, James Cook University

Master of Applied Sciences, James Cook University

A thesis submitted in fulfilment of the requirement for theyez of
Doctor of Philosophy in the Faculty of Science and Technglog

Queensland University of Technology.

Principal supervisor:  Professor Kerrie Mengersen

Associate supervisor. Dr Jonathan Keith

2010







Keywords

Bayesian, statistics, genetics, phenotype analysis, leondiseases, complex etiology, model comparison,
latent class analysis, grade of membership, fuzzy cluggeiiem response theory, migraine, twin study, her-
itability, genome-wide linkage analysis, deviance infation criteria, model averaging, MCMC, genome-
wide association studies, epistasis, logistic regresstochastic search algorithm, case-control studies,
Type | diabetes, single nucleotide polymorphism, geneesgion programming, logic tree, logicFS, Monte

Carlo logic regression, genetic programming for assamiastudy, random forest, GENICA






Abstract

Genetic research of complex diseases is a challengingxbititng, area of research. The early development
of the research was limited, however, until the completibthe Human Genome and HapMap projects,
along with the reduction in the cost of genotyping, which ggmthe way for understanding the genetic

composition of complex diseases.

In this thesis, we focus on the statistical methods for twmeats of genetic research: phenotype definition
for diseases with complex etiology and methods for idemigypotentially associated Single Nucleotide

Polymorphisms (SNPs) and SNP-SNP interactions.

With regard to phenotype definition for diseases with comgligology, we firstly investigated theffects

of different statistical phenotyping approaches on the subseguatysis. In light of the findings, and
the dificulties in validating the estimated phenotype, we propdseddifferent methods for reconciling
phenotypes of dierent models using Bayesian model averaging as a cohereafiamism for accounting

for model uncertainty.

In the second part of the thesis, the focus is turnd to the odstfor identifying associated SNPs and SNP
interactions. We review the use of Bayesian logistic regjogswith variable selection for SNP identification
and extended the model for detecting the interactiffeces for population based case-control studies. In
this part of study, we also develop a machine learning algorio cope with the large scale data analysis,
namely modified Logic Regression with Genetic Program (MERP), which is then compared with the

Bayesian model, Random Forests and other variants of legiession.
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Introduction

Since that pivotal moment in history about 145 years ago vid@remian monk Gregor Mendel published
the results of his pea breeding experiment, scientists éradeavoured to build a foundational understanding
of hereditary genetics. Despite limitations in technoldgying the late 60’s, the genetic dissection of plants
and model organisms was successfully purs [127]. Thetigestudy of human traits however, did not
gain much ground until advancements in molecular and coatipntal technologies during the 80’s. Many
of the successes which have occurred are due to the resigenome-wide linkage analysis and position
cloning ]. Linkage analysis is a method for identifyiegions of the genome with higher-than-expected
shared alleles amondfacted individuals within a family. This method has recorttetnendous successes

in mapping genes in various disegsksorders such as Duchenne muscular dystrophy, cysticsigend

1



2 Chapter Introduction
Huntington’s disease. However, the successes are resitiargely to Mendelian disorde 30].

Most of the common disorders do not follow the Mendeliangratpf inheritance and are believed to have
“complex” genetic make-up, therefore, in contrast to Mdiagkedisorders, these traits are often referred to

as complex traits. A more formal definition of a complex traigjiven in p370. ES], that is

A trait that appears to have a genetic component but withmplsiMendelian pattern of single-
gene inheritance; multiple genes, poly genes, environmhéattors, age féects, and their

interaction may be involved.

Although genome-wide linkage analysis has been carrietbomtany complex diseases, including Crohn’s
disease

126], migrain12] and schizophre[261],slhra:ess is limited given that the mapped genes
usually explain only a small fraction of the heritabilityufthermore, the lack of replication of the linkage
results has suggested that linkage analysis is not suitechdpping complex diseasesmlm] identified
various other factors contributing to the lack of succasduiding the low heritability of most complex traits,
the inability of the standard set of microsatellite markerextract complete information about inheritance,
imprecise definition of phenotypes and inadequately paivetady designs. Most importantly, linkage
analysis is less powerful in identifying large number ofiJ@ach with moderate to littlefiect. Therefore,
for a better understanding of the genetic architecture wifex traits, linkage analysis may no longer be a

preferable option.

A practical, less expensive (compared with sequencing)oaah, which still retains the scale of the genome-
wide approach for gene mapping, is the genome-wide assntistdy (GWAs). A GWAs is designed to
identify associations between potential causal loci framdreds of thousands of single nucleotide poly-
morphisms (SNPs) and traits. Since the completion of the &u@enome projecm7 72] and HapMap
J;f, ], along with the reduction in the cost of genotgpiGWAs have become more prevalent. During
the past five years, more than 300 replicated associatiores bieen reported for 70 common phenotypes
]. As more SNPs are included in the commercially avadaiptne chips, more and even larger scale

GWAs will emerge, e.g. WTCCC 2 projediftps://www.wtccc.org.uk/ccc2/).

Without a doubt, the increasing number of larger scale GWisseiases understanding of the genetic dis-


https://www.wtccc.org.uk/ccc2/

3
section of complex traits. However, the virtual avalanchdaia generated from GWAs has raised another

array of challenges. These include the development andcapiph of sound statistical methods for data
analysis, the need for higher-level computational ressiend quality interpretation of the findings. With

all these in mind, the overall objective of this thesis is to

develop sound statistical methods to enhance understgmdithe genetic architecture of com-

plex traits.

Given the constraints imposed by the time frame of PhD catdid, the areas focused upon in this thesis are
confined to 1) the definition of phenotype and 2) methods fentiflying epistatic &ects, that is, gene-gene

interaction &ects.

Although phenotype definition prior to conducting genomderanalysis may seem to be trivial and often
ignored, without thorough consideration to defining thergtgpe, the subsequent gene mapping results
may not be meaningful. When phenotypes can be clearly aglsesing biomarkers, the definition of phe-
notype is less relevant; however, for phenotypes that dammasserted using biomarkers, and also having
complex clinical etiology, this becomes a very importastue. Examples of the latter conjuncture include
various psychological disorders such as Alzheimer's dise&arkinson’s diseases and various types of
headache. When carrying out genetic research for these ¢flsorders, ascertaining the phenotype often
relies on the clinical diagnostic procedure, which is basedhe fulfillment of symptom criteria. Various
authors have argued that this method of ascertainment idealtfor genetic research due to heterogeneity

among #ected and nonfkected group@aq.

An alternative method for deriving the phenotype is to usgistical approaches. Statistical methods for
clustering and classification problems have been well dpesl. Given the true phenotype is not observable,

a latent type of clustering approach may be more suited feitype of problem.

Various latent type clustering methods have been used forimg phenotypes, such as latent class anal-
ysis (LCA), grade of membership (GoM) and item responserth@®T). Given there are many fiierent
choices of clustering methods and the “true” phenotype @bearvable, it is uncertain if applyingftérent

clustering methods willfect the subsequent genetic analysis. Therefore, the flssblsigctive in the first
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part of this thesis is to

e investigate theféect of diferent statistical methods of phenotyping on the subseqemtic analysis
This is addressed in Chaptéis 3 ahd 4 of this thesis, and tigrame data are used for illustration.

Migraine is a common, painful and debilitating disorderhwiiteritability ranging from 34 to 57%. The
diagnosis of migraine is flicult, due to the absence of a clear biomarker, hence the akégof the disor-
der depends on matching self-reported symptoms againstiarsuggested by the International Headache
Society ]. Although a variety of independent genetsearch has been carried out using this phenotype
standard, under this phenotype definition, no common gesdéen replicated across studies. Due to the
overlap in symptoms between the subtypes of migraine, tisigmave suspected that the two subtypes of
migraine, migraine with aura and migraine without aura ateally not separate entiti@m ml@ir%?].
] pioneered the use of LCA for phenotyping migraine hiifging potential linkage to chromosome
5021 and replicating previous reported loci. Besides LG@wré are other clustering methods that can be
used for deriving phenotypes. In Chapiér 3, we compare teaqgifipes derived from LCA, GoM and
fuzzy clustering and the results of the subsequent linkagéysis. The phenotypes derived from LCA and
fuzzy clustering are largely similar; therefore, the lamtified by the linkage analysis are also similar. In
contrast, the results of GoM are venftdrent from the other two approaches. This work has been pub-

lished inHuman Genetic@] and presented as a poster presentation at the Indoalasian Biotechnology

Conference, Brisbane 2007 and at GeneMapper, Brisbane 2007

Using the same dataset, in Chafier 4, we focus on tfferdnt types of latent methods, LCA and IRT.
Unlike LCA, IRT estimates the latent value without postingtclustering structure, but by direct association
with the symptoms responses, which also takes into accqumptem prevalence. A notableftirence
between Chaptefd 4 ahd 3 is that models of the former Chagmtgraposed and compared in a Bayesian
context. Furthermore, the use of the MCMC algorithm for peeter estimation provides credible intervals
for each of the model parameters, which accounts for thertaioty resulting from parameter estimation.
Even though LCA and IRT haveftiérent underlying algorithms, phenotypes derived fromehmedels are

highly correlated, so the results of the subsequent aisafyrei in general agreement. This work has also



5
been published iHuman Genetic@] and was presented as a poster at the Biometrics corfer€uis

Harbour 2007, BiolnfoSummer, Canberra 2007 and ISBA cenfee, Hamilton Island 2008.

Given that the phenotype derived from each model cannot iy @alidated, and even though using statis-
tical model comparison criteria gives insight as to how el model fits the data, it does not provide full
support to the phenotype estimated by a single model. Mergaxe note that the disagreement about the
phenotype estimated fromftkrent models is mainly for individuals with the phenotypattis at the bor-
derline of being a case or control. Therefore, methods fosalidating phenotypes estimated fronfetient
models may potentially be more advantageous than relying single model. This motivates the work of

Chaptei b, the objective of which is to
e develop statistical methods for the integration of estedgthenotypes obtained from multiple models.

In this chapter, we propose two new methods to overcome thit#gmns associated with defining phenotype
classes and use Bayesian model avera@ @ 121] as eenblneechanism for accounting for model
uncertaintyl]. The idea of model averaging is to avethgeposterior distributions of fierent models,
where the models are weighted according to model probabilihe methods we propose here allow for
the integration of estimated phenotypes obtained fromipteltnodels both within and across phenotype
classification approaches. The two models used for illtistran this chapter are latent class analysis
(LCA) and grade of membership (GOM) and the proposed methioisegration is similar to the# -open
perspective” discussed iH24] anﬂZl}. Moreover, theifoof the methods is not on the state parameters,
but on the latent parameters. The methods are demonstisitepaureal dataset on migraine and a simulated
dataset obtained from the Genetic Analysis Worksho ][11DBis work is submitted tdournal of the

Royal Statistical Society.d’ hus, Chapters 3, 4 and 5 form the first part of this thesis.

In the second part of thesis, the focus is turned to stadistieethods for identifying the epistasiferts

in large-scale SNP data generated from GWAs. Epistasisnsrghy defined as the interaction between
different genes that is suspected to be an important factor éogxpression of a complex trait. Although
there are dferent definitions of epistasis in the Iiterat [@21@ tlefinition of epistasis in this thesis

remains more general; that is, the risk of having a phenotgreincrease or decrease as a result of the
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combination of two or more genes. The interaction among gjear be either additive or multiplicative.

Chaptef® is a study of a Bayesian regression model withhlarigelection to identify the potentially causal
loci. Because the number of variables in GWASs is excessiaefier than the sample size, when considering
all loci simultaneously, the results are often unreliabbldaére is no consideration of dimension reduction.
Some excellent methods for dimension reduction have beeriafed within a Bayesian context, including

variable selection and shrinkage.

The method used for variable selection in Chajpter 6 is mageed with E!li], who introduced the use of

a latent indicator for the identification of subsets of valés. Similar methods have been implemented for
smaller datasetElBO] and QTL studi 297]. In contmstese studies, the focus here is on application
to larger-scale SNP data. The model is validated using sitediRheumatoid arthritis data obtained from
the Genetic Analysis Workshop 15, and tested on two reakdtta This work has been presented to the
students and colleagues of Fakultat Statistik, Techeiddhiversitat Dortmund, Germany, and presented
as a poster presentation at 17th International Conferencetelligent Systems for Molecular Biology,

Stockholm. This work is currently being revised for subntisdo an international refereed journal, such as

Computational Statistics and Data Analysis

Although the results of ChaptEt 6 are promising, the majamtiack of the model is computational inef-
ficiency, especially given the scale of GWAs. Therefore, ey, we explore the use of the machine
learning algorithm for identifying epistasidfects. The model proposed in Chadiér 7 is an extension of
Logic regression [235]. Logic regression is a hybrid apphothat has a tree like structure comprised of
Boolean expressions, such as AND and OR, and model fittingegie Various approaches have sprouted
from the original logic regressiom@%]. Even thoulgase new variants improve the ability of LR in
detecting interactionféects, limitations exist with respect to the number of fagt@hich can be analysed
at once within the written code, which currently stands ataximum of 1000 SNP’s. With these issues
in mind, we propose an alternative method, which also bwlishe framework of logic trees but has the
advantage of the genetic expression programming algoriftiva proposed algorithm has shown promising
ability in analyzing at least up to 30,000 SNPs within a reakde time. This work has been submitted to

IEEE/ACM Transactions on Computational Biology and Bioinforicsat
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In Chaptefl, we considerftiérent variations of logic trees for identifying interactieffects in association

studies. Often these methods are introduced independandlyit is uncertain how they fier from each
other. In this Chapter, we also include the random forest) (/@F comparison. RF is also a tree-like
algorithm, but has a very fiierent morphological structure compared with the logic.tréberefore, the
purpose of Chaptél 8 is to address th@edlences within the variations of logic regression as welleta/een
the tree-like algorithms. Since it is also not clear how tleelike algorithm compares with model based
approaches, we also include the model proposed in CHdpbeicbrinparison. This work has been submitted

to IEEE/ACM Transactions on Computational Biology and Bioinforicsat

This thesis is written in fulfillment of the requirement fdresis by publication, such that Chapters 3 to
7 are comprised of journal articles. Therefore, each chajutetains some materials which may partially
overlap with the content of Chapfdr 2. Moreover, the sameairig data has been used throughout Chapters
[3 to[8 of this thesis and hence is repeatedly described ire thleapters for the purpose of publications.
Furthermore, each chapter has a self-contained biblibgragthough for completeness these are merged

into a comprehensive bibliography at the end of the thesis.

In summary, the overall objective of this thesis is to depedtatistical methods for enhancing the under-
standing of genetic composition of complex diseases. Taéewelthis object, we explore the following

aspects:

e phenotype definition

— investigate the féect of diferent statistical methods of phenotyping on the subsearaiysis.
(Chapter§ B and 4)

— develop methods for reconciling the phenotypes estimaied €lifferent methods. (Chapter 5)

e methods for identifying the associated SNPs or SNP intierzst

— explore the potential of using Bayesian logistic model walhiable selection (Chaptgr 6)

— explore the potential of machine learning algorithms toriowe the speed of computation (Chap-



Chapter 1. Introduction
ter[7)

— documenting the strengths and weaknesses of machinerigaand model based approaches.

(ChaptefB)



Literature Review

2.1 Introduction

The literature review is organized as follows. This chagtarts with the basics of human genetics (Sec-
tion[Z.2), then in Sectioh 2.3, | review common practicesdefining phenotypes for traits with complex
etiology and then review various statistical methods fostgring. Because the next three chapters of this
thesis implement genome-wide linkage analysis, we aldadecan overview of the underlying algorithms.
The subsequent section includes a brief overview of thesifian from genome-wide linkage analysis to
genome-wide association studies. The last section of thapter contains a discussion of the statistical

methods which are commonly used for identifying importagnes and gene-gene interactidteets. Be-

9
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cause methodology for identifying epistasi$eets is a new and popular area of research with more and

more methods emerging in the literature, the methods redelwere are confined to those that are com-

monly discussed and implemented.

2.2 Human Genetics

The aim of this section is to provide a short summary on huneretics. Because the contents of this
section can be commonly found in genetic text books, the maieof this section are summarized from

four main sources, bioloiy2 b7], introduction to humamnetics by 6], the statistical methods in

genetic epidemiology b 5] and genetic analysis of caxpliseases b 8].

An understanding of subjects in molecular genetics, sugenas networks, can be useful in conjunction with
the methods proposed in this thesis. The review of this tpleyond the scope of this thesis, however,

] provides an overview for gene networks.

2.2.1 Gene, Chromosome and DNA

The human body is made up of cells and the materials produgékelse cells. The genetic material can
be found in every cell of the human body, where a large pragorbf information is contained in the
chromosome, which is located in the nucleus of the cell, aschall part of genetic material is located in
various mitochondria. The nucleus of the human somatis calhtains 22 pairs of autosomes and a pair
of sex chromosomes, a total of 46 chromosomes. An indivighiedrits half of the chromosomes from the
father and the other half from the mother. Because the amalschromosomes are arranged in pairs, they
are called homologous chromosome pairs. The chemicatgteuof the chromosomes is deoxyribonucleic

acid (DNA), which comprises the gene and encodes informdtiosynthesizing both protein and RNA.

DNA is composed of three elements, a sugar, a phosphate asdabhere are four possible bases in DNA,
which are pyrimidines adenine (A), guanine (G), purinessiyte (C) and thymine (T). A DNA sequence is

often described as an ordered list of bases, each denoté bstter of its name, e.g ATCCGA. Because a
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single strand of DNA is unstable, it has a double-helicalctire where two strands of DNA are arranged

in anti-parallel orientation, and a hydrogen bond linkingase with its complimentary base, i.e A-T and
G-C. The length of the sequence iffdient from chromosome to chromosome, and there are appatetim

3 x 10° base pairs in the human genome. Even though there are a lamjzen of base pairs in the human
genome, alarge proportion of the genetic sequence is ctirallar between unrelated individuals. Genetic

polymorphism is the term used to describe théedénce in two genetic sequences between two individuals.

There are various types of genetic polymorphism, such amgesnucleotide polymorphism, a short tandem
repeat and an insertion-deletion. A single nucleotide polgphism (SNP) is when a base pair in a sequence
is replaced by another base pair. A short tandem repeat (8TW)en a sequence of bases is repeated a
different number of times between two individuals. An insertietetion polymorphism is when a base or a
sequence of base is inserted or deleted from the originakseg. Therefore, the length of the chromosome

can also dier among individuals.

The physical location of a stretch of DNA on a chromosomelieda genetic locus. At any particular locus,
there can be dlierent forms of the gene, which is called an allele. Becauseatitosomes are arranged in
pairs, an individual also has a pair of alleles at the sameslaane from each chromosome. The combination
of the two alleles is called the genotype of the individuathett genetic locus. For a biallelic gene with
possible alleles a and A, there are three possible gengoty#esAa and aa. Homozygosity is when two

alleles are identical (i.e. AA and aa), and heterozygosityhen when the alleles arefiddirent (i.e. Aa).

2.2.2 Meiosis

The biological foundation for linkage analysis is meiosigich is a process of producing gametes (i.e.
sperm and egg cells) in sexual organisms. Human reprodustésts with the production of gametes, with
the gamete of each parent uniting during the process ofifation to forms zygote. A zygote is then

developed into a human by the process of cell division. Wniiie somatic cells in the human body, which
have 46 chromosomes, the gametes only have 23 chromosorhesefdre, the human somatic cells are

diploid and the gametes are haploid.
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Meiosis consists of two stages: meiosis | and meiosis Il. éosis |, each chromosome in a cell replicates

to form two sets of duplicated homologous chromosomes. rigumeiosis I, physical contact between
chromatids (arms of chromosomes) may occur which resuliseiformation of chiasmata. Chiasmata are
physical manifestations of crossing over or recombinatigich is the exchange of the DNA fragment in
the adjacent homologous chromosome region. Chiasma oatileast once per chromosome pair and the
frequency of the recombination is not uniform through thelglyenome. For instance, some areas of some
chromosomes have higher rates of recombination (hot spot$)others have fewer recombination (cold

spots).

After crossing over, cell division occurs to form two unigdiploid cells that are diierent from the parent
cells. This concludes the first stage of meiosis. In the stebage of meiosis, the cell division occurs
again and genetic material is transmitted independentligout recombination. At the end of meiosis II,

two diploid cells become four haploid cells.

2.2.3 Genetic maps

Genetic markers are the loci where the locations on the obsome are well established and are poly-
morphic among individuals in a population. The length of gjenmarkers varies, it can be a short DNA
sequence or a long one, such as microsatellite markers.eThagkers are essential for developing dense

genetic maps, which are important for finding out the locetiof disease loci.

There are two type of maps, physical maps and genetic magsidahmaps quantify the distance between

genetic markers by counting the number of base pairs in leetwehereas genetic maps arrange genetic
markers by specifying the number of recombinations ocegrbetween markers. Although both maps are
essential for mapping disease loci, there are substaati@tions in the estimates of an identical region from

physical and genetics maps. Table 1.5 m108] shows theapaocy in the estimated length foftferent

chromosomes using physical and genetic maps.

The measurement of distance in the physical map is ofterridedcin the thousands of kilobases (kbp, 1

kbp= 1000 base pair), whereas the unit for the genetic map is amweangian (cM). When two loci are one
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Morgan (1 Morgae100cM) apart, the expected number of recombinations bettesse two loci is one per

meiosis. According to the genetic map, the length of chrames is diferent between male and female.

The overall length of the autosomal chromosomes for maf8.5Morgans, and for females is 43 Morgans

The availability of the genetic maps allow scientists td lanloci of unknown location to a genetic marker
where the location on the chromosome is known. Suppose &nertevo loci on the same chromosome, with
possible alleléd, a at first loci andB, b at the second loci. Let the genotype of the father’s chromesisAB
andabat the mother’s chromosome. There are four possible corbnsafrom the meiosis: AB, Ab, aB and
ab. If a gamete receives or Ab during meiosis, the loci is said to be recombinant. ConWergea gamete
receivedAB or ab during the meiosis, it is said to be non-recombinant everdbmbination occurred.
Therefore if an odd number of recombination occur duringasisi two loci are said to be recombinant.
If an even number of recombinations occur during meiosis, lagi are said to be non-recombinant. The
recombination fractiond) is the probability that two loci become recombinant duringiosis given the
distance between two loci. The simplest probabilistic nhddeestimating the recombination fraction is
the Haldane's map function. Let denote the distance between two loci which is measured into#,
recombination fraction is then

0(x) = 0.5(1 - exd—0.02x)). (2.2)

Two loci are linked ifd < 0.5. Conversely, two loci are unlinked éf =~ 0.5. For loci on ditferent chro-
mosomes, the recombination fraction is always 0.5. Thisehdubwever, is oversimplified for discovering
human disease genes. This is because the generation timneniaink is relatively longer and the multi-
generational pedigrees with a segregated disease orstr@td. Moreover, the mating scheme can not be
systematically designed and there are other ethical isstiesrefore, the linkage analysis in humans re-
quires diferent assumptions, and hence more complicated statisticdéls are necessary. Section 2.3.2

reviews statistical models commonly used for linkage asialyn humans.
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2.2.4 Epistasis

Epistasis is an interaction between twdtelient genes or loci. The idea of epistasis has been around for
more than 100 years. It was initially used by William Batesordescribe the distortions of mendelian
segregation ratios that were due to one gene maskingfibet ®f anotherm9]. The early definition of
epistasis is similar to the concept of dominance, that isaraamt of one gene can prevent the variant at
another loci from manifesting itdfect. An example of this type of epistasis is the coat colorig$ [i39].

Two loci, KIT andMC1R are known to jointly influence the coat color of pigs. If thentinant allele k) is
present at th&IT loci, it masks the fect of MC1Rloci and all pigs have white coats. When the recessive
genotype i) is present in th&IT loci, the color of the pigs will depend on the variants atM&1R Pigs

with the dominant alleleE) at the MC1R will have a brown color coat and pigs with the ssoge genotype

(e® will have a black color coat. This definition of epistasisiimilar to the concept often used by biologists

and molecular geneticist when investigating the inteoackietween proteins [50].

Another definition of epistasis was suggested by Fisher MB@] as a deviation from the additive com-
bination of diferent loci to their &ect on a phenotype. Unlike Bateson’s definition, FisherBnd@n

of epistasis is closer to the statistical definition of iat#gron, which departs from a specific linear model
describing the relationship between predictive fac@ﬁhis view of epistasis is often adopted by popu-

lation geneticists.

Another definition of epistasis relates to the moleculagerattions present in proteins, such as if proteins
operate within the same pathway, or consist of proteins lwHicectly interact with one another. The dis-
crepancy in the term ‘epitasis’ has resulted in the separatf three definitive categories b@lq, which
are functional epistasis, compositional epistasis artsstal epistasis. Functional epistasis describes the
protein interaction and the latter two type of epistasiseayaivalent to Bateson'’s and Fisher’s definition of

epistasis, respectively.

Besides the dominance interaction, for a biological irretigdion, gene and gene can interact in other ways
to influence the phenotypeD39] suggested two other typessatitical epistasis in QTL, co-adaptive and

dominance-by-dominance epistasis, which may be inteigesti biologists. These two types of epistasis
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belong to the statistical epistasis defined by Fisher. Thadaptive epistasis is when the homozygous

genotype appear in two loci (e.g the genotype of two lociaa@ndbb or AA andBB ), which increases
the level of the phenotypic trait. This type of epistasisdarfd to dect the hatch-weight of chickens.
Dominance-by-dominance epistasis is when double hetgoamyalleles in two loci resulted in a deviation
of the phenotypic trait from the expected. For instance, gatige dominance-by-dominance epistasis is
when the heterozygous genotype is at two loci, the phenasylogver then expected . This type of epistasis

is found in the maternal performance fdfspring survival in mice.

B] and EL] provide more thorough definitions and intetation on epistasis.[[lw] antmOS] review

the importance of epistasis in genetic research of compééts t

2.3 Phenotype Definition for Diseases with Complex Etiology

Before carrying out genetic research on any disgdsesders, an essential step is to define the targeted
diseasgisorder. When a disease can be identified using a pathalogist(s) for assurance, the proce-
dure becomes straight-forward. However, it is common forseakse to have no objective markers or for
practioners to be uncertain about the causes of a diseasdmple various psychological disorders (e.g.
Schizophrenia, obsessive compulsive disorders or depn@smigraine and Alzheimer’s disease. The most
common method for identifying these diseddesrders is to rely on medically recognised criteria. For
example, migraine is a common and painful disorder, therdisig of which depends on classifying the
self-reported headache characteristics using Intemeltideadache Society (IHS) published crite115].
These criteria were developed to standardise headachdidafifhe most common subtypes of migraines

are migraine with aura (MA) and migraine without aura (MQabled’ A1 an@AJ2 list symptoms for each

subtype.

Various published studies have used this scheme for théfidation of migraine phenotype and focused on

either the MO or MA group@@&g 4E|136]. Certpitlese criteria have refined the diagnosis

of migraine and consequently have improved epidemioldgiesearch of the disorder. However, some

scientists are questioning the homogeneity of the subgrauma the validity of using these for genetic
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analysis. Although 8],6] an 37] argued that MA &M@ are distinct entities due to insignificant

co-occurrence of MO and MA in population and twin pairs, othethors contradict this findin@gﬁlﬂll,
]. A study by ] found that 42% of individuals who refgat having migraine with aura often
have migraine without aura. Furthermore, the Italian HehdaCentre reported that 45% of families have
members with both MA or MO|_L_1SL6]. E‘[O] andElS?] point out tH&tS criteria may oversimplify the
complex variability among sterers and argue that there is overlap in the symptoms of thestiutypes

of migraine. Furthermore, no Ene that Eotentiallﬁeiientiates these two subtypes has been successful

replicated across studi&@ E 6, 41].

There are currently two main types of methods for identiythe phenotypic structure of the collective
symptoms, one based on the use of statistical methods tonahtare homogenous groups and the other
based on treating individual symptoms as separate phendigits, i.e trait component analysis [TCA,
]. In the following section, | review various methods thave been implemented for the identification of
phenotypes. Theses methods are not limited to only migraimeare relevant to a larger scope of genetic

research.

2.3.1 Statistical Methods

Hierarchical Clustering Two common approaches to hierarchical clustering are aggflative and di-

visive. The agglomerative hierarchical approach starth e@ach individual in a separate cluster and then
merges two clusters at each step until there is only oneearlusinaining or a stopping threshold is reached.
In contrast, divisive clustering starts with all individsian one cluster, then splits clusters at each step until

the number of clusters is equivalent to the number of indigid or, again, a stopping threshold is reached.

Both of these approaches are often based on a measure diifisy between individuals. The dissimilar-
ity coefficient is the distance between two individuals. The most comynused dissimilarity measures are

Euclidean distance

(i, ) = /(%1 = Xi2)? + o+ (K5 = Xip)2. (2.2)
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its squared?(i, j) or the Manhattan distance

d(i, J) = X1 — Xjal + ... + [Xip = Xjpl (2.3)

wherex;, andx;, are the observations for individuaind j for the pth factor respectively. After obtaining
the dissimilarity coéficient matrices, splitting or merging is chosen to optimisme criteria, i.e. single

linkage, complete linkage or maximum likelihood.

Hierarchical clustering may not be the best way to discomeresting groupings and is considered by
some as more a visualization to@m]. The disadvantagesiofg hierarchical methods is that they can
never repair what was done in the previous steps of mergisgliting @]. Several factors can result in
different dendrogram clustering structure, such &smint criteria used in optimization or changes in the
data &LBS]. In addition to the above problems, hieliaatttlustering enforces hierarchical structure
even if there is no such structure in the d [113]. Consgtyieany inference based on hierarchical

clustering should be treated with caution.

Partition Clustering (Relocating Clustering) In contrast to hierarchical a_gliroaches, partitioning meth

ods often specify the number of groups (k) in advance. Kiraeans metho 3] is the most commonly

used partitioning method and is intended for quantitateeables.

The aim of thekK-means method is to minimise the average dissimilarity omegsetween each observation

and the mean within each cluster. In general, the stepsvesidbr theK-means cluster algorithm are:
1. Partition the data int& initial sets at random or using some heuristic.
2. Compute the centroid (or seed points) for each currested(my, my, ..., mg}.
3. Assign individuals to the closest cluster then updatecémroids.
4. Repeat Step 2 and 3 until the assignment no longer changes.

Although theK-mean cluster is popular due to the speed of convergence niitiguaranteed to give the
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global optimum.

The clustering methods described above are frequently faseclustering individuals into féected and

not-atected clusters. Therefore, phenotypic values derived flese methods are dichotomous.

Mixture models The concept of utilising a model-based approach for clusjewas first introduced by

]. In comparison to hierarchical and partitioning ckraig approaches, the model-based approach gives
better performanc&?], yields the optimum number of gsowjthin the data according to some criteria,
and has the ability to handle outIieQ[B?]. Moreover, thaeioncorporates a measurement of classification

uncertainty which can be easily estimated using the expeatenaximization (EM) or MCMC algorithms.

In model-based clustering, data are assumed to be gendratech mixture of clusters or components,
each represented by a probability distribution. Given pla&®ns x,, ..., X, , wheren is the number of
individuals, fx(X;|6k) is the density function of observatiof belonging to componerit given 6k, wheredy

is the corresponding vector of parameters for that compoken

The likelihood is then

n K
Lo 02,00 = [ | Y mcfixilh)  mc>0and > me=1 (2.4)
i=1 k=1 k

whererny is the weight of each componekt

The early solution for the mixture of multivariate normal o[ has some limitations, i.e. constant
covariance matrices for flerent clusters, restriction to Gaussian distribution anadbility to model noise.
B] suggested reparameterization to overcome thesegmmsblFor the first two limitations, they proposed
a general framework for geometric cross-cluster condsdin parameterizing the covariance matkiy, of

the multivariate normal distribution through eigenveadecomposition in the form

¥k = DxAD; (2.5)
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whereDy is the orthogonal matrix of eigenvectors, which determhredrientation of the clustergy, is a

diagonal matrix whose elements are proportional to thenegjae andii is scalar. Ax and A specify the
contour of the clusters, the former is the shape and the lattae size of clusters.|_—Ll16] then extented the

mixture model to incorporate the poisson noise.

@] has developed a software packal;LUST for applying the Gaussian mixture model with the EM
algorithm. MCLUST was written in FORTRAN and interfaced to the S-Plus and Rwsoft packages,

which can be downloaded from the developer’s website.

The mixture model for multivariate discrete data is alsovin@s Latent class analysis (LCA), which is

discussed in the following section.

Latent Class Analysis Latent class analysis is a multivariate technique whichbeaapplied to clustering,
regression and factor analysis. The classetafeatbecause they are not directly observed, but are identified
based on a function of a set of observed variables. LCA wasldegd in the 1950s for dichotomous
variablesl]. However, the potential and wide practigglication of LCA only became evident after the
introduction of more general latent class analysis and plsimmethod of obtaining maximum likelihood
estimates of the parameters in the 19@[103]. [1034mble of dealing with both dichotomous and

polytomous variables and more than one latent variableddoeiincluded in the model.

During the same period, the connection between LCA anderiast analysis was first introduced. How-
ever, the structure of latent class clustering was not deeel until the late 1990s. Latent class cluster-
ing analysis has been used in a wide spectrum of eTidemicﬂuggies such as the studies of attention-

]Jalzl}epressive syndrom@%}, Alzheimer’s

deficifhyperactivity disorder (ADHD@Z], migrain
diseas Ela 99] and investigating the nosologictire of psychotic ilines 5].

Suppose there areindividuals, J observed (manifest) variables and each variabld_hiesvels of response,
i=12...,nj=12...,Jandl = 1,2,...,L;; Lety;; denote a binary response pattern of ttre
individual to variablej with level |, andY; is a J by L; matrix of subjecti’s response pattern. Assuming

there areK latent classes within the latent variable, Ag}; denote the class conditional probability that an
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observation in clask produces thdth outcome on thegth variable. Therefore, for each X Ak = 1.

Assuming local independence, the probability of an indiaid in classk having a particular set of response

patterns is

J L
f(Yild) = l_[ l—[(/lkjl)y”'
i=1 =1

where px denotes prior probability of belonging to latent cldse = (p1,...,pPk). Let A be a matrix

containing all members ofyj, the joint distribution for allJ variables under the latent class model is

Lj

K J

Pr(YilA,p) = Z Pk l—[ l_[(ﬂkjl)y”'

k=1 il

LCA analysis can be carried out using the poL%G? packafge2.4.1. The parameters are estimated
using the expectation-maximization (EM) algorithm![60]heldetails of the EM algorithm for LCA are

given by ]. Unlike other models described in this reptive conditional probability of beingth class

membership, givel; is estimated using Bayes’s formula:

pi f (il k)

PrY) = ——m——.
") 2 Prf(Yildr)

wherey is an estimated of outcome probability conditioning on slas

Grade of Membership Grade of membership (GoM) is another popular statisticahotk which also

fits into the latent class framework. GoM was first developgdviax Woodbury in the 1970s for medi-
cal classification and it has been widely used in the anabyfssirvey data in various disciplines ranging
from determining the subtype of medical conditions such asien], depressioG], and Alzheimer’s
diseaseES], to identifying the genetic component in iithble iIIness|LTZ|8], and in social studiQ[Q 81].
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GoM has a very similar algorithm to latent class clusteringlgsis, and the PhD thesis ODBO] gives a

detailed overview of the similarity and dissimilarity ofetbe two models. The most fundamentdfatience
between latent class analysis and GoM is that the latter hgides partial membership rather than full

membership.

Letgi = (gi1,02,...,0ik) be the latent vector of grade membership score for indalidielonging to
componenk andZ'lfz1 gk = 1. Unlike LCA, the membership score of an individual is estied directly
from data. Letlc; denote the probability of a positive response to ldvef variable j for a complete
membership of componelt Axj = Pr(xj = 1gx = 1) wherei = 1,2,...,n, j = 1,2,...,J andk =
1,2,...,K. The parametely; has to be greater than or equal to zero while for gathe sum ofiy; across
all levels is equal to one. Laf; be a binary indicator variable for the response of individua levell of

guestionj. The joint likelihood of GoM is

L

J
[TTTO: gy (2.6)

=1 1=1 k

Pr(Y|4,9) =

N
i=1
Equatior 2.6 is maximized through iteratively optimizinglwespect to one set of parameters while keep-

ing the other set of parameters constant. This iterativequhore is referred to as the missing information

principle. Details of the parameter estimation proceduesoa page 68 of 9].

Missing values are important and yet common in genetic reeealhe missing values are the result of
various causes. They can be generated by a random mechahismigrindependent of the membership
score,gik. In GoM, this type of missing data can be treated as unobdeamd independent observations.
In this casey;; for the missing observation is set to be O fot 1,..,L;. Consequently, missing data are
dropped in the calculation of the likelihood value. Anotimeore complicated cause of missing data is a
non-random process, such that certain items have a higieeofrenissing data in a specific latent class. One
way to deal with this problem is to increase the dimensiorhefdata by adding an extra category called
“missing” for each variable in the model. In this study, thessing data are assumed to be random and

independent from the membership score; therefore, weeaapfiie first strategy to handle missing values.
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FANNY GoM  Unlike the maximum likelihood approach, FANNY forms clustéased on a dissimilarity

matrix. Here, the dissimilarity matrix is calculated usiagontingency table. Considering two objedts,

and j and the contingency table b&nd j for variablep given in Tabld Z.11,

Table 2.1: The contingency table of objecandj.

\J

[E=Y
o

o
QT

1
0 |

The dissimilarity betweenand | is
b+c

di.1) = 7 pvera

Letv denote the clustew(= 1,2, ..., K) and letu;, be the membership of objeicto clusterv. The objective

of FANNY is to iteratively minimize the following criterion

K n

Z ij=1 Uﬁ,ujzvd(i, ), 2.7
v=1 22in:l uj2V

At each iteration, membership;, has to be greater or equal to zero foriaH 1,...,n and membership for

i has to sum to 1 among all clusters.

Although this method has an uncomplicated algorithm, itds commonly used in genetic phenotyping.
] implemented this approach for subtyping schizopiarand M] used this approach for phenotyping

anxiety disorder prior to linkage analysis.

Traditionally, the phenotype definition relies on eitheouping patients based on the criteria proposed by
medical associations or by frequentist statistical methotb date, there is limited literature on applying
Bayesian statistical models for phenotype definition ptoogenetic analysis. Therefore, this research is

different from others in developing Bayesian statistical nagHor phenotype definition.

Iltem Response Theory Item response theory (IRT), also known as the latent traitysis. It is a class

of popular statistical methods that are commonly used fadetiog psychological and educational survey
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responses. The model assumes an underlying continuous \atiele which has direct influence on the

response to survey questions. This underlying continuatiesi value is unobservable, which represents the
ability of an individual in school tests or a propensity sctar an individual have a diseases given the items,

which are measurable.

IRT is a collective term for many fferent models which can be categorized based on the type ehdep
dent variable. For instance, the partial credit models gitagled response models and the sequential scale
models are designed for polytomous data and the Rasch nibdelvo-parameter logistic model and the
three-parameter logistic model are mainly for dichotomdata. Because medical symptom data are often
dichotomous, the latter models are more frequently imptaatein genetic research. The examples of using
IRT for phenotype definition incIude|]73] explore the geoetnd environmental influence on the timing
of pubertal change with the two-parameter logistic model fwe same method was also used Q [74] and
] for the analysis of multiple symptom genetic data. rElfigre, in this review, we focus on the Rasch,

two- and three- parameters models.

The IRT models entail three assumptions, which are unidam@ality, conditional independence and mono-
tonicity. Unidimensionality refers to the existence of a&atimensional, unobservable quantity associated
with each respondent in the sample which describes theithdil's propensity score to the items (symp-
toms). Conditional independence means that given an ohais propensity score (or called latent trait),
the item responses are independent. This assumption isaséswiated with the propensity (latent trait
value) and it states that individuals with high propensigtgnt trait) are more likely to endorse the items

than the ones with a smaller propensity.

To formalise the IRT, letxj denote the response of individuial € {1,...,N} to item j. Let 6 be the
propensity (latent trait) value ark(¢;) be the probability thak;; is positive given the latent valué,. The
probability P(6;) is often referenced as the item response function (IRF. mhin diference between the
Rasch, two- and three- parameter models is in the numberrafers incorporated in IRF: the Rasch
model has one parameter, and the other two models have twihaeelparameters respectively. The two-

parameter logistic model is now described, follow by thedRaand the three-parameter models.
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Two-parameter Logistic Model

The two-parameter logistic mod@Z?] has a similar formhe ordinary logistic model, that is

Iogit(Pj(Hi)) = a,-(@i +ﬂj) (2.8)
1

Pil) = 17 exp(a;j(6 - Bj))

(2.9)

whereq;j is the slope of the item response function, also called #me discrimination. This is a measure of
how much information an item provides about the latent valukhe parametes; is the intercept of the IRF.

In educational settingg; is an indicator of the item diculty and in medical applications, the parameters
a and B can be interpreted as the measures of the symptom prevaléitee parameter indicates the
prevalence of the symptom in théected individuals while the product efandg provides an insight into
the symptom prevalence in the overall population. For m=aifaj = «j.1, wheng; is larger thargi,q, it

indicates that symptomis more prevalent in the population than symptpra1.
The Rasch Model

The Rasch modeE]ZS], also called a one parameter logistidein assumes that all items have the same
discrimination ability, so that; is fixed for all . Common values for the discrimination are= 1 and

a = 1.7; under this setting, IRF is similar to the cumulative dgngiinction of the normal distribution.
Although this model is suited for various educational orgtmjogical settings, it is less relevant to the
setting of disease, where individual symptoms oftefedin prevalence. Therefore, the Rasch model is not

implemented for phenotyping.
Three-parameter model

Besides having extra parameters, the three-parameted maldsigned with a dierent scenario in mind. In
the previous models, the response funct#y(@) — 1 as¢ — oo andPj(¢) — 0 ast — —oco. However, in the
education examples, the latter assumption is not reaseifapptan be correctly ‘guessed’. Therefore, |[27]
developed a generalization of the two-parameter modelaffavs the IRF to have an asymptotefdient

from zero. The IRF of this three-parameter model is
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1-v;

Pilti) =i+ 13 expi-a;( - Bj))

(2.10)

wherey; is the probability that an examinee correctly guessed tisevanof itemj. In the application of
medical research, this parameter is similar to probabdityan individual having the symptom without
actually having the diseagdssorder. This is a common scenario for psychological disc, where some

symptoms are prevalent in the controls.

2.3.2 Methods for Linkage analysis

Linkage analysis is a statistical method to determine thpeagdmate location of the phenotype locus with

respect to some genetic markers, where genetic markerg en@wn locations on the chromosomes and

contain multiple alleles. Linkage analysis is based on tmeept of co-segregation between the disease and
i

marker gene_[275].

Linkage analysis can be divided into parametric and nompenac methods. In nonparametric linkage
analysis, the assumptions of penetrance and allele sharengot required. In Chapter 10 OE{OB], the
author listed four major advantages of model-based linleamgdysis. Firstly, if the assumed genetic model
is correct, then the model-based approach is more powdrdm any nonparametric method. Moreover,
model-based linkage analysis exploits all genotype andgipe information within a pedigree, and also
provide an estimate of the recombination fraction betwearkers and disease alleles and a statistical test

for linkage and gene locus heterogeneity.

However, parametric linkage analysis is not suitable fanglex disorders, whose manifestation depends
on the joint action of various genes and perhaps envirorsmhegents. Furthermore, in order to construct
parametric linkage models, variables such as the modehefitance, the trait and marker allele frequencies,
the penetrance values for each disease genotype, phees@q the sex-specific recombination fractions

are required to be specified in advance.

These are diicult to specify for complex disorders. It is important to@dthat a parametric linkage test is a
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test of all assumptions; the failure of Iinkaie analysidddne due to a misspecification of model parameters

rather than a lack of evidence for linka 08].

Due to the complexity of the inheritance pattern of migraémel the lack of the knowledge about the pa-
rameters required for parametric linkage analysis, weerewivo nonparametric linkage analysis methods,
namely @ ected sib-pairs and variance component linkage analysigsmeport. For more in-depth knowl-

edge of various linkage analyses, the recent book publisi ='&: provides a comprehensive description

of both parametric and nonparametric analysis.

Affected Sib Pair Affected sib pairs (ASP) analysis is the most commonly usedaranmgetric linkage
analysis for dichotomous traits. The most important elenoénASP is the probability distribution for
number of alleles shared identity by descent (IBD). Twoittlials are said to share an allele IBD in a
given marker is when a common ancestor in the pedigree passesf its two alleles in this locus to both

individuals.

Let z(X) denote the probability ok alleles being shared between related pairs at marker rcuor a
random sibling pair, these values are expected to/bell2 and 14 for k = 0, 1, 2 respectively and for a
monogenic disease. If there is linkage between a markerrendisease locus, the observed and expected
distributions of allele sharing will be significantly fiérent. This can be tested using-atest with two

degrees of freedom.

Alternatively, we can compare the average IBD sharing instmple of pairs with the expected value of
0.5. EJ)] found that this approach performs better thédfecknt level of expected values under a large range

of genetic models.

Variance Component Variance component linkage analysis involves partitigrtiotal variance into var-
ious components. For linkage analysis, the aim is to sepdhat unmeasured genetic variance from un-
measured non-genetic variancg [6] developed a miftedtevariance component approach for quantitative

traits which can be used for general pedigree data.
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Let X; denote the quantitative trait value for tile individual and letzx be thekth covariate value for subject

i. A general model is:
S
Xi=pu+0+Gi +Z/3kzik+8i (2.11)
k=1
whereu is the overall mean(; is a random polygenicfiect andg; is a fixed and unobserved genetic

component where alleles A and fiext the trait as follows:

a ifindividual i has unobserved genotype AA
g =4 d ifindividual i has unobserved genotype Aa

—a if individual i has unobserved genotype aa

The termpy is the covariate féect andg; is the residual for subject Both of these parameters are uncorre-
lated with the genetic factors. Since the averaffiects ofG;, g ande; can be included in the overall mean,

the expectation of these factors are zero.

Assuming the identity-by-descent sharing of a pair of imtlialsi and j is observable (denotg;) then the

first moment of Equation 2.11 becomes

E(X) =u+ Z,Bkzik
)

Given the genetic variability of two individual$,and j can be decomposed into additive and dominance

components, i.erg = 04 + 04. Let pandq denote the gene frequency of A and a, then

oa = 2pg(@— d(p - g))

oq = 4pPPd.

Wheni # j, the second moment of model is
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CouX;, Xj) =7TijO'§+Aij0'§+q)ij0'(23 (2.12)

whereA; is the probability that and j sharing two genes at the major locus IBD ahgl is the codicient

of the relationship betwedrand j.

Often the typed markers do not have a direfteé& on the phenotype, thereforu [6] extend the model to
include data from linked markers by considering the cosggren of trait and marker allele. For a pair of
relatives, if there is a linkage, then there is a linear regjo: relationship between the squar@edence of
the pair’s trait value, i.e. X — Xj)2 and the estimated proportion of genes IBD at marker allekEsufing

the E(X?) = E(X?),

E(Xi - X))* = E(XP) + E(X?) — E(XiX))

= 2Var(X) — 2CoVX;, Xj).
and using the same notation as above,

CovUXi, X)) = (6, mij)oa + g(6, Aij)oi + Dijoa (2.13)

whered is the recombination fraction ant{6, rj;) is associated with the additive major-gene component
and the value of the function depends on the kinship. Tabfe[H]cdetails the value of (¢, ;) for different

degrees of kinship. The second functigi, Ajj), is the dominance component which is often ignored in
linkage analysis because it is much smaller than the additvnponent and can only be assessed in bilineal

relatives |[¥].

H] compared three dierent parameter estimation approaches: maximum likalitestimation assuming
traits have a multivariate normal distribution, quasilitteod and regression procedures. Using simulation

studies, they found the last two procedures provide untliasemation of additive geneti¢fect. In contrast,
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maximum likelihood methods are less robust to error in thecifigation of the distribution of residual

variance, and the estimates were downward biased for semjles.

The variance-component linkage analysis has been furdvelaped in various aspectl][S?] have extended
the model to incorporate longitudinal family data and generker information in a quasilikelihood frame-
work. L’L_Q;l] extended the current method to simultaneoubtgia estimates for additiveffects of multiple
loci on phenotype variation and additive interactidieets among loci (epistatidtect). Q}] also extended

the variance component linkage model to allow applicatibfulbpedigree data.

Multipoint QTL analysis

The previous section was confined to consideration of a segueaf pairwise comparisons between the trait
and each of the marker loci. Multipoint linkage analysisseful for establishing the chromosomal order of

a set of linked loci and resolves the problem caused by thielihinformativeness of markers.

Multipoint linkage analysis is particularly computatidigademanding for computing likelihood valueg [4].
Traditionally, the Lander-Green algorith 56] is usedddarge number of loci and small pedigree and a
peeling-based algorithm for a few loci and large pedige fbr cases with a large number of loci and a

large pedigree, the Lander-Green algorithms can be apjligsome sampling methods are required.

] applied MCMC methods to calculate Monte Carlo estanaif the likelihood. This was previously
infeasible due to the large and complex pedigr [117]rdest the implementation of the reversible jump
MCMC samplermd.] to estimate the map position of the linKELL, the dfects of frequencies of all QTL
and other model parameters, such as residual variance efoherinstead of searching a small region of
chromosomes for evidence of linkage, a joint analysis capdrformed when a large number of markers
throughout the genome is availabll:g__[llﬂ] found that RIMCAMG@~vs a more natural modeling of genetic

heterogeneity due to not forcing the genetic model to bedheesacross all families.

@] developed a computer package called SOLAR for linkaggyses of multivariate quantitative traits

and discrete traits using a threshold model and mixed trdités program also incorporates gereene
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and genex environment interactions.

MCMC methods have been applied for mapping multiple QTL funplete and incomplete genotypic data

@,@] and various types of pedigre252].

2.3.3 Overview of Bayesian Model Averaging (BMA)

Bayesian model averaging (BMA) provides a coherent meshato account for model uncertainmﬂ].
The idea of BMA is to average the posterior distributions idfedlent models, where the weight for each
model depends on the posterior model probabilitD[l?S] @] noted the use of BMA can improve

predictive performance.

Various works have been published on the methods of B ,1]. In particularﬂZl}

provides a thorough overview of the history and challendgd3\A and provides solutions.

BMA has been widely applied to fierent models, an(JILO] provides a summary of the methogsddbat

have been implemented with BMA and lists correspondingasoft for carrying out the analysis. Although
the use of BMA in genetic research is not as common as in sohex ateas of science, a few published
works have incorporated BMA in the analysis. For instan@l applied BMA for gene selection and
classification of microarray dataD [9] further extend thienfer research by incorporating iterative BMA for

survival analysis. The use of BMA has also been implememtele study of phongenetic@lS].

Let A denote a quantity of interest (in the area of genetic studiesn be treated as a phenotypic trait of

interest). Given a data sBY, the posterior distribution of is

S
P(AID) = " p(AIMs, D)p(MsID) (2.14)

s=1

where Mg is the models of all models considereds = 1,...,S. Using Bayes theorem, the probability of

Ms given data seD becomes
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P(DIMs) p(Ms)
21 P(DIM) p(M))

p(Ms|D) = (2.15)

where

B(DIMy) = f D(DI6s, M) p(fs| M) ds (2.16)

The former is the marginal likelihood of mod#&ls, wherefs denotes the model parameters of mosel
and p(D|My) is the marginal likelihood. Therefore, Equation 2.15 canskeen as providing weights for
the predictions of dierent models in Equatidn_2J]14. During the early introductid BMA, it was not

as well accepted as model selection due to tffigcdities associated with a potentially infinite number of
models § — ) to be included in Equatidn Z.114, the choice of priors on tlwelets, and the computational
difficulties in the estimation of the marginal likelihood. Altigh the former concern is less relevant in this
thesis, various methods have been deved to overcomprtiblem, such as exploring the model spaces

b6 b

Q, 99]. Morep,@] listed various methodologies for

approximating the marginal likelihood when it is intrad&ab

stochastically via MCMC approach[

2.4 From linkage analysis to genome wide association studie

In the previous section, | reviewed various methods comynoséd in genome-wide linkage analysis. Al-
though linkage analysis has had some success in mapping figrdendelian diseases, such diseases are
rare ij__ll)]. Various common diseagdisorders have a genetic component have been identifiednjiea
aggregation, but they do not follow the Mendelian patterinb&ritance. Such diseagdisorders include
Type | and Il diabete3], cardiovascular dise (20133 sity ] and various psychological disor-
ders ]. These common disegskesorders often have complex genetic architecture, thess dine often
referred to as complex traits. Complex traits are presuynddalived from multiple genetic and non-genetic

effects, as well as the interactions among genes and betwees ged the environment.

Although linkage analysis has been carried out for mappmgpiex traits, the success is Iimited.|:| [5]
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reviewed 101 whole-genome scan linkage studies in 8&rdint complex human diseases and found that

most of the studies~66%) do not have a significant result when using the thresprdosed by 7].

Moreover, they also noted that the findings for the same siéseare often inconsistent among studies.
Although the sample size may be an important factor for tleeess of a linkage scag [5]@29] show the
sample size required to achieve a relative high power maypadeasible. For instance, when the genetic

risk ratio is less than 2, the number of families needed iriotal achieve 80% power is well over 2000.

Another important disadvantage of linkage analysis is thla&s low power for identifying multiple low-

penetrance variants on a phenot QJ 119]. Itis longchthtat the genetic component of complex traits
is oligogenic (a few genes, each with moderdfieas) or even polygenic (many genes, each with small
effects) ]. Considering the limitations of the linkage lgsis, there is a need for an alternative method

for understanding the genetic architecture of complexstrai

Since the completion of the Human Genome Pro [, 2j&2etic epidemiology has entered an era of
single nucleotide polymorphisms (SNP) and the realizatiah the human genome is organized into haplo-
type blocks (Linkage disequilibrium, L4]. The Intational HapMap ConsortiuﬂSO] has
recently completed characterization of over 3.1 milliomfain SNPs with a SNP density of approximately
one per kilobase. The 3.1 million SNPs is approximately 8%3f all the 9-10 million common SNPs
(with minor allele frequency- 0.05). The completion of characterization of the linkage glisirium
(LD) pattern across these SNPs provides the most informatibset of ‘tagging’ SNPs. Subsequently, the
genome-wide association study (GWAS) is made possible. iditi@l GWA scans had 10,000 SNPs with

improvements in genotyping technology, the neffyfetrix Genome-Wide Human SNP Array 6.0 features

nearly 1 million SNPs.

With the reduction in the cost and commercial availabilitysdlP genotyping comes large scale GWASs. The
most referenced work to date is the study published in 20QAdYyVellcome Trust Case-Control consortium
[WTCCC,EJZ]. This study contains 14,000 cases of 7 commseeadies (including bipolar disorder, coro-
nary artery disease, Crohn’s disease, hypertension, wdueigrarthritis, Type | and Il diabetes) with 3000
shared controls. It was the largest at its time. Since themerand more large scale GWAs have emerged.

In the past five years, iNature Geneticslone, there are 76 published studies related to GWAs, thetya
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of phenotypes including Parkinson53], lung functi@], erythrocyte phenotype [92], obesi 76],

Crohn’'s diseas@?] and hematological parame [258mfa statistical and computational perspective,
the main challenges for GWAs is the finding of informative keais among hundreds of thousands or even
million of markers with relatively small sample size (thatdompared with the number of parameters). In
the remaining chapter, | review methodologies that have Ibeplementeftleveloped for association stud-
ies. Note that although many methods have been proposgda éelv have been tested in the genome-wide
scale of study. Therefore, we enlarge the scope of the retdemethods for association studies, which

includes GWAs and candidate gene search.

The remainder of this chapter is in two sections: methodddtecting single markeffects and methods for
detecting multilocus féects. The latter section is arranged into 1) model-basedata) mining or machine
learning approaches and 3) two-stage approaches. Notéhtbatreview papers published in Nature and
Nature Review Genetics provide valuable reviews on thestitatl methodologies used in GWAs.._[15]
gives a comprehensive tutorial on some of the frequentishods for population association stud 62]
reviewed Bayesian methods for single-SNPs testing in G\/\{Q] gives a great overview on some of the
methods used for the detection of the gene-gdiects and related computer softwares. In light of this

research, the review here is concentrated on the stakiapact of the methods.

2.5 Methods for association Studies

2.5.1 Single Marker dfect

Of all the methods available to date, the most widely implet®e approach is the SNP-by-SNP searching
algorithm. For case-control studies, the most naturalyaisbf SNP genotype and case-control status is the
use of a 2-by-3contingency table that contains the counasé-control status and count of genotype (e.g.
AA, Aa and aa). The common choice are either Pearsghiest or Fisher’s exact test. Even though the

latter method is more computationally demanding, it doddepend on thﬁapproximation. Moreover,

Fisher's exact test is implemented in the R genetic packagéhis aspect, | [15] suggested Fisher's exact
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test is better for GWASs than Pearsoptest.

Table 2.2: Example of 2x 3 contingency table of case-control study

aa aA AA Sum

Case ro 1 ro r
Control &5 § S S
Total n ni n

For a complex trait, the contributions of individual SNPg #énought to be additive to the disease risk,
that is, the number of disease alleles correlates to theofiskving a disease, therefore simple tests on the
contingency table are not as powerful as other ts [13thEmmore, these simple tests are only appropriate
when Hardy-Weinberg equilibrium (HWE) hoI40] and dd lead to interpretable risk estimates. The
Cochran-Armitage trend test [12] is an alternative testimggthod which is more robust, conservative and

does not rely on the assumption of H[15].

Let a and A denote two marker alleles and suppose each person has dmeefpossible genotypeaa,
aAandAA. Table[Z.2 is an example of &3 contingency table for a case-control study with those erark
alleles, whererg, r1,r2) and (s, s1, ) are the number of genotypesg, aA and AA observed in cases and
controls, respectively. Latdenote the number & alleles in a genotype, arid= {0, 1, 2} = {aa, aA AA!.

Let¢ = L be the proportion of cases, the Cochran-Armitage trendstasstic is then

N 320 %(shi - rs)?

2 _
T = no2(9)

(2.17)

where , , , ,

o3#) = o -9) Y pi - O xp)?l+ A -9) > ¥a — (O x)?] (2.18)

i=0 i=0 i=0 i=0

wherexg = 0, X1 = X, X2 = 1 and 0< x < 1. The value ok is required to be specifiea priori based upon
the model of interest. For instance, three possible genatitels are recessive, additive and dominant, and
thereforex is often set to 0, 0.5 and 1, respectively. Variahpeandq; of Equatior{ 2.1B are the probability
of being a case or a control given the genotype iis= {aa aA AA}, which are often not known. 4]
summarized three fierent estimators for these variables, and the most commaigecifor p; and g; is

b =6 = ”—n' which has been implemented iEm] arm256].
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Under the null hypothesis, the test statisfié(x), has an asymptotig? distribution with 1 degree of free-

dom.

The Cochran-Armitage trend test is the most commonly engglayodel in GWAs. Examples of imple-
mentation of this method include: Breast canQ [72], cargrartery diseas&h% type | diabetd284]

and Parkinson’s disea53].

Departing from the conventionaf approach, a more advanced method for identifying single &fets
is by implementing logistic regression for a case-conttodg. Lets; be the probability that individudlis

a case,

] 2
l0g(77=) = 1+ ) BiXj (2.19)
| ]:0

wherey is the population mean angl is a binary indicator variable for genotype, taking the eadfiO or 1.
The dfect of the SNP is then determined by testing the null hypighés = 81 = 52 against the hypothesis

that at least twg are diferent via the likelihood ratio test.

Logistic regression is a very common approach used for tie¢gesingle SNP fiects in GWAs. Examples of
such studies include acholic liver diseaEeL_h E

277], ulcesatblitis E:L], systemic lupus erythematosus [111]

and some clinically relevant hematological parame][.25

For continuous phenotypic traits, the natural choice distieal tool is linear regression and analysis of

variance (ANOVA) [15].

The multiple testing problem is the major concern for the SiyFSNP search algorithm. Without a proper
adjustment of the power, it is likely to have false positiesults (i.e. Type | error). The frequentist method
for controlling the false positive is by controlling the sificance levela. The usual choice af is 0.05,
which implies that the probability for being false positiveall the tests carried out is less than 5%. Here
we list three approaches for adjusting for the multipleingsproblem, but various other methods have been

proposed for controlling issues derived from multiple itesin association studies and the comparison of
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various methods has been discussed in several recentaiidﬂiz; 7].

Bonferroni Correction Bonferroni correction is an often discussed example ofrotimg « level. If
n SNPs are tested for association, the Bonferroni correetém each test isy’ = a/n. For GWAS, the
value ofn can be substantially large and depending on the SNP chip nseoh vary between 500,000 to
approximatelﬁl,BO0,000. Thus Bonferroni correction camzerly conservative and not suitable for tightly

linked SNPs|[15].

Permutation Permutation testing is a simulation based resampling ndetlvbich controls the issues of
multiple testing by comparing observed p-values with psgalestimated by repeated perturbation of the data
and evaluating how often the observed p-value can be obltdaiynehance?]. There are various method
for obtaining the permuted p-values. For association efjda sample of p-values can be obtained by
keeping the individual genotype unchanged while the plygodf individuals are replaced with randomly
generated values. This method ensures the ‘new’ data osntiaé observed LD structure, but shows no

association in the phenotype. Although the permutatiohnigesbust, it is computationally intensive.

False Discovery Rate False discovery rate (FDRDZZ!i is comparatively less cot@jonally intensive,
yet provides increased power over Bonferroni correc [2The aim of FDR is to estimate the desirable
error rate to control the expected proportion of error antbegejected hypotheses. This criteria is designed

to reduce the number of errors made and the probability séfedjection.

Suppose there am hypothesis testingsil;, Ho, ... H, and letpg, po, ..., pn denote the corresponding p-
values. These p-values are then arranged from the mosfisagnito the least significant, that g;) <

P@) --- < Pr)- Ata preset value, let

k = arg max pg) < I%} (2.20)
|

wherei is the order of p-value; then reject &lf;) wherei < k.
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This procedure is versatile and can be simply modified to mocodate dterent genetic problems. For
instance, the weighting of p-values can be stratified adegriw prior knowledge. |__[§4] propose to stratify
the weighting of p-values based on the results of linkagéyaisa In other words, p-values of loci show sug-

gestive linkage are upweighted and conversely, the p-saifiess informative regions are downweighted.

2.5.2 Multiple SNPs Hfect

A SNP-by-SNP searching algorithm is optimal if SNPs are Widpaced (have little to no LD strcuture) in
the data and one of the typed SNP is exactly causal. Howéwegirista rare event. The other disadvantage
of considering only a single SNP is that it potentially netgethe joint éect of multiple SNPs, where some
variants may have little marginaffect, but the #ect of the variant is more obvious when it is altered or
highlighted by another variant or variants. Furthermouehsnteraction fects have been suspected for the
expression of complex diseases. Therefore, a superiopagipiis the multiple SNPs test which examines

the association of a phenotype with multiple SNPs simutiasky.

Statistical methodologies for detecting multiple SNReets (both including and excluding epistadi®ets)
is a popular topic on which a large amount of literature hasrged in the last decade. The early methods
focus on linkage analysis. However, as SNP data becomeswidety available, methods are evolving for

association studies.

The most prominent paper for identifying multiple lodfexts is by 1]. In their study, they simulated
three plausible two-locugtects and compared thrediférent searching strategies for identifying the inter-
action dfect in diferent plausible scenarios. The first scenario is when thetigeioci have multiplicative
effect, that is the odds of disease increases in a multipleddishion, within and between loci. For example,
for two diallelic loci (denoted a and b), let the upper caseach letter be the disease allele, then having
either theA or B allele increases the risk by ¢61) or (1 + 6,) fold, wheref; andg, are the risk increment
due to disease allelésandB. The second scenario is a statistical interaction withiexpharginal dtects,
that is, at least one of the disease alleles must be preseattaiocus for the odds to increase. Furthermore,

the presence of each additional disease allele will inerdas disease risk by (1.6) fold. The last scenario
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represents the threshold modd#leet. Like scenario 2, at least one of the disease allele neuptdsent at

each locus for the odds to increase, however, the disedsis tisereafter constant regardless of the number

of disease alleles present in the genotype combination.

The three searching strategies included in the study areclisiby-locus search, 2) exhaustive pari-wise
search (i.e full search) and 3) a two stage approach. Thaiitseshow that the interaction base searching
algorithm is more powerful than locus-by-locus search fbthaee scenario. However, they also conclude
it is difficult to determine a single best searching method for idgntf multilocus dfects given that the

number of interaction loci and the form of interaction canyMaom trait to trait.

Various studies have since emerged for detecting mulilafiiects. Here, | review some of the popular
methods currently used for association studies. Becausstanumber of methods is readily available, in
this chapter, our focus is on methods for case-control stuttiat are also capable of identifying epistasis
effects. Based upon the underlying algorithms, methods amgpgrbinto model-based, non-model based
and two stage methods. Within the model-based approactetbods are further divided into frequentist

and Bayesian methods.

Model Based Approaches

Frequentist Approaches

Logistic Regression Logistic regression (LR), discussed earlier, can be sirapignded for multiple SNPs
by allowing extra terms in the model. To accommodate epss&f&cts, interactions among the SNPs an be
easily added to the model. Using similar notation as Eqn&id9, letr; be the probability that individual

is a case, the logistic model for two way interaction becomes

|09(—) =u+ Z Zﬂk, Xik; + Z Z Z Z Vi, by, Xikaj ko, (2.21)

ki ko=ki+1j1=0 j>=0

whereK is the total number of SNPg; is the codicient of genotypej of SNPk and Vi, ke, is the
1 2
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codficient of the SNP interactions at the genotype level.

As the number of SNPs becomes large, the parameter estmim@mmes unmanageable, hence the power
is lost. Also, some genotype combinations may have low faqu or zero responses, thus the parameter

estimations can be poor.

Another important issue with this model is the correlatiomoag SNPs due to the LD structure. When the
predictors are highly correlated (collinearity), the miagiees little or no information about the correspond-
ing parameteri{hﬁS]. However, the problem associated thétcollinearity can be addressed by using a
stepwise selection method or shrinkage. For example, Laggession is a well known example of the

shrinkage method which is discussed in detail in the follmpgection.

Many standard statistical packages perform automatetvsteselection. In a forward selection, the initial
model contains only the population mean, thdogt(r;) = u. At each step, a new SNP or SNP interaction
which results in highest improvement in the model fit is selé@nd included in the model. This process
continues until adding no more SNP or SNP interaction camfggntly improve the model fit. A backward
stepwise selection, as its name suggests, is a countesphaetfiorward stepwise selection. Instead of starting
with a noninformative model, the initial model contains@MNPs and SNP interactions. At each step, a SNP
or SNP interaction which results in the least model fittingederation is deleted. This procedure continues
and stops when the deletion of any SNP or interaction resuligynificant reduction in the model fit. The
other type of stepwise selection which is more flexible afidvoth a SNP or interaction to be added or
removed at each step depending on which move is more behédiciae model fit. This is called “stepwise

selection”. The model improvemedeterioration is evaluated using a parsimony criteria achMallows’

CP Ev], AIC EL] and BICMS].

Stepwise selection procedures show a promising abilityntbififormative SNPs and SNP interactions with
fewer false positive discoverie@%]. The main drawbatkhis procedure is that it is not capable of
handling Iarje scale datasets. Therefore, studies whiplemented this method are limited to candidate

gene studies [1 2].
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Lasso Regression The least absolute shrinkage and selection operator [Lldg8d is a shrinkage proce-

dure which shrinks the noninformative dheients to nearly or equal to zero. This is achieved by minimgiz
the residual sum of squares with a constraint that the sureo&bsolute values of the dieients is less

than a constant.

Given a dataset,x(, vi),i=1...,N, wherex = (Xi1, ..., Xip) are predictors ang are the responses. Let ~

andp = (B1,.. .. p) be the Lasso estimates, such that

N
argmin( 3 (v = a = > 5ix;)’) (2.22)
R i

with the constraint thap’; |8j| < t. Heret > 0 and is a tuning parameter that controls the degree of
shrinkage. The Lasso estimates of ffméents can beféciently computed via the LARS algorithm o|j76].
] recently applied Lasso penalized logistic regressamcase-control GWAs for the detection of SNP
and interaction #ects. Their concluded that the Lasso is computationdligient and when the predictors

are not correlated, the interactioffexts are identifiable.

Bayesian Approaches

In the frequentist approach, the assessment of the asseadmgtween genetic variants and a phenotype is
based on a p-value for null hypothesis of no associatiorhobigh it is still widely used, various studies have
shown limitations of p—value@@@?;l]. Bayesianhnds provide an alternative for assessing the
association that alleviates the limitations of p-valuesteNthat frequentist and Bayesian approaches have
different interpretations of “probability”. For a frequentite probability is a long-run expected frequency
of occurrence. In contrast, Bayesians view probability elated to degree of belief in the absence of
complete knowledge. Thus the frequentist approach asstiraka population mean is real, but unknown,
and can only be estimated from the data. An othéfiedince between frequentist and Bayesian methods is

in the methods for parameter estimation, the former oftes usaximum likelihood estimation, Newton-

Ralphson or EM algorithms while the latter often uses Mar&ain Monte Carlo methods.

Another diterence between Bayesian and frequentist approaches te¢Hfatmer requires the specification
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of a prior distribution on the unknown parameters. &.eenote the model parameters gid) be the prior

probability of theta, the posterior probability is then

p(0) p(DI6)

p(éID) = T D)

(2.23)
whereD is the data angd(D|#) is the model likelihood. The denominator of Equation 2.22lso known
as the normalizing constant. It does not depend and with a fixedD, p(D) is constant. Therefore the

unnormalized posterior density is

P(EID) o« p(DI6)p(d) (2.24)

For genetic association studies, the use of a prior can hebi@ and under the Bayesian formulation,
this information can be easily incorporated into the modelr example, in an association study, heavier

weighting can be assigned to SNPs in region that other styleviously identified.

When considering only single markeffect (as in Sectioh 2.3.1), there is also a Bayesian versidheof
searching algorithm which also makes use of the contingéaiohe. Instead of computing-values, the
association is assessed using the posterior probabiliagsdciation (PPA2]. The calculation of PPA
can be split into three parts, choosing the prior probab{) on H1, computing the Bayes factor and

calculating the posterior odds ratio éh.

The value ol governs the number of SNPs to be selected. Typically onlyreority of SNPs are expected
to have association, therefor 73] suggestednges between 10 and 10°. The value ol can difer
across SNPs depending on biological information. For exengifferent value ob can be given to SNPs

closer to the gene of interest.

A Bayes factor (BF) is the ratio of the posterior probabitifytwo competing models: in this cases, the ratio

of Hy overHg. A stronger value of BF indicates stronger suppontifoover Ho.



42 Chapter 2. Literature Review
Once the value of is prespecified and BF is known, the next step is to compugepdisterior odds ratio on

Hq, thatis

POZBFXL
1-¢6

The posterior probability of association is then

PO

PPA= .
1+PO

PPA is a product of BF and prior probability éh. Because the prior probability is often set to be very small,
the value of BF needs to be large to result in a higher valuePaf. h other words, the prior probability of

H1 controls the number of SNPs associated with the phenotype.

This method has been implemented m273] for identifyingPSNssociated with seven common diseases.
In their study, they reported the PPA and the traditiopaalue. A detailed description of the Bayesian
SNP-by-SNP search method is i62].

Logistic Regression The logistic regression discussed in the frequentist gmbrean be easily converted

to a Bayesian method by assigning prior distributions tpatemeters in the model. However, like the fre-
guentist LR, the Bayesian LR is subject to the same problearimdqn out earlier, which are the excessively
large number of predictors (SNPs) and collinearity acrddéB<ss Therefore, to overcome these problems, it

is necessary to performs mogdelriable selection or shrinkage as discussed in the fraigtienR.

Model/Variable selection Excellent methods for the variable selection problem hasenbdeveloped
within a Bayesian context, including stepwise selectidogisastic search variable selection and reversible
jump MCMC. ] proposed a Bayesian version of stepwiseasgion which is built on the method firstly

proposed by O] to identify the relative importance of geneariants within a candidate region.
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For a case-control study, |&tdenote arN x C matrix whereN is the total number of individuals ar@is

the total number of predictors, ad= (x1,..., Xic) . Lety; denote the phenotype of individuialand

yi ~ Bernuolligr) and  f(milx) = i

wherey; = wif andwi = (1, Xig,, . - ., Xig,)- The vectow; is similar to the design matrix of regression models
andd = (A1,...,6¢)" is the column indices oX that correspond to variables selected to be included in the
model. Parametes is a vector that contains cfieients of selected columnsmn] employed the generic
reversible jump Markov Chain Monte Carlo [GRJMCMEIUO] wtimate model parameters. Unlike
the traditional RJMCMC@M, GRJMCMC permits multiple degbirths moves with a single proposed
move. This allows chains to move freely between subspadb®utigetting stuck in local maxim@?l]. A

detailed description of the implementation of GRIMCMC ig ].

This method is flexible for dierent types of phenotypic data, e.g. count data, with thigyatw simulta-

neously impute the missing genotype and easily expand @mitiusion of covariates. Furthermore, the
WinBUGs code for carrying out the analysis is available ia #ppendix of the paper. Unfortunately, the
major drawback of this model is that it is not scalable to gdanumber of predictors, which is often en-
countered in GWAs. The authors pointed out the maximum nurobgredictors under the current setting

is less than 200.

The same algorithm with a fllerent MCMC method has also been implemented for a geneticiatisn
study. Ql)] employed the traditional reversible jump MCI\@] for variable selection. Even so, this is

still limited to a small number of predictors.

An alternative method for variable selection is to use tloelsistic search variable selection (SSVS) de-
veloped by@]. SSVS involved embedding a model in a hiéiaed normal mixture model where latent
variables are used to identify subsets of variables. Urgile¥ious methods that involve searching across
trans-dimensional spaces, the dimension of models vitednstant in SSVS. This is achieved by limit-

ing the posterior distribution of non-informative termsarsmall neighbourhood of zero. This method can
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be easily implemented using Gibbs samplers and providesniration on the posterior probability of each

prediction. SSVS was originally introduced for regressiodels, however it can be easily modified for a

binary response. We will firstly discuss SSVS in its formiglatfor a continuous phenotype.

LetY be an x 1 vector of quantitative phenotyp¥, = [Xy, ... Xp] be an x p matrix of p predictors fom

individuals andr? be a scalar. Consider the canonical regression set up:

Y|8,0 ~ MVN(XB, o2).

In SSVS, variable selection is achieved by considefiras modeled from a mixture of two normal distri-
butions with diferent variances. Let,i = 1,..., p denote latent binary variables, taking a value of 0 or 1,

then the mixture of normal distributions f6ris

Bilvi ~ (1 = %)N(0, 72) + %iN(0, ¢7?) (2.25)

whererj andc; are hyperparameters that control the variance of samplstghuitions ofg;. For example,
whenvy; = 0, 8i is sampled from a normal distribution with mean of zero andgavee ofriz. Normally 7;

is set small, so whef; = 0, §; is sampled from a narrow region centered at zeroGi.ex 0. However, to
avoidg; ~ 0 wheny; = 1, the value of; is often set Iarge.BS] anmSS] provide some valuable alein

choosing these two hyperparameters.

This mixture of normal distributions can be included in thedal as a multivariate normal prior distribution

for B,

Bly ~ MVN(0, DyRD,) (2.26)

wherey = (y1,...,¥p), Ris the prior correlation matrix that is usually assigned edlie identity matrix|,

andD, = diagfairy,...,aprp] With & = 1if y; = 0 anda = ¢; if y; = 1.
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MCMC methods, mainly the Gibbs sampler, are used to fit theem] provides a detailed description

of using the Gibbs sampler to generate samples from a pasthsiribution. Markers with largefiect are

often selected in the model, therefore, markers with higdtgrar probability are the important markers.

This model or the extended version of SSVS have been impleten small scale association and QTL
studies. @] illustrates the use of this model along witb tther approaches: Bayesian model averaging
and Bayesian variable selection with RIMCMC- for a smallesegsociation study. The same method is
also implemented in|_L_ZL7] for identifying multiple QTL. Hewer, it is still not clear if SSVS is suitable for

detecting epistasidiects in large scale GWAs.

@] proposed a genotype level analysis named SNPs Intemadtodel with Phase Information (SIMPle).
SIMPle is similar to model selection using SSVS but for byndata. Although the model of SIMPle
contains interactions terms, the aim of their model is natiémtify the epistasisféects but to incorporate
the phase information using SNP interactions. This is a@iigined by strategically coding the interaction
terms. Lety; denote the binary phenotype of subjeandrn; be the disease penetrance. Kgtbe a variable
coding the geneticfiect on disease arXl, = G, whereG, indicates the number of variant allele at marker

m. A logistic regression for a joint mairflects model with second order interactions has the form

M M M
logit[P(Y = 1X1,..., Xm)] = @+ > BrXm+ D\ > Brce Xt (2.27)
m=1

m=1(=m+1

The haplotype information can be approximated by modifynegysecond-order interaction terms in Equa-
tion[2.27 to describe the phase between pairwise SBed¢. Given that the two haplotypes for individual

i areh;; andh;; and assuming additivity{, is coded as
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2 ifGuxGy=4

1 fGuxGyr=2

Xmxe =41 if Gmx G = 1, andhj; andh, is a double variant haplotype

0 if Gmx G, =1, andh;; andhj, is not a double variant haplotype

0 ifGmyxG,=0

In this model, SSVS is also implemented for variable sedectiUnlike the SSVS described 95], when
vj = 0, regression cdgcients; are directly assigned value zero; whgn= 1,4; is drawn fromN(O, cizrz).
In contrast to the original SSVS, SIMPIle adopted a fully Bage approach. That is, parametgis not

pre-specified but estimated.

Incorporating the phase information in the genotype leVelralysis improves the interpretability of the
results. However, this model has only been tested for smalksassociation studies. Therefore, it is not
clear if this model is suited for GWAs. Since the interactierms are recoded to incorporate the haplotype

information, it is uncertain how the model can be extendedécounting for the epistasigfects.

Shrinkage method As in the frequentist approach, an alternative method tiabbe selection is a shrink-

age method. However, in the Bayesian context, shrinkagaughreasier to implement by using a density
that sharply peaks at zero as the prior distribution foressjon cofficients. The double exponential dis-
tribution (DE) and the normal exponential gamma distrimut{NEG) are the most commonly used prior
distributions. Both densities have peaks at zero and healgy fThe advantage of heavy tails is that they

prevent heavy shrinkage to the parameter once the preddturiuded in the model.

MCMC algorithms are the typical choice for model fittirl_g__LLQS—mwever, MCMC is computationally
burdensome when the number of predictors is large. Sincpdbierior variance of regression ¢iogents

is not essential, EZ] used a Bayesian-inspired penalzaximum likelihood to estimate the posterior
modeof regression cd@cients and implemented the CLG algorit [20] to speed umdmeergence. This

approach has demonstrated promising ability in analyzimgnratects for up to 500,000 SNPs within a
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relatively small period of time. It can be easily extendeddoantitative traits and haplotype or interaction

effects. However, for the latter examples, the authors suggedticing the model space prior to implement-

ing the approach.

There are some other shrinkage methods that have beendafapireapping multiple QTL. In stead of using
NEG or DE, ] assigned a normal distribution with meanerioz Variances of the normal distribution

are estimated using a hierarchical approach and the nomiafive J&ery’s prior.

BEAM The Bayesian epistasis association mapping (BEM [3d@Prahm aims to identify both single
marker and epistasidtects in a population based case-control study. Nigand N, denote the number
of cases and controls, assuming thaBNPs were genotyped and case genotype is represented=as
(di,...,dn,) Whered, = (di1, ..., di) is the genotype offéected individual. Similarly, letU = (ug, ..., un,)

be control genotypes whetg = (Ui1, ..., Uy ) is the genotype of urtBected individuai. Markers are then
divided into three groups: group O contains markers uniintethe disease, group 1 contains markers
independently contributing to the disease risk and groupnains markers that jointly influence the disease
risk. Letl = (I1,...,I_) be the membership of the markers wheye= 0,1 and 2 indicates that marker
belongs to group 0, 1 and 2 respectively. Lgtl; andl, be the number of markers in each group and let
Do, D1 andD, be case genotype markers in group 0, 1 and 2. Because casgpgenshould have fierent
distributions compared to the genotype of controls, theliloods of groups 1 and 2 are thus independent

from group 0 and controls and the posterior probabilitylfa proportional to

P(IID,U) o« P(D1|1)P(D2|l)P(Do, Ull)P(l) (2.28)

whereP(D4]1) is the marginal probability of case genotypes in group 1Rfidlis the prior distribution for
the membership of markers. The detailed mathematical grweefor deriving the marginal distribution of

each group isin 2].

BEAM also uses the MCMC algorithm to drawfrom Equatiori 2.28. At each iteratiohhas two potential

moves: randomly change a marker's group membership, ardbmay exchange two markers between
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groups 0, 1 and 2. The acceptance of the move will depend ddditvpolis-Hastings ratio.

Besides the fully Bayesian inferential framework, BEAMailiscorporates the frequentist hypothesis testing
procedure by calculating a ‘B’ statistic to check the sigaifice in the association between marker(s) and

the disease.

BEAM has shown promising ability in analyzing data sets aonihg up to 100,000 SNPs. However, under
the current configuration, it is not able to handle more th@®, @00 SNPJBl]. Although BEAM is able
to account for the LD structure of adjacent SNPs, it is still dear if it accounts for LD structure of the

non-adjacent SNPELBl].

Non-Model based approaches

Traditional model-based approaches are often criticinethiir inability to deal with nonlinear mode50]
and indficiency in handling large dimensional data. Machine learmndata mining algorithms provide
alternatives to the model-based approaches. Data minimgachine learning algorithms do not rely on

a single pre-specified model, but step through the spacessilge predictor combinations. Thus they are
more flexible for identifying main and higher order inteianteffects. Although Bl] suggests that it is false

to exclude regression models from the data mining paradigoadise some data mining algorithms involve
stepping through multiple regression models, we still dedito treat them as two separate sections because
algorithms discussed in this section do not rely on any masiglimption. Perhaps it is more sensible to call

this section ‘non-model based approaches’.

Various machine learning algorithms have been implemefaedetecting gene-gene interaction@lB?]
overviews four approaches, including neural networkdulzl automata, random forests and multifactor
dimensionality reduction for detecting gene-gene intgsas. A recent paper byELW] provides a great

overview of the machine learning methods for genome widecaton studies.

The most common and popular data mining methods for idéngifgene-gene interactions are Random

Forests and multifactor dimensionality reduction (MDRheTformer method has been implemented in
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several genetic studi 169] and it is disclissdetail in Chaptdr]8 of this thesis. Therefore, it

is not included here. Moreover, in the same chapter, we atsode reviews of some other machine learning

algorithms.

Multifactor-Dimensionality Reduction (MDR)  Multifactor-Dimension Reduction (MDR@H is amodel-
free and nonparametric method which reduces the dimengjoofimultilocus information to improve the
identifiability of marker combinations associated withedise risk. The MDR is directly applicable to the
case-control study; therefore it has been widely used fqupimg genetic variants in various phenotypes,
arthritis

including sporadic breast canc@Sl], type 2 diab@$ g diovascular diseasElB] and rheumatoid
b

The algorithm of MDR starts with dividing the data equallyarnlO parts, where 9 parts are used for
model ranking while the remaining portion of data is usedtli@r estimation of prediction error (i.e cross-
validation). In the 9 parts, a set offactors are selected. These can be either genetic variaother co-
variates. The set of factors and their possible multi-factor classes are reptes inn dimensional space.
For example, at 2 diallelic loci, there are 9 possible 2-toganotype combinations. For each combination,
based upon the case-control ratio of the combination angrdiepecified threshold value, the 2-locus geno-
type combination is labeled as high-risk or low- risk. Thélesiion of these multifactor classes composes
the MDR model for the particular combinations of factors. @mrg all n factor combinations, the model
with the least misclassification rate is the optimdbcus model. The prediction error is then the error of
the optimal model validated using the remaining portionhef data. This procedure is repeated 10 times to

avoid spurious results due to data partitioning.

The main problem of MDR, according tl]Sl] is that it is nottsdifor a data set with a large number of
factors (e.g GWASs). When considering higher order intéoast ] recommends using this method when

there are only a small number of genetic variants.
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Two Stage approaches

So far, only a handfull of methods can potentially analysgdaGWAs datasets. Most methods proposed
to date are limited in their ability to cope with the compigaal burden required for analyzing large scale
GWAs. On the other hand, with methods that are appropriate@WAs, the results of the analysis are often
less than ideal. Therefore, instead of conducting only glsianalysis, scientists have suggested two-stage

approaches for identifying interactioffects [118].

The first stage is to select a subset of SNPs or genetic varfiesth the complete data set, then model
interactions among the selected markers and between tHersand trait. Because of the conceptually
simplicity, there are many variations of two-staappmac The SNP-by-SNP searching methods are the

most common for the first stage filterirlg:l

the interactions.

152]. Ltigisegression can then be applied to identify

Alternatively, @] proposed using Random Forests asdheesing procedure for identifying a smaller set
of variables and using Bayesian networks to develop comgtieiogical models. In their study, data was

reduced from 9190 variables to about 53 variables at thestiagte of analysis. They found the screening
strategy was able to successfully filter out SNPs unassatisith disease loci, while keeping the surrogates

for risk SNPs.



Part I: Phenotype of Complex diseases







Linkage and heritability analysis of migraine symptom
groupings: a comparison of thredlerent clustering

methods on twin data

47



Chapter 3. Linkage and heritability analysis of migraine synptom groupings: a comparison of three
48 different clustering methods on twin data

Chapter Summary

The first objective of this thesis is to improve phenotype ritdins for diseases with complex etiology.
These diseases often lack clear biomarkers, which woulthalty provide for more exact phenotyping. To
address this objective, it is important to firstly underdtaow diterent methods of phenotyping can impact
the results of the subsequent analysis. Therefore, the fihe @whapter is to compare the use of the most
commonly used statistical methods for phenotyping witlpees to the results of the subsequent genome-
wide linkage analysis and heritability estimates. In thisa@ter, we focus only on the clustering type of
approaches, namely latent class analysis (LCA), gradaeasfibership (GoM) and fuzzy clustering methods

(Fanny).

In this Chapter, migraine data is used for the illustratibdi@erent phenotyping tools, and also we present
results on the genetics of migraine. Furthermore, this tehmgpovides better understanding of the LCA,

GoM and Fanny, and we attempt to clarify some confusion @ssutwith these methods.

Chapter Conclusion

Using migraine data as a baseline of comparisons, the maidlusgion of this chapter is that fierent
clustering methods may produce a range of results in theegulesit analyses, ranging from similar to
completely diferent. Phenotypes obtained using LCA and fanny are highiseleded, and therefore the
heritability and loci identified by the linkage analysis @ameagreement. However, the phenotype of GoM
is very diferent from the two other methods, therefore the heritgbditd loci identified by the linkage
analysis are distinctly éierent. GoM is more closely related to LCA than to Fanny, beedioth of these
models are forms of mixture model. The maiffteience between these two models is that the mixture of
components occurs at a finer level for GoM. When comparingrbdels using a parsimonious measure,
i.e. BIC, even though GoM has the highest likelihood, it ia\ily penalised due to the model complexity,

and therefore less preferable.

In this chapter, we were able to replicate some previousiyntitied loci and estimate the heritability of

migraine within the previous published range.
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3.1 Abstract

Migraine is a painful disorder for which the etiology remmwbscure. Diagnosis is largely based on Inter-
national Headache Society (IHS) criteria. However, nouieabccurs in all patients who meet these criteria,
and no single symptom is required for diagnosis. Consebyudimis definition may not accurately reflect the
phenotypic heterogeneity or genetic basis of the disoi8ach phenotypic uncertainty is typical for com-
plex genetic disorders and has encouraged interest invauidtie statistical methods for classifying disease

phenotypes.

We applied three popular statistical phenotyping methdatent class analysis (LCA), grade of membership
(GoM) and grade of membership "fuzzy” clustering (Fannyd 1tiigraine symptom data, and compared
heritability and genome-wide linkage results obtainedhgiach approach. Our results demonstrate that
different methodologies producedterent clustering structures and non-negligibl@edences in subsequent
analyses. We therefore urge caution in the use of any sipgl®ach and suggest that multiple phenotyping

methods be used.

3.2 Introduction

The essential first step for linkage analysis or associatadies is to accurately identify the phenotype.
For complex diseases such as migraine, identification optienotype is challenging due to the lack of
objective markers and uncertainty about the causes of feasie. The diagnosis of this type of disorder is
often based on satisfaction of clinically accepted ci@terlthough they may not be useful for diagnosis
and treatment, these clinical based phenotypes may nottimeabjior genetic research, in particular finding

genetic loci contributing to disease inheritance (eg.,9]9)0and this has led to a call for the development

and use of new phenotyping strategies in genetic reseaigh 1.

Migraine is a common, painful and debilitating disorder. nhrous researchers have shown that there is

a significant genetic component to risk of this disor@[@,@@&&% with estimates of
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heritability ranging between 34 and 57% in twin-cohort #gdacross six countries [202]. The diagnosis

of migraine is found to be elicult due to lack of biological markers and overlap with ottygres of neuro-
logical disorders, such as tension type headache and lbraioutr. To date, the diagnosis of migraine relies
on classifying self-reported headache characteristioggusiternational Headache Societj (IHS) criteria

MEJ% 1]. These criteria were developed for stansiaglheadache definition (e.g 64]). The two

major subtypes of migraine are migraine without aura (MQ) argraine with aura (MA); the definitions
of both types are listed in Tables B.1 3.2, respectively.
Table 3.1: The 1988 International Headache Society diagnostic @ifer migraine without aura (MO).

ltem Description
A At least five attacks fulfilling B-D
B Headache attacks lasting 4-72 hours
C Headache has at least two of the following characteristics
Unilateral Locations
Pulsating quality
Moderate or severe intensity(inhibits or prohibits daityiwties)
Aggravation by walking stairs or similar routine physicatiaity
D During headaches at lease one of the following:
Nausea and (or) vomiting
Photophobia and phonophobia

Table 3.2: The 1988 International Headache Society diagnostic @ifer migraine with aura (MA).

Iltem Description

A Headache fulfilling criteria B-D list in Tablgé_3.1

B At least five attacks fulfilling B-D

C Aura consisting of at least one of the following but no matickness
Fully reversible visual symptoms including positive faat!
(ie flicking of lights) and (or) negative featureg (oss of vision)
Fully reversible sensory symptoms including positiepins and needles)
and (or) negative featurege(humbness)
Fully reversible dysphasic speech disturbance

D At least two of the following:
Homonymous visual symptoms and (or) unilateral sensorypsyms
At least one of the aura symptom develops gradually o%eminutes
Each symptom lasts5 minutes and&60 minutes.

These criteria have improved migraine diagnosis and suiesely, epidemiological research. However,
none of the features occur in all patients who meet a striatitien of IHS migraine, and no single symptom
is required for diagnosis. In other words, migraine is a clempf symptoms with variable symptom profiles
and individuals presenting with dissimilar symptoms canadly satisfy the same diagnosis. Furthermore,

although individuals may not quite satisfy IHS criteriaytheould nonetheless be treated as such in a clinical
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setting; indeed there is an IHS classification of “probabigraine” (previously termed “migrainous disorder

not fulfilling the above criteria”). The majority of genestudies for migraine to date have concentrated on
either MO or MA and found various chromosome regions asgetiwith each (Table~3.3). Under these
phenotype definitions, no common gene was replicated astod®s. However, when migraine phenotypes

were identified using a statistical (rather than medicagnaltyping classification via latent class analysis,

] successfully replicated two susceptibility loci:ramosome 5g21 and 10q22-q@@,, 165].

Table 3.3: Table showing the significant linkage signals which are fified in the literature for IHS criteria
defined migraine with aura (MA) and migraine without aura (MO

Phenotype Cohort Chromosome Reference
MO Icelandic 4921 128]
MO Italian 14q21.2-922.3 _[257]
MA Canadian 11924 _[37]
MA Finnish 4924 [286]
MA and MO Sweden 6pl2.2-p21.1 _[41]
MA* Finnish and Australian 10g22-g23 _[11]

* Including three types of migraine with aura
e Pure MA, individuals fulfilling IHS criteria for migraine wh aura
e Unclassified MA, a group of individuals that cannot be gralipeo the IHS defined categories, but clearlyfsufrom aural features.
e Mixed migraine, a group of individuals that commonly havétbiglA and MO type of attacks.

A wide variety of statistical methods have been employediémtify clusters and classes based on symp-
tomatic data. Classical methods such as principal compaaealysis (PCA) and discriminant analysis
(DA) have previously been used in genetic linkage analy$mvever, these approaches assume individuals
belong to only one of potentially many clusters, which magleet the phenotypic heterogeneity present
in complex human diseas 180]. In contrast, "fuzaystering such as latent class analysis (LCA)
and grade of membership (GoM) resolve the heterogeneitgsigring individuals to multiple clusters and

quantified measures of the probability of belonging to eachig

Latent class analysim%] has been widely used in subgypomplex diseases such as migrai[211,
], attention-deficihyperactivity disorder (ADHD2] and schizophre&h the field of genetics.
Another type of fuzzy clustering, Grade of Membership (GpkBs also been frequently used to obtain
empirical phenotypes. This clustering method was first digethedical classification in 197@89] and is
now commonly eﬁﬁed for disease subtyping. It has beeroymg in genetic research for diseases with

complex etiology 9].
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Most recently, O] proposed aftiirent type of clustering method which is also called Gradseim-

bership (GoM). Unlike the model-based GoM proposed [288] method suggested bm40] is based
on partitioning the data into a pre-determined number cteks. To avoid confusion in nomenclature, the
grade of membership proposed @140] will be referred toamly @] in this thesis. This method has

been used to identify loci causing anxiety disorder [141].

Although some literature has compared the mathematicastatidtical diferences between LCA and GoM
b

urs,

analyses such as heritability and genome-wide linkage hal/eeen investigated. Therefore, the aim of this

EI]BQ], theftects of these three common phenotyping methods, LCA, GoMrandy in genetic

study is to 1) compare these three methods as they apply tmoarmigraine symptomatic twin data, 2)
benchmark their performance in genetic research and 3jtigate whether dierent clustering methods

result in diferent loci being implicated in linkage analysis.

3.3 Methods and Materials

The symptomatic data were first analyzed by threEeént phenotyping methods: latent class analysis
(LCA), grade of membership (GoM) and fuzzy clustering (Rgnio obtain a continuous (quantitative)
phenotype trait (score) for individuals. The value of phgpit measures derived from these three models
was constrained to be between 0 and 1, which was then useadasraious trait in the genome-wide linkage
analysis. LCA and GoM are both model-based approaches iohwthe optimum number of clusters was
determined by likelihood ratio, Bayesian Information eri& (BIC) and Akaike information criterialjiIC).

For Fanny, the number of clusters was set to 2, analogougs¥oopis Fanny-based genetic studg 141].

3.3.1 Phenotype Data

Migraine data were obtained from extensive semi-strudttekphone interviews as part of a study designed
to assess physical, psychological and social manifestatib alcoholism and related disord16]. The

sample was unselected with regard to personal or familgtyisif alcoholism or other psychiatric or medical
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disorders|[202]. The interviews were conducted during tesquls of time: 1993-1995 and 1996-2000. The

earlier interviews were administered to Australian twiisteld with the volunteer-based Australian Twin
Registry who were born between 1902 and 1964, whereas thagaterviews were focused on twins born

between 1964 and 1975.

Participants of both cohorts were first asked the screenirggtipn: “Do you have recurrent attacks of
headaches?” If the participant screened positive, thggshbevas asked a number of questions which were
developed by an experienced migraine researcher basee tid$hdiagnosis criteria (Table_3.4). A total of
13062 individuals from 6764 families participated in thiady, with 2716 MZ twin pairs (63.6% females
and 36.4% males), 3399 DZ twin pairs (34.52% female twins3@% male twins and 43.13% mixed sex
twins), 15 twins with unknown zygosity and 817 first degremifg members, including both siblings and
parents. The mean age of participants was8¥153 and ages ranged from 23 to 90 years at the time of

interview.

Table 3.4: The survey questions designed based on 1988 Internati@zaldthe Society diagnostic criteria.

Notation Abbreviation Descriptions

a > 5 episode Have at least 5 episode of headaches in your liée tim

b 4-72 hr Average headache lasts between 4 to 72 hours

cl Unilateral Headache often occurs at one side of head

c2 Pulsating Headache pain can be described as throbbilsgtipg or pounding
c3a Moderatsevere  Headache pain can be described between moderatvanel s
c3b Prohibitive Headache pain prohibits daily activities

di Nausearomiting Headache associated with vomiting or feeling eaus

d2a Photophobia Enhanced sensitivity to light

d2b Phonophobia Enhanced sensitivity to sounds

Aura Aura Have visual problems such as light shower, blggriind spot or double vision

Although the wording of questions was identical for both @, not all questions in Table_B.4 were in-
cluded for the older cohort. The questions relating to hgwvirtore than 5 migrairiepisodes of headache
during lifetime (“>5 episodes”), average duration of migradem@sodes between 4 and 72 hours (“4-72
hours”), and pain associated with headache described asratedo severe (“mgsevere”) were not in-
clude in the questionnaire for the older cohort. We condlistgparate analyses for older, younger and two

cohorts combined data.
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3.3.2 Models

Latent Class Analysis (LCA) Latent class analysis is a multivariate technique whichlmiapplied to
clustering, regression and factor analysis. The classe$atent because they are not directly observed,
but are identified based on a function of a set of observeahias. LCA was developed in the 1950s for
dichotomous variable&lél]; however, the full potentiadl practical application of LCA only became evi-
dent after the introduction of more general latent clas$yaisaand a simpler method of obtaining maximum
likelihood estimates of the parameters in the 19@[ ].10he latter LCA is capable of dealing with

both dichotomous and polytomous variables and more thatater® variable can be included in the model.

Suppose there arendividuals,J observed (manifest) variables and each varigbiasL j levels of response,
i=12...,nj=12...,Jandl =1,2,...,L;. Lety;; denote the binary response of fitie individual to
symptomj with levell andY; is then the vector of subjecCs response to all symptom questions. Assuming
there areK latent classes within the latent variable, Ag}; denote the class conditional probability that an
observation in clask produces thdth outcome on thgth variable; therefore, within each 3, Aj = 1.

In this thesis, the data consist of binary responses, arglLthis two. Assuming local independence, the

probability of a particular set of responses from an indiaid in classk is:

J L
) = [ ] [ (3.1)
j=1 I=1

Let px denote the weight of latent componédat Then the joint distribution for all variables under the

latent class model is

K J Lj
Pr(Yila, p) = Z Pk n l_[(/lkjl)y”'
S

The LCA analyses were carried out using the poL167 gelat R2.4.19]. The parameters were
estimated via the expectation-maximization (EM) algantf60]. The details of the EM algorithm for

LCAarein @]. Unlike the other models described in thiedis, the class membership probabilities are
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estimated post-hoc using Bayes’ formula:

pi f (il k)

ik = Pr(klY;) = —,
P = Prik) 2k P f(YilAk)

(3.2)
wherely is an estimate of outcome probability conditioning on claBecause the parameters are estimated
using the EM algorithm, the latent class for the observatiaith missing value(s) can still be estimated.
This is achieved by excluding cases with missing values veaérulating Equatiop 311 and the denominator

of Equatio 3:R/[161].

Grade of Membership (GoMi Grade of membership (GoM) also fits into the latent class éwaank.
GoM was first developed by9] for expressing non-stodbhdwmterogeneity in a population by direct
latent variable estimation. This method has been furtheeldped by various researchers and is frequently

applied in medical and genetic resear@ [80].

Let g = (01, Gi2, ..Qik) be the latent vector of grade membership scores for indalid having a partial
membership of componemt wheregy > 0 for eachi andk and ZkK:1 gk = 1. The valuegyk can be
interpreted as the intensity of membership in each comgonenlike LCA, the membership scores of
individuals are estimated directly from data. i}y denote the probability of positive response to ldwvef
variable j for a complete membership of componéntl; = Pr(xj = 1lgx = 1) wherei = 1,2,..,n, | =
1,2,.Jandk = 1,2, .., K. Within each variablg, Ax; > 0 and, the sum ol across all levels, is equal to

one. The joint likelihood of GoM is

-

i

N J
Preving = [ ][] 1O, gt (33)
| 1 4

i=1 j=1 I=

Equatior3.B is maximized by iterative optimization witlspect to one set of parameters while keeping the
other set of parameters constant. This iterative procaduegerred to as the missing information principle.

The details of the parameter estimation procedure ar] [17



Chapter 3. Linkage and heritability analysis of migraine synptom groupings: a comparison of three
58 different clustering methods on twin data

GoM can deal with missing values in twofkdirent ways, depending on the nature of the missing values.
When the missing data are generated by a random mechanisth ishindependent of model parameters,
missing data can be treated as unobserved and independanvations. In this case;; for a missing
observation is setto be 0 foe= 1,..., L and is consequently excluded in the computation of theilikeld.
When the missing data are due to a non-random process, fudettain items have a higher rate of missing
data on a specific latent class, GoM deals with this probleindrgasing the dimension of the measurement
spaces by adding an extra category called “missing” for @adlable in the model. In this study, in light of

no information to the contrary, we assume the missing vauakie to random causes.

The above models were tested using the Akaike informatigeriom (AIC, B]), Bayesian information
criterion (BIC, ELJ%]) and log-likelihood values for eachlue of K. AIC and BIC strike a balance between
goodness of fit and model complexity, thus avoiding both -d¥ting and under-fitting. Models with lower
AIC and BIC values are preferred. Log-likelihood measuresiehfit but not complexity, and thus must be

used cautiously to avoid over-fitting.

Phenotype Conversion In this study, the maximum number of components tested il.@®& and GoM
analyses is 6iaxK) = 6). The optimum number of components for LCA is determinedhgyBayesian
information criteria (BIC)|[24:3] whereas the likelihoodimtest is used to determine the optimum number
of components in GoM. Because both models yield only mutiiiab estimates, an intermediate step is
added to obtain a continuous phenotypic measure. When tir@awp value of K is 2, the membership
score for the “&ected” component (the component with more and stronger &y such apy=affected

of LCA and gi=affected of GoM) is taken to be representative of the trait vallierrently, genome-wide
linkage analysis is limited to either a continuous or a diohwus trait value, and is not designed for
multiple clusters. Therefore, in the past, when the optinmumber of clusters in the model exceeded two,
the phenotype was determined by a threshold v@ B@a To avoid the diiculty in determining an

appropriate threshold, we implemented the following méttmoconvert multinomial values to continuous

values bounded between 0 and 1.

When the optimum number of components in a model exceeds @s@ckthe following equation to estimate
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each individual trait value. Since this trait value aimsagpttre the presence of the symptom, wel set?:

K T Ak
Phenotypic Trajt= Z ol X Oik
k=1 J

wheregix is membership score for individualhaving partial membership of clustkrand J is the total

number of manifest variables.

The use of a single, continuous-valued summary of phenaypk as this is not appropriate if two or more
distinct disorders were producing the observed symptonesnde that in the analysis of the migraine data,
the clusters can be ordered sequentially such that the Ipiityp@f experiencing each of the ten symptoms
decreases monotonically. This is highly suggestive of glsininderlying determinant of severity. The
justification is less clear for the GoM model, because thstels cannot be ordered in the same way. Nev-
ertheless, the GoM clusters can be ordered such that thesemdent probabilities decrease monotonically
for eight of the ten symptoms. Moreover, as we discuss belmsve is reason to believe (on the basis of

information criteria) that the LCA clustering is the morgoegpriate data model.

Grade of Membership-Fanny Unlike the two model-based approaches described aboveyRarms
clusters based on the dissimilarity between subjects, thatlwhere subjects resemble each other they tend
to be clustered into the same group. Dissimilarity betweenmdbjects can be calculated in various ways.
Due to the type of variables in the migraine dataset, thandiksity matrix is calculated using a contin-

gency table. Considering two objecignd j, and the contingency table band j for variablep,

Table 3.5: The contingency table of objecandj.

i\j]1 O
1 a b
0 c d
the dissimilarity betweenand | is estimated as
b+c

di.) = 7 pverd
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Let uy denote the strength of membership of objetct clusterk, uy > 0O, ZEﬂ ux = 1. ui is analogous (but

not equal) tagik and pix above. The objective of Fanny clustering is to iterativeipimize:

IFINIATY ()

K
Z 23 szk

k=1

Unlike LCA and GoM, Fanny does not provide a measure of howynodursters best fit the data; the user
must choose the value &. We therefore followed the approach utilized in previousrsabased genetic
studies Ml} and fixed the number of clusters in the iodevo. Whether this is appropriate or not
would depend on the underlying architecture of the trait(sipmatology) under investigation. As a result,
the phenotypic value of the individual subject was simpky slcore 1>, for the membership of theffected
group. The Fanny algorithm procedure is implemented by #eniF function of the contributed package
cluster ] of the 9] statistical package.

3.3.3 Genetic Data

The genotypic data are from a collection of four smaller geeavide linkage scans performed for studies
at the Queensland Institute of Medical Research (QIMR).dBguing for four scans was undertaken at
Gemini Genomics with 426 microsatellite markers, Sequamardpeutic with 519 markers, the Center of
Mammalian Genetics at the Marshfield Clinic Research Faimavith 776 markers and the University of
Leiden with 435 markers. The recruitment of participantsgienotyping was based on individuals involved
in phenotype collection. The details of DNA collection, ggiping methods and data are providedm305]
and [54].

Graphic Representation of Relationships (GFHQ) [2] and RLEIRFEQ,] were applied for the examination
of the pedigree structure and identification of inconsisites between the genotypic data and self-reported
pedigree relationships. Potential pedigree misspediitaincorrect zygosity labelling of twins and poten-
tial sample mix-up were identified and investigated; thebfmmatic individuals or families were removed

from further analysis. The SIB-PAIR program bD[?O] was thplemented for identifying and cleaning
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the Mendelian inconsistencies in the genotype data.

After combining all four scans, there were 485 markers whighe typed in two or more scans. There-
fore to ensure the consistency of genotypic informationtliese 458 markers, the duplicated markers are
included separately on the genetic map for the combined, sdhich is separated by a small distance of
0.001cM. The consistency of the genotypes of these 458 msavkas checked using various methods de-
scribed in ]. Markers with genotypic data inconsisteatween diferent genome scans were excluded
and unlikely genotypes were identified by MERLIN [1] and awet from further analysis. Potential map
errors were identified by GENEHUNTEEESS] and MEND 58]ap positions were in Kosambi cM,
which is estimated using locally weighted linear regrasgimm the National Center for Biotechnology
Information (NCBI) Build 34.3 physical map positions, aslivas published deCODE and Marshfield ge-
netic map position 0]. Where the results suggestedcsistencies between genetic map distance and
recombination fraction, the primer sequences for all markethe region were BLASTed against the entire
human genome sequence (hitpww.ensembl.org, NCBI build 34.3). The genetic map was tieersed to
include the updated physical positions of all markers ingrablematic regions. The revised map and the

original genotype data were cleaned of unlikely genotyp@sguMERLIN and map errors were resolved

using GENEHUNTER.

The final cleaned data contains 1770 unique markers. Theimtamarker distance for all sib-pairs in the
samples was 7.1cM, calculated for each sib-pair and ardlgeess all sib-pairs. The combined genome

scan included 4148 individuals from 919 families, whichiined 143 MZ and 776 DZ twin pairs.

3.3.4 Heritability

Heritability of the continuous phenotype values was estmhavith the ACE model. The ACE model as-
sumes the phenotype variation is due to the additive gesféct (A), shared environmenttect (C) and
random environmenttiect (E). The heritability is then the proportion of the totatiance which is due to the
additive genetic #ect. The analysis was carried out using 206] which penfomaximum likelihood

estimation of the variance components.
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3.3.5 Linkage Analysis

A non-parametric quantitative trait linkage analysis wagied out using Merlin-qtl, developed under the
general framework ofmlg] anGIESB]. The membership scotbethree modelsgy of LCA and GoM

anduy of Fanny) was treated as a quantitative trait.

3.4 Results

The results of clustering and linkage analyses performpdragely for the older and younger cohorts lack
the power to identify any significant loci. Moreover, the lyses of the older cohort itself is not representa-
tive of the true migraine population due to lack of three sionpresponses. However, by combining two
cohorts, we obtained a representative sample and poweendifid disorder-related loci, hence we restrict

our subsequent results to the combined data set.

Table[3.6 provides goodness of fit statistics for the choid€in the two model based approaches, LCA and
GoM. For LCA, there is little improvement in AIC or BIC as K ireases above four, where there is a local
minimum in BIC (Tabld_3.6). We therefore select€d= 4 as the best compromise between model fit and
complexity. For GoM, both AIC and BIC indicate that the bestdal hask = 2, but even this best-scoring
GoM model is substantially worse than any of the LCA modelse Teason for this is that although GoM
models have better fit (that is, higher log-likelihood), ytteehieve this at the cost of including additional
parameters, namely the membership scgiesn light of this, we based goodness of fit assessment on the
log-likelihood ratios and noting that the largest reduasin log-likelihood occur as K increases to four, we

again chose the four clusters GoM model.

Even though four clusters were chosen for both GoM and LCA,dmaracteristics of the clusterdfdr
between these phenotyping approaches. Figuie 3.1 showhadhacteristics of each LCA cluster. Each bar
shows the probability of having the symptom, given a full nbenship to clustek. For instance, the prob-

ability of having “aura” for a member in cluster 1 is 0.90. Téés a progressive reduction of endorsement
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Table 3.6: The log-likelihood value, AIC and BIC values of LCA and GoM dwats with diferent numbers of

clusters.

Model Number of cluster (K)| Log-Likelihood AlC BIC
2 -38752.642 | 77549.28| 77713.79
3 -36677.701 | 73423.4| 73677.63

LCA 4 -36456.261 | 73004.52| 73348.49
5 -36401.638 | 72948.79| 73382.48
6 -36333.290 | 72806.58| 73330
2 -28616.94 109561.9| 305202
3 -22696.07 123884.1| 417344.6

GoM 4 -20978.36 146612.7| 527892.4
5 -20322.00 171464.0| 660564.8
6 -18838.39 194660.8| 781581.8

probability for all symptoms when cluster 2 is compared tester 1, when cluster 3 is compared to cluster

2 and when cluster 4 is compared to cluster 3. The only degafitom this pattern is the slight increase in

the probability of a positive response to the question “hawe had more than 5 episodes of headaches in

your life time?” when cluster 3 is compared to cluster 2. Thisters are thus in a natural order, suggesting,

as mentioned earlier, that migraine phenotypes can beiseghon a linear scale of severity.

This linear pattern is not apparent for the GoM clusterss #pgparent that cluster 1 has the highest endorse-

ment probabilities for all symptoms and cluster 4 has theekiwHowever, although cluster 2 has equal or

higher endorsement probabilities than cluster 3 for mostggms, this situation is reversed for the symp-

toms “>5 episodes” and “moderdsevere” (Figuré3]2).

Table 3.7: The weight of each cluster underfigirent phenotyping analysis. According to AIC and BIC, the
optimum number of clusters for LCA is 4. Using the log-likedbd as selection criteria for goodness of fit, the
optimum number of clusters for GoM is also 4.

Model | No. Clusters| Class 1 (Afected)| Class 2| Class 3| Class 4 (Less Aected)
LCA 4 0.136 0.206 | 0.103 0.554

GoM 4 0.215 0.076 | 0.105 0.604

Fanny 2 0.405 0.590 - -

- Not applicable.
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Figure 3.1: The characteristics of the four clusters under LEA4 model. X-axis corresponds to the items
listed in Tabld 3.4 and the y-axis is the probability of digphg the symptom given full membership to cluster
k.

The profile plot showing the characteristics of the Fanngtelts is depicted in Figufe 3.3. There is a large
difference in the endorsement probabilities of the two clusterd more than 55% of individuals in cluster
2 have all symptoms listed in Talile B.4. Individuals in cust are not exempt from all symptoms; a small
proportion in this cluster had the first five symptoms of T&®during their headache episode. Since there
are only two clusters in this analysis, cluster 1 can be refeto as the “Afected” class and cluster 2 as the

“Unaffected” class.

Of the total 13062 individuals, 14% were assigned to clukt@1% to cluster 2, and 10% and 55% were in
cluster 3 and 4, respectively, according to LCA (Tdblé 37 contrast to LCA, a slightly higher proportion

of the population were classified into the two extreme chgsté GoM with 22% falling into cluster 1 and
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Figure 3.2: The characteristics of the four clusters under GEM4 model. X-axis corresponds to the items
listed in Tabld 3.4 and the y-axis is the probability of digphg the symptom given full membership to cluster
k.

60% into cluster 4. Under the Fanny clustering method, atalB?% of the population are classified into

cluster 1 and 60% are in cluster 2 (Tabl€e 3.7).

After phenotype conversion, all three models agreed thatgelproportion of the subjects in this study
have a very small probability of having had migrainous hehda (Figuré_3]4). However, we observed
some variations in the tail end of the histograms. Accordm@oM, there is an even distribution in the
individuals with scores between 0 and 1, with a slightly leigproportion having scores closer to 1. This is
different from the results obtained using Fanny and LCA, in wbidly a very small number of people had
a phenotypic score between 0 and 0.4. However, unlike thertdiof the Fanny histogram which shows a

slight increase in score distribution, the LCA histogramves small peaks at 0.5 and 0.7. The maximum
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Figure 3.3: The characteristics of the four clusters under Fakay® model. X-axis corresponds to the items
listed in Tabld_3:¥ and the y-axis is the proportion of indisdls having the symptom given clusker

trait scores estimated in LCA and GoM approach 1, whereasthémum trait score using Fanny is 0.86.

At the individual level, LCA and Fanny gave similar phendtypstimates. Figure_3.5 contains scatter
plots showing the predicted scores of individuals underdifterent methods. LCA and Fanny show very
similar predicted scores when the score is larger than At#holgh Fanny tends to give higher phenotypic
scores to individuals with a score lower than 0.4, genethlye is a strong correlation between LCA and
Fanny phenotypic scores (correlat#00.99). In contrast, although the correlation is still higbrfelation=

0.85), there is a notable discrepancy between LCA and Go#ligiezl scores. This is also observed in the

comparison of phenotypic scores obtained using the Farnhysa approaches.

Table[3.8 contains the heritability estimates when usiegpthenotypic scores of the three models where A
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Figure 3.4: Histogram showing the distribution of the phenotypic ss@stimated under LCA, GoM and Fanny.
A score of 0 indicates not having migrainous headache anam sf 1 indicates having strong migrainous

headache.

indicates the variation due to genetic variation, C is tireati@n due to the shared environmentékets and

E is the défect due to non-shared environmentfieets. The range of heritability is between 0.36 and 0.46.

The highest heritability occurs when using the phenotyp&ee from the GoM model, which is 0.46 with

a 95% confidence interval of 0.43 to 0.49. This indicateshefassumptions for the ACE model hold, that

46% of total variation is due to genetic variation, none @ tariation is due to shared environmefteets

and nearly 54% is due to the random environmenfi@ots.

The heritability estimates obtained using LCA and Fannynphges are close: respectively 37% and 36%.

The variation due to shared environmentieets is consistent between these two approaches, andngin li

with that obtained for the GoM approach. The non-sharedremmental &ects for these two approaches
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Figure 3.5: Scatter plots showing the relationship between phenosguices estimated undefidgirent methods.
The top left plotis the estimated phenotypic score from LGAOM. The top-right hand plot is the comparison
in estimated trait between LCA and Fanny approaches; theragplot is the comparison of estimated trait
between GoM and Fanny approaches.

are 63% and 64%.

Merlin-gtl multipoint LOD scores using the threefldirent phenotypic measures were calculated at 1-cM
increments; see Figute 8.6. The black solid line is the LO@escorresponding to the LCA phenotype;
the red dashed line corresponds to GoM and the green datieddirresponds to Fanny. The LOD scores
based on LCA and Fanny show very similar patterns with sévegions on chromosome 7 having LOD
scores over 3. The highest LOD scores are on chromosome & aBhcM region (LCA LOBR:3.7; Fanny
LOD=4.12) followed by chromosome 7 at the 133 cM region. (LCA LEAR8, Fanny LO23.47). The
third highest LOD score is also found in chromosome 7 at 127c®A LOD=2.72; Fanny LCA=3.05).
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Table 3.8: The migrainous headache heritability estimates from th& Atdel, where A is the variability due
to genetic variation and C is the variability due to envir@mtal dfect.

Model BIC Componentg Mean | Lower Cl | Upper ClI
A 0.3710| 0.3365 0.4007
LCA -48352.60 C 0.0000| 0.0000 0.0000
E 0.6290| 0.5993 0.6569
GoM A 0.4625| 0.4308 0.4905
-48429.35 C 0.0000| 0.0000 0.0000
E 0.5375| 0.5095 0.5665
Fanny A 0.3592| 0.3266 0.3877
-48079.38 C 0.0000| 0.0000 0.0000
E 0.6408| 0.6104 0.6720

Although the LOD score signals are not as high as in chromesénthe genomewide linkage analysis
shows possible evidence of linkage on chromosomes 2 and CAndnd Fanny traits. Markers D28364 G,
GATA194A05 and D2S1391, which are between 187 and 188 cM @fehsome 2, have a LOD score of
1.89 based on the LCA traits and 2.25 for the Fanny traitsaauidker ATA73A08 (156¢cM) on chromosome

1 shows a small peak.

In contrast, the LOD scores based on the GoM phenotypes skhewy aifferent pattern. The highest LOD
score of the GOM trait is on Chromosome 2 between 210 cM (EQMDO); followed by chromosome 2 at
the 206 cM region (LOB2.81). Some signals are detected on chromosome 1 and 7; mAdaikd 119 M
(153 cM) on chromosome 1 has a LOD score of 2.59 and marker B85 M (127cM) on chromosome 7
has a LOD score of 2.51.

3.5 Discussion

Genetic research of diseases with a complex etiology firetiyires the identification of phenotypes which
capture the underlying phenotypic and genetic variancéignstudy, the aim was to investigate tHeeets

of different clustering methods on the output of genetic analysieg) & previously describe@lZ] and
subsequently updated migraine dataset. We tested thremaoalyn used statistical clustering phenotyping
methods: LCA, GoM and Fanny. Of these, the first two are mbdskd approaches, whereas Fanny is

based on partitioning of a dissimilarity matrix. Our resushow that with the same symptom response
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Figure 3.6: Results of MERLIN-qtl genomewide linkage analysis usirajttr derived from dterent statistical
clustering methods. The solid black line is the LOD scoreaifs derived from LCA; red dashed line is the LOD
score of trait from GoM and green dotted line is LOD score afriatraits. The dotted vertical lines indicate
the boundaries between chromosomes.

data, diterent phenotype clusters are derived and as a consequéiaertdigenetic loci are implicated via

linkage.

The heritability estimated here with thredfdrent migraine phenotypic traits is within the range of prev
ously published findingZ].Z] show that the heriliagbof MA and MO varies for diferent popula-
tions. For the Australian population, previously publidghiesults indicate the heritability varies agfedient
phenotyping methods are appli 11]; this is supportedunyfindings. The ACE model fitting indicated
the greater genetic contribution to migraine using GoMpfeed by LCA and Fanny, which are 46%, 37%
and 36%, respectively. Some of these estimates are higaeititle heritability for the IHS criteria defined

phenotype published iBlBlZ]. We also noted théiedknces in heritability can occur within a model.
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For instance, using the same LCA model, the heritabili) 6f the converted continuous trait is slightly

lower than theh? of the dichotomous trait in EBH]. We failed to identtfye shared environmental
effects for these phenotypic traits, as also occurre@ [2@] found that when additive genetiffects

are present, the power to detect the shared environmeteatsis low.

The diference between the continuous trait values derived fronb@® and GoM models is mainly due
to the diferent clustering structure. Although the number of clissiarboth models are the same, the
characteristics of clusters are veryfdrent. The clusters of the GoM modeffdr in symptom composition

but the clusters of the LCA model ardf@irent in the probability of having all ten symptoms.

The two model-based clustering methods implicateteent genetic loci. However, based on the GoM
phenotype, linkage was obtained to a locus near marker DRS@8 chromosome 2 and to loci on chro-
mosomes 1 and 7. Conversely, the two most unlike clusterighoas, LCA and Fanny, not only produced
linkage at the same positions but also gave the same rankitigpse positions. The linkage analysis of

LCA- and Fanny-based traits had highest LOD scores at CBragd@ Chr7q32.3 regions, respectively.

Although the markers with the highest LOD scores in the LCAl &anny phenotype analyses are not
implicated in the GoM linkage results, the genetic analydi$soM produced linkage to other possible
markers on chromosome 1 and 7. Marker AGAT119M of chromospimes the fifth highest LOD score for
the GoM trait, and the third highest LOD score ranking of tl@N.and Fanny traits. In contrast, although
linkage analysis of LCA and Fanny traits did not provide sgrevidence for linkage to marker AGAT119M

on chromosome 1 (LOD scores less than 2), there is still smidergce of linkage.

Although the LOD scores for some loci are less than 3, ouryaigivas able to replicate some previously
identified regions. The small peak on chromosome 1 of LCA aathif traits is within 2cM of the famil-

ial hemiplegic migraine (FHM) type 2 ATP1A2 gerl;[80]neTsmall eak in chromosome 2 is also
within a small distance of the SCN1A FHM3 gene found by anositedy [62]. Another important marker

is GGAT1A4, which is located on the chr 10g22.3-10g23.1argiOur genome-wide linkage results indi-
cated a suggestive linkage in this region. This is encongpbecause the same region has been identified

previously by ELBO] and |_T212]. Unlike much other researd{ﬂ] adopted three flierent methods to
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phenotype the migraine patients of the Australian and Bmpiopulations; this includes the less stringent

form of IHS defined MA, LCA and trait-component analysis. 8ltte phenotypic traits derived from their
LCA is calculated using a fferent algorithm from the one used here a||;| [11] implemensédmee algo-
rithm as the one described i@ll]. We will later explain dierence between these two approaches and
discuss the féects of these algorithms on linkage analysis. Previouslgated loci, chr 6p12.2-p21.1 and
8921 ], are also detected here with suggestive linkagenvthe trait values are derived from LCA and

Fanny.

Some previously identified loci were not detected here;itlukides 42@8], 4 Zgllg‘__lGZ], 4921-
31 ], 5q212], SqZMZ], 14q21-qg, 11}15-q13 ], 17q1@0], 18q1 36, 11].
Here are some possible causes of thigedence. Firstly, the common form of migraine, accordingH8 |
criteria, is an ensemble of multiple symptoms; each symptway be caused by specific loci and these loci
contribute to susceptibility to migraingj @GZ]IHGE formation of common migraine, genes may
need to act synergistically. One drawback of single-lo¢niksalge analysis is that it is not able to detect
epistasis ffects, which commonly present in a complex disease. Theretbe development of genome

wide association studies in conjunction with statisticall$ for detecting epistasigfects is more suitable

for detecting the genetic architecture of migraine.

Another possible cause for not replicating previously ckete loci is the variation of phenotyping methods
adopted in other studies. Our results indicate th&edint phenotyping methods can result iffetient
loci being identified in linkage analysis; hence it is nofsiging that some previously prominent genes go
undetected here. We do not advocate our findings as supeodrérs, or vice versa, but they do demonstrate
the need to base linkage analysis offietent trait values derived from various methods to enswedhdity

of the conclusion. This is especially true for diseases watimplex etiology.

Differences in the results of genetic analyses can occur nobehlyeen models, but also within a model.
M-@] applied LCA to migraine survey data and identifia subgroups of migrairigevere headaches.

Individuals classified into clusters 2 and 3 were treatedaffge¢ted” and given a trait value of 1 and con-
versely individuals in the other two clusters were givenait tvalue of 0. The authors then conducted a

regression using MERLIN and found the highest LOD scoreshwormmosomes 5, 10, 8, 1 and 6. Although



3.5. Discussion 73
the current results cannot be readily compared to thoseipirés ], due to dferences in available

phenotype data and modelling approach, we replicated pnecedure and generally we found lower LOD
scores but in similar positions to those identified @21‘2#@ main diference between the approaches
used by @2] and those in the current paper is that the foemgrioyed discrete cluster membership as
an “dafection” trait, whereas the current results utilized a cumtius phenotypic score related to cluster

membership.

To investigate further thefiect of diferent clustering approaches on within-modgéeets, we separately
tested the LCA and GoM models with predefined values of K. WKesa 2, the results of the genetic
analysis based on both the LCA and GoM arffedent from those obtained when=K4. Within a GoM
phenotyping analysis, when K is 2, the highest LOD score28 2t D1S484 on chromosome 2, which is
53 ¢M from the loci identified using the optimum GoM model. Tighin-model dfect is more apparent
for the LCA phenotypes, where not only the linkage positibarged, but the highest LOD score reduced
from 3.70 to 2.03. This demonstrates the influence of the murobclusters on the model-based clustering

approaches.

The likelihood ratio test statistics and BIC used in the pnésanalysis for model selection are common
parsimony criteria but are not ideal for mixture mod 82ore sophisticated methods, such as boot-
strapping 0] or reversible jump Markov chain Monte Cariethods (RJMCMC)8], may be more
effective in searching for the optimum number of clusters in @efisample space. The work by [23]

provides a framework for using Bayes factors for componelgcsion in mixture models.

Despite the fact that LCA and GoM are both forms of mixture gisgdthey are quite ffierent in practice. In
GoM, the membership scores of individuals are estimatedoakehparameters, so the number of parameters
in the model increases dramatically with the sample sizee ifbrease in number of parameters not only
slows down the computation of the model, but it also hasféecton the determination of the optimum

number of components, where the criteria for model sele@ie based on a parsimony measure.

Another drawback of GoM, which is also shared by LCA, is indlgorithm for parameter estimation. Both

of these methods are implemented using an iterative ahgoyisuch as EM, to find maximum likelihood
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estimates. These procedures may only find the local maxinsuireamodel becomes compl 67]. There-

fore, to ensure the achievement of a global maximum, reaasibn of the model parameters with multiple
starting points is recommended. As is common in such casissdifficult to provide guidance as to how
many starting points should be used, but one rule of thumirisgeat the optimization until each observed

local maximum is attained from more than one starting point.

The large number of parameters involved in the GoM model tsmrasult in instability of the estimation
of membership scorgj. [E] has suggest various modifications to improve coesct: in particular, by

assuminggix for individual i is a realization of a random vector, with a distribution ftioa.

Although the Fanny algorithm is relatively simpler and cartgtionally easier, there are some limitations
associated with this approach. Firstly, the Fanny algaritiusters data without taking into account any
structure in the data. It is therefore essential to have tieme response patterns in the data, ideally

individuals with all symptoms, and individuals without ajfmptoms with heavy weights on both patterns.

Clustering using the Fanny algorithm is highly dependenthendataset and consequently the clustering
structure often changes when extra data are included imhlgsas. Unless the sample is representative of
the population, the phenotypic measures determined frame#l sample may be biased. Another limitation

of the Fanny algorithm is that as sample size and the numbguedtions increases, the computational

requirements for the dissimilarity matrices also increase

Of all three models, LCA is most computationallffieient, but it is not fully exempt from theflects of
increasing parameter dimension. Computational time alseases rapidly with the number of latent classes
(K), manifest variablesJ) and levels within each manifest variablej. When the number of parameters
exceeds the number of samples, or one fewer than the totdderuwh cells in the cross-classification table

of manifest variables, the LCA will not be identifiablg[lm]

This study is based on the assumption that the migrainouslgiogn is composed of multiple subgroups.
But it remains uncertain that the population thaffets from migrainous headaches is unidimensional.
Therefore, models such as latent trait analysis may exhdditer performance than any clustering based

statistical methods.
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In this thesis, we adopted the somewhat innovative pracfia®nverting cluster memberships to continu-

ous phenotype scores. We regard this practice as prefacalble arbitrary imposition of a threshold, which
effectively separates individuals into cases and controlsveder, we urge caution in the use and interpre-
tation of such phenotype scores. In particular, the praagsumes that the disease can be satisfactorily
modeled as the result of a single, unidimensional, contisweterminant of severity. One should therefore
investigate whether the clusters can be placed in a natrdat of monotonically decreasing severity, as we
have done here. We suggest further research into the eelagrits of using continuous phenotype scores

as opposed to thresholds.

In conclusion, diterent phenotyping methods havefeient properties; not knowing the true phenotypic
structure of the population, phenotyping methods can thex@nly provide approximations to the trait. To

minimise the impact of phenotypic uncertainties, we sugtdesfollowing alternative approaches:

1. Phenotype IntegratioRun multiple phenotyping methods and integrate the restiltsfferent methods

to produce a single phenotype. Then perform linkage arsabtysihis integrated phenotype.

2. Eliminate ambiguous cas&liminate cases with phenotypes thaftel for different phenotyping meth-
ods, thus limiting subsequent analysis to those indivieldiat which all methods produce essentially the

same classification.

3. Multiple linkage analysi®kun multiple linkage analysis on the phenotypic classifcest derived from
different models, using filerent clustering techniques andfdient numbers of classes. Then combine the

results of these multiple analyses with a voting mechanism.

Such approaches may facilitate more stable estimationr@tigeinkage for diseases with complex etiology.

We recommend further research into the relative successcbfapproaches.
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Chapter Summary

Similar to the previous chapter, the aim of this chapter isrtderstand how éierent phenotyping methods
affect the results of the subsequent genetic analysis. Howieveontrast to the previous chapter, models

included here are two veryftierent latent variable models.

The two models included here are latent class analysis (L&W)item response theory (IRT). LCA is a
mixture of Bernoulli distributions, and IRT, which is alsndwn as latent trait analysis, assumes the under-
lying latent value measures an individual’s propensityichtassociates with symptom responses by fitting
logistic curves. Another major fiierence in this chapter is that these models are proposecbamabced in

a Bayesian context, which allows common ground for comgattie two models.

From a statistical perspective, the main contribution &f thapter is introducing the use of Bayesian LCA
and IRT for phenotyping, as well as comparing models usingcantly proposed deviance information
criteria that is suited for comparing latent models. Beeaunsdels are proposed in a Bayesian context, it

provides a common framework for model comparison.

Chapter Conclusion

Again the same migraine data as used in Chapter 3 is usedstire baseline of comparison. Even though
BLCA and BIRT have a very dlierent underlying structure, the phenotypes derived framdhliwo models
are highly correlated. Subsequently, the estimated hdiiyaand the loci identified by the linkage analysis
are nearly identical under both approaches. The estimaetihility for migraine is around 36%, which

matches previous published results.

Unlike the previous chapter, even though BIRT model is stmadly more complicated than BLCA, due to
the use of deviance information criteria (DIC), BIRT is naakily penalized and thus comparable to its

counterpart.
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4.1. Abstract 87
4.1 Abstract

Definition of disease phenotype is a necessary prelimirarggearch into genetic causes of a complex dis-
ease. Clinical diagnosis of migraine is currently basediagribstic criteria developed by the International
Headache Society. Previously, we examined the naturakeing of these diagnostic symptoms using latent
class analysis (LCA) and found that a four-class model wateped. However, the classes can be ordered
such that all symptoms progressively intensify, sugggstitat a single continuous variable representing
disease severity may provide a better model. Here, we canparmodels: item response theory and latent
class analysis (LCA), each constructed within a Bayesiantesth. A deviance information criterion (DIC)

is used to assess model fit. We phenotyped our populationlsarsipg these models, estimated heritability

and conducted genome-wide linkage analysis using Metlin-@A with four classes was again preferred.

After transformation, phenotypic trait values derivednfirooth models are highly correlated (correlatien

0.99) and consequently results from subsequent genetigsasavere similar. Heritability was estimated at
0.37, while multipoint linkage analysis produced genomeéessignificant linkage to chromosome 7931-933
and suggestive linkage to chromosomes 1 and 2. We argueuitiaicentinuous measures are a powerful

tool for identifying genes contributing to migraine sustilgifity.

4.2 Introduction

Research into the genetics of complex diseases often ewdhe identification of genes associated with
groups of patients that exhibitfiierent combinations of disease symptoms or phenotypes. ahailysis
depends crucially on the careful classification of patie@tsmmonly, the clustering of at ents deends on
the criteria established by medical societies, such astieenational Headache SOCI 115] for
migraine. Without doubt, these criteria are valuable ferdiagnosis of diseases, but theifeetiveness for

genetic research is debata@@ 287] as discussed.below

Migraine is a hereditary disorder with estimated heriigbibetween 34% and 57@0@@265,
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,]. The two most common forms of migraine are migraiitaout aura (MO) and migraine with

aura (MA), where aura typically concerns a visual distudeariThe genetic research of migraine is mainly
focused on these two subgroups. To date, except for CACNAIR1A2 and SCN1A - genes that con-
tribute to a rare mendelian form of MA, familial hemiplegiégraine (FHM), no gene has been convincingly
implicated in migraine (Table4.1). This may be due to cih@nd genetic heterogeneity of the disease. The
phenotype defined by IHS criteria may oversimplify the caamplariability among sfierers of this complex
diseaselﬁ&?]. Furthermore, there is overlap in the of MO and MA. Clinically, the symptoms
of MA are a superset of the symptoms of MO. The WOiﬁle] ] provides further support for
the argument that MA and MO are not separate entities. Toierethe development of an endophenotype

or an alternative phenotype may give better insight intogéreetics of common migraine.

Table 4.1: The chromosome regions associated with the common formsgoame.

Phenotype Cohort Chromosome Reference
MO Icelandic 4921 128]
MO Italian 14921.2-922.3 _[257]
MA Canadian 11924 _[37]
MA Finnish 4924 [286]
MA North American Caucasians 19q13 _[136]
TCA and LCA Finnish and Australian 10g22-10qg23 _[171]

There are currently two main types of method for investiggthe phenotypic structure of symptom survey
results, one based on the use of statistical methodologieanivert the symptoms to a unidimensional value
and the other based on trait component analysis (TCA), wihéetis each individual symptom as a response
variable for the purpose of linkage analysesljle] pioe@d¢he use of latent class analysis (LCA) of
the phenotype for migraine. The authors applied LCA to nigraymptomatic data in an Australian twin
population sample and found that the best fit to the data wasnaal using a model with three symptomatic
latent classes; these correspond to a mild form of recunr@mmigrainous headaches, a moderately severe
form of migraine and a severe form. Moreover, the estimatitability using LCA was found to be
slightly higher than the heritability estimated using IHB8eria. E} then applied this method for genome
wide linkage analysis and identified linkage to chromosou&l5 They also replicated previously reported

susceptibility loci on chromosomes 6p12.2-p21.1 and 1q23.--

Since migraine is a suite of symptoms and the subphenotygigsisin E}Z] found that individual symp-
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toms are associated with specific Iinkaﬁ ll;jaks in their, da¢me have been several attempts to identify

gene loci linked to individual symptom 11]. This medhie referred to as trait component analysis
(TCA). @] applied TCA to dissect the genetic susceptipitif migraine in a Finnish cohort. They found

strong evidence that various migraine symptoms are linkethtomosome 4q24, including photophobia,
phonophobia, intensity, unilaterality, nausea, vomitamgl attack length. They also found that pulsation is
linked to chromosome 17p3 and reported some suggestivaginkf the phonophobia trait to chromosome

10922 and the “aggravation by physical exercise” trait tmofosome 12921, 15914 and Xp21.

Besides LCA, other clustering methods have been appliekneta research of diseases with complex
aetiology. These include grade of membership (GoM), useah#dyse schizophrenigog], ma [42] and
Alzheimer's EEISEL]; model-based clustering, used to gs®hnorexia nervosQGl]; and fuzzy clustering,
used to analyse anxiety disord41]. All these algorgtaim to identify homogenous clasgasnponents

in the data, based on specified traits of interest, and et&titha parameters associated with each class.

For some diseases composed of many individual symptomslaiaemay be better modeled using a con-
tinuous representation. Indeed, in earlier analyses ofi+syinptom migraine data using LCA and GoM
B, E EAL__LLS], the classes could be ordered in aughy that there was a gradual reduction
in all symptoms, suggesting that there is a single latentimoous trait underlying the observed pattern of
symptoms. It is therefore reasonable to hypothesize teaddta may be modeled using a single continuous

variable representing severity of the disease insteachstes.

Iltem Response Theory (IRT), which is also known as lateritt arzalysis, is a popular statistical method
for modeling psychological and educational survey respen$t assumes an underlying continuous latent
value which has direct influence on the responses to iterdeebh items are designed to capture this latent
value. In this thesis, the item variables are equivalenhéosymptom variables. IRT has been found to be
useful in behavioural genetics and genetic epidemiolodyere the phenotype is often determined by the
guestionnaire or interview data. This method has been umeelxploring the genetic and environmental

influence on the timing of pubertal chan '_;! [75] and the amatylsmulti-symptom genetic datQQO].

In this thesis, we test the hypothesis proposed above bly finttoducing IRT for analysing multi-symptom
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migraine data, then comparing this non-clustering metiddtent class analysis (LCA). Both models are

introduced in a Bayesian framework and compared usingstati measures that take into account goodness
of fit and model complexity. The models are then comparedhdutby assessing the utility of their resulting

trait measures in genetic heritability and linkage analysi

4.3 Methods

4.3.1 Data

Phenotype data Data were collected by the Queensland Institute of Medieaidarch (QIMR) during the
course of extensive and semi-structured telephone iet@rsiudies 1993-2000. The surveys were primarily
designed to assess physical, psychological, and sociafestations of alcoholism and related disorders.
The sample was unselected with regard to personal or famstprly of alcoholism or other psychiatric
or medical disorders. The data were collected over two gdefi@993-1995 and 1996-2000. The earlier
interview was administered to Australian twins listed witle volunteer-based Australian Twin Registry
who were born between 1902 and 1964 while the second intemwias focused on twins born between
1964 and 1971. Participants of both cohorts were first agkeddreening question:“Do you have recurrent
attacks of headaches?” If the participant screened pesitien hgshe was asked a number of questions
which were developed by an experienced migraine reseal@s®d on the IHS diagnosis criteria (Table
[4.2). Although the wording of the questions is identical foth periods, the older cohort was not asked
guestions related to having at least 5 episodes of headabkeduration of headaches (4-72 hours) and the
severity of the pain associated with headache (“moderatevere”).

There are 13062 individuals from 6764 families participgtin this analysis, with 2716 MZ twin pairs
(63.6% females and 36.4% males), 3399 DZ twin pairs (34.5%ale twin pairs, 22.4% male twin pairs
and 43.1% opposite sex twin pairs), 12 twins with unknownosjty and 817 non-twin siblings. The mean
age of participants was 37.5 years and ages ranged from ZBytea®s at the time of survey. Details of the

collection of the migraine data are provided M 212].
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Although it may be argued post-survey that it would have bewmne complete for all members of the

cohort to be asked all symptom questions, this was conslderbe an unacceptable impost by the survey
designers. Possible ascertainment bias was consideretisgodnted since analysis showed littl€elience

in prediction of LCA and IRT by including and excluding thed"ncohort.

Table 4.2: The survey questions based on IHS criteria.

Notation Abbreviation  Descriptions

a > 5 episode Have at least 5 episode of headaches in your life
time.

b 4-72 hr Average headache last between 4 to 72 hours

cl Unilateral Headache often occurs at one side of head

c2 Pulsating Headache pain can be described as throbbing, pu
sating or pounding

c3a Moderat&severe Headache pain can be described between moder-
ate and severe

c3b Prohibitive Headache pain prohibits daily activities

di NausearomitingHeadache associated with vomiting or feeling
nausea

d2a Photophobia  Enhance sensitivity to light

d2b Phonophobia  Enhance sensitivity to sounds

Aura Aura Have visual problems such as light shower, blur-

ring, blind spot or double vision

Genotype data The genotypic data are composed of four smaller genome-imkizge scans performed
for other studies at the Queensland Institute of MedicaeReh (QIMR). Genotyping for the four studies
was conducted at Gemini Genomics with 426 satellite mayi8agquana Therapeutics with 519 markers, the
Center for Mammalian Genetics at Marshfield Clinic Rese&wolindation with 776 markers and the Uni-
versity of Leiden with 435 markers. The details of DNA cotlen, genotyping methods and data cleaning
are discussed in other Iiteratu@@, 54].

Graphic Representation of Relationships (GFH?) [2] and RLE[RFEQ,B] were applied for the examination
of the pedigree structure and identification of inconsisites between the genotypic data and self-reported
pedigree relationships. The potential misspecificatioapirect zygosity labelling of twins and sample
mix-ups were identified and corrected. A small number of €agéh errors could not be corrected, so were
excluded in further analysis. The SIB-PAIR version 0.998gpam by ] was then implemented for
identifying and cleaning the Mendelian inconsistenciethagenotype data.

Markers from four sources were included separately on tinetgemap for the combined scan, separated
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by a small distance of 0.001cM. Markers with genotypic datmnsistent betweenftierent genome scans

were excluded and unlikely genotypes were identified by MBR]1] and omitted from further analysis.
Potential map errors were identified by GENEHUNTQlSS} MENDEL ]. Map positions were
in Kosambi cM, which is estimated using locally weighteceln regression from the National Center for
Biotechnology Information (NCBI) Build 34.3 physical mapgitions, as well as published deCODE and
Marshfield genetic map positi050]. Where the resulggyested inconsistencies between genetic map
distance and recombination fraction, the primer sequefaesall markers in the region were BLASTed
against the entire human genome sequence fhitpw.ensembl.org, NCBI build 34.3). The genetic map
was then revised to include the updated physical positidradl onarkers in the problematic regions. The
revised map and the original genotype data were cleanedli@klyngenotypes using MERLIN and map
errors were resolved using GENEHUNTER. More details on tilapsing of markers is in|_—[$4]. There are

a total of 1770 unique markers and the combined genome schudéd 4148 individuals from 919 families

(143 MZ and 776 DZ twin pairs and some parent genotype).

4.3.2 Model

Latent Class analysis Suppose that there anandividuals and) observed (manifest) item response vari-
ables(=1,...,n; j = 1,2...,J). Lety;; denote the binary response of thik individual to symptom
questionj such thaty;; = 1 when the symptonj is present in person elsey;; = 0. Y;j is then the vector
of theith subject’s responses to all symptoms. Assume that thei¢€ ktent classes embedded in the data.
Let A; be the probability of a positive response on variable j foeespn in latent clask (k = 1,..., K).

Then
K J
P(Yil4, p) = Z Pk l_[(/lkj)y” (1 Ag)t Vi
1
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where px denotes the probability that a randomly chosen individedbigs to latent clads We used the

following noninformative priors:

P ~ Dirichlet(1, ...1)

Axj ~ Betg1,1)

representing equal probability of membership to any ofklwasses and equal probabilities of a 0 or 1
response for thgth variable in thekth class. The posterior probability that subjettelongs to clask is

given by:

eI f(YilAkg)
Pik = 21 b T F(Yilag)

where i is the expected probability of membership of #ik class and (Y;|1x) represents the probability

distribution forY; given this probability, that is,

f(Yilk) = n(ﬂkj)y” (L— ),
j

The parameter vectors p andare estimated by Markov Chain Monte Carlo (MCMC) simulagiarsing

WinBUGS1.4 ]. Then the latent trait value for title subject is given by

J
-1 ]
J

K
X Pik- (4.1)
k=

Phenotypic Trajt= Z
1

Item response Theory (IRT) As before, lety;; denote the binary response of perdoto variable j,
yij ={0,1},i = 1L2,...,nandj = 1,2,...,J. Let§ denote the latent trait value of subject; € R and
Pj(6;) be the probability of observing a response score of 1 (sympiresent) given the latent trait value

P;j(6)) = Pj(yij = 116;), which is called the item response function (IRF)ffBient types of IRF constitute the
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subtypes of IRT. Variations of the IRT model include the Rasmdel, 2-parameter logistic model (2-PL),

3-PL model and the Birnbaum model.

In this thesis, we adopt the 2-PL model, which is commonlylemented for phenotyping. The IRF for the
2-PL model is

e?i(0i-by)

P11y, b)) = 775y

4.2)
where variablesa; and b; are described in the educatipeychology literature as the item discriminant
parameter and item fliculty parameter. Higher values af indicate that iteny has higher correlation with
the latent trait value. The itemftliculty parameter represents the point on the latent tralié stavhich the

probability of having the symptom is 0.5. The likelihood hsi$
n J
PVIO) = [ [ [(rie” @ - pje)*
i =1

As in the LCA model, noninformative priors are used for paggensd;, a; andb;:

6, ~ N(0,1),6, € R
a; ~ N(0, 10000)

bj ~ N(0,10000)

As for Bayesian LCA, estimation was carried out by Markov @hdonte Carlo (MCMC) using Win-
i

BUGS1.4[2509].

For both LCA and IRT models, MCMC chains were generated wiifiOD iterations. The initial 5000
iterations were considered as burn-in and every fifth casheofemaining 5000 (total of 1000 cases) was
extracted to build the marginal posterior distribution loé fparameters. For the LCA model, a chain was

generated for each valuef K = 2,...,7.
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4.3.3 Model Comparison

The Deviance Information Criterion (DIC) is a popular anéfus method for assessing model fit and com-
plexity for the purpose of comparing Bayesian models. Thiky &IC proposed by O] is only suitable
when the competing likelihood models have a closed forns. ribit ideal for comparing models with missing
values or mixture modeleB]J]dS] suggested various madtéve forms of DIC for these models and com-
pared the performance of these criteria. Here we employhihe DIC (DIC3) of their work to determine
the optimum number of classes for the Bayesian LCA and coenpayesian LCA and IRT models. DIC3

is defined as

DIC = —4Eq[log f(yn)ly] + 2log f(y) (4.3)

wherey is observed data; is a vector of model parameters ah@)) is the posterior expectation of model
parameters. Further details on the calculation of DIC foyedgan LCA and IRT can be found in Appendix
A2

4.3.4 Genetic analysis

Heritability of the quantitative phenotype values wasreated with the ACE model, which is well suited
for twin studies.The ACE model assumes that phenotypiatiari is due to additive genetidfect (A),
shared environmentaftect (C) and random (non-shared) environmentidat (E). The heritability is then
the proportion of the total variance which is due to the adeliggenetic &ect. The analysis was carried out
using Mx ]. Mx applies a maximum likelihood method toiestte the variances and the corresponding
heritability. The goodness of fit criterion used in Mx for @ssing the ACE model is the Bayesian Informa-

tion Criteria (BIC) ].

Non-parametric quantitative trait linkage analysis wasied out using Merlin-gtl. Merlin-gtl was devel-
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oped under the general framework .| 49] a ﬂ 288]. Pheof LCA and the latent trait; of IRT are

treated as phenotypic traits for the genetic analysis.

4.4 Results

Bayesian LCA Table[4.B contains the DIC values forfigrent values oK, (K = 2,...,7). The DIC
changes most dramatically wh&hchanges from 2 to 3 but there is little improvement akket 4. There-

fore, the four class model is preferred.

Table 4.3: DIC and deviance values f&& = 2,...,7 and Bayesian IRT model.

Model DIC value | Deviance
60801.19 | 60721.39
51390.08 | 51097.95
49442.02 | 49062.91
48531.12 | 47577.47
47236.32 | 45910.07
46687.76 | 45120.79

51718.36 | 51370.00

LCA

VN[O o DWW N A

IRT

With K equal to 4, the deviance stabilized after 5000 iteratiortlk am approximately normal distribution, a
mean of 49062.91 and standard deviation of 126.315. Thepasinarginal distributions for the majority of

parameters were also approximately normal, with the eimepbf the conditional probabilities of classes
1 and 4, which are bounded by the values 0 and 1, respectiValyle[4.2 lists the posterior means and
the credible intervals (analogous to frequentist confidaéntervals) of all parameters of Bayesian LCA for

K=4.

We observed a gradual increase in the probability of eactpymacross the four classes. Class 1 is com-
posed of participants with limited symptoms (Figlrel 4.h)contrast, class 4 is a collection of participants
with all symptoms. Except for symptoms related to the lasawf the pain (unilateral, C3 of Table #.2,
74%), more than 84% of individuals in this class have all o8yenptoms. Nearly all members in this class
described their headache pain as moderate to severe,enqatisensitivity to light as the headache occurred
and described the headache attacks as inhibiting they deiivities (c1: moderatsevere 45 = 0.997;

d2a: photophobials g = 0.996; c3b: prohibitiveds s = 0.983, Tablé 4.14).
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Table 4.4: The posterior statistics of LCA model parameters and thredible intervals.

K 1(C 2 (C) 3(C) 4 (CIy

P  0.55(0.55-0.56) 0.10(0.09-0.12) 0.20(0.19-0.22) 0.14260.2)
A 0.00(0.00-0.01) 0.76(0.73-0.81) 0.72(0.69-0.75) 0.94261.0)
Ao 0.00(0.00-0.00) 0.43(0.39-0.48) 0.70(0.67-0.74) 0.9B860.9)
A 0.00(0.00-0.00) 0.34(0.30-0.37) 0.43(0.41-0.46) 0.75860.7)
A  0.00(0.00-0.00) 0.65(0.62-0.69) 0.78(0.76-0.80) 0.92060.9)
As 0.00(0.00-0.00) 0.56(0.50-0.62) 0.93(0.90-0.95) 1.08061.0)
A 0.00(0.00-0.00) 0.20(0.15-0.26) 0.76(0.72-0.80) 0.98761.0)
Az 0.00(0.00-0.00) 0.18(0.14-0.22) 0.51(0.47-0.54) 0.93061.0)
As 0.00(0.00-0.00) 0.16(0.12-0.20) 0.70(0.66-0.75) 1.08961.0)
Ao  0.00(0.00-0.00) 0.30(0.26-0.34) 0.70(0.66-0.74) 0.98¢61.0)
Ao 0.00(0.00-0.00) 0.19(0.16-0.23) 0.48(0.45-0.52) 0.88160.9)
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The main diference between the two intermediate classes 2 and 3 lieseérsymptoms: duration of

headache, severity of pain associated with headachetyaibilcarry out daily activities and the physical

reactions associated with headache such as naosséing, sensitivity to light and sound and visual prob-

lems (b, c3a, c3b, d1, d2a, d2b, aura of Tdblé 4.2). Membectass 3 showed higher probability of

these symptoms than members in class 2. The only item erpedeby more individuals in class 2 is

‘>5 headaches occurring in your lifetime’. Individuals ingde&2 exhibited a higher frequency of headache
episodes. Class 1 is the largest class with more than 55% abthl 13062 participants. The second largest
class is class 3 which contained 20% of participants foltble class 4 (14%) and class 3 (10%) (Table
4.3).

Bayesian IRT Because of the very large number of parameters sin this mtfueMCMC analysis re-
quired a large amount of computational memory and a long ctatipnal time. The marginal distributions
of the item discriminant parameters and item response pess(parametesandb of Equatiorf 4.R) were

approximately normal, with posterior means and crediderirals as listed in Table 4.5.

Figure[4.2 displays results for each symptom, using the 2aBtlel. The x-axis is the latent trait value; the
y-axis is the probability of having the symptom and each iggresents one symptom. Given a trait value,
symptoms on the right side of Figure 4.2 are less likely todsedbed by subjects than the symptoms on the
left. For instance, nearly all subjects with latent valud afescribed the headache as moderate to severe but

only 60% described the headache as unilateral (Figuie @@rall, the results indicate that the symptom
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Figure 4.1: Barplot showing the symptomatic characteristics of eaabcuinder the 4 class model.

“unilateral” is the least prevalent, followed by aura andsegvomiting. The other symptoms have similar

values of item response probability (6, Tablel 4.5) rangnognf0.43 to 0.65.
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Table 4.5: The posterior statistics of item response probability daechidiscrimination parameters.

ltem Mean SD 25% 25% Median 75% 97.5%

a-a 4,074 0.12 3.844 3.992 4.073 4.154 4.311
a-b 4245 0.135 3.983 4.152 4.244 4336 4.518
a-cl 2.874 0.073 273 2824 2.874 2922 3.021
a-c2 4454 0.109 4.24 438 4453 4525 4672
a-c3a 8.368 0.361 7.688 8.117 8.36 8.598 9.095
a-c3b 6.562 0.217 6.164 6.415 6.553 6.702 7.003
a-di 4,646 0.136 4.392 4551 4.644 4739 4.919
a-d2a 6.608 0.219 6.194 6.46 6.601 6.755 7.047
a-d2b 5.263 0.148 4.981 5.164 5.258 5.359 5.567
a-Aura 3.732 0.104 354 3.659 3.728 3.799 3.943
b-a 0.493 0.015 0.464 0.482 0.492 0.502 0.524
b-b 0.618 0.015 0.59 0.608 0.618 0.627 0.647
b-c1 0.936 0.016 0.907 0.925 0.936 0.947 0.969
b-c2 0.49 0.013 0.466 0.48 0.489 0.499 0.516
b-c3a 0.427 0.014 0.401 0.418 0.427 0.436 0.454
b-c3b 0.61 0.013 0.585 0.601 0.609 0.618 0.635
b-d1 0.781 0.014 0.756 0.771 0.781 0.79 0.807
b-d2a 0.648 0.012 0.625 0.64 0.648 0.656 0.673
b-d2b  0.623 0.013 0.6 0.615 0.623 0.632 0.648
b-Aura 0.845 0.014 0.818 0.835 0.845 0.854 0.872

A lower value of the item discrimination parameteindicates a weaker correlation between the symptom
and underlying latent trait. Of all ten symptoms, the estaddatent value correlates most strongly with the
severity of pain during the headache, followed by the symgtgrohibitive of daily activities’, photophobia
and phonophobia (indicated by the posterior mean discédtitin parameters of 8.368, 6.608, 6.562 and
5.263 respectively; Table4.5). Location of pain (‘unitald and aura correlated least strongly with the

latent value.

Model Comparison The DIC estimated for the Bayesian IRT model of the migrayragomatic data is
51718.36 (Table413). This value is slightly higher thaneheivalent value of 49442.02 for the best LCA
model K = 4). This suggests that, by this criterion, Bayesian LCA vitl= 4 classes provides a slightly

better model for these data than the Bayesian IRT model.

The models were also compared using deviance, which isgditelihood and measures the fit of a model

but not its complexity. Although the filerence in the deviance values between LCA it 4 and IRT
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Figure 4.2: Plot showing the relationship between the latent trait eaashesymptom for IRT model.

is less than for DIC, lower deviance is still observed for L&G#Ah K = 4 (Table[4.B). This supports the

observation that LCA withk = 4 is a slightly better model for these data.

Figure[43 is a scatter plot showing the relationship betwe phenotype trait values estimated using
Bayesian LCA and Bayesian IRT. There is a strong correldtieveen phenotype values estimated with

the two modelsdorrelation = 0.99).
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Bayesian IRT phenotype
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Figure 4.3: Scatter plot showing the relationship between predictedicoous phenotypic values by Bayesian
LCA and Bayesian IRT model. The continuous phenotypicisdibunded between 0 and 1, where 1 represented
a severe type of common migraine and 0 indicated no evidehceromon migraine. The straight line is the
predicted linear relationship between these two phenstypiée correlation between the phenotypic traits is
0.99

Genetic analysis The ACE model was fitted to the latent trait val@ef the Bayesian IRT model and
the converted continuous estimate derived from Bayesiaf (Efjuation[4.1), to estimate the heritability
of common migrainous headache. Although the trait valueivetd from the Bayesian LCA model are
preferable (as indicated by the smaller BIC value in Tab®,4here is little diference in the heritability

between the traits (component A of Table]4.6) due to the hayhetation in the phenotypic trait values
of the two models. The estimated heritability for both medel 0.37 (Cl: 0.34-0.40). The non-shared
environmental factor is the main contributor to the vaoatin the twin migraine status (62%, componé&nt

of Table[4.6). Interestingly, the common shared envirortmetwins has negligible fect on the variation
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of migraine “severity” (as measures by our latent trait nuees) between twin pairs.

Table 4.6: The parameters of ACE model estimated using Mx, where A isdni@tion due to genetic variation
and C is the variability due to environmentd#lext. In this analysis, sex is included as a covariate.

model BIC Component | Mean | Lower CI | Upper ClI
Bayesian A 0.3719| 0.3413 0.4017
LCA -48290.53 C 0.0000| 0.0000 0.0000

E 0.6281| 0.5983 0.6587
Bayesian A 0.3760| 0.3475 0.4037
IRT -39159.34 C 0.0000| 0.0000 0.0000

E 0.6240| 0.5963 0.6525

Figurel4.4 summarizes the results of linkage analysis usa@henotypic measures derived from Bayesian
LCA with four classes using MERLIN-qtl. The black solid lird Figure[4.# shows the LOD score of
the trait derived from the posterior mean of the model patarsaising Equation 4.1. Strong evidence for
linkage was observed at 7q31-g33 where LOD scores are het8& and 3.54. The highest LOD score
(3.54) was observed for marker D7S640 on Chromosome 7wetoby a nearby marker, GATA43C11
(LOD=3.33). Besides chromosome 7, there is some suggestiveneeiadéd linkage on chromosomes 1 and
2. The LOD scores for the area around marker ATA73A08 (15818 on chromosome 1 are between
2.14 and 2.23. Marker GATA194A05 on chromosome 2 also has B k€re above 2.0 (LOE2.04).
The next highest peak is on chromosome 8 at 86.314cM, with B kre of 1.85. Figure_4.5 presents
similar results for trait values derived from Bayesian IR¥ black solid line shows the LOD score for the
posterior mean trait. Linkage to the posterior means of BiayelRT indicates a maximum LOD score on
chromosome 7 at 136¢M. This coincides with the maximum LO®@es¢inking to the trait estimated using
the Bayesian LCA model. Similarly, the loci with the secomd #hird highest LOD scores in the Bayesian

LCA are also identified under the Bayesian IRT analysis [maAdA73A08 (LOD=2.2) and GATA194A05

(LOD=1.99)].
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Figure 4.4: Linkage plot of phenotype derived using Bayesian LCA.
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Figure 4.5: Linkage plot of phenotype derived using Bayesian IRT.
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4.5 Discussion

This chapter aimed to compare two latent variable modelegtiibing the phenotype of migraine and in-
vestigate the impact of model choice on the subsequentigemetlysis. Whereas the LCA model assumes
that the subject population comprises multiple distindigsoups or subtypes of migraine, the IRT model
assumes a single continuous latent value for each subjemth Models were fitted within the Bayesian
framework. Based on DIC, the LCA model with four classes fates a better fit to the data than the IRT
model, but the classes could be ordered in such a way tha thas a clear progression from minimum
symptoms (‘non-fiected’) in the first class through to nearly all symptoms (thest severe type of mi-
grainous headache) in the last class. Members of the fiented class in the Bayesian LCA model also
had the lowest latent trait values under the Bayesian IRTalhawmpared with other classes. The two
intermediate classesftir in the last five symptoms, which may be related to individeaction during the
headache episodes. An exception to the increasing progmesfssymptoms was the frequency of headache,
which was larger in class 2 than class 3. The importance sfs§tinptom as an indicator of the severity of

migraine has been questioned llﬂlm] in a Dutch cohort.

The characteristics of the classes identified using Bagdsi@A in this analysis are very similar to those
reported by 1], but quite fierent from those found 4] . The latter authors obsetlvatiexcept for
the items related to the severity of pain and sensitivitygbtland sound, the prevalence of other symptoms
was much lower in their least severe class compared with tigénfi here. Moreover, the fiierences we
observed here for classes 2 and 3 were not present in thairtcalith their classes 1 and 2 (corresponding

to our classes 2 and 3) both composed of individuals with lbysjeal reaction during the headaches.

A potential problem with the LCA model is that the classesidi®d via this method may be influenced
by the composition of the population or the method of sangpliactors which have nothing to do with the
aetiology of the disease. For instance, when the data areeted by individuals with moderate migrainous
headache and only a small proportion of subjects have tlegestype of headache, classes derived from LCA
may not represent feected” and “non-fiected” disease status. Therefore, as for all clusteringoajgpes,

the results of LCA need to be interpreted with a degree ofieawind ideally with reference to clinical
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criteria.

Although the IRT model fit less well with respect to the DIC asdess parsimonious than its LCA coun-
terpart in terms of the number of parameters, it provideslaatde insight into the relationship between
individual symptoms and the underlying latent value whihaet directly available in the LCA model. The
analysis of the Bayesian IRT revealed that the symptomatemiél’ is less important in prediction of mi-
graine status. This finding is supported by the Bayesian L&A low prevalence of this symptom in all
classes. This may be due to the participants’ understarafitigis item, or dificulty in remembering the
location of the pain during the time of the survey. Surpgginthe symptom ‘aura’ was reported to be the
second least correlated variable to the latent trait of thgeBian IRT model, yet this is the major symptom
used in the IHS criteria in separating subjects into two \guds, migraine with aura (MA) and migraine
without aura (MO). As much as LCA and IRT ardfdrent methods, these two models complement each
other and together provide a better investigation, inetgtion and explanation of these data than either can

provide by itself.

In our previous Work7], we found that the results of gemainalysis using traits derived from grade of

membership (GoM,
e

migraine symptom data. The current study demonstrateatftairth model, IRT, produces similar results

9]) are veryftikrent from those obtained using traits derived from LCA amty
clustering (Fanny, 3]). Based on information critefi&;A out-performed the GoM model for these
to LCA and therefore Fanny, leaving GoM as the odd methodfewtther research is suggested to confirm

whether the GoM model is suitable for data analyses suchoag tieported here.

Currently, linkage analysis is designed for either dichatas or continuous traits and multinomial traits
can only be analysed by introducing a threshold value or byesion. As an example of the form 12]
fitted migraine symptom data using LCA with four classesntheparated the subjects intdf&cted” and

“non-afected” based on the predicted allocation to the first two asttivo classes, respectively.

Here we employed a simple conversion function to converimth#inomial trait to a continuous measure.
This simple conversion included the clustering feature ©fl_as well as the uncertainty of belonging to

multiple classes. Without any other manipulation, thistowmous measure has a high correlation with the
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latent trait of the IRT model; therefore, with some confidgnthis converted value is representative of

migraine “severity”.

Indeed, more advanced methods could be considered for tiversion of the clustering output of LCA
to a continuous phenotypic trait. Factor mixture analy@l which provides a general framework for

combining LCA and factor analysis, is one such method.

As expected, the high correlation in the trait values of the nodels resulted in minimal dierences in the
results from genetic analyses. Interestingly, the halitalof both traits is 0.37, which is comparable to the
heritability estimated in an Australian cohort when theustdas determined by the IHS criterib?[= 0.34

];h?=0.36 m]], despite these values being derived from sukbiatly different data.

Analogous to the heritability results, linkage to the lateait values from the IRT model is also nearly
identical to that of the LCA continuous trait. There is sgavidence for linkage to chromosome 7q31-g33,
which has not been previously identified by other studiesaddition, marker ATA73A08 and GATA194A
on chromosomes 1 and 2 respectively are reported in othdiestuMarker ATA73A08 is close to the famil-
ial hemiplegic migraine (FHM)-implicated ATP1A2 gerg[@)] and GATA194A on chromosome 2 is
close to the SCN1A FHMS3 gene [62]. The other interesting $ddentified here is on chromosome 10g22.3.
Recent work by Hl] applied both LCA and TCA to Australian dndnish cohorts and successfully iden-

tified this locus linked to migraine.

Building upon our earlier work on the empirical clusteringnaigraine symptomatology, the results from
our Bayesian latent trait modeling indicate that migraigmgtom data may be modeled using a single
continuous variable representing severity of the dise@be. purpose of such quantitative measures is not
to diagnose migraine but to provide new research tools foetigsts. For example, as in other complex
diseases, the use of quantitative traits such as lipid satubyperlipidaemia or allergy-related phenotypes
in asthma provides an option for refined analysis. We theggoopose that the use of such continuous
measures, which directly reflect migraine severity, presid powerful and useful approach to identifying

genes contributing to migraine susceptibility.
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Chapter Summary

In the previous two chapters, the results show theint methods of phenotyping can result in either
similar or else very dierent findings in the subsequent analysis. To address thelject of this thesis,
the next step is to develop methods for reconciling the ptypeoestimated from flierent models. In this

chapter, we propose two new methods for achieving this goal.

The conventional approach when more than two models arefasptenotyping is to select a single model
using goodness of fit measures. From the previous two clsapter noted that even when models are
comparable in likelihood; some models are less preferredatheir complexity. Given the true phenotype
is unobservable, and thus validating the estimationdiiedit, it is unwise to choose one model. Moreover,
the choice of goodness of fit measure can be arbitrary andat#ba Therefore, instead of selecting a
model, we propose a method to average models. Furthermmafdhe methods proposed here can reflect

the model uncertainty in the subsequent analysis.

In addition, we propose a method to combine the model evatuatiteria by introducing an additional

parameter to capture the uncertainty associated with thezimnation to the marginal likelihood.

Chapter Conclusion

Using Bayesian model averaging as the foundation, we iot@dwo new methods for reconciling the phe-
notype estimated by theftierent models. LCA and GoM are again selected here for denadiost Because
the marginal distributions of the models are intractable,t@sted two dierent methods of approximating
the marginal likelihood within each proposed method. Théwds are then validated using simulated data,

and again using the migraine data.

Both methods show promising ability in integrating the pitgpes of diferent models by consolidating the
cores of the clusters commonly identified by models, as vealeflecting model uncertainty for individuals
at the borders of the clusters. We also noted that the prbfmsambining the model evaluation criteria has
shown promising results in overcoming the disputes aswatiaith the weighting of the models. Therefore,

the results to date indicate the value of the proposed msthod
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5.1 Abstract

Genetic research of diseases with complex etiology is hatley a lack of clear biomakers for pheno-
type ascertainment. The phenotypes for these diseasefieredentified on the basis of clinically defined
criteria; however such criteria may not be suitable for us@mding the genetic composition of the dis-
eases. DOferent statistical approaches have been proposed for pipendefinition; however the results
of our previous studies have shown thaffeliences in the phenotypes estimated jedent approaches
have substantial impact on the subsequent linkage analgsiead of obtaining results based upon a single
model, we proposed two new methods, using Bayesian modelgiag as the foundation, to overcome the
problems associated with defining phenotype classes. Bethads reconcile phenotypes obtained from
multiple models both within and across phenotype classificapproaches. We illustrate the methods us-
ing latent class analysis and grade of membership, and deratatheir application using simulated data
and real data on migraine. Our methods have shown promisitigydo consolidate the cores of clusters
and reflect model uncertainty by increasing the fuzzine$iseaboundaries of clusters. Thus, in subsequent
linkage analysis, loci which are stronglyfidirentiated at the cluster cores may have stronger LOD scores

under the combined model than under an individual model.

5.2 Introduction

An important goal of genetic research is to understand thposition and genetic architecture of a heritable
phenotype. Springboarding from the rapid reduction in th&t of genotyping and increases in computa-
tional ability, many studies have been published on thetifieation of diferent classes or subgroups of
individuals based on phenotype data. In humans alone, pia@lasses have been identified for diverse
problems ranging across food acceptance [elg. 68], soefaMviour [e.g. nicotine dependen 26], psy-
chological disorders [e.g schizophre109] and a widetaof diseases [e.29]. The results
of these analyses are often then subjected to genetic asalypically based on linkage methods, in order

to identify genes that are associated with, or cdfetentiate between, the phenotype classes.
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For many diseases without clear biomarkers, phenotypeglentified on the basis of clinically defined

criteria. While these criteria assist in clinical diagnost they may not be suitable for understanding the
genetic architecture of the disord87]. Thuffatient statistical methods for phenotype definition have
been proposed, including latent class anal@ [1§@mmembershimg], item response theory [75],

factor analysis [SGI;L‘)S], discriminant analysis A8l factor mixture analysis [188]. However, dif-
ferent approaches can result in the identification of dijglt sometimes substantially,ftkrent phenotype

classes, which can in turn result inffégrent linkage analysis resulgﬂ].

This problem can be addressed by either model selection delhaveraging. In model selection, one

chooses a single approach and, within this approach, aesingtlel, based on a criterion such as the Likeli-

hood Ratio (LR), Akaike Information Criterion (AIC), Bayias information criterion (BIC), Bayes Factor

(BF) or posterior predictive probabilitieiPPP). Howewenumber of researchers have recognised that this
21

1@@@ ,],Mhich can result in underestimation of the

practice ignores model uncertainm
uncertainty in the quantities of intereEJUS]. Furthereyahe choice of criterion for model selection is
often arbitrary and sometimes debatable; see, for exartimegliscussion on the validity of the DIC for

different models byO].

Bayesian model averaging (BMA) provides a coherent mesharfior accounting for model uncertainty
]. The idea of BMA is to average the posterior distribn of diferent models, where the weight
for each model depends on the posterior model probabili@l and @] have noted that the use of
performance. Various works haeen published on the methods of BMA

BMA can improve predictive
,21 . 1] provides a thorough ovewwid the history, implementation, challenges

and solutions for BMA. 0] also provides a summary of BMAthwlologies and lists corresponding

software for carrying out the analyses.

Although the use of BMA in genetic research is not as commanpaved with other areas of science,
some published papers have incorporated these ideas iysmsnalFor instance, ELS] applied BMA for
gene selection and classification of microarray d. [8§reded earlier research by incorporating iterative
BMA for survival analysis. The use of BMA has also been impteed in the study of phylogeneti 1' 15]

and genome-wide association studies for identifying sighseSNPs([90].
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We propose here two new methods to overcome the problemsiatesbwith defining phenotype classes.

Both methods allow for the integration of estimated phepesyobtained from multiple models both within
and across phenotype classification approaches. The twoagties used for illustration in this chapter are
latent class analysis (LCA) and grade of membership (GOM)hBf these are commonly implemented in
genetic research for deriving phenotypic traits prior tikéige or association studies, as described below.
This approach to integration is similar to the7*-open perspective” discussed [24] armﬂl]. Moreover,
the focus of the methods is not on prediction, but on paranssiEmation. The methods are demonstrated

using a real dataset on migraine and a simulated dataseh@it@om the Genetic Analysis Workshop 14

hos)

5.3 Methods

Let A denote a quantity of interest; in the area of genetic studigs is typically a phenotypic trait of

interest. Given a data sBx, the posterior distribution of is

S
P(AID) = " p(AIMs, D)p(MsID) (5.1)

s=1

where Mg is the models of all models considereds = 1,...,S. Using Bayes theorem, the probability of

Ms given data seD becomes

o(MyD) = —P(CIM9)P(Ms)

~ % p(DIM)p(M)) (5.2)

where

p(DIMy) = f D(DI6s, M) (0l M) s (5.3)

which is the marginal likelihood of modélis, 65 denotes the model parameters of moslahd p(D|Ms) is

the marginal likelihood. In the context of this chapter, asatibed in Section 5.4.8 = 2, M; is the LCA
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model andM, is the GOM model. Various methods have been proposed fonastic search of the model

spaceGEBﬂ and alternatives have been discussegpooximating the marginal likelihood where

o.142.5a.6a)

Let ¢is denote the phenotype of individuigbredicted by mode$ and letg; be the ‘model averaged’ pheno-

this is intractable

type for individuali, averaged over models.1.,S. In the first method considered here (Methodd)is

estimated as a weighted average of the posterior meafisisfestimated as

S

P(#iID) = > p(gisIMs, D) p(MdID) (5.4)
=1
which is then applied to the linkage analysis as the pherotyp contrast, the second method (Method
2) utilises all post burn-in samples, estimatgsat each iteration and takes a weighted average of these
estimates. At each iteration, the weighted averagas applied to the linkage analysis as the phenotype of
individual i. Let ¢}S be the predicted phenotype of individudly models at thetth iteration. The posterior

probability of¢l, is

P(ID) = ), P(¢}sIMs, D)p(Ms|D) (5.5)

S

where the posterior model probability is given by Equalich FHowever the marginal likelihood of model

sbecomes

POIM) = | P(DIGk, MM (5.6)
Given that the nature of genetic study of complex diseaséemsithical, the use of Method 2 propagates
the uncertainties acquired from the first stage of modeh{jtiinto the subsequent genetic analysis.

We selected two approximations to the marginal likelihoadda on the Laplace-Metropolis algorit163]
and the BF@Z]. Acknowledging the uncertainty of theserapimations, we extend the algorithm further
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to allow for the inclusion ofQ such approximations in the analysis by introducing an exargable cq,

g=1..,Q. The marginal likelihood is then

P(DIMs) o« > p(DIMs, Cq) p(Cq) (5.7)
q

and the posterior distribution becomes

2q P(DIMs, ¢g) p(Ms) p(cq)

Mg|D) o 5.8
PMIB) ¥.q P(DIM;. cq) p(M1) p(Cq) (5:8)

The Laplace-Metropolis algorithm is based on Laplace’srgsptic approximation
| eaOEIMND 2 £ (DI, M P IM (5.9)

whered is the dimension of the parameter veaipé* is the MAP value of theta and H* is minus the inverse
of the Hessian matrix which is evaluatedséat Due to the diiculties in analytical estimation @f, ]
suggests the use of the posterior simulation outputs tmatgithe quantities required for Equation 5.9, and
called it a Laplace-Metropolis algorithmm%] provideufanethods for estimating®, which are simple

to implement.

The BIC also uses the Taylor series expansion and the Laph&tieod for integrals to approximate the
marginal likelihood, but is a simplified version of the apgmation by ]. The main dierence between
the Laplace approximation and BIC is in the error of appration. This is discussed in details ilZ[l42].

The log marginal is approximated as the log likelihood miawusrrection,

d
log p(D|Ms) = log p(D|fs, Ms) — > logn (5.10)

wheren is the sample size. In our examples, the first term on the hight side is estimated using the

posterior mode aés.
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5.4 Examples

5.4.1 Data

Data 1: Genetic Analysis Workshop 14

The first study is a simulated dataset proposed for the GeAstalysis Workshop 15]. The aim of
the simulation was to reflect uncertaintyfffiulties and controversy associated with defining a pherotyp
for a hypothetical psychiatric condition, Kofendred Peddy Disorder (KPD; see Table 4 omeS]).
A complicated underlying genetic structure was constduéte KPD, with the involvement of four loci,
denoted as D1, D2, D3 and D4. These loci interact in compleysvi@ produce three fierent phenotypes
(P1, P2, P3) in which the symptoms of each sub phenotypeap@rigurd 5.11). The causal loci for each
phenotype strongly overlap. The interaction of D1 and D2iltesn P1; the combination of DZD3 and
D3+D4 results in P2, and the combination of £ED4 and D2-D3 results in P3. The disease related loci are
located on dierent parts of the genome: D1, D2, D3 and D4 are located onn@isomes 1, 4, 5 and 9

respectively. Further details of the exact location an@iogenetic parameters are shown in Tables 1, 2 and

3 of ].

The traits (symptoms) of each phenotype are also highlydhtengeable. P3 has all the traits (symptoms)
of P1 and P2; and P2 has nearly all the symptoms of P1. A fultrgg®n of each symptom is given in

Appendix(AZ2.

Four populations were generated in the original simulastardy in order to test theffiect of diferent
ascertainment schemes. One of the populations is includesl mamely Aipotu. The Aipotu families
are selected in the analysis when at least two of tfigpdng have any of the true phenotypes. There
are 100 replicates and each replicate contains 100 fanfdgsroximately 700 individuals). To avoid the

complications associated with small sample size, 20 rafgec were randomly selected to form a larger
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Phenotype 3

Figure 5.1: The overlapping of the traits for each of the true phenotypetters b, c, d, e, f, g and h correspond
to the symptoms listed in Table 4 of [105] (also in AppeHdiZA).

dataset.

The simulation contained other interesting elements, asaingle nucleotide polymorphism data and link-
age equilibrium. For the purpose of reflecting the real ldigad Dataset 2: migraine), only the microsatellite
data are considered here. On average, the microsatelliteersare 7.5 cM apart and there are 400 markers

available without missing data.

Data 2: Migraine

Migraine is a common, painful and debilitating disorderhaiairious researchers showing a strong genetic
component to the risk of this disord@@@@ @ % ]. The diagnosis of migraine is chal-
lenging due to a lack of biomarkers and overlapping symptaitts other neurological disorders. To date,
diagnosis of the disorder relies on classifying the sgibreed headache characteristics using International

Headache Society (IHS) criteria. According to IHS, there @avo major subtypes of migraine, migraine
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without aura (MQO) and migraine with aura (MA); symptoms oflealass are listed in Tables A.1 dndA.2

in Appendix[A.2.1. The early genetic research on migraineoiscentrated on either MA or MO, but no
genes have been convincingly replicated in follow-up ®sdiAs a consequence, various researchers have

guestioned the adequacy of defining the phenotype usingcsitetia BMH&?] and have advocated

instead the use of statistical methods for the identificatibclusters and classes based on the symptomatic

data for genetic research of this disor , 165].

However, our recent work has shown that whefiiedent statistical methods are used for identification of
phenotype classes, the results of the subsequent linkafyesandesigned to identify genes thaffeientiate

between these classes can be surprisindgtgdint [47].

Migraine data were obtained from an extensive semi-stradttelephone interview as part of a study de-
signed to assess physical, psychological and social nsaaiifens of alcoholism and related disord116]
at QIMR. The sample was unselected with regard to persorfahaty history of alcoholism or other psy-

chiatric or medical disorders [202]. The interview was aactéd during two periods of time, 1993-1995
and 1996-2000. The earlier interview was administered tstralian twins listed with the volunteer-based
Australian Twin Registry who were born between 1902 and 196H4e the second interview was focused

on twins born between 1964 and 1975.

Participants of both cohorts were first asked the screenugstipn: “Do you have recurrent attacks of
headaches?” If the participant screened positivesheewas then asked ten questions which were developed
by an experienced migraine researcher based on the IHSadiggeriteria. A total of 13062 individuals
from 6764 families participated in this study, with 2716 Miin pairs (63.6% females and 36.4% males),
3399 DZ twin pairs (34.52% female twins, 22.36% male twind 48.13% mixed sex twins), 15 twins with
unknown zygosity and 817 first degree family members, irinlgidboth siblings and parents. Within the

total of 13062 samples, 60 samples were devoid of respossegere excluded from the analysis.

The genotypic data were obtained from four smaller genornde-linkage studies performed at QIMR and
are available for 4148 individuals from 919 families. Gepirig for the four studies was carried out at four

different centers: Gemini Genomics, with 426 satellite markeéesjuana Therapeutics, with 519 markers;
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the Center for Mammalian Genetics at Marshfield Clinic Rege&oundation, with 776 markers; and the

University of Leiden, with 435 markers. Detailed descoption the DNA collection, genotyping methods

and data sorting are published i05] ar@ [54].

Graphic Representation of Relationships (GFHQ) [2] and F%EIRFE@,] were applied for the examination
of the pedigree structure and identification of inconsisites between the genotypic data and self-reported
pedigree relationships. Potential misspecification, lirext zygosity labelling of twins and sample mix-ups
were identified and corrected. A small number of cases withrg&could not be corrected, so were excluded
in further analysis. The SIB-PAIR version 0.99.9 program @] was then implemented for identifying

and cleaning Mendelian inconsistencies in the genotype dat

Markers from four sources were included on the genetic mathfocombined scan, separated by a small
distance of 0.001cM. Markers with genotypic data incorsisbetween dierent genome scans were ex-
cluded and unlikely genotypes were identified by MER [dHaomitted from further analysis. Potential
map errors were identified by GENEHUNT55] and MEND’,LSMap positions were in Kosambi
cM, which is estimated using locally weighted linear regies from the National Center for Biotechnol-
ogy Information (NCBI) Build 34.3 physical map positions, well as published deCODE and Marshfield
genetic map positionO]. Where the results suggestemhgistencies between genetic map distance and
recombination fraction, the primer sequences for all markethe region were BLASTed against the entire
human genome sequence (hitpww.ensembl.org, NCBI build 34.3). The genetic map was tieersed to
include the updated physical positions of all markers ingtablematic regions. The revised map and the
original genotype data were cleaned of unlikely genotysasguMERLIN and map errors were resolved us-
ing GENEHUNTER. More details on the collapsing of markelis i@]. The final genotypic data contains

information on 1770 unique markers.

5.4.2 Models and Settings

As discussed in Sectidn 5.2, in this study, we choose two comstatistical methods used in genetic re-

search for deriving phenotype classes, namely latent alealysis and grade of membership. Both of these
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models are considered in a Bayesian framework.

For LCA, following ll_BjJS], suppose that there aréndividuals and symptomsi(=1,...,n; j=1,...,J).
Let y;; denote a binary response of individualo symptomj, such thaty;; = 1 indicates that symptom
j is present in person Let K denote the total number of clusters. Then LCA is a mixture efriulli

distributions,

K K J
POV P) = D pcf(Yil0) = > o[ ] (k) (1 = i)™ (5.11)

k=1 k=1 j

wherepy is the weight of each compone, is a vector of responses of individuand i is the probability

of a positive response on variabjldéor a subject in clustek. Non-informative priors were adopted, namely

p«x ~ Dirichlet(1,...1)x; Axj ~ Betg1,1) (5.12)

Introducing an auxiliary (latent) variable = {z1, ..., zk} as an unobservable cluster indicator ygrand

using an MCMC approacS], the conditional posteriotritigtions of p anda are

P ~ Dirichlet(} 21+ 1,.. > 7k +1)
i | (5.13)
A ~ Beta(Z(zikyij) +1, Z(Zik - ZkYij) + 1)
i i

where

P Hf(/lkj)y‘i (1 - )t
S Zip H'j](/hj)yii (1 - ;)

z ~ multinomialdi1, ...0ik); Oik

For GoM, following @)], letgik be a latent variable of membership score, representingrdipility that
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individuali belongs to clustek. Constraining the number of levels of responses in symgttm?, GoM is

similar to a mixture of Bernoulli distributions,
Prvlv.o) =[] | {Z g v (- yk,-)“-y”’} (5.14)
i=1 j=1 Uk

wherey x is similar to Ay of the LCA model, and is the probability of having symptgrfor an individual

in clusterk. Similarly, the non-informative priors are used here,

gk ~ Dirichleti(1,...1); ykj ~ Betg1,1) (5.15)

We introduceJ categorical variables = (wi,...,w;) in which eachw; can take onK values from

{1,...,K}. The latent class is then definedas Q = {1,2,...,K}J.

A Gibbs sampler is again used to estimate the model parasreeed on the conditional posterior distribu-

tions,

gk ~ Dirichlet(} " wij1 +1,.. Y wij +1)
j J (5.16)
Ykj ~ Beta(Z(wijkyij) +1, Z((Uijk - wijkYij) + 1)
i i

where

{Qﬁ? Yﬁif (1- ij)(l_yij)}

]']=1 {ZI gi)|lij7’|yjIj (1- )’|j)(1_Yij)}

wij ~ muItinomia(Kijl,...,Kin); Kijk =

In light of the computational burden imposed by the large benof parameters in the GoM model, and in

order to maintain comparability of the two approaches, tmalver of phenotype clusters was restricted to
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two. The results of the pilot analysis showed that underrgggme both models tended to identify clusters

with extreme characteristics, that is a cluster of indiaiduwith all symptoms and a cluster of individuals
with limited to no symptoms. The cluster of individuals wéthsymptoms is then described as th&éated”

cluster.

Depending on individual research, the quantity of intecastbe either a binary variable indicating the status
of a patient, i.e. fiectednot afected, or a continuous variable representing the prolbabilian individual
having the disorder, considering all symptoms. From out @ggerience with migraine data, the choice of
representation has ndfect on the outcome of the linkage analysis, so here we choeskatter measure
as the quantity of interest. These are #fyeand gy, wherek is the dfected cluster, of the LCA and GoM

models respectively. Thus, the aim is to average thesevalress models.

The Laplace-Gibbs approximation to the marginal likelit@nd the DIC were used as model weights for
Method 1 and the BIC and posterior probability were used fodil 2. Given that the aim of the exam-
ples is to demonstrate the implementation of the proposedetspand given no information to support
an alternative decision, we gave equal prior probabilitedach model and each weighting measure. The
Laplace-Gibbs method is similar to the Laplace-Metropalproach described in Sectibn]5.3, but esti-
mates are derived from Gibbs rather than Metropolis-Hgstsamples. The Hessian matrices required for
both models are analytically derived (Appendix Al2.3)csinhese are almost singular, the Moore-Penrose
pseudo-inverse was apﬁjd to both matrigls [97]. Sinde madels have the form of a mixture, the DIC3

algorithm suggested b 3] was employed for estimatiornefdIC.

These model evaluation approacheediin their assumptions and approximations, their seiitgitio sam-
ple size and number of parameters, and their treatment oéhecodhplexity. For example, the DIC and BIC
impose (diferent) penalties for increased model complexity; wherbasltIC uses thefeective number
of parameters, the BIC uses the observed number of parameétecontrast, the marginal likelihood and
posterior probability approaches make no such adjustnientthe marginal likelihood can exhibit much

more extreme values for models when the sample size or nuohiparameters are large.

Given the familial pedigree and microsatellite data in theecstudy, QTL linkage was used to identify
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important marker2]. This identifies the linkage betwte markers and disease loci by regressing the

squared trait dferences of sib-pairs on identity-by-descent allele-sigarA sib-pair that shares more alleles
is expected to show a similarﬁhenotype, that is, a smalftardince in trait value. The linkage analysis was

carried out using MERLIN-qtL]1].

The algorithms were implemented using the4Cprogramming language. Three MCMC chains were gen-
erated for each method with 20,000 iterations. The firstd® €erations were treated as burn-in samples

and were removed from analysis.

5.4.3 Results
Simulated data- KPD

Considering that the KPD data was simulated with epista$écts, and given that QTL linkage analysis
aims to identify the dominance rather than epistafiscts, it is important to firstly evaluate the capability
of MERLIN to identify the actual loci. Figure 5.2 shows the D&cores of actual phenotypes for each of
the microsatellite markers across ten chromosomes. Thedlatashed and solid lines represent the LOD
scores of Phenotypes 1, 2 and 3, respectively. Except foMERLIN is able to clearly reveal the disease
loci of P1 and P2 with strong LOD scores. For P3, MERLIN is abl@entify three of the four major loci.
When Phenotypes 1, 2 and 3 are pooled to formfeteed class, MERLIN-qtl is able to clearly identify the
four actual major loci linking to KPD, as shown by the LOD sewin Figurd 513. Therefore, this result is

used for evaluating theffectiveness of the proposed methods.

Figure 5.4 shows the ability of LCA and GoM to identify truegpiotype classes. Based on two clusters, both
models show promise in identifying th&ected-like cluster using the important symptoms: the peeva

of KPD-related symptoms (symptonfisto h) is much higher in the féected cluster than the uffiected
clusters. Moreover, both models are also able to identéyntim-KPD related symptoms (those with minimal
difference between two clusters). Although there is a moderfiehce between the clusters for symptom

k in LCA and GoM, this is mainly due to data simulation inducihgs difference in the dataset (plot ¢ of
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LOD Scores of True phenotypes
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Figure 5.2: LOD scores of the actual phenotypes for each of the micrthisatearkers across ten chromosomes.
P1, P2 and P3 indicate the actual Phenotype 1, 2 and 3 dessdnilieection 5.4]1. The dotted line is the

LOD score of actual Phenotype 1 estimated using MERLIN#lj#;dashed-line is the LOD score of the actual
Phenotype 2 and the solid line is the LOD score of the Pheredyp

Figure[5.4). Although the clusters identified by GoM are mlaoenogeneous compared with LCA when

K = 2, the characteristics of LCA clusters actually reflect éhokthe true clusters.

Table 5.1: Estimated weights for each of the models usintedent approximations or fierent model selection
criterion. Depending on the criterion, venfi@rent weights are given to each model.

As forecast in Sectidn 5.4.2, the choice of model evaluatiethod results in very fiierent weights for each

of the models. This is clearly exhibited in Tablel5.1. Acdogdto Laplace-Gibbs and BIC, LCA completely

Method Weight LCA (%) | GoM (%)
Laplace-Gibbs ~ 100 ~0
Method 1 DIC ~ 0 ~ 100
BIC ~ 100 ~0
Method 2 Posterior Probability = 47 ~ 53




5.4. Examples 127

LOD Scores of subtype P1, P2 and P3 combined
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Figure 5.3: LOD scores of pooled phenotype. Four major loci are cleaétified by MERLIN; hence this is
used as a benchmark for comparing the results of proposdtnt

outperforms GoM. Conversely, when models are weightedguSilC, GoM is much more preferable than
its counterpart. The use of posterior probability on theeothand, gives nearly equal weight to the two

models.

Under Method 1, the kernel density of the phenotype averagess models using DIC and Laplace-Gibbs
weights has both the features of the kernel density of LCA @odl predictions (Figuré 515, the solid
line). As indicated in this figure, the density of the LCA piatbn peaks at 0 and 1 with small variances
at each peak. This reflects the mor&uke density of predictions under GoM compared with thoseeund
LCA. Moreover, the peaks of the average phenotype are dhiftehe right, which is resulted from the

discordance in the locations of spikes dfeient models.
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a) Posterior Mean LCA b) Posterior Mean GOM
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Figure 5.4: The characteristics of clusters derived fronffelient statistical models. Figur@sandb show
the prevalence of symptoms in the clusters estimated by L@i@oM; and Figure shows the symptoms
prevalence of true pooled phenotypes. The grey bars arehtiracteristics of the fected” cluster and the
black bars are the characteristics of the “fieeted” cluster.

When the input phenotype is the prediction averaged acrasels, the pattern of the LOD score across
the chromosome is similar to those obtained with the “pdopgnotype (Figuré5l6 vs Figure 5.3). Com-
paring these linkage results to those of LCA and GoM alore pttterns of the LOD scores are also fairly
consistent with the peaks located on chr 1, 3, 4 and 9. Thedistyprdance is in the magnitude of the LOD

score of peaks of chromosome 1 and 4.

Under Method 2, the phenotype of an individual is not a postingate, but a distribution. Because it is
impossible to show the densities of all individuals, we prashere the results for individuals with (i) all
symptoms, ii) True Phenotype 1, iii) True Phenotype 2, iW)eTPhenotype 3, v) with 50% of KPD related
and non-KPD symptoms, vi) 1 KPD and 1 non-KPD symptom, viip#@PD symptom and viii) with no

symptoms (Figure 517 and 5.8). As indicated in these figureshe individual level, the predicted pheno-
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Figure 5.5: Kernel density of the estimated phenotypes. The black sokdepresents the averaged phenotype
weighted according to Laplace-Gibbs and DIC; dashed artédibhes are the posterior mean of the phenotype
predicted by LCA and GoM.

types under LCA are concentrated at 0 or 1 with very littlearsce, even when an individual has a half
of KPD and a half of non-KPD related symptoms (second figun@wfl of Figure 5.B). Conversely, pre-
diction under GoM is more €use at the individual level. Therefore, averaging the mtedi phenotypes
across models reflects the same features, with the mode dt 8rmaf increased variance associated with the

modes.

Figure[5.9 shows the distribution of LOD score derived frorativbd 2 at the four major loci identified in
Figure[5.6. The LOD scores at these four loci on chromosom@s5land 9 are all normally distributed and

the mean and credible intervals for each locus are 22.921@M-24.54), 44.26 (Cl:42.23-46.39), 21.79



130 Chapter 5. Reconciling approaches through Bayesian metlaveraging

Lod Scores of combined, LCA and GoM predicted Phenoytpe
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Figure 5.6: LOD scores of each satellite marker foffdrent phenotypes. The solid line shows the LOD scores
when the predictions are averaged among models; the dasitedodted lines show the LOD score of the
phenotype predicted by LCA and GoM. The LOD score patterh@fiveraged phenotype is similar to the LOD
score of the pooled phenotype in Figlrel5.3.

(Cl:20.27-23.38) and 18.95 (Cl:17.53-20.39). Thus, theults show clearly strong linkage at these four

loci.

Real Data-Migraine

Table[5.2 lists the weights of each model for the migrain@ dat. \WWhen weighting the models using the
Laplace-Gibbs methods and DIC, the prediction of GoM is mugtter than that of LCA, with nearly 100%
of weighting placed on the former model. However, when théghteng is based on BIC, all weight is

placed on the prediction of LCA. The use of posterior proligbon the other hand, gives equal weight to



5.4. Examples 131

Averaged LCA ° GoM
o
o o <
58 2
-3 (=3 8
g3 g S
w o~
R e e B © T T T T T 1 CTFET T T T
0.70 0.80 0.90 1.00 0.99990 0.99994 0.99998 0.4 0.6 0.8 1.0
8 ]
g™ g
8o o
= ;'J_S o 8
w n
o o o
06 07 08 09 1.0 0.9970 0.9975 0.9980 02 04 06 08 1.0
o
o o
o
=359 [=}
g g =
w
o (=)
| I I B B R [ R N B T T 1T 1 1711
065 075 085 0.95 0.999960 0.999970  0.999980 0.3 0.5 0.7 0.9
o o o
58 8 g
5]
Z 23 g g
[T < o
o —
o o o
r 1 T T 1 T T T T T 1 | L N N |
0.75 0.85 0.95 0.9999990 0.9999996 05 06 0.7 08 09 1.0
Phenotype Phenotype Phenotype

Figure 5.7: Histograms showing the phenotype distribution of cases4, tehich are for individuals with i)
all symptoms, ii) True Phenotype 1, iii) True Phenotype 2,Tiwue Phenotype 3. The first column contains
the histograms of the averaged predicted phenotype; tlendeand the third columns contain histograms of
phenotypes predicted by LCA and GoM, respectively.

the predictions of both models.

As shown in Figuré¢ 5,30, under Method 1 the kernel densityhefdveraged phenotype clearly reflects a

merger of the features of both LCA and GoM phenotypes. Fi depicts the results of MERLIN-qtl
genomewide linkage analysis using the phenotype of MethddCA and GoM. Although these are not
large in absolute magnitude (less than 3), the LOD scoredl phanotypes have peaks at chromosomes
1, 2, 7, 8 and 10. Apart from these loci, the results of LCA amiMGre quite diferent. The LOD score
based on the LCA phenotype shows a potential linkage on absome 3, but the LOD score based on

the GoM phenotype at the same location is below 1. ConvergedyLOD scores of the GoM phenotype
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Figure 5.8: Histograms showing the phenotype distribution of cases& which are individuals with v) 50%

of KPD symptoms, vi) 1 KPD and 1 non-KPD related symptom, ndp-KPD related symptoms only and viii)
No symptoms. The first column shows the density for averapedtype; the second and the third columns are
the histograms of phenotypes of the predictions of LCA an¥@espectively.

show potential linkage at chromosome 5, but this is not stpgddy LCA. Generally, the LOD score of the
averaged phenotype is more closely allied with the LOD sobileCA than GoM. It is also interesting to
note that the LOD score of the averaged phenotype is muclehigan LCA or GoM alone on chromosomes

3,7 and 8.
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Figure 5.9: Histograms of the LOD scores for the four major peaks of FfiB, located on chromosomes 1,
3, 5 (on the border) and 9.

Table 5.2: The estimated weights for each of the models usifiigdint model selection criteria for the migraine

data set.
Method Weight LCA (%) | GoM (%)
Laplace-Gibbs =0 ~ 100
Method 1 DIC =0 ~ 100
BIC ~ 100 ~0
BIC =~ 100 ~0
Method 2| b cterior Probability| = 44 ~ 56

Given the sample size is over 13,000, it is impossible to stimwhistograms of phenotypes derived from
Method 2 for all individuals. Therefore, we selected thenatgpe distribution of individuals with i) all
symptoms, ii) 50% of symptoms, including unilateral, nauaad aura iii) only unilateral, nausea and aura,

iv) only having more than 5 headache episodes, each heatiested more than 4 hours and describe the
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Figure 5.10: Kernel density of the estimated phenotypes of the migraata dsing Method 1. The solid line is
the phenotype derived from Method 1; the dashed line is teaptype predicted only by LCA and the dotted
line represents the kernel density of predicted phenotyperthe GoM model.

headache as severe v) only having more than 5 headache ep@od each headache lasted more than 4
hours and vi) no symptoms (Figure 5.12). This figure refleety gimilar findings as for Method 1. The
phenotype estimated by LCA is more concentrated than thairesl under GoM. Except for individuals
with two symptoms, which have had more than 5 headache eggsanttl each headache lasted more than 4
hours, the prediction of LCA is often 0 or 1. In contrast, thepotype of GoM is more ffuse with some
uncertainty in the mode. Hence, under Method 2, the digtdbwf the averaged phenotype has a mode

near those of LCA and also incorporates the uncertaintyeof2oM results.

Under Method 2, the result of the linkage analysis is no lorggpoint estimator, but a distribution of the

LOD scores at markers accounting for the variance of theqtigpe, Figuré 5.113 shows the distribution of
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Figure 5.11: Results of MERLIN-qtl genomewide linkage analysis using pihenotype from Method 1, LCA
and GoM. The solid line is the LOD score of the phenotype @erivom Method 1; the dashed line is the LOD
score of the LCA phenotype and the dotted line is the LOD sobtee GoM phenotype. The dotted vertical
lines show the boundary of each chromosome.

the LOD scores at six major peaks (LQDL1.5) of Figure[5.1ll. Although the LOD scores of these loci are
not large (LOD< 3), they are still suggestive compared with the rest of tleeesc The loci with the highest
LOD score of 2.04 under Method 1 is at 86.314cM of chromosomérgler Method 2, this is in the upper
end of the distribution (plof of Figure[5.18); the mode of this loci is around 1.8. The oth&resting locus

is at chromosome 5 position 122.698cM. The results of Methadd LCA show little evidence of linkage
at this locus (LO 1), but the results of GoM show some suggestive linkage asdhee locus. The LOD
score of 1.6 is well above the credible interval of this lopist d of Figure[5.1B), therefore, the results of

Method 2 do not support potential linkage at this locus.
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Figure 5.12: Phenotype distributions for individual with i) all symptsmii) 50% of symptoms, including
unilateral, nausea and aura iii) only unilateral, nausebaama, iv) only having more than 5 headache episodes,
each headache lasted more than 4 hours and describe theheadaevere v) only having more than 5 headache
episodes and each headache lasted more than 4 hours andsyijnptoms. The first column contains the
phenotype derived under Method 2, and the second and thiudnos are the phenotype distributions under
LCA and GoM.

5.5 Discussion

The study of diseases with complex etiology demands a d&asrstically relevant definition of the pheno-
type prior to genetic analysis. Here we proposed two mutidel approaches and provided algorithms for
integrating phenotypes using Bayesian model averagingd@snaation. In the examples, we selected two
models which have in common a latent class framework, buwemedifferent in terms of parameter spaces
and identification of class membership (probability of Inglimg to phenotype clusters). Because of the sub-
stantial diferences in the number of parameters between the two modedsinust be taken with the choice

of model selection criteria. This is reflected in the weigtof the model predictions observed in both the
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Figure 5.13: Histograms of LOD scores of the six major peaks of Fidure]suitiich are position 156.364 on
chr1,188.703 on chr 2, 116.772 on chr 3, 122.698 on chr 54027/n chr 7 and 86.341 on chr 8.

simulated data and the real case study considered hereougjlththe GoM model had a larger likelihood,

the model was penalized heavily by the BIC criterion due ®wl#ige number of parameters. Conversely,
when using DIC for model selection, GoM strongly outperfethi CA. By proposing averaging over model

selection criteria as well as over models, the methods gexpin this chapter may potentially overcome
such conundrums, yielding moderate phenotypes that havatllities of phenotypes derived fronttdrent

models weighted by the posterior probability of the models.

A further advantage of model averaging is the consolidaditthe cores of the clusters commonly identified
under the dferent models and clearer reflection of the model uncertdéipincreasing the fuzziness at the
boundaries of the clusters. Consequently, individuald terbe more clearly well allocated if they are in the
core of a model-averaged cluster or more clearly poorlycalied if they are at a cluster periphery. Thus, in

the subsequent linkage analysis, loci which are strongherdintiated at the cluster cores may have stronger
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LOD scores under the combined model than under an indivichaalel. Method 2 has the same advantages

as Method 1, with the additional appeal of more completetpiiporating parameter uncertainty (as well as
model and model choice uncertainty) into the analysis. Egueantly, false-positives arising from variation

in the input phenotype may be reduced.

Of course, other approaches to combining the results ofgifpe and linkage analyses may be considered.
An example is running the linkage analyses for each of tharsép phenotype models and combining the
linkage results. In the case study, where the two models hasdy equal weight, this would result in a
simple averaging of the LOD scores at each loci. Under thighatk however, the LOD score of each locus
will necessarily lie within the range of the LOD scores obél under the individual models. While this
may be appealing in one sense, it can be argued that the catmobitof methods should allow for increased

inferential capability. As demonstrated here, this is filedy model averaging prior to linkage analysis.

In our examples, the maximum number of clusters was fixed éo ™his is often an ideal practice because
it ignores potential subclusters in the data. In the sintatiataset, the definite number of clusters is
four (three subtyfes of KPD and an (ifezted subtype), and from our previous work and other puidish

literature @

the dataset and models increase in complexity, LCA and Goyimoabe able to identify “real” clusters.

ELS], the optimum number of clusfer the migraine data is also four. However, as

Although the results are not shown here, we analysed the KR®wlithK = 4 using the LCA model.
Three clusters were identified (P1, P3, fieeted) but P2 did not correspond to the remaining clustes. It
also interesting to note that even when the true clusterslangifiable, the linkage analysis may not always
identify the important genes for each subtype (Fiduré 5@gnerally, if the phenotype is monotonic in
nature and if the linkage signal is genuine and strong, aihdhe results may not pin-point the relationship
between the loci and the subtypes, the loci involved in th@ession of all subtypes are identifiable even
whenK is set to two. Thereafter, an additional analysis may beiredto identify the relationship between
genes and subtype. A further challenge of implementing reaagaging methods for three or more clusters
is the compatibility of clusters found by féikrent models. More research is needed to develop a sound

method for K greater than 2.

Further research is also warranted into the impact fiédint model evaluation strategies when the mod-
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els are strongly contrasting with respect to number of patara. In this chapter, a number of common

approaches were considered. Other approaches may be npticakle, and other approximations to the
marginal Iikelihoodsgﬁlm%] may be investigatéde methods proposed in this chapter may be
more applicable when the number of parameters in the two Imade more comparable, for example, item

response theorEISS] and GoM or mixture models witlfiedent distributions.

There are other open questions about the methods propo#as @mapter, such as the choice of priors. The
Bayes factor has been shown to be sensitive to the choicea$ ]; thus it is important to validate
the prior distribution with sensitivity analysis. Moreayén the examples of this chapter, the subsequent
analysis is restricted to genome-wide linkage analysidempnted in MERLIN-qtl. The linkage analysis
by ] assumed that the markers are independent, so lditl &idetect an interactionfiect. Although
linkage analysis shows great success in mapping the genédeiiodelian disorders, to detect the finer
resolution of the putative risk susceptibility loci thrdulinkage analysis is only feasible with the availability
of large recombination events from large pedigrees. Thesethe feasibility of detecting variants with low
penetrance using linkage methods is question@ [274ihé&umore, the methods may also be suitable for

genetic association studies.
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Chapter Summary

The following three chapters attempt to address the secaid abjective of this thesis, which is to de-
velop and review methodologies for identifying the SNPsan8NP interactions associated with a disease
or phenotype. In these chapters, we develop both modetitzs® non-model based approaches for the

identification of potentially causal SNPs @odSNP interactions.

In this chapter, the aim is to explore the potential of usif@pgesian logistic model with variable selection
(SSVS) to identify associated SNPs or SNP interactions. &/eldp two models based on logistic regres-
sion and used SSVS as the method of dimension reduction. mEhenfbdel includes only the SNPs joint
effect, while the second model includes both SNPs joint andiptlicktive efects. We also explore use of
slice sampler to sample the posterior conditional distitioufor parameter estimation. The approach de-
scribed in this chapter is able to analyse a larger numbeN&s3at once than various previously published

methods.

Chapter Conclusion
The model for identifying the SNPs joinffect was tested using chromosome 6 of the diabetes data@dtbtain
from the WTCCC. We also tested the including both joint andtiplicative effects with smaller-scale data

obtained from GENICA.

Setting aside the drawbacks concerning its computatioreidgiency, the Bayesian logistic model with
SSVS proposed in this chapter demonstrate the capabiligeotifying a group of SNPs that contribute to
the genetic causes of disease status through joint andptiadtive dfects. In the WTCCC data, only less
than 25 SNPs are found to be informative and the majority eefSNPs are within the major histocompat-
ibility complex (MHC) region, which has been previously diéied for its association with Type | diabetes.
The model also identified some novel SNPs with very strongadggof association. Although these SNPs
have not previously been found, there is a possibility thatefect of these SNPs can only be highlighted

by the presence of the SNPs of the MHC region.

The second model also demonstrated the potential for fglergithe SNP interactionfiects for a candidate
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gene study. The same SNP interaction is also identified s @iblished studies.

The advantage of the logistic model is that tiffteet of SNPs genotype or a SNP genotype combinations can
be quantified, hence tone can potentially quantify the ridkawing the disease in a given genotype/and

genotype combination.
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6.1 Abstract

Genome-wide association studies are rapidly becomingetitiig technique for understanding the genetic
architecture of complex diseases. One of the challenges fagcthese studies is the identification of disease-
related loci in data containing a large number of SNP gerastypr a relatively small number of individuals.
The most predominant approach is to fit SNP-by-SNP logistizassion models, but this approach lacks
the ability to detect epistaticfiects, which are often present in complex genetic diseasepoténtially
superior approach is to simultaneously estimate the mairirdaraction &ects associated with a disease,
for all markers. Within this paradigm, the problem becom®s af regression with variable selection, which
is well handled using established Bayesian techniqueshisnchapter, we apply such an approach to this
problem. We demonstrate the maiieet model with WTCCC data for Type 1 Diabetes and the two-way

gene interaction model using a dataset on sporadic breasticdata (GENICA).

6.2 Introduction

Genome-wide association studies (GWASs) aim to identifyifiamong a large number of marker loci drawn
from across the genome, those markers that are in linkageulgrium with a locus associated with
some disease or phenotype. Due to increasing knowledgenminon variations in the human genome,
advancements in genotyping technologies and in partichtareduction in the cost of gene chips, GWAs
have become more prevalent. The current challenge facedNASGs to find an adequate andfieient

statistical method for analyzing large Single NucleotiddyPhorphism (SNP) datasets.

The first and still most common approach for the analysis oXS\Ata is to test markers individually using
2-by-2 contingency tables with?-statistics or simple regressi48], for dichotomoud aontinuous
traits respectively, then adjust for multiple hypothes&ihg using Bonferroni correction or False Discovery
Rate (FDR) (Crohn’s diseas&69]; Type 2 diabe [259%¢cent work by3] also adopted the SNP-by-
SNP framework, but instead fitted a logistic model for eachkeraand applied Bayes Factors as a variable

selection tool. @9] adopted a similar model, but impletadrforward variable selection for the Type
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| Diabetes data set. Furthermor 76] fitted a classioalali regression model for individual markers

to find the associations between SNPs and obesity. Questanesbeen raised about these single maker
allelic tests. One diiculty with the analysis of individual SNPs is the problem afltiple testing. Although
adjustments such as those described above may be adoptitieéssathis problem, it has been arthgzzn]
that multiple testing is not strictly relevant in this coxttanyway Els], it is neverthelessfhcult to find an
optimal balance between the probabilities of type | and typeror. Another criticism of SNP-by-SNP tests
is their inability to detect epistatidtects, that is, gene-gene interactidteets, which can be manifested in
o

multiple ways

Consequently, several groups have proposed approachisdiog epistatic &ects in whole genome data.
] proposed using a two-stage analysis scheme. Thitvewaelecting a subset of SNPs from the whole
genome, then modeling the interactions among these maakdrsetween marker and traiD[98] employed
the same configuration to analyze markers associated vathmratoid arthritis. Computationally, these two-
stage approaches are relativeffi@ent, but they can easily miss epistatic interactions betwgenes which
have no main fect. In other words, for the genes to be tested for the iniergdhey have to be selected at

the first stage of analysiQSG].

Recent developments in GWA analysis methodologies havweséaton non-parametric approaches, such as

the combinatorial partitioning method (CPM, Triglycerigeels [207]), multifactorial dimension reduction
(MDR, sporadic breast canc31]; type 2 diabetes msllitt8]; multiple sclerosisBl]) and random
forests (RF, HDL and triglycerides glucoQ[%] and ast@)[ These methods have proved to be rela-

tively efficient at finding the genes associated with the trait from thela&ggenome.

An alternative potentially superior approach is to regthedrait or disease status against all SNPs simulta-
neously with an fective variable selection algorithm. Excellent methodslie variable selection problem
have been developed within a Bayesian context. The issueultiple comparisons is also handled sim-
ply and dfectively in a Bayesian conte25]m%] introduced maskekection via an assignment of prior
probabilities to the various models, and subsequent upglafithose probabilities in accordance with Bayes

rule.
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The model proposed in this chapter is able to detect bothdHéize and the multiplicative féects. The

variable selection adopted in our model is more allied \A@]{Which introduced the use of a latent variable
for the identification of promising subsets of variable@][give a detailed overview and comparison of

different approaches of Bayesian variable selection.

The use of a Bayesian regression for identifying important is not novel. The recent paper bELzZ]
identified subsets of important SNPs using Bayesian indpiemalized maximum likelihood. They assigned
a sharp prior mode at zero to the regressiorfii@ents and SNPs with non-zero ¢beients estimates were
said to have some signal of association. Apart from this,treteglies to date is focused on the analysis
of QTL data @@99} The model @[ZQﬁ]svinitially developed for detecting
single locus #&ects simultaneously, and is later developed for detectpigtasis &ects ]. In ],
the empirical Bayes approach is implemented to estimatetgeapistasis féects without using variable

selection, and the relative importance @eets is based on the ratio of variances.

In contrast, our model is more closed aIIied299], but method difers in a number of aspects. Firstly,
@] partition the genome into fixed number of loci and assuhat the QTL occurs at one of these sites.
This partitioning is required to be specified prior to thelgsia. In contrast, the SNPs data can be directly
utilized in our model and the number of potential causal is@stimated directly from the dataset without
boundaries. Second, because the model@ [299] is for a Qidy,st design matrix can be employed;

although this is an ideal approach, it is not feasible forydaijon studies.

In this chapter, we introduce two Bayesian models, the fastcbntinuous traits and the second for di-
chotomous traits. These models are initially describedhéncontext of main ffects only and then further

extended for the detection of gene-gene interactitects.
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6.3 Methods

6.3.1 Main dfect models

Continuous trait model Lety; be the observed value or realization of the dependent Var{abntinuous
trait) for individuali,i = 1,...,n. We modely; as in Equatioh 6]1 below: dependent on a constant ggrom

Ne continuous-valued covariateg discrete-valued covariates, and umtoSNPs. Let thejth continuous-
valued covariate for individual be x;i. For each continuous-valued covariate, we introduce assgn
paramete;. For the jth discrete-valued covariate, let be the number of levels and Igj; be 1 if the
covariate has levek for individual i and O otherwise, fok = 1,...,L;. For each discrete-valued covariate
and each level of that covariate we introduce a regressicampeterwic. Let zs be an indicator variable
for SNP s, taking the value 1 or 0 depending on whether S&NB included in the model or not. Lef

be an indicator variable taking the value 1 or O depending batler individuali has genotypé (where

I =0,1,2) at SNPsor not. Letvg be the contribution to the dependent variable made by gpabigt SNP

S. Letgj be arandom error.

Ne ng L Ns 2
Yi Z#i+Z,3inj +Zzwjkhjki+ZZSZVsIgin+3i (6.1)
j=1 s=1 0

=1 k=1 I=

Because the SNPs are categorical variable, we arbitragdiga the valuey = 0 for all SNPss.

Case-Control Model (Logistic Model) For case-control datg, is the presengabsence of the phenotypic
trait, and takes the value 1 when the phenotype is preseetQelThe model proposed in Equation 6.1 can be
simply maodified by introducing a logit link function, thieg(lf—iqi) wheregq; is the probability that individual

i has the trait of interest. Then Equatlon]6.1 follows with $aene notation for the model parameters.

Prior Distributions  As part of the Bayesian approach, a prior distribution isinegl for each of the model

parameters. In our two-case studies, no prior informatsoavailable, therefore noninformative priors are
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considered here. Moreover, because the indicator var@gldle= (z, ..., z,;) is not directly observed, we

adopted a hierarchical approach. Details on the priors insaar case studies are described in the examples.

Parameter Estimation Model parameters are estimated using Markov Chain MontéoCahe Gibbs
Sampler involves sampling from one-dimensional condéidatistributions given other parameters and this
is used for the estimation of all variables with one excaptidhich we discuss below. Except fas, all
other parameters possess non-standard conditionalbdisbns; thus we used the slice sameZOS] to

draw from these.

Instead of sampling from the distribution function, theslsampler samples from the area under the density
function. Despite the complexity of using the slice samdermultivariate distributions, it is relatively
simple to implement for updating a single variable. ketenote a model parameter argland x; be the
current and new values of respectively. The procedure for updatirgnvolves three steps. First, draw

a real valuey uniformly from (Q, f(x)), wheref(X) is some function which the density afis proportional

to, and consider the horizonal “slic& = {x : y < f(x)}. Next, establish an interval,= (L, R), aroundxg
which contains this slice. A new value is then drawn unifgrifinbm the interval, and becomes if it is

within S, else it is iteratively redrawn.

For simplicity, we used an initial interval oF(00Q 1000) and used the shrinkage proced@[ZOS] for

sampling from the interval.

The estimation procedure fag is described in the following.

Variable Selection Variable selection is an important element of the new moaeisch utilize the variable
inclusion indicator %) to determine the importance of SN2 At each MCMC iteration, the value of
Zs depends on the ratio of the conditional posterior prob@dsliof including and excluding SNB At
the first iteration, start with a randomly generated vectolength ng, comprising 0's and 1's, denoted
2 =(2d,....74,). Lett denote the MCMC iteratiort,= 1,..., T, whereT is the total number of iterations.
Let ®! be a vector containing all parameters other thahiterationt. At eacht, SNPsis randomly selected

from all SNPs ands is updated as follows
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1. Estimate the conditional posterior probability with= 21, P(Z7 164, Y, z_g).

2. Estimate the conditional posterior probability with tenplementary value,

P(Z/0.Y,z¢), Z, = 1 - £
3. Determine the ratio of the values computed in Step 2 and 1.

4. Accept the proposed] if the value of Step 2 is greater than a value randomly geeefabm a uniform

distribution with minimum 0 and maximum 1; else retain'.

After SNP s is updated, the procedure is repeated for another SNP dramdomly from the remaining
SNPs. This continues until all SNPs are updated. The prbtyathiat SNPsis associated with the trait of
interest is then estimated as the number of times SiHncluded in the model over the total number of

iterations after burn-in.

Example 1. Case-Control of Type | diabetes We tested the performance of the proposed model using a
Type | diabetes (TID) data set. The data were obtained fraWhllcome Trust Case Control consortium
(WTCCC, httpf/www.wtccc.org.uk). In their study, the WTCCC collected @@Qcases and 3000 shared

controls for 7 diferent familial diseases. Here we focus on Type | diabetes.

Individuals involved in this study are self-identified wdEuropeans who live in Great Britain. The controls
are recruited from two sources: 1500 are from the 1958 Briisth Cohort and the remaining are blood

donors recruited for the WTCCC project.

TID cases are recruited from three sources. The first is frppraximately 8000 individuals who attend
the paediatric and adult diabetes clinics of 150 NationadltheService Hospitals across mainland UK.
The second source of cases is voluntary members of theB8tgiety for Paediatric Endocrinology and
Diabetes. The rest are from the peripatetic nurses employe¢de JDRPNT GRID project (http/www-

gene.cimr.cam.ac.ytiodd).

Diagnosis of the TID cases is based on the participants’ Adegnosis and their insulin dependency. The

cases of the TID study are required to be diagnosed with TIBgatless than 17 and have been insulin
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dependent for more than six months. Individuals with ottemfis of diabetes, such as maturity onset

diabetes of the young, are excluded from the data set.

Both cases and controls were genotyped with the GeneChikk B@{pping array (Atymetrix Chip) with
500,568 SNPs. After filtration, there was a total of 469,5BIPS. Details on the WTCCC experimental

design, data collection, data filtration and more ar1273

The i reviously published results of single locus analysiticated strong signal association of Chromosome

6 [273], in light of this, we used only the SNPs data on Chramnus 6 for this study.

In addition to the filtration methods and exclusion genosyEommended b3], we set CHIAMO calls
with a score less than 0.9 to missing and removed all SNPsowm#tor more missing values to speed up the

computation time. This leads to a total of 26,291 SNPs in tiedata.

As only the genotype information is presented in the datéhsestobtained, the logistic regression model is

simply:

Ns

2
) =u+ ZSZ VslGsli + &i (6.2)
: s=1  1=0

Qi
mql_

wherei = 1,...,4857 ands=1,...,26291 and we arbitrarily assigneg = 0.

Non-informative priors are used for this model as followkeprior probability distributions for both overall
mean (i) and the contribution of levdlof SNP s are assumed to be normally distributed with mean 0 and
precision 1. The prior distribution for the residual,is assumed to be a normal distribution with mean
0 and precisiorr, and the prior forr is assumed to be a gamma distribution, with parameters €205

(e = B = 0.05). Forzs, we adopted a hierarchical approach, and let the probabilétzs = 1 be p,, where

p; is a hyperparameter. We assumed the prior probabilitg fidllows a Bernoulli distribution.

Five independent MCMC chains were generated with 100,@@atibns each. The first 50,000 iterations
of each were considered as burn-in and the remaining weractsdl for building the posterior marginal

distributions. The algorithm was implemented in C.
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6.3.2 Main dfects and interactions

The model introduced in Equatién 6.1 includes the mdiaats only. This can be extended for detecting
SNP interaction ffects as follows. Using the same notation as beforeyjiebe the indicator parameter,
nik = 1 if the interaction of SNP$ andk is included in the model, else 0 and {gt«, be the coéicient of
the interaction between the genotylp®ef SNP j and the genotypk of SNPk (I; = 0,1,2; 1k = 0,1,2 and

j # K). Then the model with two-way interactions is as follows:

n
Yi=u+ Z,Bjxu + Zdzlekhjh

j=1 k=1

Z A Z vsisii + Z Z ik Z Z Viljkiiljkid + &

j=1 k=Tj#k  [;=01,=0

(6.3)

This model can be extended in an obvious manner to includd-may interactions. By introducing a logit

link function, this model can be implemented for the casetwd study.

Typically, when an interactionfiect and the two corresponding maiffieets are included in a model, then
the number of levels for the interaction is;(— 1)(n, — 1), wheren; andn, are the number of levels for
each of the mainféects (the maximum number of level is nine). However, here swelthosen to include
Ny X np — 1 levels for the interaction, because one or both of the midiacts may not be included in the

model (that iszz = 0 andlor z, = 0).

Parameters of this model are estimated following the sammeedure as described earlier. The combination
of Gibbs and Slice samplers was implemented for sampling filoe conditional posterior distributions.

Likewise, variable;jx was updated following the same procedure agfor
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Example 1. GENICA

We illustrate this expanded model using the GENICA data A#hough factors such as smoking history,
family history of breast cancer and menopausal status wlexted in the GENICA study, these variables

were not available at the time of our study.

GENICA is an interdisciplinary study group on Gene ENvir@mtal Interaction and breast CAncer in
Germany, with its main focus on the identification of both gf@mand environmentalfiects on sporadic

breast cancer. The data were collected between August 2@DQetober 2002 on incident breast cancer
cases and population-based controls in the Bonn region rm&wg. Among the cases, 688 were first-
time diagnoses of primary breast cancer, and were latarlbggtally confirmed. There were 724 controls,

matched within 5-year age classes. Samples contain onlgaSeun females younger than 80 years old.

Each SNP genotype can take one of three forms: homozygoeienet genotype, heterozygous variant
genotype and homozygous variant genotype. The homozygberence genotype is taken to be the geno-
type which has both alleles being the most frequent variditite heterozygous variant genotype occurs
when one of the base pairs is more frequent while the other Isakess frequent, and the homozygous

variant genotype is when both members of the pair are legadra.

Not all genotype data are used in this study. The subset oESNiEh are related to estrogen, DNA repair or
control of cell cycle pathway are tested here, with a tot@3®ENPs. From a total of 1234 females, including
609 cases and 625 controls, individuals with more than 3tgpes missing were excluded from the analysis.
The final data therefore included 1199 women and was compaisgf2 cases and 607 controls. Other
missing genotypes were imJ:)]uted using kheearest neighbor meth46]. Details of data collectind

genotyping procedure are i 39].

Let 6 denote the parameter space. The parameters for the GENli@Aadathus

0 =A{Zs, vsh,jlkiy » T}

wheres, j, k= 1,..39,1,1j,1x = 1, 2, 3 andzs andn  are independent. The priors for model parameters were
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similar to the ones used in Example 1, as follows

e ~ N(0,7); u~ N(O, 1); 7 ~ Ga(0.01,0.01);

vsYiki ~ N(0,10);  zs~ Bern(p,);  njk ~ Bern(py)

Ten MCMC chains were generated with 300,000 iterations.e@tlhese, the first 250,000 iterations were
considered burn-in, and the remaining 50,000 cases weractad for the construction of the marginal

posterior distribution 0. The computational algorithm was implemented in C.

6.4 Results

6.4.1 WTCCC-Type | diabetes

The results of the MCMC runs for the WTCCC Type | diabetes thatiwated multiple modes in the posterior
distribution. No prominent model was identified across &k fthains. At each MCMC run, there are at
least 13000 unique models were tested, with the most comnuatels occupying only 1.25% to 4.5% of
the post burn-in iterations. These models identified 17 t8148s of the total 26291 SNPs, with some SNPs
commonly found among all models (Talple]6.1). These includ®s$1576 (rs10901001), 4073 (rs874448),
4887 (rs950877) and 6222 (rs9272723). Five additionalnshaiere generated using SNPs listed in Table
[6.1. The posterior log-likelihood was well-mixed after 080 iterations and with log-likelihood value

between -2012 and -2052.

Although all SNPs on chromosome 6 had the opportunity toréhéemodel at each of the MCMC iterations

in the analysis, more than half (51%) of the SNPs were notsaldn any of the 250,000 iterations (50,000
iterations, 5 chains). In contrast, 4% of SNPs (1143 SNPs¢ weluded at least once in the iterations of
all five chains. Of these 1143 SNPs, all five chains selected 8576 (rs10901001) and 4073 (rs874448)
in nearly all iterations §7%), followed by SNP 4887 (rs950877, 76%), which is alsduided in the five

optimal models.
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The results of the MCMC runs also identified a group of SNP& Wighly variant probability of inclusion

across the chains. For instance, SNP 6051(rs3131631) ghgiobability of inclusion for chains 1, 3 and
4, but was selected in less than 1% of iterations in chainsd25anThis indicated the inclusion of a SNP
from this group depends on other SNPs already present indldelrduring the variable selection procedure.
This was also observed for SNPs 6232 (rs9275418) and 62236523). SNP 6232 was selected in nearly
100% of iterations for chains 1, 2 and 4, but was not selededtfains 3 and 5; in contrast, SNP 6232 was
included nearly in all iterations for chains 3 and 5, but wegen included for chains 1, 2 and 4. Since these

two SNPs are physically nearby, they may be in linkage didiegum.
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Figure 6.1: The contribution of individual SNPs on chromosome 6 to TlDoas five chains

Figure[6.1 shows the ranking of SNPs across Chromosome Géddive chains. The first two peaks cor-
respond to SNPs 1576 and 4073. This figure also shows a stssogiation with TID on a region of the

shorter arm of Chromosome 6 which is the major histocomiligilcomplexity (MHC) region (SNP 5802
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to SNP 6358).
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Figure 6.2: The quantified genotype typéect at SNPs selected by model 4. The x-axis shows the SNP ID and
its genotype, where L1 is homozygosity reference and L2tisrbeygosity.

Another advantage of the model proposed here is the ideitific of the &ect of genotype on the phe-
notype. For instance, Figute 6.2 shows the marginal digidb of the contribution to TID made by the
genotype at each SNP in the model identified by chain 4 (Taflle lBere, the homozygous variant genotype
is set to zero. The figure shows that individuals with homozggreference genotype at SNPs 1576 and
4073 are likely to have a higher chance of being TID posithentindividuals with homozygous variant
or heterozygous genotypes at the same SNPs. In contragihertghance of being TID is observed for
individuals with heterozygous variants at SNP 4887 thaividdals with homozygous variants (both ho-
mozygous reference and homozygous variants). This paifegenotype contribution is observed among

all the models identified by all chains.
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Table 6.1: SNPs included in the most common models from each of the fia@ash

Chain | No SNPs SNPs ID
1 20 1576 4073 4887, 5587, 5638, 5663919, 5969, 6051, 6110
6122,6158, 6195, 6205, 6211, 6217, 6221, 6222, 623920
2 18 1112,1576 4073 4887 5545, 56615957, 6025, 6073, 6087
6156, 6157, 6180, 6217, 6221, 6222, 6228, 6232
3 24 1112,1576 4073 48875447,5577, 5587, 5588802, 5947

6051, 6110, 6156, 6160,6172,6174,6177,6180, 6217, 6221,
6222,62338169, 21883

4 17 1576 4073 4887, 5566,5919, 5969, 6051, 6117, 6179, 6189,
6214, 6222, 6225, 6232, 6382, 6326289
5 23 1576 3302,4073 48875553, 55715932, 6025, 6043, 6121

6149, 6154, 6173, 6180, 6191, 6205, 6219, 6227, 622397,
17510, 22015, 24454

* The reference of the SNP id is supplied in Apperidix]A.3
* SNPs inBold are the common SNPs identified across chains
* SNPs inltalic are the SNPs from the major histocompatibility complexoagi

6.4.2 Genica

As in the previous case study, the results of the MCMC runshierGENICA breast cancer data indicated
that the posterior distribution has multiple modes. Tab&i6ts the most frequently selected model in each
of the ten MCMC chains. These models were selected in eadh @iraat least 61% of the 50,000 post
burn-in iterations. Of the ten chains, six converged to #aes model (chains 2, 4, 5, 8, 9 and 10), which
contains only two SNPs - SNP 20 and 21 - and both are fitted as efacts. In contrast, the remaining

four models indicated the presence of interactifinas.

SNP 20 is the most prominent maiffext and is observed in all models (Tablel6.2). In contras® 3N

is included in a model as either a main or an interactifftece. When SNP 21 is selected as an interaction
effect, it interacts with a dierent SNP in dferent models. For instance, SNP 21 interacts with only SNP 23
in model 1. Besides these two SNPs, other possible SNPs tnddtions are also identified as indicated in

Table[6.2.

The estimated cdkicient of SNP 20 is fairly consistent across models and rabgéseen -1.17 and -1.12
for the homozygous reference variants (level 0) and betw@&7 and -0.52 for the heterozygous genotype
variants (level 1). This indicates that individuals with@topzygous variant genotype (level 2) at SNP 20

associated with a higher chance of having breast cancéowid by individuals having a heterozygous
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variant genotype (level 1) and homozygous reference varigevel 0) at SNP20. In two of the models

(model 2 and 5), SNP 21 is included as a mafiee and the posterior estimates of the fo&nt for

genotype variants are also consistent for both models. ©H&aents indicate that having homozygous
reference variants at SNP 21 is associated with a higherapiiily of breast cancer than the other two
genotype variants. However, these two SNPs needed to beletets conjointly to estimate the probability

of sporadic breast cancer (Model 2).

Considering SNPs 20 and 21 as additiieets, the highest chance of a sporadic breast cancer ochers w
individuals have homozygous genotype variant (level 2) P20 and homozygous reference genotype
variant (level 0) at SNP21, with an odds ratio of 4.17 (Cl:326667) compared to individuals with homozy-
gous genotype variants (level 2) at both SNP 20 and 21. Thehigxest probability occurs for individuals
with heterozygous genotype variants (level 1) and homozygeference variant (level 0) at SNPs 20 and
21 respectively; these individuals have an odds ratio of PG3: 1.01-5.58). The lowest chance of sporadic
breast cancer is for subjects with homozygous referengantarat SNP 20 and homozygous variants (level

2) at SNP 21.

In other models, where SNP 21 is selected as a part of andtitaragfect, the &ect of genotype variants
at this SNP becomes more complicated. Fiduré 6.3 shows thiermmr mean and credible intervals of
the interaction terms of models 1, 3 and 4, which all invo\¢PS21. In model 1, SNP 21 contributed
to the probability of breast cancer by associating with SI8Pa@d the genotype variants of SNP 21 in
this combination are quite fllerent from the genotype variants of SNP 21 combinations idetso3 and 4

(SNP2XxSNP6, SNP2X¥SNP14, respectively), but some similarities are found inet® 3 and 4.

Table 6.2: Unique models of ten chains

Model Parameters Chains Frequency(%)

1 u, SNP20, SNP 22SNP 23, 1 61.4
SNP 3xSNP28, SNPASNP28

2 1, SNP20, SNP 21 2,4,5,8,9,10f 88.6-93.1

3 1, SNP20, SNP §SNP 21 3 90.5

4 u, SNP20, SNP 14SNP 21, 6 89.5
SNPZSNP14, SNP8SNP14

5 u, SNP20, SNP 21, 7 68.6

SNP &SNP 37, SNPESNP37, SNPASNP37
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Figure 6.3: Codficients of interaction terms with SNP 21 with credible intdsv

6.5 Discussion

The aim of this chapter is to introduce a simple approach toAGWhalysis which is an alternative to the
current single locus analysis. This is achieved by considea regression model with multiple SNPs, and
interactions, attaching to each SNP an indicator variabpgasenting inclusion in or exclusion from the
model and performing variable selection by estimatingehedicator variables. Estimation was undertaken
using a novel algorithm. The model is capable of identifyangroup of SNPs that contributed to the genetic
causes of the diseases status through additive or intemaefiects. The approach is demonstrated and

evaluated using two substantive, real SNP datasets.

The results of the WTCCC analysis illustrated the abilityoaf model to search for main additivéfects
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in a relatively large data set. The model indicated that nibae 50% of SNPs on Chromosome 6 do

not contribute substantively to the determination of theritype and only less than 4% of SNPs on this
chromosome are strongly informative. Of these, 17 to 24 Shéte selected to best describe the genetic
association with Type | diabetes. All four MCMC chains idéatl the three SNPs, rs10901001, rs874448
and rs950877, which are outside the major histocompajisibmplex (MHC) region, and 12 to 13 SNPs
from the MHC region. The three SNPs that are outside the MH@neall show a strong signal of associa-
tion with TID. These are novel SNPs which have not been ifledtby other studies. In contrast, the MHC
region is known to associated with a large number of infestiand autoimmune diseases [58]. The asso-
ciation between this region and TID has also been previqushjished ] and is successfully replicated

in our study.

We repeated the analysis of WTCCC data using the common SISRIBysearch algorithm. As we expected
that the SNP by SNP search algorithm identified strong assogisignal at the MHC region, however, three
novel SNPs identified by our models (rs10901001, rs874448rs960877) have little association to TID

when tested in this manner. The unadjusted p-values foe ttheee SNPs are 10 the power of -6, -12 and
-5, respectively. It is possible that these SNPs can not teetal in isolations, but interact with SNPs on

the MHC region. Further investigation on this may yield reting information.

The aim of the analysis of the GENICA data is to exemplify thidity to detect the combination of the main
and interaction #ects by the described model. This study is designed fortediggene search studies rather
then running GWAs. Ten MCMC runs revealed fivéfeient models, with the most frequently identified
model composed of SNP 20 and 21 as mdteats. Among the models, SNP 20 is consistently selected
as a main ffect, but SNP 21 appears to be associated with sporadic lwaastr as either a main or an
interaction &ect. Analysis of the same dataset using twfiedent types of logic regressio 46] also

revealed the importance of these two SNPs.

In general, according to the results from both WTCCC and GENA&nalyses, SNPs identified by the
models can be separated into two major categories: thosermire all models and those implicated in
only some of the models. The second category may be the saxfutiorrelation between SNPs entering

a model and those SNPs that are already in the model duringeetion (LD between SNPs). In the
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WTCCC case study, the SNPs that fall into the second catemerynainly from the MHC region of Chr

6. Given that the LD structure of this region of the genomeoigger and more complicated than other
regions of the genom@SS}, the SNPs of the MHC regiontifled by one MCMC run are potentially
in linkage disequilibrium with the same region SNPs idestifby other runs. However, a more complete

understanding of thefiect of SNPs in LD on the model requires further research.

An advantage of using the regression type of models is tleagfthcts of genotype variants are quantified
in the model. The results of the analysis of the WTCCC TID ddiaw that individuals with homozygous
genotype variants at both rs10901001 and rs874448 are imongly associated with TID than individuals
with a heterozygous genotype at the same SNPs. Howeverahbelplity of TID reduces when a heterozy-
gous genotype is at rs950877. When a SNP is included in thelnasdn interactionfiect, the &ect of the
associated variants can be quitéelient compared to when the SNP is included as a niBeate The results

of analysis of the sporadic cancer data show that when SNP iBtluded as mainfiect, the homozygous
reference has a strong association with the phenotype. tmwehen the same SNP contributes to the
model by interacting with other SNPs, the homozygous refaresariant is no longer the dominarffext

in association with the phenotype. This finding reveals ddtEmplexity to the genetic make-up of the
phenotypic trait. Although the model is able to quantify éfiect of the genotype at a particular SNP, the
authors are aware that the interpretation of this quanggds to be treated with caution. The quantification

of the genotype féect therefore may be more valuable for fine mapping studies.

Another advantage of the regression model is it can be easitlified for diferent types of phenotypic traits
via using diferent link functions. Here, the model was developed for atyitrait, but this can be expanded

in an obvious manner for more complicated phenotypes, dirguthose with multiple subtypes.

Apart from the advantages described above, the use of a Bayfesmework overcomes the problem raised
by ]. ] listed three drawbacks of using the logistiodel in conjunction with variable selection (ie
AIC, SC) under the frequentist framework. Firstly, the eyngell effect, which occurs when there is a low
frequency of some genotype or genotype combination, car iekinterpretation of the logistic regression
result invalid. In our model, these empty cells are filtereitl during the updating procedures. Although

the dfect of these empty cells is inconclusive, the results aretfietted by these empty cells. The second
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and third concerns raised b 66] are that the frequemtggstic regression demonstrated weak power for

variable selection due to the correlation between varsahtal the problem due to the genetic heterogeneity.
Although this may be true when explaining the genetic mgkevith only the most prominent model, these
two problems can be simply overcome by allowing multipleicgar incorporating the technique of model

averaging![300].

Although it is not illustrated here with the case studies, model has the ability to accommodate missing
data by introducing extra parameters. When there are rgiggnotypes, the model is modified as follows.
We treat the values djgji at each SN as unknown parameters of the model and introduce the olaserve
genotypesy;. Herel can take one of four values; 0 2 or missing. For each SNP, and each of the three
possible true genotypes, we let the probability that tha @amissing be, a real value in the interval (0,1).

The value ofp is then estimated as a model parameter via the hierarctpabagh.

Although the model proposed in this chapter is relativetlge, conceptually, there are some drawbacks.
The first is the indecisive nature of the variable selectioaach chain, indicated by the moderate contribu-
tion by various SNPs. The challenge that is admittedly owlstially addressed here is how the optimally

combine this information.

The second drawback is the computational burden. This @nolohay be overcome by adoptingtdrent
MCMC algorithms, such as Reversible Jump Monte Carlo Makkbsain ], simulated temperin84],
variational approache@B?] or population MC[38].

Despite the above drawbacks, the proposed model is ableteéotdbe relevant SNPs for both TID and
sporadic breast cancer. It is hoped that such investigatbalternative ways of exploring and describing
the role of SNPs and their interaction in GWA studies canifaté a better understanding of the genetics of

complex disease.
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Chapter 7. Using gene expression programming with modifiedogic regression for the investigation
176 of SNP interactions in large dimensional data

Chapter Summary

This chapter also aims to address the second main objedtitree dhesis. In contrast to a model based
approach, here we propose a non-model based approach éctidgtSNPs andr SNP interactions. The

method proposed here is a machine learning algorithm.

The method is based on logic regression, which is modifieddarao speed up computation. We introduce
using the gene expression programming algorithm as thelgagralgorithm. The method is capable of
analysing a large dataset within a reasonable time frame.niddel also has the flexibility to detect higher

order interactions.

Chapter Conclusion

The proposed method is tested with two simulated dataseeswith 50 SNPs and the other containing
10,000 SNPs. For the smaller dataset, the methods proposkid chapter demonstrate reasonable ability
to identify the simulated SNPs and interactions. Howeetitie larger dataset, the results are less clear. In

this chapter, we identified four areas of improvement todase the accuracy of this method.
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7.1 Abstract

With the commercial availability of high throughput labtmey procedures for the identification of sin-

gle nucleotide polymorphisms (SNPs), it comes the chadlesfgdentifying genes and gene-gene interac-
tions associated with disease in high dimensional spaceidrchapter we demonstrate MLR-GEP, a non-
parametric approach for identifying potentially intenegtgene interactions, using a combination of Logic
Regression, an adaptive classification and regressionochatigy that constructs predictors as Boolean
combinations of the binary SNP covariates, with Gene ExgwasProgramming, a variant of genetic pro-
gramming, as the stochastic search algorithm. The perfwwenaf MLR-GEP in discovering interactions

between SNPs in simulated 50 SNP and 10,000 SNP datasetadmsiEeated.

7.2 Introduction

With the recent mapping of the human genol;|[269] and suksequapping of many agricultural species
(e.g. The Bovine HapMap Projedttp://bfgl.anri.barc.usda.gov/) has come the commercial
availability of high throughput laboratory procedures foe identification of single nucleotide polymor-
phisms (SNPs) in both humans and animal species. This hdaged a convergence of the focus of quan-
titative and qualitative geneticists in the pursuit to itfgninteractions between genes, which are vital in
the understanding of common diseases such as diabetesjaaatid cardiovascular diseases, as well as

production traits, such as growth and meat quality in livelstspecies.

The challenge of genome wide association studies (GWAS$&réetpronged: firstly, in the development of
powerful statistical and computational methods to modetétationship between combinations of SNPs and
common disease and production traits; secondly, in thetsahteof the genetic variables to be included in
the analysis, and thirdly, in the interpretation of genaegmteraction model8]. This chapter addresses

the first and second challenges, leaving the last to thediemses.

The most prominent algorithm in searching for important SNPSNP-by-SNP searching in which each
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putative SNP is evaluated individually with respect to tirerggth of its association with the outcome of

interest. A wide range of outcomes have been investigated) ulsis approach, including obesi@%],
Crohn’s diseasijm] and Type 2 Diabe255]. Althougs itha fast algorithm and able to accommodate
the analysis of large dimensional data, e.gffyfetrix Genome-Wide Human SNP Array 6.0 with 1.8
million markers (including SNPs and the copy number vasigii it is subject to the problem of multiple
testing and therefore requires adjustment, such as via tmfeBoni correction or false discovery rate.
Moreover, its limited focus on single SNP associations maybe suitable for complex trait, which might

occur only if a particular combination of genotypes is prése diferent susceptible lo 3].

Various statistical methods for detecting gene-geneastams have been recently developed. Depending
on the embedded algorithm, these methods can generallytégocaed into model based and non-model
based approaches. The former category, including methmiisas regression, often requires the estimation
of model parameters; in contrast, the non-model based appes, such as random fore [33] and neural
networks Bl], which are sometimes also referred tda&a mining approaches, are designed for
detecting non-linear relationships between phenotypdsgyanetic markers, and may be more desirable for
detecting higher order interactions.ELS?] reviewetfattent machine learning algorithms for detecting
gene-gene interactions. A more comprehensive recent sawigwed both model based and non-model

based approaches for detecting interactions and the cempatkages available for these meth [51].

Among the diterent methodologies referenced Q[Sl], logic regresdift) (s an intriguing approach. It
is an admixture approach, which has a structure of the reigresnodel, but instead of directly regressing
against the predictors, the response is regressed agaiostldnation of “logic trees” which are identified
via the machine learning algorithm. A logic tree is a trée-Istructure comprising Boolean expressions,
such as AND, OR and NOT, and predictor variables. This methaldscribed in Sectidn 7.3.1. Because
the method is based on the combination of the regressionlranddhe tree structure, LR is more versatile
in detecting diferent types of interaction, epistasi$eets. This includes two fierent types of the epistasis

effects defined bymg] an 6].

The identification of an optimal logic tree involves the ugseasearch algorithm. The algorithm used in

the original logic regression is simulated anneal@[zl}ﬁ:}wever, two limitations of the use of simulated
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annealing have been not53]. Firstly, it aims to idgrdifsingle best model, which neglects potential

competing models which fit the data almost as well. Secondign a SNP is included in the model, the
LD SNPs of this SNP are highly likely not be selected in the elodherefore, dterent searching methods

have been applied for the improvement of logic regression.

Monte Carlo logic regression [MCLIQ%], which is an explory tool that combines a Markov Chain
Monte Carlo algorithm and logic regression. MCLR has beenafestrated to be more useful than logic re-

gression when there is a large number of LD SI@ [153]. The twdVCLR is available in the ‘LogicReg’

package of 9].

Although MCLR uses MCMC methods and priors on some parametiee coéficients of the logic trees,
are estimated using maximum likelihood approach, so it tsarfally Bayes approach. Additionally, in the
examples of MCLR, two parameters need to be set in advanaeselpertain to the hyperparameter of the
geometric prior on model size which acts as a penalty to fapansimony and the maximum number of
trees. It has been notem91] that setting of these two paeasean have a large influence in the results.
Therefore, a Full Bayesian Logic regression algorithm (RBhas been proposed as an alterna [91]. The
reported advantages of FBLR include a prior on thefodents, which overcomes the problem of presetting
these; restricting of the Boolean parameters in the loge to “AND” only, which gives equal weight to all
models within the same size under the uniform prior settarg] more interpretable result of FBLEQl].

Note that, by de Morgan'’s rule, the use of the complement caaumt for an “OR” operator.

Extensions of regression have also been proposed in litetaFor example, a logicFS algorithm uses the
simulated annealing algorithm, to perform subset seledtioegression @5]. The main aim of logicFS is
the identification of important SNP interactions. The methorporates the use of bootstrapped samples
and disjunctive normal form (DNF). Instead of searchingtfa “optimal” model over all possible model
spaces, the simulated annealing algorithm is independapplied to a large number of bootstrapped sam-
ples drawn from the complete data space. Also, like FBLR, akearthe results easier to interpret and the

interaction more identifiable, logicFS uses only “AND” andR” operators in logic tree. Because of the

use of bootstrapped samples, out-of-bag samples are ustn fealidation of variable importan@%].
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All of the above methods are no doubt a great improvement @wotiginal logic regression method. How-

ever, itis of interest to consider other potential searglalgorithms which may be implemented in the logic
regression setting. Therefore, the aim of this study is tmduce a dierent searching algorithm, namely

gene expression programming (GEP) in this context.

GEP @1] is a hybrid of genetic programming (GB154]) andaie algorithm (GA, 5]). It is an
evolutionary algorithm based on artificial intelligencenmachine learning inspired by biological evaluation,
with the aim of automatically solving a problem without siyag the form of the solution. GEP, GA
and GP are encompassed within a wider class of “geneticidgdgdt which all generate a population of
individuals, select individuals based on th&iness then modify individuals using one of many genetic

variants.

Because GEP is a combination of GA and GP, it also combineadi@ntages of both GA and GP, in such
a way that the GEP eases the manipulation of the GA and hasiticgdnal complexity possible with GP.
The main diference between these three algorithms is in the “individothe population. In GA, the
individual is a symbolic string of fixed length; in GP, the ividuals are nonlinear entities with feéirent
sizes and shapes and in GEP, the individuals are lineagstahfixed length which are later expressed as a

nonlinear entity of dierent shapes and sizes.

Although specific references to using GEP are limited, tinenee been frequent references to GA. GA is
noted as a suitable tool for the optimization of large dinema problems|[250] and has been used in a
range of application including detecting outliers in lineegression models [65] and optimizing a statistical

quality control problem[[114].

This chapter is organized as follows. The chapter starth aiit overview of logic regression (Section
[7.3.1). The logic regression is then modified in order to dpgethe computation and a proposed method,
namedModified Logic regression-gene expression programmingRMEEP)is introduced in Sectidn 7.3.2.
The performance, specificity and sensitivity of this meti®then evaluated with two simulated data sets
described in Sectiois 7.4. Results of the evaluation aengivSectiof 7]6. A discussion follows in Section

3.
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7.3 Methods

7.3.1 Logic Regression (LR)

Letting Y be a phenotypic trait, the logic regression moQ[ZSS] igtem as:

K
oY) =Bo+ Y BiLy (7.1)
i=1

wherel; denotes theth logic expression, = 1,...,K; K is total number of trees in the model, géglis a
constant. A logic expression is a notation of a logic treeichvlis a tree-like structure comprising Boolean
operators, ‘AND’, ‘OR’ AND ‘NOT’, and leaves, which represiethe SNPs. Figure 7.1 is an example of

logic tree with a logic expression given by

LFigureZl = (Sl A Sg) v [(83 4 S4) A Sg]

Like the generalized linear modej.) is a link function which links the random and systematic poments.
The choice ofy(.) depends on the type of trait of interest; for example, foageecontrol study, the logit link

function is often used. The model parametggsandg; are usually estimated using maximum likelihood.

As mentioned in the Introduction, the search algorithm useitie logic regression is typically simulated
annealing. Simulated annealing is defined on a state saaghich is a collection of states. The states
are related by a neighbourhood system, where a set of naiglpla@rs inS defines a substructur&). The
elements oM are called moves. When the states are adjacent, they camadigeteby a move; otherwise
the states can be connected by any number of moves. Themmuangossible moves in the logic tree, which
are 1) alternating a leaf, 2) changing operator, 3) growing pruning and 4) splitting and deleting. Not
all moves, however, are permissible at a swté&or instance, when the maximum size of tree is reached,
the moves which result in adding I@abves are prohibited. A move from one state to another dispen

the acceptance probability which in turn depends on the odtiwo state spaces and ttemperatureof the
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Figure 7.1: Logic tree of MLR representing the logic expression Y, whére L1 OR L2, and LE(S; AND
NOT(Sy)), L2=((S3 OR S4) AND NOT(S5s)).

position of the chain. When the temperature is high, thetarger chance of accepting the move than at a
cooler temperature. The temperature is not constant aretiibns in the logic regression. At the beginning,
the temperature is set to be high so nearly all possible maseeaccepted. As the iteration proceeds, the

temperature reduces.

7.3.2 Modified Logic Regression with gene expression prognaming (MLR-GEP)

The aim of our proposed method is to identify a set of SNP autions, that are potentially associated with
the expression of a trait. Thus the model fiméents,si, i € 0,...K are less relevant in the modified logic
regression (MLR). The method proposed here is therefordasito the ensembles approach described in
], and less related to model fitting. Giving each tree amakégveight can substantially speed up the
computational time, therefor® is fixed to one. Thus using the same notation as earlier, thR khiodel

becomes:
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K
9y = > L (7.2)
i=1

Gene expression programming (GEP) is an iterative proeadhbich utilizes the concept of gene, population
and evolution. The changes of individual from one iterafjalso called ‘generation’) to the next is called
an evolution and the evolution repeats until a maximum nurobevolutions is reached or until a desired

fitness is achieved.

The linear strings of fixed length in GEP are called ‘genes2n€&s are composed of ‘nodes’ representing
either functions (i.e. Boolean- AND, OR and NOT) or ‘termsidi.e SNPs). A number of genes can be
linked by functions to form a ‘chromosome’. Genetic openasi such as mutation and transposition take
place on genes and chromosomes, after which the latter aressed as non-linear entities offdrent

shapes and sizes, called ‘expression trees’ (ETs), whiefuialent to the logic tree of logic regression.

The GEP gene comprises a ‘head’ and a ‘tail’. The head cantath functions and terminals, whereas
the tail contains only terminals. The first head node of eamhegor ‘root’ node, must be a function.
The tail length is a fixed function of the head length and th&imam function arity (number of function
arguments). The structure of the GEP gene and the tramsktgiem from fixed length string to expression
tree guarantee that all modifications arising from evohutdd the individuals result in syntactically correct
ETs. Despite the fixed length of GEP genes, they have the ttém code for ETs of widely dfering

shapes and sizes. The number and length of GEP genes armptxtie problem at hand.

GEP individuals are subjected to genetic operators (geratiation) that can substantially modify their
structure. The genetic operators in GEP include mutatramsposition, insertion sequence, root insertion
sequence and recombination. Mutation is a change occurriagsingle node of a gene. A mutation can
occur at both the head and tail of a gene. When it occurs inghe bead, it may produce either a function or
terminal, whereas a tail mutation must result in a termifiedinsposable elements of GEP are fragments of
the genome that can relocate to another place in the chrameodasertion Sequence (IS) elements are short
fragments with a function or terminal in the first positiorathmay transpose to the head of genes except

the root. Root Insertion Sequence (RIS) elements are sfaginients with a function in the first position,
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and which transpose to the root of genes. In addition, ameesgéne may transpose to the beginning of

the chromosome (gene transposition). Recombination in @R take one of three forms. In all cases,
two parent chromosomes are randomly chosen and paired hamye ‘genetic’ material. During one-
point recombination, two parent chromosomes cross overat@mly chosen point to form two daughter
chromosomes. During two-point recombination, two parénbrmosomes exchange the fragment contained
between two randomly chosen points to form two daughterrahemmes. In gene recombination, an entire
gene is exchanged during crossover. ‘Elitism’, or the siahand cloning of the best individual chromosome

in each generation into the next generation, is practised.

GEP individuals (or solutions) are selected according &ir titness, where fithess is defined as the ability
of the solution to predict the trait. In the problem at hahe, dependent variable is the case or control status
of each datum, being a binary trait represented as 1 or Oectgply. Selection for reproduction, mutation
and crossover is based on the fitness proportionate seleotitette-wheel schemQOO], so that the chance
of a potential solution participating in any of these opers is proportional to the fitness of that solution

as a fraction of the total fitness.

In the current application of finding SNP interactions, thedtions represented in the nodes of MLR-GEP
genes are Boolean operators, and the terminals are sindgtadeNtifiers. Boolean operators link a number
of such genes to form the chromosome. The root node of the lggad must contain a Boolean operator.
Otherwise, the head of a gene may contain both Boolean apgatd SNPs, whereas the tail contains only
SNPs. Figuré7]2 is an example of the translation of a fixegtleMLR-GEP string into an expression tree

and its associated logic expression.

That the tail length is a fixed function of the head length dmermaximum function arity guarantees that
the tail always contains enough terminals to fully satisfy possible head arrangement. However, this also
means that certain terminals in the head and the tail mayenoséd in the expression tree and its associated
logic expression, as seen in Figlrel 7.2 where the last valeen@t included in the expression tree. The
extreme case occurs when the head of the gene contains tleaBddOT operator having an arity of one,
and the next node contains a SNP, giving a single NOT(S. esgfn regardless of the head (and therefore

tail) length. As highlighted above, it follows that a singleint mutation in the gene head can lead to a
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Gene P— Expression Tree (ET)
OAABNB93 767 OR
head tail / \
AND AND

2N 2
g@

L

Logic Expression

L1 = {(Sg AND NOT{S3)) OR {Sg AND Sg))

Figure 7.2: An example of the fixed length string of an MLR-GEP ‘gene’ atsdtianslation to an MLR-GEP
expression tree and associated logic expression. The 'béttte gene is composed of the sequence of nodes
OAAG6N, representing the Boolean operators AND (A), OR (OJ &OT (N), and the SNP identifier 6. The
‘tail’ of the gene is composed of the sequence of nodes 8931kB&presenting SNP identifiers. Note that three
SNP identifiers at the end of the tail, 7, 6 and 7 are not useukiieT. The ET of GEP is equivalent to the logic
tree of logic regression (see Figlirel7.1)

dramatic change in the associated expression tree. Fid@iibustrates point mutation in MLR-GEP.

In this application, fitness is defined as the ability of thkison to predict the cageontrol status of each

datum, which is the same as correct classification. For arfy @éividuali, the fitness is

C
fitness = > (Gj ==T)) (7.3)
=1

whereC is the number of subjects in the data SEt,is the casgontrol status for subjegt, andc; is the

predicted cageontrol status under GEP individuialor subject;.

In the current setting of the MLR-GEP, a number of paramedegsrequired to be set in advance. These

include the maximum number of iterations, the head lengtthefgene, the number of genes for each
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Figure 7.3: An example of point mutation of MLR-GEP ‘gene’ and the reaottchange in the expression
tree and associated logic expression. The ‘head’ of the geoemposed of the sequence of nodes OAA1N,
representing the Boolean operators OR (O), AND (A) and NOY @R (O) and the SNP identifier 1. Point

mutation occurs in the third node of the gene head of the pgeare, with a change from the operator AND to
the SNP identifier 6. Note that three SNP identifiers at thérimigg of the tail of the parent gene, 8, 9 and 3 are
used in the logic expression associated with the parent, gemikst in the daughter gene, only the initial SNP
identifier 8 in the tail is used.

chromosome, and the parameters associated with the geagtats, including mutation rate, one and two

point recombination rate, gene recombination rate, an®IS,and Gene transposition rate.

7.3.3 SNP Coding

SNPs can be coded as covariates in a number of ways, depevditig problem. 5] suggest coding

of theith SNP as two binary predictorX; ; andX; . Here the subscrigtof X refers to the SNP number,

whilst the subscripts 1 and 2 refer to the minimum number ofav (recessive or ‘a’) alleles at the SNP

site. ThusX; 1 andX;» respectively code the dominant and recessiVeces of SNR. In contrast to the

separate coding system, in our approach the SNPs are codexirage integer and represent the genotype.

Table[7.1 shows the fierence between the two methods. Note that in this chaptetetins homozygous

variant and homozygous reference indicate the genotypeara ‘AA respectively, and this is in line with

Ruczinski’'s SNP nomenclature.
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The coding method implemented here halves the number of 8NdP#us halves the solution space. How-

ever, this results in running the searching algorithm twitth two different searching rules to achieve the
same search results. This is advantageous given the aligilabparallel computing. The first search re-
guires searching for only the homozygous variant (genoByipelabld_7.11) and the second requires searching
for the homozygous variant or the heterozygote (genotypas3an Tabld 7.11).

Table 7.1: Genotype coding of SNPs using a single covarteompared with Dominant and Recessive coding
using two binary covariates; ; andX; », demonstrated b5].

SNP Coding Method

Logic Regression_[235] MLR-GEP
Genotype Dominant Recessive Genotype Code
(Xi.1) (Xi.2) (%)
Homozygous Reference(AA) 0 0 1
Heterozygote(Aa, aA) 0 1 2
Homozygous Variant (aa) 1 1 3

Table[7.2 demonstrates the use of the logical NOT operatitlantwo diterent search goals for the two
runs of the MLR-GEP taken in this study. It is noted that theadgpe coding approach allows any genotype
or combination of genotypes to be set as the goal of the MLRRG&arch. The SNP nomenclature used
in this study to describe the interactions is also given ibld&.2, and follows that of @5], where the
subscripti of S; refers to the SNP number, whilst the subscripts 1 and 2 reftéret minimum number of
variant (recessive, ‘a’) alleles at the SNP site. Ti&ig,refers to SNR being either the homozygous variant
or the heterozygote genotype (aa, Aa, or aA), widst refers to SNH being the homozygous variant
genotype (aa).

Table 7.2: Search types used with genotype coding compared with daiieeessive coding. The two search

types and possible results of genotype searching usingtfieal NOT operator, compared with the equivalent
coding of ] requiring only a single search.

Search Goal NOT(Search Goal)
Search Type SNP  Genotype SNP Genotype Ruczinski Coding
1 Siz aa NOTGi2) AAAaaA RecessiveX; »
2 Sii1 aaAa,aA NOT§,) AA Dominant, X 1

The MLR-GEP code was implemented in Fortran and compilediguan Intel®Fortran Compiler Version

10.1. The code was run on a SGI Altix XE1200 Cluster 120x ES34bit Intel Xeons at 2.33 GHz.
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7.4 Data Description

In this chapter, MLR-GEP is tested using two datasets, whiehsimulated from the same settings with 50
and 10,000 SNPs respectively. The simulations are basdwea@iléle frequency and assume full penetrance

of disease in a given combination of genes. The strategied fas data simulation are the same as those

described inS]S]Bl] an wl 9].

7.4.1 Simulation Set 1

Fifty datasets of 1000 observations each (500 cases andds@dls) and 50 SNPs were simulated with
allele frequencies for each SNP randomly generated witterrange of 0.2 to 0.4. The cdsentrol status

of each observation was based on the rules described in iEhqerl of ], where an observation is
classified as a ‘case’ if one of four logic rules is true. Therflmgic rules, the number of cases simulated

for each, and the number of controls are given in TRblk 7.3.

Table 7.3: The four logic rules L1 to L4 describing the simulated datssine number of cases simulated for
each rule, the proportion of the data described by each anl the number of controls simulated per dataset.
Each rule describes SNP combinations using Boolean AND a&D@ dperators for each SNFor a minimum

of one or two variant alleles (a) occurring at the SNP sitelecbasS; 1 andS; » respectively

Rule Simulated Interaction Number of Cases Proportion déDa
L1 Si2 100 10%
L2 NOT(S21) AND S3; 150 15%
L3 S42 AND S5, AND Sg2 100 10%
L4 S72 AND Sg» 150 15%
No Rule None 500 (Controls) 50%

The datasets can be fully described by further combinindaherules with Boolean OR operators to form
a single logic ruleY, whereY = L1 ORL2 OR L3 OR L4. However, to achieve ‘clean’ data (setting of
full penetrance), simulation was controlled so that eaelsét datum contained only one of the four rules
possible (i.e. using exclusive OR (XOR)), giving= L1 XOR L2 XOR L3 XOR L4. Additionally ten of

the fifty datasets were eliminated, since one of SNP4, SNFEEN#6 in the three-way interaction of Rule

L3 was not needed to explain all the cases and controls dlyyrieaving forty datasets in Simulation Set 1.
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Initial statistical screening of Simulation Set 1 was umalezn using the ‘direct method’ of simple analysis

of variance (ANOVA) testing association of each individ&NP genotype with the cgsentrol status of

the observation, usin19].

7.4.2 Simulation Set 2

Forty datasets of 1000 observations of 9950 SNPs each wardated with allele frequencies for each
SNP again generated randomly within the range of 0.2 to Ohs& 40 datasets were then combined with
Simulation Set 1 to create 40 datasets each containing AGOIPs, plus the corresponding gasatrol
status of each observation taken from Simulation Set 1. /Timesdatasets in Simulation Set 2 contained
the same interactions as Simulation Set 1, the samécoaio| status of each observation, and the same

numbers of cases and controls, as described in Table 7.3.

7.5 Settings

Table[Z7.4 shows the parameter settings in the analysis dfil&iimn Set 1. We generated 20 populations
and evolved each population over 50,000 generations. Taeshend tails were preset to 3 and 4. For the
settings on the evolutionary rate, we used the most newttihgs that required a very limited optimization,

that is 0.31[84].

Similar settings were also used for the analysis of Simutaet 2; however, given that the number of
SNPs is much larger, the number of populations and the nuwfbgenerations per population was also
increased. The final settings for these two parameters wWiFep@pulations and 150,000 generations for

each population.
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Table 7.4: MLR-GEP settings used in Experiment 1, and (with excepliforsExperiment 2 and GAW14 data.
Exceptions for the latter are for the number of generati@rgyn (150,000), the population size (200), and the
number of SNPs in the terminal set are SNPs 1 to 10,000 and SkP%,187 respectively.

Parameter Setting
Number of runs for each dataset 20
Number of generations per run 50,000
Population size 20
Number of fithess cases 1000
Boolean function set AND, OR, NOT
SNP Terminal set SNPs 1to 50
Head length 3
Number of genes 4
Boolean linking function OR
Mutation rate 0.3
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.3
IS transposition rate 0.3
RIS transposition rate 0.3
Gene transposition rate 0.3

7.6 Results

Simulation 1Table[7.5 shows the average percentage of times each ofuhsifmificant interactions was
discovered over the 20 runs of the MLR-GEP for each of thesg#sain Simulation Set 1. Talle 7.5 also
shows the number of times the sub-rule of L2, NSJ{), was found, and the number of times variations of
the Rule L3, either rulesSy2 AND Ss2) or (Sa2 AND Sg2) or (Ss2 AND Sg2), were found. The average
fitness of the runs is given as a percentage of times out oababi 000 fitness cases the correct ¢gesetrol

status was predicted from the MLR-GEP rule based solution.

Although SNP 1 was simulated to be associated with the/casiol status, it was not involved in any
interactions with other SNPs (Rule L1; Table 3). When thedegoal was set to the homozygous variant
(aa) (Search Goal 1; Table7.2), SNP 1 was correctly found in 1608ales in an OR association with other
SNPs, consistent with Rule L1. In contrast, when the seavahwias set to the homozygous or heterozygous
variants 6a,Aa,aA) (Search Goal 2; Table7.2), then although SNP 1 was foundén%0% of the solutions,

it was invariably associated in interactions with other SNP

The results in Table"7.5 show that the average fitness of tttwmes of Search Goal 1 was substantially
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higher than that of Search Goal 2 (95% cf. 67%). However,ghjgrior fitness can be attributed to finding
Rule L1 in 100% of runs, and finding all the other SNPs parétip in the interactions, although not always
the correct interactions in the case of SNP 7 and SNP 8, outhatieractions in the case of SNPs 4, 5 and
6. In the latter case, the incomplete rules 8§ AND Ss2), (Sa2 AND Se) and Ss52 AND Sg o) were
found in over 60% of rules for Search Goal 1. From Tdblé 7.2t be seen thaSg ;) cannot be found
using Search Goal 1; this is consistent with the results be[@.5 for Rule and sub-rule L2.

Table 7.5: MLR-GEP Results for Experiment 1. The mean (and range) fotgeage of times each of the
Rules 1 to 4, plus subsets of Rules 2 and 3, describing thdatiedudatasets in Simulation Set 1 (50 SNPs; see
Tabld7.B) were found for Search Goals 1 (homozygous varga)tand 2 (homozygous variant or heterozygous;
aa,Aa, or aA), plus the mean (and range) of the fitnesses found

Mean(Range)
Rule Interaction SearchGoall SearchGoal 2
(aa) (aa,Aa,aA)
L1 S12 100 (100-100) 0 (0-0)
L2 NOT(S21) AND S3; 0 (0-0) 34 (0-95)
L3 S42 AND Ss2 AND Sg, 3 (0-20) 50 (0-95)
L4 S72 AND Sg;, 69 (10-100) 79 (5-100)
Sub(L2) NOTES21) 0 (0-0) 67 (0-95)

(Sa2 AND Ss5) OR (S42 i i
SUB(LS)  AND Br) OR (s AND Gy B1(10-100)  69(0-100)

Fitness % 95 (93-98) 67 (65-70)

For Rules L2 and L3, Search Goal 2 was greatly superior. Aljhoin some cases the algorithm does

not find these rules, the average number of times these rdes faund over the 20 runs for each dataset
marks these rules as significant findings. In contrast, irecbinteractions containing SNPs other than those
simulated to be significant were never repeated, althouglnme datasets certain SNPs would reappear in

other interactions in up to 20% of the runs.

Simulation Data Zrable[7.6 shows the average percentage of times each ofithsi¢mificant interactions
was discovered over the 20 runs of the MLR-GEP for each of étesets in Simulation Set 2. Tablel7.6 also
shows the number of times the sub-rule of L2, NS3{), was found, and the number of times variations of
the Rule L3, either rulesSy2 AND Ss2), (S42 AND Sg2) or (Ss2 AND Sg2), were found. The average

fitness of the runs is also shown.

The results in Table_7.6 show that, as for Simulation Set 1) ®earch Goal Hg) SNP 1 was correctly

found in 100% of rules in an OR association with other SNPasisbtent with Rule L1. In contrast to
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Simulation Set 1, when the search goal was set to the homaogygoheterozygous variantag, Aa, or

aA) (Search Goal 2; Table7.2), SNP 1 was never found in any tdt@vever, all other significant SNPs
were found in either OR associations with other SNPs, orrneco associations with other SNPs. This
latter observation explains the relatively good fitnesegdaverage 61%; see Table]7.6) for Search Goal
2 on Simulation Set 2, in that although in most cases the més not found, the significant SNPs were

identified (except for SNP 1, as explained above).

Table 7.6: MLR-GEP Results for Experiment 2. The mean (and range) fargrgage of times each of the Rules
1 to 4, plus subsets of Rules 2 and 3, describing the simutiigasets in Simulation Set 2 (10,000 SNPs, see
Tabld7.8) were found for Search Goals 1 (homozygous var)tand 2 (homozygous variant or heterozygote;
aa, Aa, or aA), plus the mean (and range) of the fitnesses found

Mean(Range)
Rule Interaction SearchGoall SearchGoal 2
(aa) (aa,Aa,aA)

L1 Si2 100 (100-100) 0 (0-0)

L2 NOT(S21) AND Sz 0 (0-0) 0 (0-0)

L3 S42 AND S5, AND Se, 0 (0-0) 0 (0-0)

L4 S72 AND Sg;, 31 (5-65) 7 (0-41)
Sub(L2) NOTES21) 0 (0-0) 25 (0-100)

(Sa2 AND Ss) OR (S4.2

Sub(L3) AND S5) OR (Ss.2 AND Sg5) 42 (6-70) 0 (0-6)
Fitness % 93 (90-95) 61 (59-64)

As for Simulation Set 1, the average fitness of the outcom&eafch Goal 1 was significantly higher than
that of Search Goal 2 (93% cf. 61%). Again, this superior finean be attributed to finding Rule L1 in
100% of runs, and finding all the other SNPs participatindiihteractions, although not necessarily in the
correct interactions in the case of SNP 7 and SNP 8, or thenteltactions in the case of SNPs 4, 5 and 6.
In the latter case, the incomplete rules 8§ § AND Ss>), (Sa2 AND Sg2) and Ss2 AND Sg 2) were found

in 42% of rules for Search Goal 1, but rarely for Search GoaA2 discussed for Experiment 1, Rule L2
cannot be found using Search Goal 1, and the results in Talar@ again consistent with this. Although
Rule L2 was not found using Search Goal 2, the significance\#? 3 in the homozygous reference form

(AA) was found on average in 25% of searches.

Computer Running TiméJsing the hardware and software specified in Se€fion|A®3Fpeed of the MLR-
GEP was 20 generations per second for the 10,000 SNP datagstgeriment 2. Thus the time taken for

a single run of MLR-GEP over 150,000 generations was appratdgly 8.5 hours. However, using Goal
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Search 1, average population fithess levels of over 90% veey/s achieved after only 1000 generations.

On average, convergence had occurred by generation 50;@funtime of less than 3 hours.

7.7 Discussion

In this study, we presented the use of an alternative semyetgorithm for finding the logic tree under the
framework of logic regression. The MLR-GEP, as anticipateshefits from the computationdfieiency of
gene expression programming. A similar advantage is alsodovhen applying genetic programming for

identifying higher order SNP interaction@Og].

The overall fithess measure of MLR-GEP is comparable to sdmasting methods. Forinstance, Nunkesser
et al @] applied genetic programming (GPAS) to identifiyhier order SNP interactions. Under the same
methods of data simulation, the reported misclassificatita of their study is around 33% which is similar
to the fitness level of MLR-GEP. Nunkesser et 209] also pared the misclassification rate of GPAS
with the standard logic regression, CART, Bagging and ramétwrests using the same simulation dataset,
and found the misclassification rates of these methods wedveelen 34 to 38% which is also comparable

with our method.

For the single locusfect, such as SNP 1, Search Goal 1(aa) was 100% accurate mgfithai true single-
locus state of this SNP. Although the significance of SNP llmdemonstrated through simple ANOVA
with adjustment for false discovery rates, the findings fearsh Goal 1 positively attest to its performance
for the single-locus case. However, for identifying SNRerattions in the smaller dataset, Search Goal 2
identified most of interactions compared with Search Goalespite the lower average fitness levels. The

differences between these two search goal is less obvious whdattset is substantially large.

Even though the overall fithess is within a reasonable ramgemajor drawback of the MLR-GEP is that the
algorithm is potentially unstable in its current state. \Wkige dataset was small (i.e candidate gene search),
the performance of the MLR-GEP in finding pre-specified imt&pbns was just above 50% and ranged from

0 to 100%. However, when the dataset became substantiedly énd noisy, even though the fitness of the
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model was above average, the probability of finding the "ie#raction was less than 50% with some SNP

interactions not identified. This is a concern, considetirgg there is possibility that expression of the trait
can be the result of the interaction of many genes, each witill sffect ]. However, the drawback
is not restricted to this algorithm; indeed detecting of ptar interaction is an ongoing “ holy grail” of

current research.

MLR-GEP can potentially be improved by changing variougirsgs$. Firstly, in this study, in order to
achieve computationalffeciency in the algorithm, we avoided parameter estimatioragsigning equal
weighting to each logic tree, and predicted individual pitgpes based upon the combination of these
trees. This can potentially contribute to a poor discovatg.rAn improvement is thus possible by retaining
the original formulation of LR and estimating the model paegers ) of Equatio Z.lL. Furthermore, the

model parameter, can then be utilized for establishingatiégiimportance ranking.

A second possible contributor to the poor discovery rateslto the tuning parameters. For the evolution-
ary process, various parameters are required to be set ameelvincluding the settings of the MLR-GEP
‘chromosomes’ such as head length, number of genes and@olitking function. Various studies have
noted strong dependency between the tuning parametersetigalgorithms (including GA, GP and GEP)

, ], and observed that inaccurate setting of thesenpeters can result in premature convergence to
local optima ]. For a complicated genetic system, aimwdtparameter setting is obviouslyfidtult to
achieve. Moreover, some researchers have found even djtest #he tuning parameters according to the
problem in hand, genetic algorithms can still perform beyectation. For exampleu89] found surpris-
ingly unsatisfactory results when they used a genetic digor( ]) to find the maximum a posterior
(MAP) estimate of a binary variable in Bayesian image anslySimilarly, EL] found that GA performs
badly in some simple optimization problems. Thus the th&makand empirical basis of GA has been

questioned 4].

To overcome the problems associated with GAs, researclages Juggested the use of hybrid algorithms
@@] Although the method of hybridization idtdient, ] and 1] both propose to com-
bine GA with simulated annealing to achieviéegetiveness andfigciency in the optimization. Similarly,

] suggest to combine GEP with simulated annealing tagedhe dependency of GEP on the tuning
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parameters and improve the performance of GEP.

A more sophisticated fithess measure can potentially yielteb results in identifying SNP interaction.
In this study, MLR-GEP adopted correct classification asrtteasure of purity, which may potentially
oversimplify the problem. For other tree like methods, sasttlassification and regression trees (CART,
1) and random forests (RHSB ftBrent criteria have been proposed as measures of impuactyding
misclassification rate, Gini index [34], cross—entro@l},lGain ratio EE], DKM ] and minimum
description length (MDL). Although these impurity measuage based upon the misclassification rate,
some are more sensitive than oth Q 233]. MoreMBL has been successfully applied to
genetic programming as the fitness function for patterngeition problemsm8]. An alternative criterion

is to use the multi-objective function. For examplmzogkd multidimensional fitness value for GPAS

which aims to balance the misclassification rate with thepderity of logic expression.

Although the results are not presented here and the curtatet of MLR-GEP has potential for further
improvement, the method has been applied to a real SNP datpavadic breast canc@%], and yielded
similar findings in SNP interaction as MClogic, logicFS, GRAandom forests and a Bayesian regression
model. This suggests that the current state of MLR-GEP is tblanalyse small datasets, but for larger

dimension data, it still requires some further development

In this chapter, we introduced the use of gene expressiagrgmoming as an alternative searching algorithm
for modified logic regression to perform genetic data anslysith a focus on identifying SNP interactions.
Like all other machine learning algorithms, the use of GEEcsssfully reduced the computation time
required for logic regression, but the overall ability of RLGEP in identifying SNP interactions falls short
of expectation. In this study, we identified a few areas ofettgyment, which can potentially improve the

performance of the proposed method.
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Chapter Summary

Although the purpose of this chapter is still to address #wmsd main objective of the thesis, the focus
is on the strengths and weaknesses of the machine learmngtlam and model based approaches. In
the previous two chapters we introduced model-based andh-amoolel based approaches for identifying
associated SNPs gfod SNP interactions. Although the advantages and disadgastof each method are
documented independently in the previous two chaptersaithenere is to investigate how these methods
differ when compared with each other. Moreover, during thealitee review of Chaptéd 5 we noted there
are several variants of logic regression, therefore we emenpur methods also with a few of these. These
variants include logic regression with feature selectiogi¢FS), Monte Carlo logic regression (MCLR),
genetic programming for association study (GPAS) and newtlifogic regression with gene expression
programming (MLR-GEP). Because logic regression has alikedeature, we further included another

tree-like algorithm, random forest, in this analysis.

Chapter Conclusion

The methods included in this chapter all have their advastaand limitations. Therefore none of the

methods is innately superior to the others. However, wergbdesome common characteristics among
the similar methods. For instance, the non-model appreactamely GPAS and MLRGEP, are the only

methods that are capable of dealing with large volumes of @&, however, the main drawback of these
methods is lack of accuracy and specificity. Among the metfioduded here, these two have the highest
false positive rate. In contrast, the model based appreaaihdisplay high accuracy but are limited in the

number of SNPs that can béieiently analysed. However, all these methods are betteleatifying SNP

interactions than the SNP by SNP approach.
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8.1. Abstract 201
8.1 Abstract

Due to advancements in computational ability, enhancduhtdogy and a reduction in the price of geno-
typing, more data are being generated for understandingtigesssociations with diseases and disorders.
However, with the availability of large data sets comes tieerent challenges of new methods of statistical
analysis and modelling. Considering a complex phenotypg lmeahe &ect of a combination of multiple
loci, various statistical methods have been developedifatifying genetic epistasigtects. Among these
methods, logic regression (LR) is an intriguing approadwoiporating tree-like structures. Various meth-
ods have built on the original LR to improvefiirent aspects of the model. In this study, we review four
variations of LR, namely Logic Feature Selection, Montel@€&ogic Regression, Genetic Programming
for Association Studies and Modified Logic Regression-Gexjgression Programming, and investigate the
performance of each method using simulated and real gemalgfa. We contrast these with another tree-
like approach, namely Random Forests, and a Bayesianitogggfression with stochastic search variable

selection.

8.2 Introduction

Single nucleotide polymorphism (SNP) is the most commoretienariation among individuals and it was
estimated that the human genome has approximately 10 mSIIkIJPs]. With the recent mapping of the
human genom9] came the availability of high througHphbratory procedures for the identification
of SNPs. Strong correlation among blocked SNPs, i.e. lialgigequilibrium, allows scientists to study the
association between genetic and phenotypic variatiorgusisubset of SNPs. Genome Wide Association
Studies (GWASs) attempt the mapping of SNPs to phenotypi@atian among individuals. Such procedures
require a sound statistical methodology and associategut@ational capability to cope with the analysis
of a large data set. Most studies are focused on single latalysas, which directly tests the association
between individual SNP and phenotypic variant. The mostroomy implemented statistical approach for

these studies is a SNP-by-SNP testing algorithm. This piureerequires an additional statistical correction
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for the Type 1 error associated with multiple testings. [[22bvide summaries of commonly used cor-

rection methods, including Bonferroni correction, peratiain test and false discovery rate and discuss the

benefits and drawbacks of each of these.

Although the SNP-by-SNP approaches are relatively fastapdble of incorporating covariates [303],

the major limitation of such approaches is thé&idulty of detecting possible gene epistaditeets [124],
which is often suggested as the reason for lack of successniatig studies of complex diseasQ [51].
Although “epistasis” is commonly defined as the interactibulifferent genes, there is some confusion on
the definition of epistasis in the literature owing to theséamce of dierent types of interactior[LlSl].ELBO]
and EL] provide thorough reviews onfigirent types of epistasis. In this study, we are focused amgusi

statistical methods to identify gene interaction, thidis tstatistical epistasis” according t 14].

Various statistical methods that have been developed &ockimg for epistasisfiects in complex diseases
include Bayesian epistasis association mapping (BE Onultifactor dimensionality reductiol],
Polymorphism Interaction Analysi@gl], logic regresssdii], Bayesian model selectiﬂ%] and a two
stage approach that firstly selects SNPs with strong mdreffects, then identifies interactions among the
SNPs ]. 8] provide an overview and evaluation of tagfigrmance of five widely applied methods

in detecting interactionftects. One of these, logic regression [IJ£|235], is a hybridhoe that has the
structure of a generalized regression method but with addeotombination of variables as predictors. LR
is motivated and developed for a plausible bufidilt association pattern between SNPs and phenotype,
which often involves using words like “AND”,"OR” and “NOT”For example, an individual may have

a higher chance of having a specific trait whiime homozygous variant genotype is at SNP A\D

the homozygous reference genotype is at SN both SNP § AND S, are NOT of the homozygous

reference genotype”

LR has been widely applied in the analysis of SNP data forouarphenotypes including sporadic breast
cancer5], trachomQM], bladder canEler [8], remigiotensinl] and myocardial infarcti c\ 51].
] indicates that LR is more preferred when compared uotitier tree-based approaches, such as Random
Forests [RFljB] and Classification and Regression Tree® ].
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Although LR was initially developed for prediction, its @dyplity has been extended through algorithms such

as logic Feature Selection [logic 45], Monte Carlo taggression [MCLFJE3] and Full Bayesian
logic regression [FBL 1].

Another extension to the original LR involves variationstlre searching algorithm. m53] pointed out
two drawbacks with the simulated annealing algorithm imm@ated in original LR. Firstly, it identifies
a single best model which potentially neglects competingleleo Secondly, simulated annealing is not
geared for the identification of SNPs in linkage disequilibr (LD). Although the latter limitation has not
yet been resolved, the former limitation can potentiallyé®olved by using dlierent searching algorithms.
Methods such as Reversible Jump Mcmﬁlm , Genetic Progriagn for Association Studies [GPAS,
] and Gene Expression Programming [MLR—(jE—EI 174] havaradwork similar to logic regression but

implement diferent searching algorithms.

The aim of this paper is to summarise these variations of LRafocase-control study and compare the
performance of the methods using simple simulated examdage to the fact that LR is a tree-based
algorithm, we also consider Random Forel;ls [33] in this pdpathermore, we compare the methods with
a Bayesian logistic model. Therefore, the methods includetlis study include logicFS, MCLR, GPAS,

MLR-GEP, RF and Bayesian logistic regression.

8.3 Methods

Logic regression Before introducing LR, it is important to note how SNPs maybded in LR. Let allele
‘A be a disease allele; that is, having allele ‘A" increasles probability of expressing a certain phenotype.
Typically the SNP is coded as 0, 1, 2 which corresponds totgpae ‘aa’, ‘aA’ and ‘AA. Alternatively, the
SNPs may be coded as a binary variable, which representothmant and recessivdtect, for instance,

genotype ‘Aa’ or ‘AA at SNPS may be coded &S; 1 and genotype ‘AA asS; ».

LR was initially developed for classification and regreasiahich aims to find Boolean combinations that

enhance the prediction of the model. The LR thus comprisedeao combinators such as AND- and OR-,
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and variables, i.e SNPs, in a logic expressionUsing the same example as in the Introductiotis then

L = (S12 A S5;) V (S31 A Sa1) (8.1)

where A and v denote the AND and the OR operator, respectively, @rienotes the complement of a

boolean variable.

Logic expressions can be structured into a tree repregamtatich is referred to as a logic tree. The
terminology of the logic tree is very similar to that used IART, although the trees of LR and CART are
different structurally, as discussed later in this paper. A n®@epoint on the tree structure where a split
occurs. In LR, a node represents one of the Boolean opel@hii3-) and (OR-), and each leaf corresponds
to one of the variables (SNPs). Figlrel8.1 is an example aofjia loee of LR, and with a logic expression

given by

L = (S12A Sgga) V (S181V (Ss72 A S252)). (8.2)

Here, the leaves include the dominaffeet of SNP 18; and the recessivéeet of SNP 1, 37 and 25. SNP
48 is highlighted in dark shade, representing the complé@e8NP 48 (i.e NOT (SNE1)).

When the number of SNPs increases, searching among albfmksjic treefgexpressions becomes unman-
ageable. This motivates the implementation of a stochasteching algorithm. The simulated annealing
algorithm proposed by5] anclﬂ%] starts with a logietide;, consisting of randomly selected vari-
ables. At each iteratiog a new logic expressiofeis proposed by randomly selecting one of six possible
moves: alternate a leaf, alternate an operator, grow a bygmane a branch, split a leaf or delete a leaf.
Each move is assigned with a pre-specified probability, arichhh moves are permissible at an iteration.
For instance, when the maximum size of the tree is reachedesnehich result in adding a lgbfaves are

prohibited. The acceptance bfe depends upon the acceptance probability, given by
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Figure 8.1: An example of a logic tree of LR.

1 EXPMCR; - MCRweW)}

aA(MCR, MCRens T) = min{ , T (8.3)

whereMCRsis the misclassification rate of the treandT denotes the ‘temperature’, which decreases with
the duration of the annealing process. Thus, the acceptate®f a new logic tree is much higher at the

beginning of the process (whénis large) and eventually becomes almost zero at the end cktdreh.

For more complicated problems, multiple trees can be coeabirsing a generalized linear model

Q
oY) =Bo+ ) Balq (8.4)
g=1

whereg(.) is a link function,sy is the interceptgy, q = 1,..., Q, is the codficient of the tred g, andQ is
the maximum number of trees allowed. Using such a formaeasas the versatility of LR for the analysis
of different types of phenotyp35] and can be easily modifiechfoe complicated models such as the

Cox proportional hazards model.
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Monte Carlo Logic Regression ] proposed that instead of selecting a single optimatiehait is

preferable to identify various competing models and cormibdms of covariates that are potentially asso-
ciated with the phenotype. Their method incorporates Bagawnodel selection techniques using Markov
Chain Monte Carlo to explore a large number of models. Tloeeethe model is called Monte Carlo Logic

Regression (MCLR).

The main diference between MCLR and LR is in the use of priors and the Isiegr@algorithm. MCLR
requires specification of a prior on the model size. The mesi= is defined aiff:lqul, where|Lq| is
number of terminal nodes of the trge Because the model parameters of Equdiioh 8.4 are not edg$ent
detecting the SNP interactior]j[_{SB] adapted the maximugeiiiood approaches for parameter estimation

instead of using a fully Bayesian approach.

Compared with LR, the searching algorithm of MCLR is more pboated as it uses Reversible Jump
MCMC [RJMCMC,@]. At each iteration, a logic tree is setztat random and modified using the same
moves as the LR. Once a new model is selected, the acceptative mew model will depend upon the

prior, posterior and likelihood ratio as described 104]

Like other MCMC methods, a large number of iterations is nexglito ensure the convergence of a MCMC
chain. The importance of SNPs and SNP interactions is detedrfrom the post burn-in samples, i.e.
samples after the chain has converged. For instance, trogtamge of a two-way SNP interaction is defined
as the frequency of the pair of SNPs found in the same log&dwer all post burn-in models. The same

paradigm is used for finding the interactions of three véesb

Logic Feature Selection (logicFS) LogicFS is more closely related to LR in that it follows tharsa
paradigm as the LR and uses simulated annealing as the sgpatgorithm. However, instead of seeing
them as two separate methods, logicFS improves the vasatdetion of LR by repetitively fitting logic
regression models toftierent bootstrap samples. This is achieved by employingibg@] with the base

learner LR.

LogicFS draws a bootstrap sample from the original samples,n samples are randomly drawn with
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replacement from the original samples, and then applieis l@gression to the bootstrap sample. This

process is repeated several times (typically 50-100 timesgicFS also improves the interpretation of the
logic expression by transforming the expression into aidigjve normal form (DNF). This makes the SNP

interactions directly identifiable. For example, assum&adard logic expression

L =(S11AS51) V(Ss2V Sa2) ASE (8.5)

of an original LR.L is then transformed into a DNF, which becomes

L=(S11AS51) V(S32AS5y) V (Saz A Sg,)s (8.6)

Compared with Equatioh_8.5, the identification of interas is much easier in Equation18.6. The two
way SNP interactions are SNPs connected by ‘AND’ operatehich areS; 1 AND Sg’l, S32 AND Sg’l,
and S, AND Sg’l. This representation can then be used to estimate the iampartof any interactions
based on its predictability, which is essential for distiisfping a ‘real’ influential interaction from noise.
Moreover, transforming the logic expression into a DNF paible AND-combination and makes some

variables redundant. For example, if b&h; A Sp1 A Sz1andS;1AS21 A Sg , are in the logic expression,

logicFS shortens the logic expression by removig and the expression becom®s; A Sy 1.

The importance of each interaction is estimated using tlie@bhag (OOB) approach, which is similar to
that used in Random Forests. During each iteration, abc6660 of the subjects are drawn to become the
bootstrap samples for the construction of a logic tree. Eneaining subjects which are not included in the
construction are called out-of-bag (OOB) samples. In tise-gantrol study, the importance of an interaction
P is estimated as the value of the variable importance me@¥U which is the average dierence in the
misclassification rate of OOB samples with and without theractionP in the logic regression model over

all iterations of logicFS, i.e.
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VM= £ | 3 (N~ Ng)+ 3 (N~ Ny) ®7)

b:Pelp b:P¢ly,

wherelyp is a set of all interactions identified in thoth iteration,b = 1,..., B, N, is the number of OOB
samples that are correctly classified wRhin the model and\ is the number of OOB samples that are
correctly classified withouP in the logic expression. Similarly\; is the number of OOB samples that
are correctly classified wheR is added to the logic expression whErwas not originally included in the

expression.

Genetic Programming for Association Studies (GPAS) Genetic Programming for Association Studies
[GPAS, ] is, as the name suggests, a genetic programiGia ] approach for genome-wide asso-
ciation studies. Unlike all methods discussed so far, GP# ahot require the fitting of Equatién B.4, but

directly searches for logic expressions in DNF using the @&Ehod.

Figure[8.2 is an example of an individual (tree) in GPAS. Aitbh there are some similarities between
Figured 8.1l and 8.2, these are essentially quitermint. Firstly, in contrast to other methods, variables in
GPAS can be polytomous. Thus SNPs can be coded as 0, 1 andc&restjuently, when applied to GWAs,

it is not necessary to recode the genotypes.

Because GPAS is based on the concept of genetic programthaggrminology used in this approach is
more aligned with biological evolutionary terminology thidnat of LR. For example, the logic tree of the LR
is referred to as an “individual” in GPAS and the combinatidmany individuals becomes a “population”.
Moreover, the “literal” of GPAS is the same as a leaf of a tre&R, and a “monomial” refers to a case
where two or more literals are connected with an AND-opeyatbich is similar to the interaction of two

SNPs. For example, there are five literals and two monomialEigure[8.2. For the consistency of this

paper, we converted the GPAS terminology into comparabies®f the LR.

Like other searching methods, GPAS is also an iterativeagmpr. The algorithm starts with a random
population of two individuals, each consisting of randoraglected SNPs. A new set of individuals is

generated as candidates for the next iteration (or soecgheeration). These candidates are generated in
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Figure 8.2: An example of an individual in the GPAS algorithm. There arlitérals and two monomials.
Si: = 2indicated SNP 1 is AA (or aa, depending on user’s prefefenod it is called a literal. An example of a
monomial isS; = 2 AND Sug = 0.

three diferent ways. Firstly, all individuals of the current genenatautomatically become candidates for
the next generation. Secondly, two individuals are rangaalected from the population and a ‘crossover’
is performed by randomly selecting a part of an individuanity monomial) and attaching the selected
part to the other individual to form a new individual. Thiydfive different moves (mutation or alteration)
are applied to randomly selected individuals. The movestdtimn) in GPAS include inserting a literal
(adding a SNP), deleting a literal (removing a SNP), replg@ literal with another literal, inserting a new
monomial (adding a new “AND” combination) and deleting a rowmal (deleting aS NB AND SNR).
These additions and deletions are performed at random,ingetnat the locations of deletiginsertion are

chosen at random and items to be inserted are also chosardatra

After having generated a pool of candidates, a set of indal&lis then selected from the pool to form the
next generation. The selection criterion used in GPAS ieddlitness’, which aims to balance the number
of correct classifications (NCR) of both cases and contnotsta also penalize the size of the classifeer,

The fitness of the GPAS tree in thth iteration of GPAS is expressed as a set of objectives
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fitness = (NCRC3ESNCREOMOS &), (8.8)

An individual is said to balominantto others if at least one of the objectives is superior anceradrthe
objectives is inferior. Only the dominant individuals anei selected for the next generation. This selection
process is calledomination selectio ]. The iteration repeats until either the number of getiens

reaches the predetermined number of generations, or tirediétness level is achieved.

The size of an individual is restricted in GPAS, althougtsipossible to have more monomials in an indi-

vidual. ] limited the individual to only one monomial.

Modified Logic Regression - Gene Expression Programming (MR-GEP) Although MLR—GEPEL]

is based on LR, it is actually more closely aligned with GP&Bice MLR-GEP has the aim of identifying
SNP interactions, the model parameters of Equdiioh 8.4 @msidered to be less relevant and are thus
ignored. The advantage of this approach is it increasesoimgatational ficiency, thereby making it more
capable of accommodating the computational burden of G\WWARB1g the same notation as earlier, the MLR

model becomes:

K
9y =D L (8.9)
i=1

whereg(.) is a link function. For a case-control study, the most comipased link is logit. The stochastic
searching algorithm used in MLR-GEP is the Gene ExpressiogrBmming [GER, 84], which is a hybrid
of genetic algorithms [GAE5] and genetic programming, ].

The terminologies of GPAS and MLR-GEP are interchangealitle avkey diterence in the definition of
an “individual”. In GA, individuals are linear strings wifixed length, whereas in GP, individuals are non-
linear objects with dferent sizes and shapes. GEP combines the features of mmaliwidf GP and GA,
leading to individuals of GEP encoded as strings with fixeayjtk, which can be later expressed as non-

linear objects with dterent shapes and sizes. Therefore, GEP has the advantdgeh GA and GP, with
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Gene Expression Tree (ET)
OAAGN 893767 or
Head Tail R
— —~—
And And
R L
L V4 ™,

Logic Expression
L1=(S; AND NOT(S,)) OR (S;AND S,))

Figure 8.3: An example of an individual in MLR-GEP, showing the traniglatof single string to an object of
shape and size. The length of the gene is fixed, therefore f®dat the end of the gene tail is redundant.

the ease of manipulation of GA and the functional compleaft&P.

The linear string in GEP is referred to as a ‘gene’, and a gem®mposed of ‘nodes’ representing either
functions (i.e. Boolean- AND, OR and NOT) or ‘terminals'e(iSNPs). A number of genes can be linked
by functions to form a ‘chromosome’. The structure of the GfeRe is divided into a ‘head’ and a ‘tail’
(Figure[8.8). The head contains both functions and termjnathereas the tail contains only terminals. The
first head node of each gene, or ‘root’ node, must be a funcfldme tail length is a fixed function of the
head length and the maximum function arity (number of furcdrguments). The structure of the GEP gene
and the translation system from a fixed length string to amessgion tree guarantees that all modifications
arising from evolution of the individuals result in syntaelly correct expression trees (ETs). Despite the
fixed length of the GEP genes, they have the potential to cadeTs of widely ditering shapes and sizes.
The number and length of GEP genes is peculiar to the probidranal.

The moves (also called mutations or genetic operations)IdRNEEP can take place at genes and chromo-

somes, and include mutation, transposition, insertioregtisnce, root insertion of sequence and recombi-
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nation. Mutation is a change occurring in a single node ofreegend can occur at both the head and tail

of a gene. When it occurs in the gene head (other than at th@ode) it may produce either a function or
terminal, whereas tail mutation must result in a terminaknBposable elements of GEP are fragments of
the genome that can relocate to another place in the chroneodasertion Sequence (IS) elements are short
fragments with a function or terminal in the first positioratimay transpose to the head of genes except
the root. Root Insertion Sequence (RIS) elements are sfaminients with a function in the first position,
and which transpose to the root of genes. In addition, ameegéine may transpose to the beginning of the
chromosome (gene transposition). Recombination in GE#igas to crossover in GPAS. It may take one
of three forms. In all cases, two parent chromosomes ar@malycchosen and paired to exchange ‘genetic’
material. During one-point recombination, two parent amosomes cross over at a randomly chosen point
to form two daughter chromosomes. During two-point recaration, two parent chromosomes exchange
the fragment contained between two randomly chosen pairferin two daughter chromosomes. In gene
recombination, an entire gene is exchanged during crosst&Mgism’, or the survival and cloning of the

best individual chromosome in each generation into the gexération, is practised.

Like GPAS, GEP individuals are selected according to th&iefs. In contrast to GPAS, the fithess here is
defined as the ability of the solution to predict the ¢emetrol status of each datum. This is the same as the

correct classification. For any GEP individuathe fitness is

J
fitness = Z(ci i=T) (8.10)
=1

whereJ is the number of subjectgin the data sef]; is the casgontrol status for the subje¢t andc; is

the predicted cageontrol status under GEP individuialor subject;.

Like GPAS, MLR-GEP starts with randomly generated indialdu(not limited to two), then evaluates the
fitness of all individuals. Each individual is altered witheoof the moves described earlier. The fitness
of altered individuals is evaluated. Individuals with reaable fithess then evolve into the next generation.
Like GPAS, the process continues until a pre-determinedbaurf generations is achieved, or until a

desired fitness is achieved. Finally, the interactions oPSHMre identified from the surviving expressions
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where SNPs are connected by Boolean operator ‘AND’.

Random Forests Random Forests [RB%] is a method which involves a cotlealif numerous classifica-
tion or regression trees [CART,|34]. CART is a simple stat#gttool applying recursive binary partitioning
of the feature space. CART is well known for itfieiency in coping with large data sets. However, as
the data become noisier, and less information is contaimegch variable, the predictive ability of CART
diminishes. RF overcomes this problem by introducing rameétements into the model by which subsets

of variables are chosen at random and bootstrap sampleslacges! with replacement for tree growing.

Although the Boolean operators are not physically presetiieé actual CART structure, the CART tree can
be translated into a combination of SNPs, AND- and OR- opesaf-or example. Figufe 8.4 is an example
of a classification tree. Following the far right path of thgure, it is equivalent to “when an individual has
genotype AA at SNP 7 and genotype AA at SNP 8, this individeahore likely to have the phenotype”.
Moreover, in contrast to LR, CART trees aim to predict batleeted and nonfiected individuals. Because
variables of RF can have more than two levels, the coding & &&h remain in the original genotype forms,

i.e. ‘aa’, ‘aA and ‘AA.

A binary split is denoted as a node, and is defined as a pareatcbild. For instance, in Figufe 8.4,
SNPs 1 and 8 are the children nodes of SNP7. A leaf is wherepthing) terminates (also called terminal
nodes). The training dataset is first split into two subsstagithe criteria which resulted in the lowest
misclassification rate, i.e. genotype ‘aa’ at SNP7 in thergla tree shown in Figurie_8.4. The binary
splitting continues until the child nodes have a reasonlviel of homogeneity, or the sample size} ¢f
the child nodes are smaller than a prespecified value. Intdmelgrd CART, the trees are required to be

prunedshrunk to avoid overfitting; however, this is not requiredRif

The error rate of RF depends on the correlation between aoytrives in the forest and the strength of
individual trees. Higher correlation between trees in thiedt results in a higher error rate, and greater
strength of trees reduces the error rate. These two indgcate &ected by the size of the subset of variables
used in tree building. Reducing the size of the subset athaces both correlation and strength. The optimal

size of the subset is not directly estimated from the datgdétermined by users [33].
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Figure 8.4: An example of a classification tree in RF, where 1 and 2 areieade status. This tree contains 10
terminal nodes and 9 binary splits. Coald andc represent genotypees, aAandAA

The prediction error of RF is estimated using out-of-bag B)&amples, which are the same as described in

LogidFS. At each bootstrap iteration, the prediction of OgaBples is estimated from the tree grown in that

iteration. The OOB error is the average of the ratio of the peinof times that OOB cases are misclassified

to the number of times the respective case is an OOB samptssaihie entire forest.

RF provides a variable importance ranking via the varialéglistive importance, which is estimated also

using the OOB cases. The importance of variaplie estimated as the averagdtdience between the

correct classification rate of OOB cases, and the corressifieation rate of OOB cases with the value of

the variable of interestj( in our example) replaced with a randomly permuted value allérees.

Variables,j andk, say, are defined here as interacting if, when one variablsasl for a split, the other
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variable is systematically more or less likely to be usedafioother split. The measurement used for the

interaction importance ranking is the gini index. The gialue is calculated and ranked for each tree and
each pair of variables within the tree. The absoluféedénce between the rank of the tree and the rank of a

pair of variables is the gini measure for that pair of vaggblhich is then averaged across the forest.

Bayesian logistic regression with stochastic search vaiide selection (BV) The last method included
in this paper is dterent from methods described so far. This model does notdée-like structure, but
is instead based on logistic regression of a dichotomousdgtiee ] in conjunction with a stochastic
search algorithm for variable selection. Stochastic $eeaciable selection (SSVS) using MCME 96]
is a commonly used model for variable selection in the Bayefiamework. The earliest implementation
of this model for genetic research was for the identificatibmultiple quantitative trait loci for complex
traits ]. Similar methods have also been applied to SAR EL)]. BV is diferent from the Bayesian
epistasis association mapping (BEAM) proposed by Zhand.an(2007), which detects epistasifects by
applying a Bayesian method to partition the markers intedlgroups: markers unlinked to the disease risk,
markers contributing independently to the disease riskmaarkers jointly influencing the disease risk, and
then confirms the association using a frequentist appraactontrast, BV assumes both independent and

epistasis SNPftects can be modeled in a linear framework. Lettifigienote the phenotype of individuial

andgq; be the probability of individual having the phenotype, the typical logistic model is

Ns
Iog(%'qi) =u+ ; VeXis + Ei (8.11)

wherey is the population mearxs is the genotype of SNBfor individual i, vs is the codicient of x;s and
N is the total number of SNPs. Instead of using SSVS ropos@h we implement a variation of SSVS,
which is more closely aligned with the one discusse(ﬂv [49t zs be a latent indicator variable, where
Zs = O indicates that SNBis not in the model, converselys = 1 indicates that SNBis included in the

model. Assuming that genotypes are diallekige {0, 1, 2}, the model then becomes

Ns I=

2
0g(r=g) =+ D% ) vags + o (8.12)
: 1 1=0
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whereg;g, is an indicator variable taking the value of 0 or 1 dependingvbether individual has genotype

| at SNPs. The parameter is the contribution of genotypleat SNPsto the expression of the phenotype
andg; is the residual. This single model can be easily built upandorporate two-way interactiorffects,

so that

Ns

2
Iog(l =u+ ) Zs Z vsOis (8.13)
i s=1 1=0

+Zs Z UJKZZ?’H ki Gijl ikl + Ei
j=1k=1,jk

j=01x=0

wherenjk is an indicator variable, withly, = 1 if the SNPj x k is included in the model, else 0. The
parameteryj ki, is the contribution due to the interaction between genotypeSNP j and genotypé of
SNPk. Similarly, giji, is an indicator variable taking the value of O or 1 dependingvbether individual

i has genotypéat SNPI; and genotypéy at SNPK.

The importance of SNBis measured as the number of times that SN§included in the iterations after
burn-in over the total number of post burn-in iterationseTimportance measure is thus confined between

0 and 1. The importance of SNP interactions is also estinfatkaving the same paradigm.

In the following examples, we used non-informative priarsdll parameters, as follows:

e ~Normal(Qr™); 7 ~ InverseGamma(05, 0.05);
z ~ Bernuolli(p,); u, v,y ~ Normal(Q 1);
n ~ Bernuolli(p,); Pz, P, ~ Uniform(0, 1)

(8.14)
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Model parameters were estimated using a Gibbs samplingithigno With the exception ok andn, all

parameters have non-standard conditional distributisns slice sample 4] was used. The estimation
of zandn was based on a combination of Gibbs and Metropolis-Hastiggrithms ]. At each MCMC
iteration, the value ok andn depend on the ratio of the conditional posterior probabiiit the model
including and excluding a SNP. For example, if the condiposterior probability of the model with SNP
is larger than the model without SN the ratio exceeds a random value drawn uniformly betweand

1, thenz is assigned with value 1, else 0.

Ten independent chains were generated with 100,000 @esatiach. The first half of the iterations of each
of the chains were treated as the burn-in and the variableriiapce measures were derived from the last
50,000 samples, that is the number of times the SNP or the SteRaction is included in the model at

each of the remaining 50,000 iterations. The convergend4GNIC chains was assessed by comparing the

model likelihoods of dterent simulation sequences, all of which started froffedent points.

Data

We use two data sets to evaluate the performance of the sixonetescribed in the previous sections.

These comprised a simulated dataset and a real data setasbfeom the GENICA stud 9.

Simulated Data

For each of these fifty data sets, 500 cases and 500 conteotgeaerated so that for each case exactly one
of the conjunctions, ..., P4, summarized in Table 8.1, is true, and none of these conquncts true for

any of the controls. Thus, employing the logic expression
L=PiVvPyVvP3VPy

as classification rule leads to a correct classification|&@0 cases and 500 controls in each of the 50 data

sets. Apart from the values of the informative SNPs, i.e. ShNdPs formingP4, ..., P4, the genotypes of
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Table 8.1: The four conjunction®,..., P4 used in the first simulation. These represent SNP interastio
responsible for the presence of the phenotype. The numbeasafs simulated for each conjunction and the
proportion of the observations described by each of thegpinotions are summarized in the third and fourth
column. The last row indicates the number of controls inetlith the data set, which made up half of the total
population.

Conjunction Interaction Number of Cases (Controls) Propoiof Data
Py S12 100(0) 10%
P S5, andSs; 150(0) 15%
P3 S42 andSs , andSg 100 (0) 10%
Py S7.2 andSg» 150(0) 15%
No None 0 (500) 50%

the non-informative SNPs are randomly drawn with a min@lelfrequency randomly selected in the range

from 0.2 to 0.4.

Similar methods of simulation were also implemented @Im @].

Real Data: GENICA

The GENICA study is an age-matched and population basedocae! study that has been carried out by
the Interdisciplinary Study Group on Gene ENvironmentratdon and Breast CAncer in Germany, a joint
initiative of researchers dedicated to the identificatibgenetic and environmental factors associated with

sporadic breast cancer. Further details on the GENICA stush as data collection and cleaning, are in
)

In this paper, we focus on a subset of the genotype data frelGENICA study. More precisely, data of
1,234 women (609 cases and 625 controls) and 39 SNPs bejptugihe estrogen, the DNA repair, or the

control of cell cycle pathways are considered in the analyse

Because a few of the women show a large number of missing yeemtall observations with more than
three missing values are removed from the analysis leadiagatal of 1,199 women (including 592 cases
and 607 controls). The remaining missing genotypes aretmapoy a weightedk nearest neighbours ap-

proach described irl£|46] and implemented in the R packageme



8.4. Results 219
8.4 Results

Table[8.2 provides a parallel comparison of features ofralrmethods included in this study. The com-
parison is mainly focused on thefidirence in structure of the methods, genetic implementadilberations

allowed from one state to another and tree structures. Anatingethods, even though the structure of
RF and BV does not directly utilize boolean operators, tke wf RF can potentially be interpreted as a

combination of ‘OR’, ‘AND’ and SNPs, while the additior ) of BV is similar to ‘AND’.

To prevent a local maximum, all methods required adaptaifsome form. For logicFS, GPA and MLR-
GEP, this is achieved by repeating the analysis a numbemafti For methods utilising a form of MCMC
(MCLR and BV), this is done by using multiple chains. RF agogdiocal maximum by generating multiple
trees in the forest and basing inferences on the resultedbtiest. We present here the results after these
types of repetition, i.e. after applying each of the appheaconce to each of the fifty simulated data sets,

and fifty times to the GENICA data sets withfi@irent starting points of the search.

In the simulated dataset, although the methods comparedhesomewhat fierent, except for the RF, all
other methods are able to identify at least some of the peeHspd SNPs. Among six methods compared
in this paper, only logicFS, MCLR, RF and BV provide rankirigsthe variable importance. Of all these
methods, logicFS most successfully identifies all four SNEractions in each of the fifty data sets with
relatively large importance (usually, shown in the Top 4kiags). For MCLR, only one of the four inter-
actions is always detected, nam@&y. The other interactions};, P3 and P4, are identified in 90%, 50%
and 80% of the fifty samples respectively. RF, on the othedhdid not identify any of these conjunctions
in its interaction rankings. However, when consideringniitiial SNPs separately, SNPs involved in the

interactions all appeared with high rankings.

After 50,000 iterations, BV is able to identify two-way indetions, namely, andP,, in all fifty data sets.
Because the BV model we used here is designed for detectiygtlm main angbr two-way interaction
effects, it is not possible to identify the three-way interact{P; of Table[8.1). However, thefiects of the

three-way interaction can be identified by BV as subsetsrettiway interactions, i.6&54 AND Ss, S4 AND
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Sg andSs AND Sg. The conjunctionP; on the other hand, is often identified as a part of an interacti

effect rather than a solitanyffect.

Similar to the results of logicFS, GPAS detects all four SNteractions explaining the cases in each of the

fifty data sets. However many non-related SNPs are alsoifigeht

MLR-GEP is limited in identifying many conjunctions. Of aliteractions listed in Table_8.1, the only
conjunction consistently identified is when the SNP is a neffiect, namelyP;. The conjunction with the
second highest chance of detectioRiswith an average of over 50%; however, the chance of detettling
interaction varies from 10% to 100%. The other two conjwnrddi P, and P3, on the other hand were not

found under the MLR-GEP approach.

When applying the methods to the GENICA data, except for RBflzer methods identify a probable asso-
ciation of the interaction of ERCC28880 and ERCCB465 with sporadic breast cancer. These two SNPs
are from the Excision Repairs Cross-Complementing groupgibn (ERCC2, formerly XPD). LogicFS,
MCLR, GPAS and MLR-GEP all indicate that having the homozygyceference genotype at ERC6265

and either heterozygous or homozygous genotype at ERIB880 is likely to increase the chance of breast
cancer. This result is also supported by BV with more detaitcording to the results of BV, the high-
est chance of developing sporadic breast cancer is whevidodis show the homozygous genotype at
ERCC218880 and homozygous reference genotype at ER6465 with an odds ratio of 4.17 (ClI: 2.63-
6.67), followed by individuals with heterozygous genotygieERCC218880 and homozygous reference
genotype at ERCCB465 with an odds ratio of 2.37(Cl: 1.01-5.58).

Another interesting finding which is identified only by the Bproach is the functionality of ERC(32465.
The results of BV show that ERCG&465 is potentially associated with the sporadic breastearain two

different ways, by acting as a solitary additiféeet or by interacting with SNPs other than ERCC2380.
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8.5 Discussion

In this study, we review diierent variations of logic regression, Random Forest an@#aw logistic regres-
sion with stochastic search variable selection, for thigilitg to identify SNP interactions. The methods are

then discussed and compared using simulated and real @atase

In the simulated evaluation, because the data are simuldthdhe conditions closely aligned with logic
regression, i.e. using Boolean expression,“"AND”, “OR”,ON", it is not surprising that the overall results
are better for logic tree-based approaches. GPAS and I8diokh identified all expected SNPs interaction
of the simulation data. In contrast, BV is a regression tyg@@ach which does not use Boolean operators
and the level of interactions between variables is requindae specified prior to analysis (i.e. the current
coding of BV was only designed to detect up to two-way inteoms). However, considering all these
potential constraints, BV showed better results in datgdine conjunctions compared with RF and MLR-

GEP.

Among the diferent methods, the results of the RF analysis of the sinonlatata are the most unexpected.
Although the RF is a tree-based method, it did not identify emnjunctions listed in Table8.1. However,
when considering SNPs at an individual level, these SNR#vead in the interactions were all successfully
identified by RF with relatively high importance measurebe Bame pattern was also found in the results
of the analysis of the GENICA data: even though RF did not flrelinteraction of ERCC28880 and
ERCC26465 to be important, these two SNPs were the top two rankiigsSvhen SNPs were considered

individually.

These findings reflect the problem with the definitraeasurement of interaction importance that is cur-
rently implemented in the RF code. The program we used fayicar out the analysis is not thandom-
Forestpackage of R, but the Fortran code available from the aighwebsitd. In this version of RF, the
importance of a pair of variables is defined as the absoldferednce between the ranking of the pair and
the ranking of the tree which is averaged across the forekhoégh developers of this code stated that

“caution” is required for the interpretation of the intetian efects, the results confirm the problem of us-

“http://www.stat.berkeley.edu/~breiman/RandomForests/
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ing such criteria. This criterion is only useful for detacfithe interaction of a pair of SNPs, say A and

B, when these two SNPs are often selected jointly in the nansielection of the potential predictors used
for tree growing. Furthermore, this criterion is easily alred due to the nature of recursive partitioning
embedded in CART. For example, using the dummy example afr€ig.4, at the root node, the training
samples are split into two subgroups, one group with gemcdgmndaA at SNP 7, while the other group
has the complement genotype at the same SNP. The furthiingptif these two subgroups depends only
on the structure embedded within each subgroup, i.e. th@rgpwhich resulted in the most reduction of
the impurity measure within that subgroup. Therefore, sskbe interaction of SNP A and B is prominent

in the subsets, the importance of these two SNP interacdikely to be overlooked using current criteria.

Although the interaction cannot be identified directly uncerrent settings, the interactioffects are cap-
tured by the solitary variable importance measured usiagpgrmutation methods and OOB samples. The
assertion is confirmed i9]. Therefore, with some improents, RF can be a useful tool for identify-
ing SNP interactions. For instancerLlLSS] suggest the usestiting window sequential forward feature

selection in conjunction with statistical testing to findstasis €ects.

The detection of false informative SNPs is commonly obsgveross all methods; however, it igtbult

to compare the false positive and false negative rates séthreethods. GPAS and MLR-GEP identify a set
of SNPs showing possible association without giving a gtetivie measure, such as variable importance
ranking, to show the degree of association between a SNPisedse. In this study, the set of possible
models according to GPAS is exponentially large, and witllbe variable importance ranking, it is more
difficult to identify the false informative SNPs in the real ddiespite the fact that the ranking of variable
(interaction) importance is available in other methodsajpropriate threshold point for these measures is
still not well understood. This is because a threshold puoigy potentially depend on the underlying genetic
model and the ratio of the causal and noise SNPs, which ia afipossible to know prior to the analysis
(Lunetta et al., 2004). Therefore, instead of basing canehs on the results of a single method, a more
sensible approach is to analyse data witfedent methods and to compare the results. Further invéstiga

on how to integrate the results offidirent methods would be beneficial.

Methods incorporating tree-based structures are morestabidentifying the higher order interactions (e.g
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3 or more way interactions). In the tree-based methodsehigiuer interactions are directly identified from

a tree or a collection of trees. In contrast, to find higheeomteractions using regression models, the order
of interactions needs to be specified a priori. Moreoverhasnumber of terms increases in a regression
model, the parameter space increases exponentially aseéaqoently reduces the computational feasibility

which is especially diicult in a genome-wide association study.

BV, on the other hand, gives better results for understantiie allele &ects on the expression of the
phenotype. This information is available from the magretwd the coéficients of the dierent terms. For
example, the cd@cient of gg gives the relative measure of thffext of the genotypé of the SNPs. BV
also provides a quantified measure of the risk of having tlemptype for diferent genotype combinations

at causal loci.

Among all methods, GPAS and MLR-GEP are the only methodsktep coping with the intensity and
computational power required for the analysis of large data. This is because these algorithms are based
on a machine learning algorithm (i.e. GP and GEP). LogickBMELR, on the other hand, are limited to

a maximum of 1000 SNPs in the written code. It is noted that BY Ibeen used for finding individual SNP
additive dfects (but not for two-way or higher interactions) for up tqg@® SNPs. Unless mordtective
programming or a fast searching algorithm is adopted, mfasteomethods described here are only suitable

for candidate gene search or fine mapping.

The major drawbacks of GPAS and MLR-GEP are in the accuradyspacificity of the identification of

important interactions. Both of these methods implemeatedachine learning algorithm, and although

fast, the results are less reliable. This problem is eslheciaticeable in MLR-GEP. The performance of

MLR-GEP can be improved in various ways, such as paying gredtiention to the parameter settn the
r

evolutionary process, incorporating model parametersuardf more sophisticated fithess measures [174].

The most relevant genetic questions for such models cortbemnability to detect genetic heterogeneity
and linkage disequilibrium (LD) SNPs, and thigeet of LD SNPs on the model. Of all methods, logicFS is
expected to be less capable of identifying any of thékets given that it is highly related to logic regression

and has therefore inherited the same shortcomings idehiifi ]. However, this problem can arguably
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be solved by applying logicFS for several repetitions tesalvsubsets of the data sets thereby identifying a

large number of dierent models.

All other methods potentially have strategies for detecgjanetic heterogeneity. Bayesian methods (MCLR
and BV) identify heterogeneity from a collection of muItiphodeIsS] anr the use of various Markov
chains @]. In GPAS and MLR-GEP, by repeating the analystb different starting populations, the
heterogeneities are potentially identifiable from a cditetof tree structures. In these two methods, trees
are connected by the “OR” operator and the sub-tree theredépresents fiierent possible genetic pathways.

Similarly, in RF, genetic heterogeneity can be determimethftrees nested within the full tree.

When LD SNPs are in the data sets, Bayesian approaches amainte advantage of multiple chains.
When two SNPs are highly correlated, if one SNP is selectéidemodel, although the chance of the other
SNP being selected is very small, it does have an equal ctidrmeing selected in the model. When the
number of chains (or models) is large enough, the LD SNPsdamtified. In RF, LD SNPs are identified

as surrogate variables. However, as noted [169], coecklBNPs can diminish the variable importance

ranking.

Although some of the methods included in this study have #meesfoundations, they are manifestly dif-
ferent in various facets. Each method has its advantagesc@mversely some limitations. Even so, the
methods included in this study, in general, are superiadentifying SNPs in which theffect of the SNP is
highlighted by the presence of other SNPs. For instandeyadth the results of the analysis are not included
here, we tested the SNHfect of the GENICA data using SNP-by-SNP Fisher’s exact tedtfaund the

p-value of ERCC218880 is far from significantg-value=0.106, prior to power adjustment).

None of the methods included in this study, exhibits distswperiority over another. In conclusion, the
GPAS and MLR-GEP may be preferred for searching througteldinensional spaces; logicFS, MCLR,
RF and BV may be preferred for candidate geegion searches, and BV may be preferred for providing

detail on the allele féects.



Table 8.2: Parallel comparisons of features, genetic implementaéiberation (move) and tree structures of LR, logicFS, MCERAS, MLR-GEP,

RF and BV.
Methods LR logicFS MCLR GPAS MLR-GEP RF BV
Features
Model based y y y n it n y
Iterative searching Algorithm
Require (yn) y y y y y n y
Algorithm Simulated Simulated RJIJMCMC Genetic Gene Expogss NA MCMC
Annealing Annealing Programming Programming (Giblei)
lterative Evoluationary | | | E E |
Quantify Interactions n y y n n y y
Use Boolean y y y y y f n*
Boolean Operators AND, OR AND,0OR AND,OR AND, OR AND, OR OR, BN AND#
Genetic Implementation
SNP Coding D3 R/D R/D A/F A/F A/F A/F
LD % % y % % y y
Max SNPs 1000 1000 1000 GWAs at least 23,000 * at least 23,000

1Although it is based on LR, the parameters are ignored
2Jterative (1) indicates a state depends immediate prewitate only, Evolutionary (E) indicates a state dependsiqus\states.

uoISsnosIq 'S’g

3strictly, RF and BV do not have Boolean operators, howetertriees of RF can be interpreted as combination of OR and Aitbilarly, the additive of BV model is like AND operator

4RD: Recessiv®dominance; AF: Allele Frequency
S5Although LD is not directly considered in the method, LD candetected via runs with fierent starting points.

6 [209] stated that GPAS is able to analyse the GWA data, havieigeyet to be verified
"Considering the additivefiect only
*Unclear
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Table 8.2: Parallel comparisons of features, genetic implementagéitberation (move) and tree structures of LR, logicFS, MCERAS, MLR-GEP,
RF and BV.

Methods LR logicFS MCLR GPAS MLR-GEP RF BY
Tree Structure
Have Tree Structure y y y y y y n
Booleari y y y y y n
Operators y y y y y n
Node B B B B B S
Terminal Node S S S S S P
Binary/Mutiple Split Binary Binary Binary Multiple Binary Binary
Fitness Measure MCR MCR MCR Multiple NCR OOB MCR
NCR
Moving between States Acceptance Prob Acceptance Prob RUB/AC Fitness Fitness NA
Alteration
Allow Alteration’ y y y y y n n
No. Alterations 6 6 6 7 5 2
Method of Alteration
Change SNP v v v v v
Change Boolean v v v v
Grow Branch v v v v v vV
Prune Branch v v v v v
Split leaf v v v v v v
Delete leaf 2, 2, 2, v
Crossoveft v v
Insert new split at Root node v
Require Pre-settiriy v v v v

1 Tree structure

2Changes made to the tree of current state

3Change SNP with another SNP

4 Change Boolean with another Boolean

5 Adding a part to existing tree

6 Deleting a part of existing tree

7 Exchange parts between two trees

8 Strictly, the model does not have these alterations. Howeuene alterations are equivalent to the addition andidelembedded in BV.
9 Need to assign the probability to each alterations prionayasis

B-Boolean operators, S-SNPs, P-Prediction (case or dshtro

9¢¢
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Conclusions and Future Work

Dissecting the genetics of complex diseases in the humammggeis a challenging and somewhat daunting
task. In this thesis, we have investigated the problem frata@stical perspective and focused on two main

areas of challenge, defining phenotypes and detectingasj@sifects from large scale SNP data.

In the first part of this thesis, we illustrated theet of phenotyping on subsequent genetic analysis, and
demonstrated thefiects using four dferent models, three of which are latent models. Althoughdkalts
were not overly surprising, they illustrate the sensiivf genetic analysis to phenotype estimation. This
process, however, is often ignored in the current practiggeoetic research of complex diseases. It {B-di

cult to determine whether the phenotype derived from assizai method is accurate, given that the “true”
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228 Chapter 9. Conclusions and Future Work
phenotype is unobservable, and thus can not be easily tedidaherefore, the models were compared using

a parsimonious measure. In Chapter 3, three frequentiseimecre compared using a common parsimo-
nious measure, namely BIC. Under this criterion, GoM is lgalisadvantaged due to the large number of
parameters in the model. However, phenotypes estimatad @M had the highest heritability compared

with the two other methods.

In Chaptei #, we compared twoflirent latent models, with the subsequent linkage resultgybeearly
identical. The models are introduced in the Bayesian comiec were therefore compared using DIC3, pro-
posed in ]. DIC3 is well suited for latent models. BecaD$€ uses the number offective parameters
instead of the number of stated parameters, IRT is not asihganalised and had a comparable value of

DIC.

In light of the variety of model selection criteria, andfdiulties in validating the estimated phenotype, in
Chaptef’b we developed two methods for consolidating esgisnaf diferent models using Bayesian model
averaging as the foundation. These methods show promisénaneing individuals at the cores of clusters
(individuals withwithout all symptoms), as well as increasing the fuzzinagsjguity) of individuals at the
borders of the clusters. Consequently, loci with ‘truersily are amplified and the signals of the ‘false’ loci
are reduced. Furthermore, due to the use of Bayesian methedsncertainty occurring at the phenotyping
level is easily incorporated into the subsequent analyigs provides some measure of confidence in the

findings.

These methods have so far been tested on two models, namélyah@ GoM. The next step is to test
on other models and assess the stability and validity of théhads. If uncensored phenotypic data is
available, a further stage would be to compare the phensigprved using the models developed in chapter
5 with the phenotypes derived using the IHS criteria, therstigate any subsequent variations. In Chapter
[2, we noted the limitations of genome-wide linkage analysiglentifying the loci linking to a complex
disease. Therefore, for better understanding of the geneticomplex diseases, it may be more beneficial
to substitute the linkage analysis with an associationystiidis, however, cannot be achieved at the current
point of time for this particular cohort because the SNP datamavailable, but the methods developed in

Chapter 5 can be used for other types of complex traits, ssdthizophrenia and Parkinson’s disease,
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where the data is freely available.

Although migraine is often considered to be a dichotomownptype (&ectednot dfected), in this the-
sis, we have decided to treat it as a continuous measure fimugareasons. Firstly, when the symptom
data was analyzed using LCA and GoM, various goodness-aidasures indicated there are more than
two clusters in the data. This suggested treating the nmigras dichotomous data may underestimate the
true underlying structure of migraine. Secondly, even waealyzing the data usingftirent models and
assessing the models withfldirent goodness-of-fit criteria, the results all suggestedoptimum number

of clusters for the migraine data is four. Because no linkaggysis to date is capable of analyzing data
with tetrachotomous phenotypes, the predicted phenotyibeeguire some forms of adjustment before the
mapping can be carried out. Here, there are two options,sotweaiggregate the number of clusters into two

or three clusters and the other is to convert the multinoptiahotype into a continuous measure.

M] found similar results in their migraine study and tlepose the former approach by combing two
lower clusters (clusters with lesser prevalence in sympjaand two higher clusters (clusters with higher
prevalence in symptoms) and assigning them the value of A aegpectively. In the same study, they also
compared theféect of collapsing the clusters to two and collapsing thetehssto three, and found little

difference in the LOD scores between the two approaches.

From the results of model fitting, we also observed a trentdénsiymptom prevalence of the four clusters.
The individuals in the intermediate clusters have eitheremar less symptoms than individuals in two
extreme clusters and the symptom prevalence for two extrbonstéers is zero and nearly 100%. However,
there is no dramatic reduction in symptom prevalence betwse two intermediate clusters or two higher
clusters. Furthermore, because the symptoms of migraiee oferlap with other forms of headac 115],
it is possible that migraine is a severe form of headacheteftie, using a continuous measure to represent
the degree of severity in migrainous headache is plausile.also show that the use of the continuous

estimates for migraine does not have a larjeat on the subsequent linkage results, which wiasyeed by

replicating the results 02].

The major challenge for the multilocus approach in identtyepistasis £ects in GWAs is that the possi-
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ble SNP combinations are excessively large, and therefargutationally demanding. In Chapfér 7, we

proposed a machine learning algorithm, namely gene exprepsogramming, to overcome this inherent
difficulty. This method has shown some promising ability in inmoimrg computational giciency. We believe
that the accuracy of the method can benefit from further dgweént and improvement in the evolutionary
and optimization processes. In contrast, Bayesian lagistiression with stochastic search variable selec-
tion, as covered in Chaptel 6, has demonstrated betteraagcur identifying subsets of important SNPs.
The model has been tested on approximately 26,000 SNPsa@holsome 6 for SNP additivetfects. The

next logical step is to test the approach in a whole genome stady, i.e. at least 500,000 SNPs.

Detecting epistasisfkects using the model described in Chapler 6 is still probtemat least in its current

form. However, such problems may be overcome by improvimgpua aspects of algorithm such as

e parameter estimation
In the current algorithm, parameters are estimated usingIRICTo improve the speed of parameter
estimation, other algorithms such as Approximate BayeSamputation([21, ABC] and Variational
Bayes ] could be considered. Moreover, instead of & esian approach, an empirical Bayes
approach has demonstrateffi@ency in parameter estimam%] 22] suggested ye8lan
inspired penalised maximum likelihood approach to overedne computational burden; that is, in-

stead of using the MCMC ﬁoach, the EM algorithm is useddimisation. Similar methods are

also proposed byl;LS] an

e sampling distribution of the SNP cfirient

96] for estimating epistafiscés of Quantitative Trait Loci (QTL).

When a SNP is not included in the model, the foent of the SNP is currently sampled from the
prior distributions. Alternatively, it could be directhssigned a value of zero, which may potentially

reduce the computation time. This has been implemente@quQTL analysis.

In Chaptel B, we compared various subtypes of logic regre¢kiR) with random forests (RF) and Bayesian
logistic regression with the stochastic search variablecen algorithm. Even though there aréfdient
subtypes of logic trees, these methods nevertheless shalarsability in identifying subsets of SNPs and

SNP interactions, but with LR being more versatile and bedteted for higher order interactions. When
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comparing diferent trees, RF has a similar ability to identify the sub$egMPs; however, in the current

setting of the Fortran Code, the ability to detect inteactgtects is less féective. Two other machine
learning algorithms, namely GPAS and MLE-GEP, are the ofgpridhms capable of coping with large

scale GWAs. However, the reduced accuracy of these algwsithakes them less preferable.

Although the data simulation procedure implemented in @épis the same as the procedure implemented
in ], it does not reflect the reality of the complexity hetgenetic data. For example, the simulation
assumes a full penetrance of the disease and it does nottakaccount factors such as disease prevalence,
LD structure and recombination fraction between genes. é¥ew when comparing MLR-GEP with other
types of logic tree, RF and Bayesian logistic regressioh stivchastic search algorithm on a common small
scale dataset (GENICA), it is able to identify the same sehiaractions as other methods (as shown in
Chaptei8). However, this is only limited to a small scalelgturhe performance of MLR-GEP is less than
satisfactory, and requires substantial improvement iadtsiracy and requires testing on a more realistically

simulated data.

At present the methods introduced and discussed in the dqmamm of this thesis are not satisfactory in
detecting the epistasidtects of large scale GWAs and other genetic aspects suchegidgtgenetic het-
erogeneity, the féect of linkage disequilibrium (LD) and imputation of misgigenotypes. Future work
should focus on incorporating these factors into the modelimproving the computationalfeciency of
the model without losing the accuracy of prediction andnestion. This may involve developing a hybrid
algorithm that merges the accuracy of the model-based apipes with the ficiency of machine learning

algorithms. Moreover, the algorithm may be guided with ka@é knowledge in molecular genetics.

One advantage of the Bayesian framework is the use of pi@hen priori knowledge about the parameters
is available, it can be easily incorporated in a Bayesianehdgor genetic research this can be especially
useful because the advancement in molecular genetics garshhstantial input into quantitative genetics.
For instance, although the gene network for human genontié faisfrom completion, the knowledge of the
interlocking network can help in identifying the epistafsis complex traits. For example, if two genes are
known to exhibit functional epistasis from the gene netwdrls information can be included in the models

developed in Chaptér 6 by adjusting the prior weights onetlgenes, so when one gene is selected for
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model fitting, the other gene will have a higher probabildybe included in the model. This can potentially

reduce the computational time required for GWA.

Due to the near completion of the 1000 Genome project, highatity and more detailed information
about the human genome will become available. Thus the meesbiind statistical methods with which to

examine this information shall remain an integral part ofeje& research.



Appendix

A.1 Chapter4

A.1.1 Deviance information criteria for LCA and GoM

Deviance information criteria is thefierence between twice the posterior mean deviance and tiendev

of estimated;

DIC = 2D(n) - D(5) (A.1)
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In the third DIC proposed by| [43] (DIC3) when the likelihoodsha closed form, the first term can be

approximated usingyl simulated values;, ..., 7™, wherep™ = (p™, ™) from an MCMC chain.

D(y) = E,[-2log f(ym)ly]

2 M
~ = 2 log f(yin™) (A-2)
m=1

The second term of equatibn .3 we used here is the postepecetion E[ f (y{r)ly] which is also approx-

imated using the parameters of an MCMC chain.

D(#) = -2log f(y) = -2 logE[ f (yin)ly]
M
~ -2 Iog% 3 tyin™) (A3)

m=1

From equation AR arid Al 3, equation 4.3 is the expanded féequatior A.1. In the Bayesian LCA model,

F(yln™) is

K n J
o™ o™ = 2 o0 | [] [ -9y
k=1 i j

and the posterior mean deviance is

M K n J
— 2 . v
D(p. 1) = —7 > log > m” [ [ [ ey (@ -4y
k=1 i

=1

andD(®) is
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M K n J
D(p.Y) = -2logis > 3 [ [ [y -4,
!

m=1 k=1

For the Bayesian IRT model, the likelihood is

n J (6 —D;
e?i(0i-by) e?i(0i-by) .
= y'J = 1l
f(yl6,a,b) = 1|_[ D[ 1+ il b]) [ 1+ ea6i-b)
thereforeD(n) is
M n J (m) (H(m) b(m)) a(m) (g(m) _b(m))
- 2 . e’ .
D@#,a,b) = -—— lo '11_—1—y|1
a0 =y mzzl glj g[l L - b(m))] [ 1464 0"~ b(m))]
andD(®) is
1 M n J (m) (e(m) b(m)) agm) (gi(m) _bgm))
D(f,4,b) = —2log{— yipp - S qiijy,
( '3 g M Z 1|_[ 1_[[ (m)(g(m) b(m))] [ 14+ eagm)(gi(m)_bgm))]

m=1 i j=1 1+€%

A.2 Chapter5

A.2.1 Symptom description of Migraine data

Table A.1: The IHS diagnostic criteria for migraine without aura (MO).

ltem Description
A At least five attacks fulfilling B-D
B Headache attacks lasting 4-72 hours
C Headache has at least two of the following characteristics
Unilateral Locations
Pulsating quality
Moderate or severe intensity(inhibits or prohibits daityiwties)
Aggravation by walking stairs or similar routine physicatigity
D During headaches at lease one of the following:
Nausea and (or) vomiting
Photophobia and phonophobia
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Table A.2: The IHS diagnostic criteria for migraine with aura (MA).

Iltem Description

A Headache fulfilling criteria B-D list in Tablg_Al1

B At least five attacks fulfilling B-D

C Aura consisting of at least one of the following but no maickness
Fully reversible visual symptoms including positive faats
(ie flicking of lights) and (or) negative featureig (0ss of vision)
Fully reversible sensory symptoms including positiepins and needles)
and (or) negative featuree(umbness)
Fully reversible dysphasic speech disturbance

D At lease two of the following:
Homonymous visual symptoms and (or) unilateral sensorypsyms
At lease one of the aura symptom develops gradually eeninutes
Each symptoms lasts5 minutes and&60 minutes.

A.2.2 Full Symptom description of KPD data

Table A.3: Clinical characteristics of KPD. This is the Kofendred Rash Assessment Protocol for testing
affectedundfected status.

Indices | Description

a Joiningfounding cult
b Feaydiscomfort with strangers
c Dislike of jokes told face to face
d Obsession with entertainers

e Humor impairment
f

g

h

i

J

Fascination with automobiles

Aversion to walking

Uncommunicative, contentless speech pattern

Fiscal irresponsibility

Morbid angeffearterror concerning rajsnow

k Reluctance to wear clothing appropriate for subjectiveperature
| Body-image concernsiild body dysmorphic disorder

A.2.3 Hessian Matrix

LCA The Hessian matrices for both LCA and GoM are derived araiyi The posterior probability for
LCAis

n J
h(f) = P(YIp. A)x(p. A) = ) > og(Z PRA) (1 = ) E). (A4)
i
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The Hessian matrix is a square matrix of second-order paei@vatives ofh(f), and for LCA the Hessian

Matrix is
92h(f) 92h(f)
9p:2 R AT
#h(f)  #%h(f) 92h(f)
302971 a2 .. .. - PR TYIPE
#h(f)  @h(f)  9h(f) 92h(f)
dA110p1  01110p2 o, Tt Tt Tt 041104k
Ph(f)  #?h(f) 92h(f) 9h(f)
0Akj0p1 0Akj0p2 o o {)Z/lkj Tt 0Akj0Aka
#h(f)  &?h(f) 92h(f)
0 319D .. .. - T

The computation of the second order partial derivativesbeagrouped into eight ffierent combinations as
shown in Tablé_Ab. With the eight possible combinationg;ausej are assumed to be independent, the

covariance for cases whejs are not equal is zero.

Table A.4: Table showing 8 parameter combinations in Hessian matrix

61 01 Combination | Equation
ki = ko A5
Pl Pl ki # ko A6
ki = ko
Pl | e ke % ke
ki =k, j1= o A9
o | K#Fke ji=]jo | AID
ki ja kaj2 ki = Ko, j1 # J2 *k
ki # ko, j1 # 2 **

** indicates the second-order partial derivative for suombination is zero.

When diferentiating Equation Al4 w.r.py, andpy,, andk; = kp, let| denoteks, then

o*h(f) A @-ag)ew
o’ B Z Z[ 2k pk/ly” (1- Akj)(l’)'ij)] (A.5)

i Kj

Similarly, whenk; # ko then

82h(f) - Z Z[/liilij(l _ Aklj)(l—Yij)liizjj(l = Q)
9P, 0Pk T [k Pede) (1 = )2

kj

(A.6)
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When diferentiating the same equation w.pk, andAy,j, andk; = ko, using similar notation as earlier, let

| andm denotek; and any symptom, then

Ph(f) 5 O = A — AP (Si PAREL = ) ) — P~ Am)]

= (A7)
OPOm 4 (1~ Ampm [T Pl (L = A) ] |
On the other hand, wheq # k; and,m=1,... J, then
_3h(f) Z Po Ay (1 = Agm) [y A — Aye] a8

0pk1(9/lk2m 1- /lkzm)y'm(Zk pk/lylm(l /h<m)(:L y.m))z

The last two combinations are the partial derivative wiiet 1 parametersgy, j, and Ay, j,. As indicated
earlier, due to the assumption of independenges j» which is denoted byn. Whenk; is the same akp,

denote byl then the second order partial derivative w.r.t these patermbecomes,

02h(f) Z[ pl(ylm/lylm (Y|m Aim)] ] .

o = A S Pty (L— ) “9
Whenk; andk, are not equal, the second order partial derivative becomes,
T =~ Y| Dt e | a0
GoM The posterior probability of GoM has the form:
h(f) = P(Yg, A)x(g. A) = Z Z Iog(Z Okl (1 = k) ). (A.11)

Because of the large number of parameters in GoM, the Hesgdiix is a (= kK + K= j) x (N« K+ k= j)

square matrix,



A.2. Chapter 5 239

82h(f) 42h(f)
o, R RS
82h(f) 82h(f) 52h(f)
009120011 0%, coe e .. oA
82h(f) 82h(f) 82h(f) 9h(f)
OOnkdg11  OOnkdY22  * 7 ° 892 Tt 9gnk 0k
82h(f) 82h(f) 82h(f) 82h(f) 92h(f)
01110011 04110012 "7 0A11d0n2  9ai2 7T 041104ky
82h(f) 82h(f) 82h(f)
0Ak30d11  0Akadd22 "7 T T T 0%k,

Using a similar approach to LCA, we observed ten possiblebtoations of model parameters. These are:

Table A.5: Table showing 10 parameter combinations in Hessian maftiGoi

61 01 Combination Equation

ip=irandk; =k | [AI2

i1 =ipandk; # ko A.13
Ok | Gze o andky =k, | *
iliiz andqué k2 **
ki = ko C
Ok, | Akj ke % Ky D
ki =k, J1=j2 E
ki # ko, j1= 2 F
Agjr | i ki = Ko, j1 # j2 **
ki # ko, j1 # 2 **

** indicates the second-order partial derivative for suombination is zero.

Like LCA, the assumption of independence has resulted irctivariance of some combinations; this in-
cludes the independence among the subjects and among tipgosysn When dferentiation the posterior
probability w.r.tgi, andgi,, if k1 = ky, let £ denotek; andky, and: denote any subject, the second order

partial derivative becomes

Ph(f) I I T 1
o, __j TGl (L= A% | (A12)

Whenk; # kp, using similar notation as earlier, the second order seoothel partial derivative becomes
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Yij —y,i) Vi v )12
i(1- /Iklj)(l y,,),lkzlj(]__ /lkgj)(l Yij)

n(f) 5 ki
09k, 09k, j o g,k/lfjj (1 — Ayg) &)

(A.13)

When diferentiating the posterior probability w.gik, andy,j andk; equalsk,. Let ¢ denote bottk; and

ko, the second order partial derivative for any subjeartd symptony is as follows,

() Oy = NI = A" (T Gaedly (1= 4g)E99) = A1 (1= )]

_ (A.14)
1] — 2
990, [(Zegudls (1= ) E9)(L = e )]
Whenk; andk, are not equal, the second order partial derivative becomes
Oy=1) _ W Vi v,
Fh(f) GO = AL (1= )] (A.15)

0Gig Ol (1= A W (S Qe (1= Ay ) )

The last combinations are the variance and covarianck, pfand Ay,;. Again letting¢ denotek; andk;

where these are equal, for any symptgrthe second order partial derivative is

62h(f) _ Z[ pf(ylj/lsf{’/—l(yu - l[’;)] ]2 (A 16)
ad)? =L (L= A, i ey (L= i) '
Whenk; is not equal tdk,, the second order partial derivative becomes
an(f) Z iy Giko (A Ak ) DYy = Ak )Wy = Aky)) ] (A17)

0,0, LA (L= A P (1 = D W[ Dk gik/l)k,ijj(l = Ay,) ]2
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A.3 Chapter 6

Table A.6: The SNP ID referenced in this study

SNPID SNP names SNPID | SNP names
1112 rs4959334 6157 | rs9268403
1576 rs10901001 6158 | rs12201454
3302 rs7749556 6160 | rs12528797
4073 rs874448 6172 | rs3806156
4887 rs950877 6173 | rs3763307
5447 rs16894900 6174 | rs3763308
5545 rs9258205 6177 | rs2001097
5553 rs9258223 6179 | rs3135378
5566 rs1633030 6180 | rs3135377
5571 rs1632973 6189 | rs9268560
5577 rs9258466 6191 | rs3135342
5587 rs1233320 6195 | rs9268645
5588 rs16896081 6205 | rs9268858
5638 rs1150743 6211 | rs9268877
5661 rs9261389 6214 | rs9270986
5663 rs9261394 6217 | rs4530903
5802 rs2394390 6219 | rs9272219
5919 rs9263702 6221 | rs9272723
5932 rs2073724 6222 | rs9273363
5947 rs3095238 6225 | rs7775228
5957 rs3130531 6227 | rs6457617
5969 rs7382297 6228 | rs6457620
6025 rs16899646 6232 | rs9275418
6043 rs2523650 6233 | rs9275523
6051 rs3131631 6382 | rs3129207
6073 rs2242655 6385 | rs7382464
6087 rs480092 8169 | rs16872971
6110 rs408359 8390 | rs2028542
6117 rs438475 12097 | rs9343272
6121 SNPA.2064274 17510 | rs6938123
6122 rs377763 21883 | rs9497148
6149 rs9268302 22015 | rs3763239
6154 rs9268402 24454 | rs16891392
6156 rs9391858 26289 | rs16901461
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