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Abstract

Genetic research of complex diseases is a challenging, but exciting, area of research. The early development

of the research was limited, however, until the completion of the Human Genome and HapMap projects,

along with the reduction in the cost of genotyping, which paves the way for understanding the genetic

composition of complex diseases.

In this thesis, we focus on the statistical methods for two aspects of genetic research: phenotype definition

for diseases with complex etiology and methods for identifying potentially associated Single Nucleotide

Polymorphisms (SNPs) and SNP-SNP interactions.

With regard to phenotype definition for diseases with complex etiology, we firstly investigated the effects

of different statistical phenotyping approaches on the subsequent analysis. In light of the findings, and

the difficulties in validating the estimated phenotype, we proposedtwo different methods for reconciling

phenotypes of different models using Bayesian model averaging as a coherent mechanism for accounting

for model uncertainty.

In the second part of the thesis, the focus is turnd to the methods for identifying associated SNPs and SNP

interactions. We review the use of Bayesian logistic regression with variable selection for SNP identification

and extended the model for detecting the interaction effects for population based case-control studies. In

this part of study, we also develop a machine learning algorithm to cope with the large scale data analysis,

namely modified Logic Regression with Genetic Program (MLR-GEP), which is then compared with the

Bayesian model, Random Forests and other variants of logic regression.
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1
Introduction

Since that pivotal moment in history about 145 years ago whenBohemian monk Gregor Mendel published

the results of his pea breeding experiment, scientists haveendeavoured to build a foundational understanding

of hereditary genetics. Despite limitations in technologyduring the late 60’s, the genetic dissection of plants

and model organisms was successfully pursued [127]. The genetic study of human traits however, did not

gain much ground until advancements in molecular and computational technologies during the 80’s. Many

of the successes which have occurred are due to the results ofgenome-wide linkage analysis and position

cloning [230]. Linkage analysis is a method for identifyingregions of the genome with higher-than-expected

shared alleles among affected individuals within a family. This method has recordedtremendous successes

in mapping genes in various diseases/disorders such as Duchenne muscular dystrophy, cystic fibrosis and

1
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Huntington’s disease. However, the successes are restricted largely to Mendelian disorders [230].

Most of the common disorders do not follow the Mendelian pattern of inheritance and are believed to have

“complex” genetic make-up, therefore, in contrast to Mendelian disorders, these traits are often referred to

as complex traits. A more formal definition of a complex traitis given in p370. [275], that is

A trait that appears to have a genetic component but with no simple Mendelian pattern of single-

gene inheritance; multiple genes, poly genes, environmental factors, age effects, and their

interaction may be involved.

Although genome-wide linkage analysis has been carried outfor many complex diseases, including Crohn’s

disease [126], migraine [212] and schizophrenia [261], thesuccess is limited given that the mapped genes

usually explain only a small fraction of the heritability. Furthermore, the lack of replication of the linkage

results has suggested that linkage analysis is not suited for mapping complex diseases. [119] identified

various other factors contributing to the lack of success, including the low heritability of most complex traits,

the inability of the standard set of microsatellite markersto extract complete information about inheritance,

imprecise definition of phenotypes and inadequately powered study designs. Most importantly, linkage

analysis is less powerful in identifying large number of loci, each with moderate to little effect. Therefore,

for a better understanding of the genetic architecture of complex traits, linkage analysis may no longer be a

preferable option.

A practical, less expensive (compared with sequencing) approach, which still retains the scale of the genome-

wide approach for gene mapping, is the genome-wide association study (GWAs). A GWAs is designed to

identify associations between potential causal loci from hundreds of thousands of single nucleotide poly-

morphisms (SNPs) and traits. Since the completion of the Human Genome project [271, 272] and HapMap

[269, 270], along with the reduction in the cost of genotyping, GWAs have become more prevalent. During

the past five years, more than 300 replicated associations have been reported for 70 common phenotypes

[66]. As more SNPs are included in the commercially available gene chips, more and even larger scale

GWAs will emerge, e.g. WTCCC 2 project (https://www.wtccc.org.uk/ccc2/).

Without a doubt, the increasing number of larger scale GWAs increases understanding of the genetic dis-

https://www.wtccc.org.uk/ccc2/
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section of complex traits. However, the virtual avalanche of data generated from GWAs has raised another

array of challenges. These include the development and application of sound statistical methods for data

analysis, the need for higher-level computational resources and quality interpretation of the findings. With

all these in mind, the overall objective of this thesis is to

develop sound statistical methods to enhance understanding of the genetic architecture of com-

plex traits.

Given the constraints imposed by the time frame of PhD candidature, the areas focused upon in this thesis are

confined to 1) the definition of phenotype and 2) methods for identifying epistatic effects, that is, gene-gene

interaction effects.

Although phenotype definition prior to conducting genome-wide analysis may seem to be trivial and often

ignored, without thorough consideration to defining the phenotype, the subsequent gene mapping results

may not be meaningful. When phenotypes can be clearly asserted using biomarkers, the definition of phe-

notype is less relevant; however, for phenotypes that cannot be asserted using biomarkers, and also having

complex clinical etiology, this becomes a very important issue. Examples of the latter conjuncture include

various psychological disorders such as Alzheimer’s disease, Parkinson’s diseases and various types of

headache. When carrying out genetic research for these types of disorders, ascertaining the phenotype often

relies on the clinical diagnostic procedure, which is basedon the fulfillment of symptom criteria. Various

authors have argued that this method of ascertainment is notideal for genetic research due to heterogeneity

among affected and non-affected groups [287, 224].

An alternative method for deriving the phenotype is to use statistical approaches. Statistical methods for

clustering and classification problems have been well developed. Given the true phenotype is not observable,

a latent type of clustering approach may be more suited for this type of problem.

Various latent type clustering methods have been used for deriving phenotypes, such as latent class anal-

ysis (LCA), grade of membership (GoM) and item response theory (IRT). Given there are many different

choices of clustering methods and the “true” phenotype is unobservable, it is uncertain if applying different

clustering methods will affect the subsequent genetic analysis. Therefore, the first sub-objective in the first
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part of this thesis is to

• investigate the effect of different statistical methods of phenotyping on the subsequentgenetic analysis

This is addressed in Chapters 3 and 4 of this thesis, and twin migraine data are used for illustration.

Migraine is a common, painful and debilitating disorder with heritability ranging from 34 to 57%. The

diagnosis of migraine is difficult, due to the absence of a clear biomarker, hence the diagnosis of the disor-

der depends on matching self-reported symptoms against criteria suggested by the International Headache

Society [115]. Although a variety of independent genetic research has been carried out using this phenotype

standard, under this phenotype definition, no common gene has been replicated across studies. Due to the

overlap in symptoms between the subtypes of migraine, scientists have suspected that the two subtypes of

migraine, migraine with aura and migraine without aura are actually not separate entities [211, 10, 164, 287].

[212] pioneered the use of LCA for phenotyping migraine, identifying potential linkage to chromosome

5q21 and replicating previous reported loci. Besides LCA, there are other clustering methods that can be

used for deriving phenotypes. In Chapter 3, we compare the phenotypes derived from LCA, GoM and

fuzzy clustering and the results of the subsequent linkage analysis. The phenotypes derived from LCA and

fuzzy clustering are largely similar; therefore, the loci identified by the linkage analysis are also similar. In

contrast, the results of GoM are very different from the other two approaches. This work has been pub-

lished inHuman Genetics[47] and presented as a poster presentation at the Indo-Australasia Biotechnology

Conference, Brisbane 2007 and at GeneMapper, Brisbane 2007.

Using the same dataset, in Chapter 4, we focus on two different types of latent methods, LCA and IRT.

Unlike LCA, IRT estimates the latent value without postulating clustering structure, but by direct association

with the symptoms responses, which also takes into account symptom prevalence. A notable difference

between Chapters 4 and 3 is that models of the former Chapter are proposed and compared in a Bayesian

context. Furthermore, the use of the MCMC algorithm for parameter estimation provides credible intervals

for each of the model parameters, which accounts for the uncertainty resulting from parameter estimation.

Even though LCA and IRT have different underlying algorithms, phenotypes derived from these models are

highly correlated, so the results of the subsequent analysis are in general agreement. This work has also
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been published inHuman Genetics[45] and was presented as a poster at the Biometrics conference, Coffs

Harbour 2007, BioInfoSummer, Canberra 2007 and ISBA conference, Hamilton Island 2008.

Given that the phenotype derived from each model cannot be easily validated, and even though using statis-

tical model comparison criteria gives insight as to how wellthe model fits the data, it does not provide full

support to the phenotype estimated by a single model. Moreover, we note that the disagreement about the

phenotype estimated from different models is mainly for individuals with the phenotype that is at the bor-

derline of being a case or control. Therefore, methods for consolidating phenotypes estimated from different

models may potentially be more advantageous than relying ona single model. This motivates the work of

Chapter 5, the objective of which is to

• develop statistical methods for the integration of estimated phenotypes obtained from multiple models.

In this chapter, we propose two new methods to overcome the problems associated with defining phenotype

classes and use Bayesian model averaging [142, 121] as a coherent mechanism for accounting for model

uncertainty [121]. The idea of model averaging is to averagethe posterior distributions of different models,

where the models are weighted according to model probability. The methods we propose here allow for

the integration of estimated phenotypes obtained from multiple models both within and across phenotype

classification approaches. The two models used for illustration in this chapter are latent class analysis

(LCA) and grade of membership (GOM) and the proposed method for integration is similar to the“M -open

perspective” discussed in [24] and [121]. Moreover, the focus of the methods is not on the state parameters,

but on the latent parameters. The methods are demonstrated using a real dataset on migraine and a simulated

dataset obtained from the Genetic Analysis Workshop 14 [105]. This work is submitted toJournal of the

Royal Statistical Society C. Thus, Chapters 3, 4 and 5 form the first part of this thesis.

In the second part of thesis, the focus is turned to statistical methods for identifying the epistasis effects

in large-scale SNP data generated from GWAs. Epistasis is generally defined as the interaction between

different genes that is suspected to be an important factor for the expression of a complex trait. Although

there are different definitions of epistasis in the literature [50, 214], the definition of epistasis in this thesis

remains more general; that is, the risk of having a phenotypecan increase or decrease as a result of the
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combination of two or more genes. The interaction among genes can be either additive or multiplicative.

Chapter 6 is a study of a Bayesian regression model with variable selection to identify the potentially causal

loci. Because the number of variables in GWAs is excessivelylarger than the sample size, when considering

all loci simultaneously, the results are often unreliable if there is no consideration of dimension reduction.

Some excellent methods for dimension reduction have been developed within a Bayesian context, including

variable selection and shrinkage.

The method used for variable selection in Chapter 6 is more aligned with [95], who introduced the use of

a latent indicator for the identification of subsets of variables. Similar methods have been implemented for

smaller datasets [90] and QTL studies [49, 297]. In contrastto these studies, the focus here is on application

to larger-scale SNP data. The model is validated using simulated Rheumatoid arthritis data obtained from

the Genetic Analysis Workshop 15, and tested on two real datasets. This work has been presented to the

students and colleagues of Fakultät Statistik, Technische Universität Dortmund, Germany, and presented

as a poster presentation at 17th International Conference on Intelligent Systems for Molecular Biology,

Stockholm. This work is currently being revised for submission to an international refereed journal, such as

Computational Statistics and Data Analysis.

Although the results of Chapter 6 are promising, the major drawback of the model is computational inef-

ficiency, especially given the scale of GWAs. Therefore, in Chapter 7, we explore the use of the machine

learning algorithm for identifying epistasis effects. The model proposed in Chapter 7 is an extension of

Logic regression [235]. Logic regression is a hybrid approach that has a tree like structure comprised of

Boolean expressions, such as AND and OR, and model fitting element. Various approaches have sprouted

from the original logic regression [153, 245]. Even though these new variants improve the ability of LR in

detecting interaction effects, limitations exist with respect to the number of factors which can be analysed

at once within the written code, which currently stands at a maximum of 1000 SNP’s. With these issues

in mind, we propose an alternative method, which also buildson the framework of logic trees but has the

advantage of the genetic expression programming algorithm. The proposed algorithm has shown promising

ability in analyzing at least up to 30,000 SNPs within a reasonable time. This work has been submitted to

IEEE/ACM Transactions on Computational Biology and Bioinformatics.
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In Chapter 7, we consider different variations of logic trees for identifying interaction effects in association

studies. Often these methods are introduced independentlyand it is uncertain how they differ from each

other. In this Chapter, we also include the random forest (RF) for comparison. RF is also a tree-like

algorithm, but has a very different morphological structure compared with the logic tree. Therefore, the

purpose of Chapter 8 is to address the differences within the variations of logic regression as well asbetween

the tree-like algorithms. Since it is also not clear how the tree-like algorithm compares with model based

approaches, we also include the model proposed in Chapter 5 for comparison. This work has been submitted

to IEEE/ACM Transactions on Computational Biology and Bioinformatics.

This thesis is written in fulfillment of the requirement for thesis by publication, such that Chapters 3 to

7 are comprised of journal articles. Therefore, each chapter contains some materials which may partially

overlap with the content of Chapter 2. Moreover, the same migraine data has been used throughout Chapters

3 to 5 of this thesis and hence is repeatedly described in these chapters for the purpose of publications.

Furthermore, each chapter has a self-contained bibliography, although for completeness these are merged

into a comprehensive bibliography at the end of the thesis.

In summary, the overall objective of this thesis is to develop statistical methods for enhancing the under-

standing of genetic composition of complex diseases. To achieve this object, we explore the following

aspects:

• phenotype definition

– investigate the effect of different statistical methods of phenotyping on the subsequentanalysis.

(Chapters 3 and 4)

– develop methods for reconciling the phenotypes estimated from different methods. (Chapter 5)

• methods for identifying the associated SNPs or SNP interactions

– explore the potential of using Bayesian logistic model withvariable selection (Chapter 6)

– explore the potential of machine learning algorithms to improve the speed of computation (Chap-
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ter 7)

– documenting the strengths and weaknesses of machine learning and model based approaches.

(Chapter 8)



2
Literature Review

2.1 Introduction

The literature review is organized as follows. This chapterstarts with the basics of human genetics (Sec-

tion 2.2), then in Section 2.3, I review common practices fordefining phenotypes for traits with complex

etiology and then review various statistical methods for clustering. Because the next three chapters of this

thesis implement genome-wide linkage analysis, we also include an overview of the underlying algorithms.

The subsequent section includes a brief overview of the transition from genome-wide linkage analysis to

genome-wide association studies. The last section of this chapter contains a discussion of the statistical

methods which are commonly used for identifying important genes and gene-gene interaction effects. Be-

9
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cause methodology for identifying epistasis effects is a new and popular area of research with more and

more methods emerging in the literature, the methods reviewed here are confined to those that are com-

monly discussed and implemented.

2.2 Human Genetics

The aim of this section is to provide a short summary on human genetics. Because the contents of this

section can be commonly found in genetic text books, the materials of this section are summarized from

four main sources, biology by [147], introduction to human genetics by [106], the statistical methods in

genetic epidemiology by [275] and genetic analysis of complex diseases by [108].

An understanding of subjects in molecular genetics, such asgene networks, can be useful in conjunction with

the methods proposed in this thesis. The review of this topicis beyond the scope of this thesis, however,

[148] provides an overview for gene networks.

2.2.1 Gene, Chromosome and DNA

The human body is made up of cells and the materials produced by these cells. The genetic material can

be found in every cell of the human body, where a large proportion of information is contained in the

chromosome, which is located in the nucleus of the cell, and asmall part of genetic material is located in

various mitochondria. The nucleus of the human somatic cells contains 22 pairs of autosomes and a pair

of sex chromosomes, a total of 46 chromosomes. An individualinherits half of the chromosomes from the

father and the other half from the mother. Because the autosomal chromosomes are arranged in pairs, they

are called homologous chromosome pairs. The chemical structure of the chromosomes is deoxyribonucleic

acid (DNA), which comprises the gene and encodes information for synthesizing both protein and RNA.

DNA is composed of three elements, a sugar, a phosphate and a base. There are four possible bases in DNA,

which are pyrimidines adenine (A), guanine (G), purines cytosine (C) and thymine (T). A DNA sequence is

often described as an ordered list of bases, each denoted by the letter of its name, e.g ATCCGA. Because a
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single strand of DNA is unstable, it has a double-helical structure where two strands of DNA are arranged

in anti-parallel orientation, and a hydrogen bond linking abase with its complimentary base, i.e A-T and

G-C. The length of the sequence is different from chromosome to chromosome, and there are approximately

3× 109 base pairs in the human genome. Even though there are a large number of base pairs in the human

genome, a large proportion of the genetic sequence is actually similar between unrelated individuals. Genetic

polymorphism is the term used to describe the difference in two genetic sequences between two individuals.

There are various types of genetic polymorphism, such as a single nucleotide polymorphism, a short tandem

repeat and an insertion-deletion. A single nucleotide polymorphism (SNP) is when a base pair in a sequence

is replaced by another base pair. A short tandem repeat (STR)is when a sequence of bases is repeated a

different number of times between two individuals. An insertion-deletion polymorphism is when a base or a

sequence of base is inserted or deleted from the original sequence. Therefore, the length of the chromosome

can also differ among individuals.

The physical location of a stretch of DNA on a chromosome is called a genetic locus. At any particular locus,

there can be different forms of the gene, which is called an allele. Because the autosomes are arranged in

pairs, an individual also has a pair of alleles at the same locus, one from each chromosome. The combination

of the two alleles is called the genotype of the individual atthat genetic locus. For a biallelic gene with

possible alleles a and A, there are three possible genotypes, AA, Aa and aa. Homozygosity is when two

alleles are identical (i.e. AA and aa), and heterozygosity is when when the alleles are different (i.e. Aa).

2.2.2 Meiosis

The biological foundation for linkage analysis is meiosis,which is a process of producing gametes (i.e.

sperm and egg cells) in sexual organisms. Human reproduction starts with the production of gametes, with

the gamete of each parent uniting during the process of fertilization to forms zygote. A zygote is then

developed into a human by the process of cell division. Unlike the somatic cells in the human body, which

have 46 chromosomes, the gametes only have 23 chromosomes. Therefore, the human somatic cells are

diploid and the gametes are haploid.
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Meiosis consists of two stages: meiosis I and meiosis II. In meiosis I, each chromosome in a cell replicates

to form two sets of duplicated homologous chromosomes. During meiosis I, physical contact between

chromatids (arms of chromosomes) may occur which results inthe formation of chiasmata. Chiasmata are

physical manifestations of crossing over or recombination, which is the exchange of the DNA fragment in

the adjacent homologous chromosome region. Chiasma occursat least once per chromosome pair and the

frequency of the recombination is not uniform through the whole genome. For instance, some areas of some

chromosomes have higher rates of recombination (hot spots)and others have fewer recombination (cold

spots).

After crossing over, cell division occurs to form two uniquediploid cells that are different from the parent

cells. This concludes the first stage of meiosis. In the second stage of meiosis, the cell division occurs

again and genetic material is transmitted independently without recombination. At the end of meiosis II,

two diploid cells become four haploid cells.

2.2.3 Genetic maps

Genetic markers are the loci where the locations on the chromosome are well established and are poly-

morphic among individuals in a population. The length of genetic markers varies, it can be a short DNA

sequence or a long one, such as microsatellite markers. These markers are essential for developing dense

genetic maps, which are important for finding out the locations of disease loci.

There are two type of maps, physical maps and genetic maps. Physical maps quantify the distance between

genetic markers by counting the number of base pairs in between, whereas genetic maps arrange genetic

markers by specifying the number of recombinations occurring between markers. Although both maps are

essential for mapping disease loci, there are substantial variations in the estimates of an identical region from

physical and genetics maps. Table 1.5 of [108] shows the discrepancy in the estimated length for different

chromosomes using physical and genetic maps.

The measurement of distance in the physical map is often described in the thousands of kilobases (kbp, 1

kbp= 1000 base pair), whereas the unit for the genetic map is a centimorgan (cM). When two loci are one
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Morgan (1 Morgan=100cM) apart, the expected number of recombinations between these two loci is one per

meiosis. According to the genetic map, the length of chromosomes is different between male and female.

The overall length of the autosomal chromosomes for males is28.5 Morgans, and for females is 43 Morgans

.

The availability of the genetic maps allow scientists to link a loci of unknown location to a genetic marker

where the location on the chromosome is known. Suppose thereare two loci on the same chromosome, with

possible alleleA, a at first loci andB, b at the second loci. Let the genotype of the father’s chromosome isAB

andabat the mother’s chromosome. There are four possible combinations from the meiosis: AB, Ab, aB and

ab. If a gamete receivesaBor Abduring meiosis, the loci is said to be recombinant. Conversely, if a gamete

receivedAB or ab during the meiosis, it is said to be non-recombinant even if recombination occurred.

Therefore if an odd number of recombination occur during meiosis, two loci are said to be recombinant.

If an even number of recombinations occur during meiosis, two loci are said to be non-recombinant. The

recombination fraction (θ) is the probability that two loci become recombinant duringmeiosis given the

distance between two loci. The simplest probabilistic model for estimating the recombination fraction is

the Haldane’s map function. Letx denote the distance between two loci which is measured in cM,the

recombination fraction is then

θ(x) = 0.5(1− exp(−0.02x)). (2.1)

Two loci are linked ifθ 6 0.5. Conversely, two loci are unlinked ifθ ≈ 0.5. For loci on different chro-

mosomes, the recombination fraction is always 0.5. This model, however, is oversimplified for discovering

human disease genes. This is because the generation time in humans is relatively longer and the multi-

generational pedigrees with a segregated disease or trait is rare. Moreover, the mating scheme can not be

systematically designed and there are other ethical issues. Therefore, the linkage analysis in humans re-

quires different assumptions, and hence more complicated statisticalmodels are necessary. Section 2.3.2

reviews statistical models commonly used for linkage analysis in humans.
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2.2.4 Epistasis

Epistasis is an interaction between two different genes or loci. The idea of epistasis has been around for

more than 100 years. It was initially used by William Batesonto describe the distortions of mendelian

segregation ratios that were due to one gene masking the effect of another [19]. The early definition of

epistasis is similar to the concept of dominance, that is, a variant of one gene can prevent the variant at

another loci from manifesting its effect. An example of this type of epistasis is the coat color of pigs [39].

Two loci, KIT andMC1R, are known to jointly influence the coat color of pigs. If the dominant allele (I ) is

present at theKIT loci, it masks the effect ofMC1Rloci and all pigs have white coats. When the recessive

genotype (ii ) is present in theKIT loci, the color of the pigs will depend on the variants at theMC1R. Pigs

with the dominant allele (E) at the MC1R will have a brown color coat and pigs with the recessive genotype

(ee) will have a black color coat. This definition of epistasis issimilar to the concept often used by biologists

and molecular geneticist when investigating the interaction between proteins [50].

Another definition of epistasis was suggested by Fisher in 1918 [86] as a deviation from the additive com-

bination of different loci to their effect on a phenotype. Unlike Bateson’s definition, Fisher’s definition

of epistasis is closer to the statistical definition of interaction, which departs from a specific linear model

describing the relationship between predictive factors [50]. This view of epistasis is often adopted by popu-

lation geneticists.

Another definition of epistasis relates to the molecular interactions present in proteins, such as if proteins

operate within the same pathway, or consist of proteins which directly interact with one another. The dis-

crepancy in the term ‘epitasis’ has resulted in the separation of three definitive categories by [214], which

are functional epistasis, compositional epistasis and statistical epistasis. Functional epistasis describes the

protein interaction and the latter two type of epistasis areequivalent to Bateson’s and Fisher’s definition of

epistasis, respectively.

Besides the dominance interaction, for a biological interpretation, gene and gene can interact in other ways

to influence the phenotype. [39] suggested two other types ofstatistical epistasis in QTL, co-adaptive and

dominance-by-dominance epistasis, which may be interesting to biologists. These two types of epistasis
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belong to the statistical epistasis defined by Fisher. The co-adaptive epistasis is when the homozygous

genotype appear in two loci (e.g the genotype of two loci areaa andbb or AA andBB ), which increases

the level of the phenotypic trait. This type of epistasis is found to affect the hatch-weight of chickens.

Dominance-by-dominance epistasis is when double heterozygous alleles in two loci resulted in a deviation

of the phenotypic trait from the expected. For instance, a negative dominance-by-dominance epistasis is

when the heterozygous genotype is at two loci, the phenotypeis lower then expected . This type of epistasis

is found in the maternal performance for offspring survival in mice.

[50] and [214] provide more thorough definitions and interpretation on epistasis. [39] and [108] review

the importance of epistasis in genetic research of complex traits.

2.3 Phenotype Definition for Diseases with Complex Etiology

Before carrying out genetic research on any diseases/disorders, an essential step is to define the targeted

disease/disorder. When a disease can be identified using a pathological test(s) for assurance, the proce-

dure becomes straight-forward. However, it is common for a disease to have no objective markers or for

practioners to be uncertain about the causes of a disease, for example various psychological disorders (e.g.

Schizophrenia, obsessive compulsive disorders or depression), migraine and Alzheimer’s disease. The most

common method for identifying these diseases/disorders is to rely on medically recognised criteria. For

example, migraine is a common and painful disorder, the diagnosis of which depends on classifying the

self-reported headache characteristics using International Headache Society (IHS) published criteria [115].

These criteria were developed to standardise headache definition. The most common subtypes of migraines

are migraine with aura (MA) and migraine without aura (MO). Tables A.1 and A.2 list symptoms for each

subtype.

Various published studies have used this scheme for the identification of migraine phenotype and focused on

either the MO or MA group [28, 257, 37, 286, 41, 136]. Certainly these criteria have refined the diagnosis

of migraine and consequently have improved epidemiological research of the disorder. However, some

scientists are questioning the homogeneity of the subgroups and the validity of using these for genetic
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analysis. Although [238], [236] and [237] argued that MA andMO are distinct entities due to insignificant

co-occurrence of MO and MA in population and twin pairs, other authors contradict this finding [160, 211,

287]. A study by [160] found that 42% of individuals who reported having migraine with aura often

have migraine without aura. Furthermore, the Italian Headache Centre reported that 45% of families have

members with both MA or MO [196]. [10] and [287] point out thatIHS criteria may oversimplify the

complex variability among sufferers and argue that there is overlap in the symptoms of the two subtypes

of migraine. Furthermore, no gene that potentially differentiates these two subtypes has been successful

replicated across studies [28, 257, 37, 286, 136, 41].

There are currently two main types of methods for identifying the phenotypic structure of the collective

symptoms, one based on the use of statistical methods to obtain more homogenous groups and the other

based on treating individual symptoms as separate phenotypic traits, i.e trait component analysis [TCA,

10]. In the following section, I review various methods thathave been implemented for the identification of

phenotypes. Theses methods are not limited to only migraine, but are relevant to a larger scope of genetic

research.

2.3.1 Statistical Methods

Hierarchical Clustering Two common approaches to hierarchical clustering are agglomerative and di-

visive. The agglomerative hierarchical approach starts with each individual in a separate cluster and then

merges two clusters at each step until there is only one cluster remaining or a stopping threshold is reached.

In contrast, divisive clustering starts with all individuals in one cluster, then splits clusters at each step until

the number of clusters is equivalent to the number of individuals or, again, a stopping threshold is reached.

Both of these approaches are often based on a measure of dissimilarity between individuals. The dissimilar-

ity coefficient is the distance between two individuals. The most commonly used dissimilarity measures are

Euclidean distance

d(i, j) =
√

(xi1 − x j1)2 + .... + (xip − x jp)2, (2.2)
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its square,d2(i, j) or the Manhattan distance

d(i, j) = |xi1 − x j1| + . . . + |xip − x jp| (2.3)

wherexip andx jp are the observations for individuali and j for the pth factor respectively. After obtaining

the dissimilarity coefficient matrices, splitting or merging is chosen to optimise some criteria, i.e. single

linkage, complete linkage or maximum likelihood.

Hierarchical clustering may not be the best way to discover interesting groupings and is considered by

some as more a visualization tool [281]. The disadvantage ofusing hierarchical methods is that they can

never repair what was done in the previous steps of merging orsplitting [143]. Several factors can result in

different dendrogram clustering structure, such as different criteria used in optimization or changes in the

data [281, 113]. In addition to the above problems, hierarchical clustering enforces hierarchical structure

even if there is no such structure in the data [113]. Consequently, any inference based on hierarchical

clustering should be treated with caution.

Partition Clustering (Relocating Clustering) In contrast to hierarchical approaches, partitioning meth-

ods often specify the number of groups (k) in advance. TheK-means method [173] is the most commonly

used partitioning method and is intended for quantitative variables.

The aim of theK-means method is to minimise the average dissimilarity measure between each observation

and the mean within each cluster. In general, the steps involved for theK-means cluster algorithm are:

1. Partition the data intoK initial sets at random or using some heuristic.

2. Compute the centroid (or seed points) for each current cluster{m1,m2, ...,mK}.

3. Assign individuals to the closest cluster then update thecentroids.

4. Repeat Step 2 and 3 until the assignment no longer changes.

Although theK-mean cluster is popular due to the speed of convergence, it is not guaranteed to give the
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global optimum.

The clustering methods described above are frequently usedfor clustering individuals into affected and

not-affected clusters. Therefore, phenotypic values derived fromthese methods are dichotomous.

Mixture models The concept of utilising a model-based approach for clustering was first introduced by

[16]. In comparison to hierarchical and partitioning clustering approaches, the model-based approach gives

better performance [87], yields the optimum number of groups within the data according to some criteria,

and has the ability to handle outliers [87]. Moreover, the model incorporates a measurement of classification

uncertainty which can be easily estimated using the expectation-maximization (EM) or MCMC algorithms.

In model-based clustering, data are assumed to be generatedfrom a mixture of clusters or components,

each represented by a probability distribution. Given observations x1, . . . , xn , wheren is the number of

individuals, fk(xi |θk) is the density function of observationxi belonging to componentk givenθk, whereθk

is the corresponding vector of parameters for that component, k.

The likelihood is then

L(θ1, θ2, .., θk) =
n

∏

i=1

K
∑

k=1

πk fk(xi |θk) πk ≥ 0 and
∑

k

πk = 1 (2.4)

whereπk is the weight of each componentk.

The early solution for the mixture of multivariate normal by[247] has some limitations, i.e. constant

covariance matrices for different clusters, restriction to Gaussian distribution and inability to model noise.

[16] suggested reparameterization to overcome these problems. For the first two limitations, they proposed

a general framework for geometric cross-cluster constraints by parameterizing the covariance matrix,Σk, of

the multivariate normal distribution through eigenvectordecomposition in the form

Σk = λkDkAkDT
k (2.5)
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whereDk is the orthogonal matrix of eigenvectors, which determine the orientation of the clusters.Ak is a

diagonal matrix whose elements are proportional to the eigenvalue andλk is scalar.Ak andλk specify the

contour of the clusters, the former is the shape and the latter is the size of clusters. [16] then extented the

mixture model to incorporate the poisson noise.

[88] has developed a software package,MCLUST for applying the Gaussian mixture model with the EM

algorithm. MCLUST was written in FORTRAN and interfaced to the S-Plus and R software packages,

which can be downloaded from the developer’s website.

The mixture model for multivariate discrete data is also known as Latent class analysis (LCA), which is

discussed in the following section.

Latent Class Analysis Latent class analysis is a multivariate technique which canbe applied to clustering,

regression and factor analysis. The classes arelatentbecause they are not directly observed, but are identified

based on a function of a set of observed variables. LCA was developed in the 1950s for dichotomous

variables [161]. However, the potential and wide practicalapplication of LCA only became evident after the

introduction of more general latent class analysis and a simpler method of obtaining maximum likelihood

estimates of the parameters in the 1970s [103]. LCA [103] is capable of dealing with both dichotomous and

polytomous variables and more than one latent variable could be included in the model.

During the same period, the connection between LCA and clustering analysis was first introduced. How-

ever, the structure of latent class clustering was not developed until the late 1990s. Latent class cluster-

ing analysis has been used in a wide spectrum of epidemiologystudies such as the studies of attention-

deficit/hyperactivity disorder (ADHD) [282], migraine [211, 212],depressive syndromes [144], Alzheimer’s

disease [172, 193, 199] and investigating the nosologic structure of psychotic illness [145].

Suppose there aren individuals,J observed (manifest) variables and each variable hasL j levels of response,

i = 1, 2, . . . , n, j = 1, 2, . . . , J and l = 1, 2, . . . , L j; Let yi jl denote a binary response pattern of theith

individual to variablej with level l, andYi is a J by L j matrix of subjecti’s response pattern. Assuming

there areK latent classes within the latent variable, letλk jl denote the class conditional probability that an
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observation in classk produces thelth outcome on thejth variable. Therefore, for eachj,

∑

l λk jl = 1.

Assuming local independence, the probability of an individual i in classk having a particular set of response

patterns is

f (Yi |λk) =
J

∏

j=1

L j
∏

l=1

(λk jl )
yi jl

where pk denotes prior probability of belonging to latent classk, p = (p1, . . . , pK). Let Λ be a matrix

containing all members ofλk jl , the joint distribution for allJ variables under the latent class model is

Pr(Yi |Λ, p) =
K

∑

k=1

pk

J
∏

j

L j
∏

l

(λk jl )
yi jl

LCA analysis can be carried out using the poLCA [167] packageof R2.4.1. The parameters are estimated

using the expectation-maximization (EM) algorithm [60]. The details of the EM algorithm for LCA are

given by [167]. Unlike other models described in this report, the conditional probability of beingkth class

membership, givenYi is estimated using Bayes’s formula:

Pr(k|Yi) =
pk f (Yi |λ̂k)

∑

r pr f (Yi |λ̂r )
.

whereλ̂k is an estimated of outcome probability conditioning on class k.

Grade of Membership Grade of membership (GoM) is another popular statistical method which also

fits into the latent class framework. GoM was first developed by Max Woodbury in the 1970s for medi-

cal classification and it has been widely used in the analysisof survey data in various disciplines ranging

from determining the subtype of medical conditions such as mania [42], depression [266], and Alzheimer’s

disease [85], to identifying the genetic component in inheritable illness [178], and in social studies [80, 81].
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GoM has a very similar algorithm to latent class clustering analysis, and the PhD thesis of [80] gives a

detailed overview of the similarity and dissimilarity of these two models. The most fundamental difference

between latent class analysis and GoM is that the latter model gives partial membership rather than full

membership.

Let gi = (gi1, gi2, . . . , giK ) be the latent vector of grade membership score for individual i belonging to

componentk and
∑K

k=1 gik = 1. Unlike LCA, the membership score of an individual is estimated directly

from data. Letλk jl denote the probability of a positive response to levell of variable j for a complete

membership of componentk, λk jl = Pr(xi jl = 1|gik = 1) wherei = 1, 2, . . . , n, j = 1, 2, . . . , J andk =

1, 2, . . . ,K. The parameterλk jl has to be greater than or equal to zero while for eachj, the sum ofλk jl across

all levels is equal to one. Letyi jl be a binary indicator variable for the response of individual i to level l of

questionj. The joint likelihood of GoM is

Pr(Y|λ, g) =
N

∏

i=1

J
∏

j=1

L j
∏

l=1

(
∑

k

gikλk jl )
yi jl . (2.6)

Equation 2.6 is maximized through iteratively optimizing with respect to one set of parameters while keep-

ing the other set of parameters constant. This iterative procedure is referred to as the missing information

principle. Details of the parameter estimation procedure are on page 68 of [179].

Missing values are important and yet common in genetic research. The missing values are the result of

various causes. They can be generated by a random mechanism which is independent of the membership

score,gik. In GoM, this type of missing data can be treated as unobserved and independent observations.

In this case,yi jl for the missing observation is set to be 0 forl = 1, .., L j. Consequently, missing data are

dropped in the calculation of the likelihood value. Anothermore complicated cause of missing data is a

non-random process, such that certain items have a higher rate of missing data in a specific latent class. One

way to deal with this problem is to increase the dimension of the data by adding an extra category called

“missing” for each variable in the model. In this study, the missing data are assumed to be random and

independent from the membership score; therefore, we applied the first strategy to handle missing values.
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FANNY GoM Unlike the maximum likelihood approach, FANNY forms clusters based on a dissimilarity

matrix. Here, the dissimilarity matrix is calculated usinga contingency table. Considering two objects,i

and j and the contingency table ofi and j for variablep given in Table 2.1,

Table 2.1: The contingency table of objecti and j.

i \ j 1 0
1 a b
0 c d

The dissimilarity betweeni and j is

d(i, j) =
b+ c

a+ b+ c+ d
.

Let ν denote the cluster (ν = 1, 2, . . . ,K) and letuiν be the membership of objecti to clusterν. The objective

of FANNY is to iteratively minimize the following criterion:

K
∑

ν=1

∑n
i, j=1 u2

iνu
2
jνd(i, j)

2
∑n

i=1 u2
jν

. (2.7)

At each iteration, membership,uiν has to be greater or equal to zero for alli = 1, . . . , n and membership for

i has to sum to 1 among all clusters.

Although this method has an uncomplicated algorithm, it is not commonly used in genetic phenotyping.

[110] implemented this approach for subtyping schizophrenia and [141] used this approach for phenotyping

anxiety disorder prior to linkage analysis.

Traditionally, the phenotype definition relies on either grouping patients based on the criteria proposed by

medical associations or by frequentist statistical methods. To date, there is limited literature on applying

Bayesian statistical models for phenotype definition priorto genetic analysis. Therefore, this research is

different from others in developing Bayesian statistical methods for phenotype definition.

Item Response Theory Item response theory (IRT), also known as the latent trait analysis. It is a class

of popular statistical methods that are commonly used for modeling psychological and educational survey
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responses. The model assumes an underlying continuous latent value which has direct influence on the

response to survey questions. This underlying continuous latent value is unobservable, which represents the

ability of an individual in school tests or a propensity score for an individual have a diseases given the items,

which are measurable.

IRT is a collective term for many different models which can be categorized based on the type of depen-

dent variable. For instance, the partial credit models, thegraded response models and the sequential scale

models are designed for polytomous data and the Rasch model,the two-parameter logistic model and the

three-parameter logistic model are mainly for dichotomousdata. Because medical symptom data are often

dichotomous, the latter models are more frequently implemented in genetic research. The examples of using

IRT for phenotype definition include [73] explore the genetic and environmental influence on the timing

of pubertal change with the two-parameter logistic model and the same method was also used by [74] and

[290] for the analysis of multiple symptom genetic data. Therefore, in this review, we focus on the Rasch,

two- and three- parameters models.

The IRT models entail three assumptions, which are unidimensionality, conditional independence and mono-

tonicity. Unidimensionality refers to the existence of a one-dimensional, unobservable quantity associated

with each respondent in the sample which describes the individual’s propensity score to the items (symp-

toms). Conditional independence means that given an individual’s propensity score (or called latent trait),

the item responses are independent. This assumption is alsoassociated with the propensity (latent trait

value) and it states that individuals with high propensity (latent trait) are more likely to endorse the items

than the ones with a smaller propensity.

To formalise the IRT, letxi j denote the response of individuali, i ∈ {1, . . . ,N} to item j. Let θi be the

propensity (latent trait) value andP j(θi) be the probability thatxi j is positive given the latent value,θi. The

probability P(θi) is often referenced as the item response function (IRF). The main difference between the

Rasch, two- and three- parameter models is in the number of parameters incorporated in IRF: the Rasch

model has one parameter, and the other two models have two andthree parameters respectively. The two-

parameter logistic model is now described, follow by the Rasch and the three-parameter models.
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Two-parameter Logistic Model

The two-parameter logistic model [27] has a similar form to the ordinary logistic model, that is

logit(P j(θi)) = α j(θi + β j) (2.8)

P j(θi) =
1

1+ exp(−α j(θi − β j))
(2.9)

whereα j is the slope of the item response function, also called the item discrimination. This is a measure of

how much information an item provides about the latent valueθ. The parameterβ j is the intercept of the IRF.

In educational settings,β j is an indicator of the item difficulty and in medical applications, the parameters

α and β can be interpreted as the measures of the symptom prevalence. The parameterα indicates the

prevalence of the symptom in the affected individuals while the product ofα andβ provides an insight into

the symptom prevalence in the overall population. For instance, ifα j = α j+1, whenβ j is larger thanβ j+1, it

indicates that symptomj is more prevalent in the population than symptomj + 1.

The Rasch Model

The Rasch model [225], also called a one parameter logistic model, assumes that all items have the same

discrimination ability, so thatα j is fixed for all j. Common values for the discrimination areα = 1 and

α = 1.7; under this setting, IRF is similar to the cumulative density function of the normal distribution.

Although this model is suited for various educational or psychological settings, it is less relevant to the

setting of disease, where individual symptoms often differ in prevalence. Therefore, the Rasch model is not

implemented for phenotyping.

Three-parameter model

Besides having extra parameters, the three-parameter model is designed with a different scenario in mind. In

the previous models, the response functionP j(θ)→ 1 asθ→ ∞ andP j(θ)→ 0 asθ → −∞. However, in the

education examples, the latter assumption is not reasonable if j can be correctly ‘guessed’. Therefore, [27]

developed a generalization of the two-parameter model thatallows the IRF to have an asymptote different

from zero. The IRF of this three-parameter model is
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P j(θi) = γ j +
1− γ j

1+ exp(−α j(θi − β j))
(2.10)

whereγ j is the probability that an examinee correctly guessed the answer of item j. In the application of

medical research, this parameter is similar to probabilityof an individual having the symptomj without

actually having the diseases/disorder. This is a common scenario for psychological disorders, where some

symptoms are prevalent in the controls.

2.3.2 Methods for Linkage analysis

Linkage analysis is a statistical method to determine the approximate location of the phenotype locus with

respect to some genetic markers, where genetic markers are at known locations on the chromosomes and

contain multiple alleles. Linkage analysis is based on the concept of co-segregation between the disease and

marker gene [275].

Linkage analysis can be divided into parametric and nonparametric methods. In nonparametric linkage

analysis, the assumptions of penetrance and allele sharingare not required. In Chapter 10 of [108], the

author listed four major advantages of model-based linkageanalysis. Firstly, if the assumed genetic model

is correct, then the model-based approach is more powerful than any nonparametric method. Moreover,

model-based linkage analysis exploits all genotype and phenotype information within a pedigree, and also

provide an estimate of the recombination fraction between markers and disease alleles and a statistical test

for linkage and gene locus heterogeneity.

However, parametric linkage analysis is not suitable for complex disorders, whose manifestation depends

on the joint action of various genes and perhaps environmental agents. Furthermore, in order to construct

parametric linkage models, variables such as the model of inheritance, the trait and marker allele frequencies,

the penetrance values for each disease genotype, phenocopies and the sex-specific recombination fractions

are required to be specified in advance.

These are difficult to specify for complex disorders. It is important to note that a parametric linkage test is a
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test of all assumptions; the failure of linkage analysis could be due to a misspecification of model parameters

rather than a lack of evidence for linkage [108].

Due to the complexity of the inheritance pattern of migraineand the lack of the knowledge about the pa-

rameters required for parametric linkage analysis, we review two nonparametric linkage analysis methods,

namely affected sib-pairs and variance component linkage analysis inthis report. For more in-depth knowl-

edge of various linkage analyses, the recent book publishedby [108] provides a comprehensive description

of both parametric and nonparametric analysis.

Affected Sib Pair Affected sib pairs (ASP) analysis is the most commonly used nonparametric linkage

analysis for dichotomous traits. The most important element of ASP is the probability distribution for

number of alleles shared identity by descent (IBD). Two individuals are said to share an allele IBD in a

given marker is when a common ancestor in the pedigree passesone of its two alleles in this locus to both

individuals.

Let zk(x) denote the probability ofk alleles being shared between related pairs at marker locusx. For a

random sibling pair, these values are expected to be 1/4, 1/2 and 1/4 for k = 0, 1, 2 respectively and for a

monogenic disease. If there is linkage between a marker and the disease locus, the observed and expected

distributions of allele sharing will be significantly different. This can be tested using aχ2 test with two

degrees of freedom.

Alternatively, we can compare the average IBD sharing in thesample of pairs with the expected value of

0.5. [29] found that this approach performs better than different level of expected values under a large range

of genetic models.

Variance Component Variance component linkage analysis involves partitioning total variance into var-

ious components. For linkage analysis, the aim is to separate the unmeasured genetic variance from un-

measured non-genetic variance. [6] developed a mixed effect variance component approach for quantitative

traits which can be used for general pedigree data.
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Let Xi denote the quantitative trait value for theith individual and letzik be thekth covariate value for subject

i. A general model is:

Xi = µ + gi +Gi +

s
∑

k=1

βkzik + εi (2.11)

whereµ is the overall mean,Gi is a random polygenic effect andgi is a fixed and unobserved genetic

component where alleles A and a affect the trait as follows:

gi =







































a if individual i has unobserved genotype AA

d if individual i has unobserved genotype Aa

−a if individual i has unobserved genotype aa

The termβk is the covariate effect andεi is the residual for subjecti. Both of these parameters are uncorre-

lated with the genetic factors. Since the average effects ofGi, gi andεi can be included in the overall mean,

the expectation of these factors are zero.

Assuming the identity-by-descent sharing of a pair of individuals i and j is observable (denoteπi j ) then the

first moment of Equation 2.11 becomes

E(Xi) = µ +
s

∑

k=1

βkzik

Given the genetic variability of two individuals,i and j can be decomposed into additive and dominance

components, i.e.σg = σa + σd. Let p andq denote the gene frequency of A and a, then

σa = 2pq(a− d(p− q))2

σd = 4p2q2d2.

Wheni , j, the second moment of model is
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Cov(Xi ,X j) = πi jσ
2
a + ∆i jσ

2
d + Φi jσ

2
G (2.12)

where∆i j is the probability thati and j sharing two genes at the major locus IBD andΦi j is the coefficient

of the relationship betweeni and j.

Often the typed markers do not have a direct effect on the phenotype, therefore [6] extend the model to

include data from linked markers by considering the cosegregation of trait and marker allele. For a pair of

relatives, if there is a linkage, then there is a linear regression relationship between the square difference of

the pair’s trait value, i.e. (Xi − X j)2 and the estimated proportion of genes IBD at marker allele. Assuming

theE(X2
i ) = E(X2

j ),

E(Xi − X j)
2 = E(X2

i ) + E(X2
j ) − E(XiX j)

= 2Var(Xi) − 2Cov(Xi ,X j).

and using the same notation as above,

Cov(Xi ,X j) = f (θ, πi j )σ
2
a + g(θ,∆i j )σ

2
d + Φi jσ

2
G (2.13)

whereθ is the recombination fraction andf (θ, πi j ) is associated with the additive major-gene component

and the value of the function depends on the kinship. Table 1 of [6] details the value off (θ, πi j ) for different

degrees of kinship. The second function,g(θ,∆i j ), is the dominance component which is often ignored in

linkage analysis because it is much smaller than the additive component and can only be assessed in bilineal

relatives [7].

[7] compared three different parameter estimation approaches: maximum likelihood estimation assuming

traits have a multivariate normal distribution, quasilikelihood and regression procedures. Using simulation

studies, they found the last two procedures provide unbiased estimation of additive genetic effect. In contrast,
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maximum likelihood methods are less robust to error in the specification of the distribution of residual

variance, and the estimates were downward biased for small samples.

The variance-component linkage analysis has been further developed in various aspects. [57] have extended

the model to incorporate longitudinal family data and genetic marker information in a quasilikelihood frame-

work. [194] extended the current method to simultaneously obtain estimates for additive effects of multiple

loci on phenotype variation and additive interaction effects among loci (epistatic effect). [30] also extended

the variance component linkage model to allow application of full pedigree data.

Multipoint QTL analysis

The previous section was confined to consideration of a sequence of pairwise comparisons between the trait

and each of the marker loci. Multipoint linkage analysis is useful for establishing the chromosomal order of

a set of linked loci and resolves the problem caused by the limited informativeness of markers.

Multipoint linkage analysis is particularly computationally demanding for computing likelihood values [4].

Traditionally, the Lander-Green algorithm [156] is used for a large number of loci and small pedigree and a

peeling-based algorithm for a few loci and large pedigree [4]. For cases with a large number of loci and a

large pedigree, the Lander-Green algorithms can be applied, but some sampling methods are required.

[107] applied MCMC methods to calculate Monte Carlo estimates of the likelihood. This was previously

infeasible due to the large and complex pedigree. [117] described the implementation of the reversible jump

MCMC sampler [104] to estimate the map position of the linkedQTL, the effects of frequencies of all QTL

and other model parameters, such as residual variance. Therefore, instead of searching a small region of

chromosomes for evidence of linkage, a joint analysis can beperformed when a large number of markers

throughout the genome is available. [117] found that RJMCMCallows a more natural modeling of genetic

heterogeneity due to not forcing the genetic model to be the same across all families.

[30] developed a computer package called SOLAR for linkage analyses of multivariate quantitative traits

and discrete traits using a threshold model and mixed traits. This program also incorporates gene× gene
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and gene× environment interactions.

MCMC methods have been applied for mapping multiple QTL for complete and incomplete genotypic data

[133, 252] and various types of pedigrees [252].

2.3.3 Overview of Bayesian Model Averaging (BMA)

Bayesian model averaging (BMA) provides a coherent mechanism to account for model uncertainty [121].

The idea of BMA is to average the posterior distributions of different models, where the weight for each

model depends on the posterior model probability. [175] and[223] noted the use of BMA can improve

predictive performance.

Various works have been published on the methods of BMA [142,175, 222, 223, 121]. In particular, [121]

provides a thorough overview of the history and challenges of BMA and provides solutions.

BMA has been widely applied to different models, and [120] provides a summary of the methodologies that

have been implemented with BMA and lists corresponding software for carrying out the analysis. Although

the use of BMA in genetic research is not as common as in some other areas of science, a few published

works have incorporated BMA in the analysis. For instance, [295] applied BMA for gene selection and

classification of microarray data. [9] further extend the former research by incorporating iterative BMA for

survival analysis. The use of BMA has also been implemented in the study of phylogenetics [215].

Let ∆ denote a quantity of interest (in the area of genetic studies, ∆ can be treated as a phenotypic trait of

interest). Given a data setD, the posterior distribution of∆ is

p(∆|D) =
S

∑

s=1

p(∆|Ms,D)p(Ms|D) (2.14)

whereMs is the models of all models considered,s = 1, . . . ,S. Using Bayes theorem, the probability of

Ms given data setD becomes
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p(Ms|D) =
p(D|Ms)p(Ms)

∑

l p(D|Ml)p(Ml)
(2.15)

where

p(D|Ms) =
∫

p(D|θs,Ms)p(θs|Ms)dθs. (2.16)

The former is the marginal likelihood of modelMs, whereθs denotes the model parameters of models

and p(D|Ms) is the marginal likelihood. Therefore, Equation 2.15 can be seen as providing weights for

the predictions of different models in Equation 2.14. During the early introduction of BMA, it was not

as well accepted as model selection due to the difficulties associated with a potentially infinite number of

models (S→ ∞) to be included in Equation 2.14, the choice of priors on the models, and the computational

difficulties in the estimation of the marginal likelihood. Although the former concern is less relevant in this

thesis, various methods have been developed to overcome this problem, such as exploring the model spaces

stochastically via MCMC approaches [96, 222, 99]. Moreover, [142, 83] listed various methodologies for

approximating the marginal likelihood when it is intractable.

2.4 From linkage analysis to genome wide association studies

In the previous section, I reviewed various methods commonly used in genome-wide linkage analysis. Al-

though linkage analysis has had some success in mapping genes for Mendelian diseases, such diseases are

rare [119]. Various common diseases/disorders have a genetic component have been identified by familial

aggregation, but they do not follow the Mendelian pattern ofinheritance. Such diseases/disorders include

Type I and II diabetes [273], cardiovascular diseases [273], obesity [276] and various psychological disor-

ders [217]. These common diseases/disorders often have complex genetic architecture, thus they are often

referred to as complex traits. Complex traits are presumably derived from multiple genetic and non-genetic

effects, as well as the interactions among genes and between genes and the environment.

Although linkage analysis has been carried out for mapping complex traits, the success is limited. [5]
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reviewed 101 whole-genome scan linkage studies in 31 different complex human diseases and found that

most of the studies (∼66%) do not have a significant result when using the thresholdproposed by [157].

Moreover, they also noted that the findings for the same diseases are often inconsistent among studies.

Although the sample size may be an important factor for the success of a linkage scan [5], [229] show the

sample size required to achieve a relative high power may notbe feasible. For instance, when the genetic

risk ratio is less than 2, the number of families needed in order to achieve 80% power is well over 2000.

Another important disadvantage of linkage analysis is thatit has low power for identifying multiple low-

penetrance variants on a phenotype [229, 119]. It is long noted that the genetic component of complex traits

is oligogenic (a few genes, each with moderate effects) or even polygenic (many genes, each with small

effects) [224]. Considering the limitations of the linkage analysis, there is a need for an alternative method

for understanding the genetic architecture of complex traits.

Since the completion of the Human Genome Project [271, 272],genetic epidemiology has entered an era of

single nucleotide polymorphisms (SNP) and the realizationthat the human genome is organized into haplo-

type blocks (Linkage disequilibrium, LD) [224]. The International HapMap Consortium [269, 270, 130] has

recently completed characterization of over 3.1 million human SNPs with a SNP density of approximately

one per kilobase. The 3.1 million SNPs is approximately 25-35% of all the 9-10 million common SNPs

(with minor allele frequency≥ 0.05). The completion of characterization of the linkage disequilibrium

(LD) pattern across these SNPs provides the most informative subset of ‘tagging’ SNPs. Subsequently, the

genome-wide association study (GWAs) is made possible. Theinitial GWA scans had 10,000 SNPs with

improvements in genotyping technology, the new Affymetrix Genome-Wide Human SNP Array 6.0 features

nearly 1 million SNPs.

With the reduction in the cost and commercial availability of SNP genotyping comes large scale GWAs. The

most referenced work to date is the study published in 2007 bythe Wellcome Trust Case-Control consortium

[WTCCC, 273]. This study contains 14,000 cases of 7 common diseases (including bipolar disorder, coro-

nary artery disease, Crohn’s disease, hypertension, rheumatoid arthritis, Type I and II diabetes) with 3000

shared controls. It was the largest at its time. Since then, more and more large scale GWAs have emerged.

In the past five years, inNature Geneticsalone, there are 76 published studies related to GWAs, the variety
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of phenotypes including Parkinson’s [253], lung function [226], erythrocyte phenotype [92], obesity [276],

Crohn’s disease [17] and hematological parameters [258]. From a statistical and computational perspective,

the main challenges for GWAs is the finding of informative markers among hundreds of thousands or even

million of markers with relatively small sample size (that is compared with the number of parameters). In

the remaining chapter, I review methodologies that have been implemented/developed for association stud-

ies. Note that although many methods have been proposed, only a few have been tested in the genome-wide

scale of study. Therefore, we enlarge the scope of the reviewto methods for association studies, which

includes GWAs and candidate gene search.

The remainder of this chapter is in two sections: methods fordetecting single marker effects and methods for

detecting multilocus effects. The latter section is arranged into 1) model-based, 2)data mining or machine

learning approaches and 3) two-stage approaches. Note thatthree review papers published in Nature and

Nature Review Genetics provide valuable reviews on the statistical methodologies used in GWAs. [15]

gives a comprehensive tutorial on some of the frequentist methods for population association study. [262]

reviewed Bayesian methods for single-SNPs testing in GWAs.[51] gives a great overview on some of the

methods used for the detection of the gene-gene effects and related computer softwares. In light of this

research, the review here is concentrated on the statistical aspect of the methods.

2.5 Methods for association Studies

2.5.1 Single Marker effect

Of all the methods available to date, the most widely implemented approach is the SNP-by-SNP searching

algorithm. For case-control studies, the most natural analysis of SNP genotype and case-control status is the

use of a 2-by-3contingency table that contains the count of case-control status and count of genotype (e.g.

AA, Aa and aa). The common choice are either Pearson’sχ2 test or Fisher’s exact test. Even though the

latter method is more computationally demanding, it does not depend on theχ2 approximation. Moreover,

Fisher’s exact test is implemented in the R genetic package.In this aspect, [15] suggested Fisher’s exact
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test is better for GWAs than Pearson’sχ2 test.

Table 2.2: Example of 2× 3 contingency table of case-control study

aa aA AA Sum
Case r0 r1 r2 r
Control s0 s1 s2 s
Total n0 n1 n2 n

For a complex trait, the contributions of individual SNPs are thought to be additive to the disease risk,

that is, the number of disease alleles correlates to the riskof having a disease, therefore simple tests on the

contingency table are not as powerful as other tests [15]. Furthermore, these simple tests are only appropriate

when Hardy-Weinberg equilibrium (HWE) holds [240] and do not lead to interpretable risk estimates. The

Cochran-Armitage trend test [12] is an alternative testingmethod which is more robust, conservative and

does not rely on the assumption of HWE [15].

Let a andA denote two marker alleles and suppose each person has one of three possible genotypes,aa,

aA andAA. Table 2.2 is an example of a 2×3 contingency table for a case-control study with those marker

alleles, where (r0, r1, r2) and (s0, s1, s2) are the number of genotypes,aa, aA andAA observed in cases and

controls, respectively. Leti denote the number ofA alleles in a genotype, andi = {0, 1, 2} = {aa, aA,AA}.

Let φ = r
n be the proportion of cases, the Cochran-Armitage trend teststatistic is then

T2(x) =
n−1 ∑2

i=0 xi(sri − rsi)2

nσ2
1(φ)

(2.17)

where

σ2
1(φ) = φ(1− φ)

[

2
∑

i=0

x2
i pi − (

2
∑

i=0

xi pi)
2] + φ2(1− φ)

[

2
∑

i=0

x2
i qi − (

2
∑

i=0

xiqi)
2] (2.18)

wherex0 = 0, x1 = x, x2 = 1 and 0≤ x ≤ 1. The value ofx is required to be specifieda priori based upon

the model of interest. For instance, three possible geneticmodels are recessive, additive and dominant, and

thereforex is often set to 0, 0.5 and 1, respectively. Variablespi andqi of Equation 2.18 are the probability

of being a case or a control given the genotype isi, i = {aa, aA,AA}, which are often not known. [304]

summarized three different estimators for these variables, and the most common choice for pi and qi is

p̂i = q̂i =
ni
n , which has been implemented in [240] and [256].
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Under the null hypothesis, the test statistic,T2(x), has an asymptoticχ2 distribution with 1 degree of free-

dom.

The Cochran-Armitage trend test is the most commonly employed model in GWAs. Examples of imple-

mentation of this method include: Breast cancer [72], coronary artery disease [239], type I diabetes [284]

and Parkinson’s disease [253].

Departing from the conventionalχ2 approach, a more advanced method for identifying single SNPeffects

is by implementing logistic regression for a case-control study. Letπi be the probability that individuali is

a case,

log(
πi

1− πi
) = µ +

2
∑

j=0

β j xi j (2.19)

whereµ is the population mean andxi j is a binary indicator variable for genotype, taking the value of 0 or 1.

The effect of the SNP is then determined by testing the null hypothesis, β0 = β1 = β2 against the hypothesis

that at least twoβ are different via the likelihood ratio test.

Logistic regression is a very common approach used for detecting single SNP effects in GWAs. Examples of

such studies include acholic liver disease [277], ulcerative colitis [13], systemic lupus erythematosus [111]

and some clinically relevant hematological parameters [258].

For continuous phenotypic traits, the natural choice of statistical tool is linear regression and analysis of

variance (ANOVA) [15].

The multiple testing problem is the major concern for the SNP-by-SNP search algorithm. Without a proper

adjustment of the power, it is likely to have false positive results (i.e. Type I error). The frequentist method

for controlling the false positive is by controlling the significance level,α. The usual choice ofα is 0.05,

which implies that the probability for being false positivein all the tests carried out is less than 5%. Here

we list three approaches for adjusting for the multiple testing problem, but various other methods have been

proposed for controlling issues derived from multiple testing in association studies and the comparison of
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various methods has been discussed in several recent publications [15, 227, 77, 197].

Bonferroni Correction Bonferroni correction is an often discussed example of controlling α level. If

n SNPs are tested for association, the Bonferroni correctedα for each test isα′ = α/n. For GWAs, the

value ofn can be substantially large and depending on the SNP chip used, n can vary between 500,000 to

approximately 1,800,000. Thus Bonferroni correction can be overly conservative and not suitable for tightly

linked SNPs [15].

Permutation Permutation testing is a simulation based resampling method, which controls the issues of

multiple testing by comparing observed p-values with p-values estimated by repeated perturbation of the data

and evaluating how often the observed p-value can be obtained by chance [227]. There are various method

for obtaining the permuted p-values. For association studies, a sample of p-values can be obtained by

keeping the individual genotype unchanged while the phenotype of individuals are replaced with randomly

generated values. This method ensures the ‘new’ data contains the observed LD structure, but shows no

association in the phenotype. Although the permutation test is robust, it is computationally intensive.

False Discovery Rate False discovery rate (FDR, [22]) is comparatively less computationally intensive,

yet provides increased power over Bonferroni correction [203]. The aim of FDR is to estimate the desirable

error rate to control the expected proportion of error amongthe rejected hypotheses. This criteria is designed

to reduce the number of errors made and the probability of false rejection.

Suppose there aren hypothesis testings,H1,H2, . . .Hn and letp1, p2, . . . , pn denote the corresponding p-

values. These p-values are then arranged from the most significant to the least significant, that isp(1) ≤

p(2) . . . ≤ p(n). At a preset valueα, let

k = arg max
i

{

p(i) ≤
iα
n

}

(2.20)

wherei is the order of p-value; then reject allH(i) wherei ≤ k.
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This procedure is versatile and can be simply modified to accommodate different genetic problems. For

instance, the weighting of p-values can be stratified according to prior knowledge. [234] propose to stratify

the weighting of p-values based on the results of linkage analysis. In other words, p-values of loci show sug-

gestive linkage are upweighted and conversely, the p-values of less informative regions are downweighted.

2.5.2 Multiple SNPs Effect

A SNP-by-SNP searching algorithm is optimal if SNPs are widely spaced (have little to no LD strcuture) in

the data and one of the typed SNP is exactly causal. However, this is a rare event. The other disadvantage

of considering only a single SNP is that it potentially neglects the joint effect of multiple SNPs, where some

variants may have little marginal effect, but the effect of the variant is more obvious when it is altered or

highlighted by another variant or variants. Furthermore, such interaction effects have been suspected for the

expression of complex diseases. Therefore, a superior approach is the multiple SNPs test which examines

the association of a phenotype with multiple SNPs simultaneously.

Statistical methodologies for detecting multiple SNP effects (both including and excluding epistasis effects)

is a popular topic on which a large amount of literature has emerged in the last decade. The early methods

focus on linkage analysis. However, as SNP data becomes morewidely available, methods are evolving for

association studies.

The most prominent paper for identifying multiple loci effects is by [181]. In their study, they simulated

three plausible two-locus effects and compared three different searching strategies for identifying the inter-

action effect in different plausible scenarios. The first scenario is when the genetic loci have multiplicative

effect, that is the odds of disease increases in a multiplicative fashion, within and between loci. For example,

for two diallelic loci (denoted a and b), let the upper case ofeach letter be the disease allele, then having

either theA or B allele increases the risk by (1+ θ1) or (1+ θ2) fold, whereθ1 andθ2 are the risk increment

due to disease allelesA andB. The second scenario is a statistical interaction with explicit marginal effects,

that is, at least one of the disease alleles must be present ateach locus for the odds to increase. Furthermore,

the presence of each additional disease allele will increase the disease risk by (1+ θ) fold. The last scenario
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represents the threshold model effect. Like scenario 2, at least one of the disease allele must be present at

each locus for the odds to increase, however, the disease risk is thereafter constant regardless of the number

of disease alleles present in the genotype combination.

The three searching strategies included in the study are 1) locus-by-locus search, 2) exhaustive pari-wise

search (i.e full search) and 3) a two stage approach. Their results show that the interaction base searching

algorithm is more powerful than locus-by-locus search for all three scenario. However, they also conclude

it is difficult to determine a single best searching method for identifying multilocus effects given that the

number of interaction loci and the form of interaction can vary from trait to trait.

Various studies have since emerged for detecting multilocus effects. Here, I review some of the popular

methods currently used for association studies. Because a vast number of methods is readily available, in

this chapter, our focus is on methods for case-control studies that are also capable of identifying epistasis

effects. Based upon the underlying algorithms, methods are grouped into model-based, non-model based

and two stage methods. Within the model-based approaches, methods are further divided into frequentist

and Bayesian methods.

Model Based Approaches

Frequentist Approaches

Logistic Regression Logistic regression (LR), discussed earlier, can be simplyextended for multiple SNPs

by allowing extra terms in the model. To accommodate epistasis effects, interactions among the SNPs an be

easily added to the model. Using similar notation as Equation 2.19, letπi be the probability that individuali

is a case, the logistic model for two way interaction becomes

log(
πi

1− πi
) = µ +

K
∑

k

2
∑

j=0

βkj xik j +

K
∑

k1

K
∑

k2=k1+1

2
∑

j1=0

2
∑

j2=0

γk1 j1
k2 j2

xik1 j1
k2 j2

(2.21)

whereK is the total number of SNPs,βkj is the coefficient of genotypej of SNP k and γk1 j1
k2 j2

is the
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coefficient of the SNP interactions at the genotype level.

As the number of SNPs becomes large, the parameter estimation becomes unmanageable, hence the power

is lost. Also, some genotype combinations may have low frequency or zero responses, thus the parameter

estimations can be poor.

Another important issue with this model is the correlation among SNPs due to the LD structure. When the

predictors are highly correlated (collinearity), the model gives little or no information about the correspond-

ing parameters [185]. However, the problem associated withthe collinearity can be addressed by using a

stepwise selection method or shrinkage. For example, Lassoregression is a well known example of the

shrinkage method which is discussed in detail in the following section.

Many standard statistical packages perform automated stepwise selection. In a forward selection, the initial

model contains only the population mean, that islogit(πi ) = µ. At each step, a new SNP or SNP interaction

which results in highest improvement in the model fit is selected and included in the model. This process

continues until adding no more SNP or SNP interaction can significantly improve the model fit. A backward

stepwise selection, as its name suggests, is a counterpart to the forward stepwise selection. Instead of starting

with a noninformative model, the initial model contains allSNPs and SNP interactions. At each step, a SNP

or SNP interaction which results in the least model fitting deterioration is deleted. This procedure continues

and stops when the deletion of any SNP or interaction resultsin significant reduction in the model fit. The

other type of stepwise selection which is more flexible allows both a SNP or interaction to be added or

removed at each step depending on which move is more beneficial for the model fit. This is called “stepwise

selection”. The model improvement/deterioration is evaluated using a parsimony criteria suchas Mallows’

CP [177], AIC [3] and BIC [243].

Stepwise selection procedures show a promising ability to find informative SNPs and SNP interactions with

fewer false positive discoveries [166]. The main drawback of this procedure is that it is not capable of

handling large scale datasets. Therefore, studies which implemented this method are limited to candidate

gene studies [166, 52].
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Lasso Regression The least absolute shrinkage and selection operator [Lasso, 278] is a shrinkage proce-

dure which shrinks the noninformative coefficients to nearly or equal to zero. This is achieved by minimizing

the residual sum of squares with a constraint that the sum of the absolute values of the coefficients is less

than a constant.

Given a dataset, (xi , yi), i = 1, . . . ,N, wherexi = (xi1, . . . , xip) are predictors andyi are the responses. Let ˆα

andβ̂ = (β̂1, . . . , β̂p) be the Lasso estimates, such that

arg min
α̂,β̂

{

N
∑

i=1

(

yi − α −
∑

j

β j xi j
)2} (2.22)

with the constraint that
∑

j |β j | ≤ t. Here t ≥ 0 and is a tuning parameter that controls the degree of

shrinkage. The Lasso estimates of coefficients can be efficiently computed via the LARS algorithm of [76].

[291] recently applied Lasso penalized logistic regression to case-control GWAs for the detection of SNP

and interaction effects. Their concluded that the Lasso is computationally efficient and when the predictors

are not correlated, the interaction effects are identifiable.

Bayesian Approaches

In the frequentist approach, the assessment of the association between genetic variants and a phenotype is

based on a p-value for null hypothesis of no association. Although it is still widely used, various studies have

shown limitations of p-values [263, 249, 131]. Bayesian methods provide an alternative for assessing the

association that alleviates the limitations of p-values. Note that frequentist and Bayesian approaches have

different interpretations of “probability”. For a frequentist, the probability is a long-run expected frequency

of occurrence. In contrast, Bayesians view probability as related to degree of belief in the absence of

complete knowledge. Thus the frequentist approach assumesthat a population mean is real, but unknown,

and can only be estimated from the data. An other difference between frequentist and Bayesian methods is

in the methods for parameter estimation, the former often uses maximum likelihood estimation, Newton-

Ralphson or EM algorithms while the latter often uses MarkovChain Monte Carlo methods.

Another difference between Bayesian and frequentist approaches is thatthe former requires the specification



2.5. Methods for association Studies 41
of a prior distribution on the unknown parameters. Letθ denote the model parameters andp(θ) be the prior

probability of theta, the posterior probability is then

p(θ|D) =
p(θ)p(D|θ)

p(D)
(2.23)

whereD is the data andp(D|θ) is the model likelihood. The denominator of Equation 2.23 is also known

as the normalizing constant. It does not depend onθ and with a fixedD, p(D) is constant. Therefore the

unnormalized posterior density is

p(θ|D) ∝ p(D|θ)p(θ) (2.24)

For genetic association studies, the use of a prior can be valuable and under the Bayesian formulation,

this information can be easily incorporated into the model.For example, in an association study, heavier

weighting can be assigned to SNPs in region that other studies previously identified.

When considering only single marker effect (as in Section 2.5.1), there is also a Bayesian version ofthe

searching algorithm which also makes use of the contingencytable. Instead of computingp-values, the

association is assessed using the posterior probability ofassociation (PPA) [262]. The calculation of PPA

can be split into three parts, choosing the prior probability (δ) on H1, computing the Bayes factor and

calculating the posterior odds ratio onH1.

The value ofδ governs the number of SNPs to be selected. Typically only a minority of SNPs are expected

to have association, therefore [273] suggestedδ ranges between 10−4 and 10−6. The value ofδ can differ

across SNPs depending on biological information. For example, different value ofδ can be given to SNPs

closer to the gene of interest.

A Bayes factor (BF) is the ratio of the posterior probabilityof two competing models: in this cases, the ratio

of H1 overH0. A stronger value of BF indicates stronger support toH1 overH0.
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Once the value ofδ is prespecified and BF is known, the next step is to computer the posterior odds ratio on

H1, that is

PO= BF× δ

1− δ

The posterior probability of association is then

PPA=
PO

1+ PO
.

PPA is a product of BF and prior probability onH1. Because the prior probability is often set to be very small,

the value of BF needs to be large to result in a higher value of PPA. In other words, the prior probability of

H1 controls the number of SNPs associated with the phenotype.

This method has been implemented in [273] for identifying SNPs associated with seven common diseases.

In their study, they reported the PPA and the traditionalp-value. A detailed description of the Bayesian

SNP-by-SNP search method is in [262].

Logistic Regression The logistic regression discussed in the frequentist approach can be easily converted

to a Bayesian method by assigning prior distributions to allparameters in the model. However, like the fre-

quentist LR, the Bayesian LR is subject to the same problems pointed out earlier, which are the excessively

large number of predictors (SNPs) and collinearity across SNPs. Therefore, to overcome these problems, it

is necessary to performs model/variable selection or shrinkage as discussed in the frequentist LR.

Model/Variable selection Excellent methods for the variable selection problem have been developed

within a Bayesian context, including stepwise selection, stochastic search variable selection and reversible

jump MCMC. [171] proposed a Bayesian version of stepwise regression which is built on the method firstly

proposed by [50] to identify the relative importance of genetic variants within a candidate region.
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For a case-control study, letX denote anN ×C matrix whereN is the total number of individuals andC is

the total number of predictors, andxi = (xi1, . . . , xiC) . Let yi denote the phenotype of individuali, and

yi ∼ Bernuolli(πi) and f (πi |xi) = µi

whereµi = ωiβ andωi = (1, xiθ1 , . . . , xiθk). The vectorωi is similar to the design matrix of regression models

andθ = (θ1, . . . , θk)T is the column indices ofX that correspond to variables selected to be included in the

model. Parameterβ is a vector that contains coefficients of selected columns. [171] employed the generic

reversible jump Markov Chain Monte Carlo [GRJMCMC, 170] to estimate model parameters. Unlike

the traditional RJMCMC [104], GRJMCMC permits multiple deaths/births moves with a single proposed

move. This allows chains to move freely between subspaces without getting stuck in local maxima [171]. A

detailed description of the implementation of GRJMCMC is in[170].

This method is flexible for different types of phenotypic data, e.g. count data, with the ability to simulta-

neously impute the missing genotype and easily expand for the inclusion of covariates. Furthermore, the

WinBUGs code for carrying out the analysis is available in the appendix of the paper. Unfortunately, the

major drawback of this model is that it is not scalable to a large number of predictors, which is often en-

countered in GWAs. The authors pointed out the maximum number of predictors under the current setting

is less than 200.

The same algorithm with a different MCMC method has also been implemented for a genetic association

study. [90] employed the traditional reversible jump MCMC [104] for variable selection. Even so, this is

still limited to a small number of predictors.

An alternative method for variable selection is to use the stochastic search variable selection (SSVS) de-

veloped by [95]. SSVS involved embedding a model in a hierarchical normal mixture model where latent

variables are used to identify subsets of variables. Unlikeprevious methods that involve searching across

trans-dimensional spaces, the dimension of models visitedis constant in SSVS. This is achieved by limit-

ing the posterior distribution of non-informative terms ina small neighbourhood of zero. This method can
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be easily implemented using Gibbs samplers and provides information on the posterior probability of each

prediction. SSVS was originally introduced for regressionmodels, however it can be easily modified for a

binary response. We will firstly discuss SSVS in its formulation for a continuous phenotype.

Let Y be an × 1 vector of quantitative phenotype,X = [X1, . . .Xp] be an × p matrix of p predictors forn

individuals andσ2 be a scalar. Consider the canonical regression set up:

Y|β, σ ∼ MVN(Xβ, σ2).

In SSVS, variable selection is achieved by consideringβ as modeled from a mixture of two normal distri-

butions with different variances. Letγi , i = 1, . . . , p denote latent binary variables, taking a value of 0 or 1,

then the mixture of normal distributions forβi is

βi |γi ∼ (1− γi)N(0, τ2i ) + γiN(0, c2
i τ

2) (2.25)

whereτi andci are hyperparameters that control the variance of sampling distributions ofβi . For example,

whenγi = 0, βi is sampled from a normal distribution with mean of zero and variance ofτ2i . Normally τi

is set small, so whenγi = 0, βi is sampled from a narrow region centered at zero, i.e.βi ≈ 0. However, to

avoidβi ≈ 0 whenγi = 1, the value ofci is often set large. [95] and [283] provide some valuable advice on

choosing these two hyperparameters.

This mixture of normal distributions can be included in the model as a multivariate normal prior distribution

for β,

β|γ ∼ MVN(0,DγRDγ) (2.26)

whereγ = (γ1, . . . , γp), R is the prior correlation matrix that is usually assigned to be the identity matrix,I ,

andDγ = diag[a1τ1, . . . , apτp] with ai = 1 if γi = 0 andai = ci if γi = 1.
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MCMC methods, mainly the Gibbs sampler, are used to fit the model. [297] provides a detailed description

of using the Gibbs sampler to generate samples from a posterior distribution. Markers with large effect are

often selected in the model, therefore, markers with high posterior probability are the important markers.

This model or the extended version of SSVS have been implemented in small scale association and QTL

studies. [90] illustrates the use of this model along with two other approaches: Bayesian model averaging

and Bayesian variable selection with RJMCMC- for a small scale association study. The same method is

also implemented in [297] for identifying multiple QTL. However, it is still not clear if SSVS is suitable for

detecting epistasis effects in large scale GWAs.

[49] proposed a genotype level analysis named SNPs Interaction Model with Phase Information (SIMPIe).

SIMPIe is similar to model selection using SSVS but for binary data. Although the model of SIMPIe

contains interactions terms, the aim of their model is not toidentify the epistasis effects but to incorporate

the phase information using SNP interactions. This is accomplished by strategically coding the interaction

terms. Letyi denote the binary phenotype of subjecti andπi be the disease penetrance. LetXm be a variable

coding the genetic effect on disease andXm = Gm whereGm indicates the number of variant allele at marker

m. A logistic regression for a joint main effects model with second order interactions has the form

logit[P(Y = 1|X1, . . . ,Xm)] = α +
M
∑

m=1

βmXm+

M
∑

m=1

M
∑

ℓ=m+1

βm×ℓXm×ℓ. (2.27)

The haplotype information can be approximated by modifyingthe second-order interaction terms in Equa-

tion 2.27 to describe the phase between pairwise SNPs,mandℓ. Given that the two haplotypes for individual

i arehi1 andhi2 and assuming additivity,Xm is coded as
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Xm×ℓ =



























































































2 if Gm×Gℓ = 4

1 if Gm×Gℓ = 2

1 if Gm×Gℓ = 1, andhi1 andhi2 is a double variant haplotype

0 if Gm×Gℓ = 1, andhi1 andhi2 is not a double variant haplotype

0 if Gm×Gℓ = 0

In this model, SSVS is also implemented for variable selection. Unlike the SSVS described in [95], when

γ j = 0, regression coefficients,β j are directly assigned value zero; whenγ j = 1,β j is drawn fromN(0, c2
i τ

2).

In contrast to the original SSVS, SIMPIe adopted a fully Bayesian approach. That is, parameterci is not

pre-specified but estimated.

Incorporating the phase information in the genotype level of analysis improves the interpretability of the

results. However, this model has only been tested for small scale association studies. Therefore, it is not

clear if this model is suited for GWAs. Since the interactionterms are recoded to incorporate the haplotype

information, it is uncertain how the model can be extended for accounting for the epistasis effects.

Shrinkage method As in the frequentist approach, an alternative method to variable selection is a shrink-

age method. However, in the Bayesian context, shrinkage is much easier to implement by using a density

that sharply peaks at zero as the prior distribution for regression coefficients. The double exponential dis-

tribution (DE) and the normal exponential gamma distribution (NEG) are the most commonly used prior

distributions. Both densities have peaks at zero and heavy tails. The advantage of heavy tails is that they

prevent heavy shrinkage to the parameter once the predictoris included in the model.

MCMC algorithms are the typical choice for model fitting [298]. However, MCMC is computationally

burdensome when the number of predictors is large. Since theposterior variance of regression coefficients

is not essential, [122] used a Bayesian-inspired penalizedmaximum likelihood to estimate the posterior

modeof regression coefficients and implemented the CLG algorithm [20] to speed up theconvergence. This

approach has demonstrated promising ability in analyzing main effects for up to 500,000 SNPs within a
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relatively small period of time. It can be easily extended for quantitative traits and haplotype or interaction

effects. However, for the latter examples, the authors suggests reducing the model space prior to implement-

ing the approach.

There are some other shrinkage methods that have been applied to mapping multiple QTL. In stead of using

NEG or DE, [292] assigned a normal distribution with mean of zero. Variances of the normal distribution

are estimated using a hierarchical approach and the noninformative Jeffery’s prior.

BEAM The Bayesian epistasis association mapping (BEAM, [302]) algorithm aims to identify both single

marker and epistasis effects in a population based case-control study. LetNd and Nu denote the number

of cases and controls, assuming thatL SNPs were genotyped and case genotype is represented asD =

(d1, . . . , dNd) wheredi = (di1, . . . , diL) is the genotype of affected individuali. Similarly, letU = (u1, . . . , uNu)

be control genotypes whereui = (ui1, . . . , uiL) is the genotype of unaffected individuali. Markers are then

divided into three groups: group 0 contains markers unlinked to the disease, group 1 contains markers

independently contributing to the disease risk and group 2 contains markers that jointly influence the disease

risk. Let I = (I1, . . . , IL) be the membership of the markers whereI j = 0, 1 and 2 indicates that markerj

belongs to group 0, 1 and 2 respectively. Letl0, l1 and l2 be the number of markers in each group and let

D0, D1 andD2 be case genotype markers in group 0, 1 and 2. Because case genotypes should have different

distributions compared to the genotype of controls, the likelihoods of groups 1 and 2 are thus independent

from group 0 and controls and the posterior probability forI is proportional to

P(I |D,U) ∝ P(D1|I )P(D2|I )P(D0,U |I )P(I ) (2.28)

whereP(D1|I ) is the marginal probability of case genotypes in group 1 andP(I ) is the prior distribution for

the membership of markers. The detailed mathematical procedure for deriving the marginal distribution of

each group is in [302].

BEAM also uses the MCMC algorithm to drawI from Equation 2.28. At each iteration,I has two potential

moves: randomly change a marker’s group membership, and randomly exchange two markers between
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groups 0, 1 and 2. The acceptance of the move will depend on theMetropolis-Hastings ratio.

Besides the fully Bayesian inferential framework, BEAM also incorporates the frequentist hypothesis testing

procedure by calculating a ‘B’ statistic to check the significance in the association between marker(s) and

the disease.

BEAM has shown promising ability in analyzing data sets containing up to 100,000 SNPs. However, under

the current configuration, it is not able to handle more than 500,000 SNPs [51]. Although BEAM is able

to account for the LD structure of adjacent SNPs, it is still not clear if it accounts for LD structure of the

non-adjacent SNPs [51].

Non-Model based approaches

Traditional model-based approaches are often criticized for their inability to deal with nonlinear models [50]

and inefficiency in handling large dimensional data. Machine learning or data mining algorithms provide

alternatives to the model-based approaches. Data mining ormachine learning algorithms do not rely on

a single pre-specified model, but step through the space of possible predictor combinations. Thus they are

more flexible for identifying main and higher order interaction effects. Although [51] suggests that it is false

to exclude regression models from the data mining paradigm because some data mining algorithms involve

stepping through multiple regression models, we still decided to treat them as two separate sections because

algorithms discussed in this section do not rely on any modelassumption. Perhaps it is more sensible to call

this section ‘non-model based approaches’.

Various machine learning algorithms have been implementedfor detecting gene-gene interactions, [187]

overviews four approaches, including neural networks, cellular automata, random forests and multifactor

dimensionality reduction for detecting gene-gene interactions. A recent paper by [267] provides a great

overview of the machine learning methods for genome wide association studies.

The most common and popular data mining methods for identifying gene-gene interactions are Random

Forests and multifactor dimensionality reduction (MDR). The former method has been implemented in
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several genetic studies [36, 35, 242, 169] and it is discussed in detail in Chapter 8 of this thesis. Therefore, it

is not included here. Moreover, in the same chapter, we also provide reviews of some other machine learning

algorithms.

Multifactor-Dimensionality Reduction (MDR) Multifactor-Dimension Reduction (MDR) [231] is a model-

free and nonparametric method which reduces the dimensionality of multilocus information to improve the

identifiability of marker combinations associated with disease risk. The MDR is directly applicable to the

case-control study; therefore it has been widely used for mapping genetic variants in various phenotypes,

including sporadic breast cancer [231], type 2 diabetes [48], cardiovascular disease [18] and rheumatoid

arthritis [138].

The algorithm of MDR starts with dividing the data equally into 10 parts, where 9 parts are used for

model ranking while the remaining portion of data is used forthe estimation of prediction error (i.e cross-

validation). In the 9 parts, a set ofn factors are selected. These can be either genetic variants or other co-

variates. The set ofn factors and their possible multi-factor classes are represented inn dimensional space.

For example, at 2 diallelic loci, there are 9 possible 2-locus genotype combinations. For each combination,

based upon the case-control ratio of the combination and thepre-specified threshold value, the 2-locus geno-

type combination is labeled as high-risk or low- risk. The collection of these multifactor classes composes

the MDR model for the particular combinations of factors. Among all n factor combinations, the model

with the least misclassification rate is the optimaln locus model. The prediction error is then the error of

the optimal model validated using the remaining portion of the data. This procedure is repeated 10 times to

avoid spurious results due to data partitioning.

The main problem of MDR, according to [51] is that it is not suited for a data set with a large number of

factors (e.g GWAs). When considering higher order interactions, [50] recommends using this method when

there are only a small number of genetic variants.
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Two Stage approaches

So far, only a handfull of methods can potentially analyse large GWAs datasets. Most methods proposed

to date are limited in their ability to cope with the computational burden required for analyzing large scale

GWAs. On the other hand, with methods that are appropriated for GWAs, the results of the analysis are often

less than ideal. Therefore, instead of conducting only a single analysis, scientists have suggested two-stage

approaches for identifying interaction effects [118].

The first stage is to select a subset of SNPs or genetic variants from the complete data set, then model

interactions among the selected markers and between the markers and trait. Because of the conceptually

simplicity, there are many variations of two-stage approaches. The SNP-by-SNP searching methods are the

most common for the first stage filtering [181, 82, 152]. Logistic regression can then be applied to identify

the interactions.

Alternatively, [192] proposed using Random Forests as the screening procedure for identifying a smaller set

of variables and using Bayesian networks to develop complexetiological models. In their study, data was

reduced from 9190 variables to about 53 variables at the firststage of analysis. They found the screening

strategy was able to successfully filter out SNPs unassociated with disease loci, while keeping the surrogates

for risk SNPs.
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different clustering methods on twin data

Chapter Summary

The first objective of this thesis is to improve phenotype definitions for diseases with complex etiology.

These diseases often lack clear biomarkers, which would normally provide for more exact phenotyping. To

address this objective, it is important to firstly understand how different methods of phenotyping can impact

the results of the subsequent analysis. Therefore, the aim of the chapter is to compare the use of the most

commonly used statistical methods for phenotyping with respect to the results of the subsequent genome-

wide linkage analysis and heritability estimates. In this Chapter, we focus only on the clustering type of

approaches, namely latent class analysis (LCA), grade-of-membership (GoM) and fuzzy clustering methods

(Fanny).

In this Chapter, migraine data is used for the illustration of different phenotyping tools, and also we present

results on the genetics of migraine. Furthermore, this chapter provides better understanding of the LCA,

GoM and Fanny, and we attempt to clarify some confusion associated with these methods.

Chapter Conclusion

Using migraine data as a baseline of comparisons, the main conclusion of this chapter is that different

clustering methods may produce a range of results in the subsequent analyses, ranging from similar to

completely different. Phenotypes obtained using LCA and fanny are highly correlated, and therefore the

heritability and loci identified by the linkage analysis arein agreement. However, the phenotype of GoM

is very different from the two other methods, therefore the heritability and loci identified by the linkage

analysis are distinctly different. GoM is more closely related to LCA than to Fanny, because both of these

models are forms of mixture model. The main difference between these two models is that the mixture of

components occurs at a finer level for GoM. When comparing themodels using a parsimonious measure,

i.e. BIC, even though GoM has the highest likelihood, it is heavily penalised due to the model complexity,

and therefore less preferable.

In this chapter, we were able to replicate some previously identified loci and estimate the heritability of

migraine within the previous published range.
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3.1 Abstract

Migraine is a painful disorder for which the etiology remains obscure. Diagnosis is largely based on Inter-

national Headache Society (IHS) criteria. However, no feature occurs in all patients who meet these criteria,

and no single symptom is required for diagnosis. Consequently, this definition may not accurately reflect the

phenotypic heterogeneity or genetic basis of the disorder.Such phenotypic uncertainty is typical for com-

plex genetic disorders and has encouraged interest in multivariate statistical methods for classifying disease

phenotypes.

We applied three popular statistical phenotyping methods -latent class analysis (LCA), grade of membership

(GoM) and grade of membership ”fuzzy” clustering (Fanny) - to migraine symptom data, and compared

heritability and genome-wide linkage results obtained using each approach. Our results demonstrate that

different methodologies produce different clustering structures and non-negligible differences in subsequent

analyses. We therefore urge caution in the use of any single approach and suggest that multiple phenotyping

methods be used.

3.2 Introduction

The essential first step for linkage analysis or associationstudies is to accurately identify the phenotype.

For complex diseases such as migraine, identification of thephenotype is challenging due to the lack of

objective markers and uncertainty about the causes of the disease. The diagnosis of this type of disorder is

often based on satisfaction of clinically accepted criteria. Although they may not be useful for diagnosis

and treatment, these clinical based phenotypes may not be optimal for genetic research, in particular finding

genetic loci contributing to disease inheritance (eg., [109] ) and this has led to a call for the development

and use of new phenotyping strategies in genetic research (e.g., [287]).

Migraine is a common, painful and debilitating disorder. Numerous researchers have shown that there is

a significant genetic component to risk of this disorder [306, 202, 264, 265, 211, 212], with estimates of
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heritability ranging between 34 and 57% in twin-cohort studies across six countries [202]. The diagnosis

of migraine is found to be difficult due to lack of biological markers and overlap with othertypes of neuro-

logical disorders, such as tension type headache and brain tumour. To date, the diagnosis of migraine relies

on classifying self-reported headache characteristics using International Headache Society (IHS) criteria

[115, 213, 251]. These criteria were developed for standardising headache definition (e.g., [164]). The two

major subtypes of migraine are migraine without aura (MO) and migraine with aura (MA); the definitions

of both types are listed in Tables 3.1 and 3.2, respectively.

Table 3.1: The 1988 International Headache Society diagnostic criteria for migraine without aura (MO).

Item Description
A At least five attacks fulfilling B-D
B Headache attacks lasting 4-72 hours
C Headache has at least two of the following characteristics:

Unilateral Locations
Pulsating quality
Moderate or severe intensity(inhibits or prohibits daily activities)
Aggravation by walking stairs or similar routine physical activity

D During headaches at lease one of the following:
Nausea and (or) vomiting
Photophobia and phonophobia

Table 3.2: The 1988 International Headache Society diagnostic criteria for migraine with aura (MA).

Item Description
A Headache fulfilling criteria B-D list in Table 3.1
B At least five attacks fulfilling B-D
C Aura consisting of at least one of the following but no motorsickness

Fully reversible visual symptoms including positive features
(ie flicking of lights) and (or) negative features (ie loss of vision)
Fully reversible sensory symptoms including positive (ie pins and needles)
and (or) negative features (ie numbness)
Fully reversible dysphasic speech disturbance

D At least two of the following:
Homonymous visual symptoms and (or) unilateral sensory symptoms
At least one of the aura symptom develops gradually over≥5 minutes
Each symptom lasts≥5 minutes and≤60 minutes.

These criteria have improved migraine diagnosis and subsequently, epidemiological research. However,

none of the features occur in all patients who meet a strict definition of IHS migraine, and no single symptom

is required for diagnosis. In other words, migraine is a complex of symptoms with variable symptom profiles

and individuals presenting with dissimilar symptoms can equally satisfy the same diagnosis. Furthermore,

although individuals may not quite satisfy IHS criteria they would nonetheless be treated as such in a clinical
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setting; indeed there is an IHS classification of “probable migraine” (previously termed “migrainous disorder

not fulfilling the above criteria”). The majority of geneticstudies for migraine to date have concentrated on

either MO or MA and found various chromosome regions associated with each (Table 3.3). Under these

phenotype definitions, no common gene was replicated acrossstudies. However, when migraine phenotypes

were identified using a statistical (rather than medical) phenotyping classification via latent class analysis,

[165] successfully replicated two susceptibility loci: chromosome 5q21 and 10q22-q23 [212, 10, 11, 165].

Table 3.3: Table showing the significant linkage signals which are identified in the literature for IHS criteria
defined migraine with aura (MA) and migraine without aura (MO)

Phenotype Cohort Chromosome Reference
MO Icelandic 4q21 [28]
MO Italian 14q21.2-q22.3 [257]
MA Canadian 11q24 [37]
MA Finnish 4q24 [286]
MA and MO Sweden 6p12.2-p21.1 [41]
MA ∗ Finnish and Australian 10q22-q23 [11]

* Including three types of migraine with aura
• Pure MA, individuals fulfilling IHS criteria for migraine with aura
• Unclassified MA, a group of individuals that cannot be grouped into the IHS defined categories, but clearly suffer from aural features.
• Mixed migraine, a group of individuals that commonly have both MA and MO type of attacks.

A wide variety of statistical methods have been employed to identify clusters and classes based on symp-

tomatic data. Classical methods such as principal component analysis (PCA) and discriminant analysis

(DA) have previously been used in genetic linkage analysis.However, these approaches assume individuals

belong to only one of potentially many clusters, which may neglect the phenotypic heterogeneity present

in complex human diseases [140, 180]. In contrast, ”fuzzy” clustering such as latent class analysis (LCA)

and grade of membership (GoM) resolve the heterogeneity by assigning individuals to multiple clusters and

quantified measures of the probability of belonging to each group.

Latent class analysis [186] has been widely used in subtyping complex diseases such as migraine [211,

212], attention-deficit/hyperactivity disorder (ADHD) [282] and schizophrenia [132] in the field of genetics.

Another type of fuzzy clustering, Grade of Membership (GoM), has also been frequently used to obtain

empirical phenotypes. This clustering method was first usedfor medical classification in 1978 [289] and is

now commonly employed for disease subtyping. It has been employed in genetic research for diseases with

complex etiology [42, 53, 85, 179].
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Most recently, [140] proposed a different type of clustering method which is also called Grade ofMem-

bership (GoM). Unlike the model-based GoM proposed by [289], the method suggested by [140] is based

on partitioning the data into a pre-determined number of clusters. To avoid confusion in nomenclature, the

grade of membership proposed by [140] will be referred to as Fanny [143] in this thesis. This method has

been used to identify loci causing anxiety disorder [141].

Although some literature has compared the mathematical andstatistical differences between LCA and GoM

[179, 216, 81, 79], the effects of these three common phenotyping methods, LCA, GoM andFanny in genetic

analyses such as heritability and genome-wide linkage havenot been investigated. Therefore, the aim of this

study is to 1) compare these three methods as they apply to common migraine symptomatic twin data, 2)

benchmark their performance in genetic research and 3) investigate whether different clustering methods

result in different loci being implicated in linkage analysis.

3.3 Methods and Materials

The symptomatic data were first analyzed by three different phenotyping methods: latent class analysis

(LCA), grade of membership (GoM) and fuzzy clustering (Fanny) to obtain a continuous (quantitative)

phenotype trait (score) for individuals. The value of phenotypic measures derived from these three models

was constrained to be between 0 and 1, which was then used as a continuous trait in the genome-wide linkage

analysis. LCA and GoM are both model-based approaches in which the optimum number of clusters was

determined by likelihood ratio, Bayesian Information criteria (BIC) and Akaike information criteria (AIC).

For Fanny, the number of clusters was set to 2, analogous to previous Fanny-based genetic studies [140, 141].

3.3.1 Phenotype Data

Migraine data were obtained from extensive semi-structured telephone interviews as part of a study designed

to assess physical, psychological and social manifestations of alcoholism and related disorders [116]. The

sample was unselected with regard to personal or family history of alcoholism or other psychiatric or medical
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disorders [202]. The interviews were conducted during two periods of time: 1993-1995 and 1996-2000. The

earlier interviews were administered to Australian twins listed with the volunteer-based Australian Twin

Registry who were born between 1902 and 1964, whereas the second interviews were focused on twins born

between 1964 and 1975.

Participants of both cohorts were first asked the screening question: “Do you have recurrent attacks of

headaches?” If the participant screened positive, then he/she was asked a number of questions which were

developed by an experienced migraine researcher based on the IHS diagnosis criteria (Table 3.4). A total of

13062 individuals from 6764 families participated in this study, with 2716 MZ twin pairs (63.6% females

and 36.4% males), 3399 DZ twin pairs (34.52% female twins, 22.36% male twins and 43.13% mixed sex

twins), 15 twins with unknown zygosity and 817 first degree family members, including both siblings and

parents. The mean age of participants was 37.5±11.3 and ages ranged from 23 to 90 years at the time of

interview.

Table 3.4: The survey questions designed based on 1988 International Headache Society diagnostic criteria.

Notation Abbreviation Descriptions
a ≥ 5 episode Have at least 5 episode of headaches in your life time.
b 4-72 hr Average headache lasts between 4 to 72 hours
c1 Unilateral Headache often occurs at one side of head
c2 Pulsating Headache pain can be described as throbbing, pulsating or pounding
c3a Moderate/severe Headache pain can be described between moderate and severe
c3b Prohibitive Headache pain prohibits daily activities
d1 Nausea/vomiting Headache associated with vomiting or feeling nausea
d2a Photophobia Enhanced sensitivity to light
d2b Phonophobia Enhanced sensitivity to sounds
Aura Aura Have visual problems such as light shower, blurring, blind spot or double vision

Although the wording of questions was identical for both cohorts, not all questions in Table 3.4 were in-

cluded for the older cohort. The questions relating to having more than 5 migraine/episodes of headache

during lifetime (“≥5 episodes”), average duration of migraine/episodes between 4 and 72 hours (“4-72

hours”), and pain associated with headache described as moderate to severe (“mod/severe”) were not in-

clude in the questionnaire for the older cohort. We conducted separate analyses for older, younger and two

cohorts combined data.



56
Chapter 3. Linkage and heritability analysis of migraine symptom groupings: a comparison of three

different clustering methods on twin data

3.3.2 Models

Latent Class Analysis (LCA) Latent class analysis is a multivariate technique which canbe applied to

clustering, regression and factor analysis. The classes are latent because they are not directly observed,

but are identified based on a function of a set of observed variables. LCA was developed in the 1950s for

dichotomous variables [161]; however, the full potential and practical application of LCA only became evi-

dent after the introduction of more general latent class analysis and a simpler method of obtaining maximum

likelihood estimates of the parameters in the 1970s [101, 102]. The latter LCA is capable of dealing with

both dichotomous and polytomous variables and more than onelatent variable can be included in the model.

Suppose there aren individuals,J observed (manifest) variables and each variablej hasL j levels of response,

i = 1, 2, . . . , n, j = 1, 2, . . . , J andl = 1, 2, . . . , L j. Let yi jl denote the binary response of theith individual to

symptom j with level l andYi is then the vector of subjecti’s response to all symptom questions. Assuming

there areK latent classes within the latent variable, letλk jl denote the class conditional probability that an

observation in classk produces thelth outcome on thejth variable; therefore, within eachj,
∑

l λk jl = 1.

In this thesis, the data consist of binary responses, and thus L j is two. Assuming local independence, the

probability of a particular set of responses from an individual i in classk is:

f (Yi |λk) =
J

∏

j=1

L j
∏

l=1

(λk jl )
yi jl (3.1)

Let pk denote the weight of latent componentk. Then the joint distribution for allJ variables under the

latent class model is

Pr(Yi |λ, p) =
K

∑

k=1

pk

J
∏

j

L j
∏

l

(λk jl )
yi jl

The LCA analyses were carried out using the poLCA [167] package of R2.4.1 [219]. The parameters were

estimated via the expectation-maximization (EM) algorithm [60]. The details of the EM algorithm for

LCA are in [167]. Unlike the other models described in this thesis, the class membership probabilities are
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estimated post-hoc using Bayes’ formula:

pik = Pr(k|Yi) =
pk f (Yi |λ̂k)

∑

k pk f (Yi |λ̂k)
, (3.2)

whereλ̂k is an estimate of outcome probability conditioning on classk. Because the parameters are estimated

using the EM algorithm, the latent class for the observations with missing value(s) can still be estimated.

This is achieved by excluding cases with missing values whencalculating Equation 3.1 and the denominator

of Equation 3.2 [161].

Grade of Membership (GoM) Grade of membership (GoM) also fits into the latent class framework.

GoM was first developed by [289] for expressing non-stochastic heterogeneity in a population by direct

latent variable estimation. This method has been further developed by various researchers and is frequently

applied in medical and genetic research [80].

Let gi = (gi1, gi2, ..giK ) be the latent vector of grade membership scores for individual i having a partial

membership of componentk, wheregik ≥ 0 for eachi and k and
∑K

k=1 gik = 1. The valuegik can be

interpreted as the intensity of membership in each component. Unlike LCA, the membership scores of

individuals are estimated directly from data. Letλk jl denote the probability of positive response to levell of

variable j for a complete membership of componentk, λk jl = Pr(xi jl = 1|gik = 1) wherei = 1, 2, .., n, j =

1, 2, ..J andk = 1, 2, ..,K. Within each variablej, λk jl ≥ 0 and, the sum ofλk jl across all levels, is equal to

one. The joint likelihood of GoM is

Pr(Y|λ, g) =
N

∏

i=1

J
∏

j=1

L j
∏

l=1

(
∑

k

gikλk jl )
yi jl (3.3)

Equation 3.3 is maximized by iterative optimization with respect to one set of parameters while keeping the

other set of parameters constant. This iterative procedureis referred to as the missing information principle.

The details of the parameter estimation procedure are in [179].



58
Chapter 3. Linkage and heritability analysis of migraine symptom groupings: a comparison of three

different clustering methods on twin data
GoM can deal with missing values in two different ways, depending on the nature of the missing values.

When the missing data are generated by a random mechanism which is independent of model parameters,

missing data can be treated as unobserved and independent observations. In this case,yi jl for a missing

observation is set to be 0 forl = 1, . . . , L j and is consequently excluded in the computation of the likelihood.

When the missing data are due to a non-random process, such that certain items have a higher rate of missing

data on a specific latent class, GoM deals with this problem byincreasing the dimension of the measurement

spaces by adding an extra category called “missing” for eachvariable in the model. In this study, in light of

no information to the contrary, we assume the missing value is due to random causes.

The above models were tested using the Akaike information criterion (AIC, [3]), Bayesian information

criterion (BIC, [243]) and log-likelihood values for each value of K. AIC and BIC strike a balance between

goodness of fit and model complexity, thus avoiding both over-fitting and under-fitting. Models with lower

AIC and BIC values are preferred. Log-likelihood measures model fit but not complexity, and thus must be

used cautiously to avoid over-fitting.

Phenotype Conversion In this study, the maximum number of components tested in theLCA and GoM

analyses is 6 (max(K) = 6). The optimum number of components for LCA is determined bythe Bayesian

information criteria (BIC) [243] whereas the likelihood ratio test is used to determine the optimum number

of components in GoM. Because both models yield only multinomial estimates, an intermediate step is

added to obtain a continuous phenotypic measure. When the optimum value of K is 2, the membership

score for the “affected” component (the component with more and stronger symptoms, such aspik=affected

of LCA andgik=affected of GoM) is taken to be representative of the trait value. Currently, genome-wide

linkage analysis is limited to either a continuous or a dichotomous trait value, and is not designed for

multiple clusters. Therefore, in the past, when the optimumnumber of clusters in the model exceeded two,

the phenotype was determined by a threshold value [211, 212,164]. To avoid the difficulty in determining an

appropriate threshold, we implemented the following method to convert multinomial values to continuous

values bounded between 0 and 1.

When the optimum number of components in a model exceeds 2, weused the following equation to estimate
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each individual trait value. Since this trait value aims to capture the presence of the symptom, we setl to 2:

Phenotypic Traiti =
k=K
∑

k=1

∑ j=J
j=1 λk j2

J
× gik

wheregik is membership score for individuali having partial membership of clusterk and J is the total

number of manifest variables.

The use of a single, continuous-valued summary of phenotypesuch as this is not appropriate if two or more

distinct disorders were producing the observed symptoms. We note that in the analysis of the migraine data,

the clusters can be ordered sequentially such that the probability of experiencing each of the ten symptoms

decreases monotonically. This is highly suggestive of a single underlying determinant of severity. The

justification is less clear for the GoM model, because the clusters cannot be ordered in the same way. Nev-

ertheless, the GoM clusters can be ordered such that the endorsement probabilities decrease monotonically

for eight of the ten symptoms. Moreover, as we discuss below,there is reason to believe (on the basis of

information criteria) that the LCA clustering is the more appropriate data model.

Grade of Membership-Fanny Unlike the two model-based approaches described above, Fanny forms

clusters based on the dissimilarity between subjects, suchthat where subjects resemble each other they tend

to be clustered into the same group. Dissimilarity between two objects can be calculated in various ways.

Due to the type of variables in the migraine dataset, the dissimilarity matrix is calculated using a contin-

gency table. Considering two objects,i and j, and the contingency table ofi and j for variablep,

Table 3.5: The contingency table of objecti and j.

i \ j 1 0
1 a b
0 c d

the dissimilarity betweeni and j is estimated as

d(i, j) =
b+ c

a+ b+ c+ d
.
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Let uik denote the strength of membership of objecti to clusterk, uik ≥ 0,

∑K
k=1 uik = 1. uik is analogous (but

not equal) togik andpik above. The objective of Fanny clustering is to iteratively minimize:

K
∑

k=1

∑n
i, j=1 u2

iku2
jkd(i, j)

2
∑n

i=1 u2
jk

.

Unlike LCA and GoM, Fanny does not provide a measure of how many clusters best fit the data; the user

must choose the value ofK. We therefore followed the approach utilized in previous Fanny-based genetic

studies [140, 141] and fixed the number of clusters in the model to two. Whether this is appropriate or not

would depend on the underlying architecture of the trait (symptomatology) under investigation. As a result,

the phenotypic value of the individual subject was simply the score,ui2, for the membership of the affected

group. The Fanny algorithm procedure is implemented by the Fanny function of the contributed package

cluster [176] of the R [219] statistical package.

3.3.3 Genetic Data

The genotypic data are from a collection of four smaller genome-wide linkage scans performed for studies

at the Queensland Institute of Medical Research (QIMR). Genotyping for four scans was undertaken at

Gemini Genomics with 426 microsatellite markers, Sequana Therapeutic with 519 markers, the Center of

Mammalian Genetics at the Marshfield Clinic Research Foundation with 776 markers and the University of

Leiden with 435 markers. The recruitment of participants for genotyping was based on individuals involved

in phenotype collection. The details of DNA collection, genotyping methods and data are provided in [305]

and [54].

Graphic Representation of Relationships (GRR) [2] and RELPAIR [78, 71] were applied for the examination

of the pedigree structure and identification of inconsistencies between the genotypic data and self-reported

pedigree relationships. Potential pedigree misspecification, incorrect zygosity labelling of twins and poten-

tial sample mix-up were identified and investigated; the problematic individuals or families were removed

from further analysis. The SIB-PAIR program by [70] was thenimplemented for identifying and cleaning
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the Mendelian inconsistencies in the genotype data.

After combining all four scans, there were 485 markers whichwere typed in two or more scans. There-

fore to ensure the consistency of genotypic information forthese 458 markers, the duplicated markers are

included separately on the genetic map for the combined scan, which is separated by a small distance of

0.001cM. The consistency of the genotypes of these 458 markers was checked using various methods de-

scribed in [54]. Markers with genotypic data inconsistent between different genome scans were excluded

and unlikely genotypes were identified by MERLIN [1] and omitted from further analysis. Potential map

errors were identified by GENEHUNTER [155] and MENDEL [159].Map positions were in Kosambi cM,

which is estimated using locally weighted linear regression from the National Center for Biotechnology

Information (NCBI) Build 34.3 physical map positions, as well as published deCODE and Marshfield ge-

netic map positions [150]. Where the results suggested inconsistencies between genetic map distance and

recombination fraction, the primer sequences for all markers in the region were BLASTed against the entire

human genome sequence (http://www.ensembl.org, NCBI build 34.3). The genetic map was thenrevised to

include the updated physical positions of all markers in theproblematic regions. The revised map and the

original genotype data were cleaned of unlikely genotypes using MERLIN and map errors were resolved

using GENEHUNTER.

The final cleaned data contains 1770 unique markers. The mainintermarker distance for all sib-pairs in the

samples was 7.1cM, calculated for each sib-pair and analyzed across all sib-pairs. The combined genome

scan included 4148 individuals from 919 families, which included 143 MZ and 776 DZ twin pairs.

3.3.4 Heritability

Heritability of the continuous phenotype values was estimated with the ACE model. The ACE model as-

sumes the phenotype variation is due to the additive geneticeffect (A), shared environment effect (C) and

random environment effect (E). The heritability is then the proportion of the totalvariance which is due to the

additive genetic effect. The analysis was carried out using Mx [206] which performs maximum likelihood

estimation of the variance components.
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3.3.5 Linkage Analysis

A non-parametric quantitative trait linkage analysis was carried out using Merlin-qtl, developed under the

general framework of [149] and [288]. The membership score of the three models (gik of LCA and GoM

anduik of Fanny) was treated as a quantitative trait.

3.4 Results

The results of clustering and linkage analyses performed separately for the older and younger cohorts lack

the power to identify any significant loci. Moreover, the analysis of the older cohort itself is not representa-

tive of the true migraine population due to lack of three symptom responses. However, by combining two

cohorts, we obtained a representative sample and power to identify disorder-related loci, hence we restrict

our subsequent results to the combined data set.

Table 3.6 provides goodness of fit statistics for the choice of K in the two model based approaches, LCA and

GoM. For LCA, there is little improvement in AIC or BIC as K increases above four, where there is a local

minimum in BIC (Table 3.6). We therefore selectedK = 4 as the best compromise between model fit and

complexity. For GoM, both AIC and BIC indicate that the best model hasK = 2, but even this best-scoring

GoM model is substantially worse than any of the LCA models. The reason for this is that although GoM

models have better fit (that is, higher log-likelihood), they achieve this at the cost of including additional

parameters, namely the membership scoresgik. In light of this, we based goodness of fit assessment on the

log-likelihood ratios and noting that the largest reductions in log-likelihood occur as K increases to four, we

again chose the four clusters GoM model.

Even though four clusters were chosen for both GoM and LCA, the characteristics of the clusters differ

between these phenotyping approaches. Figure 3.1 shows thecharacteristics of each LCA cluster. Each bar

shows the probability of having the symptom, given a full membership to clusterk. For instance, the prob-

ability of having “aura” for a member in cluster 1 is 0.90. There is a progressive reduction of endorsement
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Table 3.6: The log-likelihood value, AIC and BIC values of LCA and GoM models with different numbers of
clusters.

Model Number of cluster (K) Log-Likelihood AIC BIC

LCA

2 -38752.642 77549.28 77713.79
3 -36677.701 73423.4 73677.63
4 -36456.261 73004.52 73348.49
5 -36401.638 72948.79 73382.48
6 -36333.290 72806.58 73330

GoM

2 -28616.94 109561.9 305202
3 -22696.07 123884.1 417344.6
4 -20978.36 146612.7 527892.4
5 -20322.00 171464.0 660564.8
6 -18838.39 194660.8 781581.8

probability for all symptoms when cluster 2 is compared to cluster 1, when cluster 3 is compared to cluster

2 and when cluster 4 is compared to cluster 3. The only departure from this pattern is the slight increase in

the probability of a positive response to the question “haveyou had more than 5 episodes of headaches in

your life time?” when cluster 3 is compared to cluster 2. The clusters are thus in a natural order, suggesting,

as mentioned earlier, that migraine phenotypes can be organised on a linear scale of severity.

This linear pattern is not apparent for the GoM clusters. It is apparent that cluster 1 has the highest endorse-

ment probabilities for all symptoms and cluster 4 has the lowest. However, although cluster 2 has equal or

higher endorsement probabilities than cluster 3 for most symptoms, this situation is reversed for the symp-

toms “≥5 episodes” and “moderate/severe” (Figure 3.2).

Table 3.7: The weight of each cluster under different phenotyping analysis. According to AIC and BIC, the
optimum number of clusters for LCA is 4. Using the log-likelihood as selection criteria for goodness of fit, the
optimum number of clusters for GoM is also 4.

Model No. Clusters Class 1 (Affected) Class 2 Class 3 Class 4 (Less Affected)
LCA 4 0.136 0.206 0.103 0.554
GoM 4 0.215 0.076 0.105 0.604
Fanny 2 0.405 0.590 - -

- Not applicable.
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Figure 3.1: The characteristics of the four clusters under LCAK=4 model. X-axis corresponds to the items
listed in Table 3.4 and the y-axis is the probability of displaying the symptom given full membership to cluster
k.

The profile plot showing the characteristics of the Fanny clusters is depicted in Figure 3.3. There is a large

difference in the endorsement probabilities of the two clusters, and more than 55% of individuals in cluster

2 have all symptoms listed in Table 3.4. Individuals in cluster 2 are not exempt from all symptoms; a small

proportion in this cluster had the first five symptoms of Table3.4 during their headache episode. Since there

are only two clusters in this analysis, cluster 1 can be referred to as the “Affected” class and cluster 2 as the

“Unaffected” class.

Of the total 13062 individuals, 14% were assigned to cluster1, 21% to cluster 2, and 10% and 55% were in

cluster 3 and 4, respectively, according to LCA (Table 3.7).In contrast to LCA, a slightly higher proportion

of the population were classified into the two extreme clusters of GoM with 22% falling into cluster 1 and
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Figure 3.2: The characteristics of the four clusters under GoMK=4 model. X-axis corresponds to the items
listed in Table 3.4 and the y-axis is the probability of displaying the symptom given full membership to cluster
k.

60% into cluster 4. Under the Fanny clustering method, around 40% of the population are classified into

cluster 1 and 60% are in cluster 2 (Table 3.7).

After phenotype conversion, all three models agreed that a large proportion of the subjects in this study

have a very small probability of having had migrainous headaches (Figure 3.4). However, we observed

some variations in the tail end of the histograms. Accordingto GoM, there is an even distribution in the

individuals with scores between 0 and 1, with a slightly higher proportion having scores closer to 1. This is

different from the results obtained using Fanny and LCA, in whichonly a very small number of people had

a phenotypic score between 0 and 0.4. However, unlike the tail end of the Fanny histogram which shows a

slight increase in score distribution, the LCA histogram shows small peaks at 0.5 and 0.7. The maximum
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Figure 3.3: The characteristics of the four clusters under FannyK=2 model. X-axis corresponds to the items
listed in Table 3.4 and the y-axis is the proportion of individuals having the symptom given clusterk.

trait scores estimated in LCA and GoM approach 1, whereas themaximum trait score using Fanny is 0.86.

At the individual level, LCA and Fanny gave similar phenotypic estimates. Figure 3.5 contains scatter

plots showing the predicted scores of individuals under thedifferent methods. LCA and Fanny show very

similar predicted scores when the score is larger than 0.4. Although Fanny tends to give higher phenotypic

scores to individuals with a score lower than 0.4, generallythere is a strong correlation between LCA and

Fanny phenotypic scores (correlation= 0.99). In contrast, although the correlation is still high (correlation=

0.85), there is a notable discrepancy between LCA and GoM predicted scores. This is also observed in the

comparison of phenotypic scores obtained using the Fanny and GoM approaches.

Table 3.8 contains the heritability estimates when using the phenotypic scores of the three models where A
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Figure 3.4: Histogram showing the distribution of the phenotypic scores estimated under LCA, GoM and Fanny.
A score of 0 indicates not having migrainous headache and a score of 1 indicates having strong migrainous
headache.

indicates the variation due to genetic variation, C is the variation due to the shared environmental effects and

E is the effect due to non-shared environmental effects. The range of heritability is between 0.36 and 0.46.

The highest heritability occurs when using the phenotype derived from the GoM model, which is 0.46 with

a 95% confidence interval of 0.43 to 0.49. This indicates, if the assumptions for the ACE model hold, that

46% of total variation is due to genetic variation, none of the variation is due to shared environment effects

and nearly 54% is due to the random environmental effects.

The heritability estimates obtained using LCA and Fanny phenotypes are close: respectively 37% and 36%.

The variation due to shared environmental effects is consistent between these two approaches, and is in line

with that obtained for the GoM approach. The non-shared environmental effects for these two approaches
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Figure 3.5: Scatter plots showing the relationship between phenotypicscores estimated under different methods.
The top left plot is the estimated phenotypic score from LCA vs GOM. The top-right hand plot is the comparison
in estimated trait between LCA and Fanny approaches; the bottom plot is the comparison of estimated trait
between GoM and Fanny approaches.

are 63% and 64%.

Merlin-qtl multipoint LOD scores using the three different phenotypic measures were calculated at 1-cM

increments; see Figure 3.6. The black solid line is the LOD score corresponding to the LCA phenotype;

the red dashed line corresponds to GoM and the green dotted line corresponds to Fanny. The LOD scores

based on LCA and Fanny show very similar patterns with several regions on chromosome 7 having LOD

scores over 3. The highest LOD scores are on chromosome 7 at the 136 cM region (LCA LOD=3.7; Fanny

LOD=4.12) followed by chromosome 7 at the 133 cM region. (LCA LOD=3.28, Fanny LOD=3.47). The

third highest LOD score is also found in chromosome 7 at 127cM(LCA LOD=2.72; Fanny LCA=3.05).



3.5. Discussion 69
Table 3.8: The migrainous headache heritability estimates from the ACE model, where A is the variability due
to genetic variation and C is the variability due to environmental effect.

Model BIC Components Mean Lower CI Upper CI

LCA -48352.60
A 0.3710 0.3365 0.4007
C 0.0000 0.0000 0.0000
E 0.6290 0.5993 0.6569

GoM
-48429.35

A 0.4625 0.4308 0.4905
C 0.0000 0.0000 0.0000
E 0.5375 0.5095 0.5665

Fanny
-48079.38

A 0.3592 0.3266 0.3877
C 0.0000 0.0000 0.0000
E 0.6408 0.6104 0.6720

Although the LOD score signals are not as high as in chromosome 7, the genomewide linkage analysis

shows possible evidence of linkage on chromosomes 2 and 1 in LCA and Fanny traits. Markers D28364 G,

GATA194A05 and D2S1391, which are between 187 and 188 cM of chromosome 2, have a LOD score of

1.89 based on the LCA traits and 2.25 for the Fanny traits; andmarker ATA73A08 (156cM) on chromosome

1 shows a small peak.

In contrast, the LOD scores based on the GoM phenotypes show avery different pattern. The highest LOD

score of the GOM trait is on Chromosome 2 between 210 cM (LOD=3.10); followed by chromosome 2 at

the 206 cM region (LOD=2.81). Some signals are detected on chromosome 1 and 7; marker AGAT119 M

(153 cM) on chromosome 1 has a LOD score of 2.59 and marker ATA55A05 M (127cM) on chromosome 7

has a LOD score of 2.51.

3.5 Discussion

Genetic research of diseases with a complex etiology firstlyrequires the identification of phenotypes which

capture the underlying phenotypic and genetic variance. Inthis study, the aim was to investigate the effects

of different clustering methods on the output of genetic analyses using a previously described [212] and

subsequently updated migraine dataset. We tested three commonly used statistical clustering phenotyping

methods: LCA, GoM and Fanny. Of these, the first two are model-based approaches, whereas Fanny is

based on partitioning of a dissimilarity matrix. Our results show that with the same symptom response
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Figure 3.6: Results of MERLIN-qtl genomewide linkage analysis using traits derived from different statistical
clustering methods. The solid black line is the LOD score of traits derived from LCA; red dashed line is the LOD
score of trait from GoM and green dotted line is LOD score of Fanny traits. The dotted vertical lines indicate
the boundaries between chromosomes.

data, different phenotype clusters are derived and as a consequence different genetic loci are implicated via

linkage.

The heritability estimated here with three different migraine phenotypic traits is within the range of previ-

ously published findings [202]. [202] show that the heritability of MA and MO varies for different popula-

tions. For the Australian population, previously published results indicate the heritability varies as different

phenotyping methods are applied [211]; this is supported byour findings. The ACE model fitting indicated

the greater genetic contribution to migraine using GoM, followed by LCA and Fanny, which are 46%, 37%

and 36%, respectively. Some of these estimates are higher than the heritability for the IHS criteria defined

phenotype published in [211, 212]. We also noted that differences in heritability can occur within a model.
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For instance, using the same LCA model, the heritability (h2) of the converted continuous trait is slightly

lower than theh2 of the dichotomous trait in [211, 212]. We failed to identifythe shared environmental

effects for these phenotypic traits, as also occurred in [211].[211] found that when additive genetic effects

are present, the power to detect the shared environmental effects is low.

The difference between the continuous trait values derived from theLCA and GoM models is mainly due

to the different clustering structure. Although the number of clusters in both models are the same, the

characteristics of clusters are very different. The clusters of the GoM model differ in symptom composition

but the clusters of the LCA model are different in the probability of having all ten symptoms.

The two model-based clustering methods implicated different genetic loci. However, based on the GoM

phenotype, linkage was obtained to a locus near marker D2S2944 on chromosome 2 and to loci on chro-

mosomes 1 and 7. Conversely, the two most unlike clustering methods, LCA and Fanny, not only produced

linkage at the same positions but also gave the same ranking to those positions. The linkage analysis of

LCA- and Fanny-based traits had highest LOD scores at Chr7q33 and Chr7q32.3 regions, respectively.

Although the markers with the highest LOD scores in the LCA and Fanny phenotype analyses are not

implicated in the GoM linkage results, the genetic analysisof GoM produced linkage to other possible

markers on chromosome 1 and 7. Marker AGAT119M of chromosome7 has the fifth highest LOD score for

the GoM trait, and the third highest LOD score ranking of the LCA and Fanny traits. In contrast, although

linkage analysis of LCA and Fanny traits did not provide strong evidence for linkage to marker AGAT119M

on chromosome 1 (LOD scores less than 2), there is still some evidence of linkage.

Although the LOD scores for some loci are less than 3, our analysis was able to replicate some previously

identified regions. The small peak on chromosome 1 of LCA and Fanny traits is within 2cM of the famil-

ial hemiplegic migraine (FHM) type 2 ATP1A2 gene [59, 280]. The small peak in chromosome 2 is also

within a small distance of the SCN1A FHM3 gene found by another study [62]. Another important marker

is GGAT1A4, which is located on the chr 10q22.3-10q23.1 region. Our genome-wide linkage results indi-

cated a suggestive linkage in this region. This is encouraging because the same region has been identified

previously by [11, 10] and [212]. Unlike much other research, [11] adopted three different methods to
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phenotype the migraine patients of the Australian and Finnish populations; this includes the less stringent

form of IHS defined MA, LCA and trait-component analysis. Note the phenotypic traits derived from their

LCA is calculated using a different algorithm from the one used here and [11] implement thesame algo-

rithm as the one described in [211]. We will later explain thedifference between these two approaches and

discuss the effects of these algorithms on linkage analysis. Previously detected loci, chr 6p12.2-p21.1 and

8q21 [212], are also detected here with suggestive linkage when the trait values are derived from LCA and

Fanny.

Some previously identified loci were not detected here; thisincludes 4q21[28], 4q24 [286, 10, 162], 4q21-

q31 [10], 5q21 [212], 8q21[11, 212], 14q21-q23 [257, 11], 15q11-q13 [10], 17q13 [10], 18q12 [28, 286, 11].

Here are some possible causes of this difference. Firstly, the common form of migraine, according to IHS

criteria, is an ensemble of multiple symptoms; each symptommay be caused by specific loci and these loci

contribute to susceptibility to migraine [212, 10, 162]. For the formation of common migraine, genes may

need to act synergistically. One drawback of single-locus linkage analysis is that it is not able to detect

epistasis effects, which commonly present in a complex disease. Therefore, the development of genome

wide association studies in conjunction with statistical tools for detecting epistasis effects is more suitable

for detecting the genetic architecture of migraine.

Another possible cause for not replicating previously detected loci is the variation of phenotyping methods

adopted in other studies. Our results indicate that different phenotyping methods can result in different

loci being identified in linkage analysis; hence it is not surprising that some previously prominent genes go

undetected here. We do not advocate our findings as superior to others, or vice versa, but they do demonstrate

the need to base linkage analysis on different trait values derived from various methods to ensure the validity

of the conclusion. This is especially true for diseases withcomplex etiology.

Differences in the results of genetic analyses can occur not onlybetween models, but also within a model.

[211, 212] applied LCA to migraine survey data and identifiedfour subgroups of migraine/severe headaches.

Individuals classified into clusters 2 and 3 were treated as “affected” and given a trait value of 1 and con-

versely individuals in the other two clusters were given a trait value of 0. The authors then conducted a

regression using MERLIN and found the highest LOD scores on chromosomes 5, 10, 8, 1 and 6. Although
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the current results cannot be readily compared to those present in [212], due to differences in available

phenotype data and modelling approach, we replicated theirprocedure and generally we found lower LOD

scores but in similar positions to those identified by [212].The main difference between the approaches

used by [212] and those in the current paper is that the formeremployed discrete cluster membership as

an ”affection” trait, whereas the current results utilized a continuous phenotypic score related to cluster

membership.

To investigate further the effect of different clustering approaches on within-model effects, we separately

tested the LCA and GoM models with predefined values of K. WhenK = 2, the results of the genetic

analysis based on both the LCA and GoM are different from those obtained when K=4. Within a GoM

phenotyping analysis, when K is 2, the highest LOD score is 2.29 at D1S484 on chromosome 2, which is

53 cM from the loci identified using the optimum GoM model. Thewithin-model effect is more apparent

for the LCA phenotypes, where not only the linkage position changed, but the highest LOD score reduced

from 3.70 to 2.03. This demonstrates the influence of the number of clusters on the model-based clustering

approaches.

The likelihood ratio test statistics and BIC used in the present analysis for model selection are common

parsimony criteria but are not ideal for mixture models [182]. More sophisticated methods, such as boot-

strapping [190] or reversible jump Markov chain Monte Carlomethods (RJMCMC) [228], may be more

effective in searching for the optimum number of clusters in a finite sample space. The work by [23]

provides a framework for using Bayes factors for component selection in mixture models.

Despite the fact that LCA and GoM are both forms of mixture models, they are quite different in practice. In

GoM, the membership scores of individuals are estimated as model parameters, so the number of parameters

in the model increases dramatically with the sample size. The increase in number of parameters not only

slows down the computation of the model, but it also has an effect on the determination of the optimum

number of components, where the criteria for model selection are based on a parsimony measure.

Another drawback of GoM, which is also shared by LCA, is in thealgorithm for parameter estimation. Both

of these methods are implemented using an iterative algorithm, such as EM, to find maximum likelihood
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estimates. These procedures may only find the local maximum as the model becomes complex [167]. There-

fore, to ensure the achievement of a global maximum, re-estimation of the model parameters with multiple

starting points is recommended. As is common in such cases, it is difficult to provide guidance as to how

many starting points should be used, but one rule of thumb is to repeat the optimization until each observed

local maximum is attained from more than one starting point.

The large number of parameters involved in the GoM model can also result in instability of the estimation

of membership score,gik. [179] has suggest various modifications to improve consistency: in particular, by

assuminggik for individual i is a realization of a random vector, with a distribution function.

Although the Fanny algorithm is relatively simpler and computationally easier, there are some limitations

associated with this approach. Firstly, the Fanny algorithm clusters data without taking into account any

structure in the data. It is therefore essential to have two extreme response patterns in the data, ideally

individuals with all symptoms, and individuals without allsymptoms with heavy weights on both patterns.

Clustering using the Fanny algorithm is highly dependent onthe dataset and consequently the clustering

structure often changes when extra data are included in the analysis. Unless the sample is representative of

the population, the phenotypic measures determined from a small sample may be biased. Another limitation

of the Fanny algorithm is that as sample size and the number ofquestions increases, the computational

requirements for the dissimilarity matrices also increase.

Of all three models, LCA is most computationally efficient, but it is not fully exempt from the effects of

increasing parameter dimension. Computational time also increases rapidly with the number of latent classes

(K), manifest variables (J) and levels within each manifest variable (L j). When the number of parameters

exceeds the number of samples, or one fewer than the total number of cells in the cross-classification table

of manifest variables, the LCA will not be identifiable [167].

This study is based on the assumption that the migrainous population is composed of multiple subgroups.

But it remains uncertain that the population that suffers from migrainous headaches is unidimensional.

Therefore, models such as latent trait analysis may exhibitbetter performance than any clustering based

statistical methods.
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In this thesis, we adopted the somewhat innovative practiceof converting cluster memberships to continu-

ous phenotype scores. We regard this practice as preferableto the arbitrary imposition of a threshold, which

effectively separates individuals into cases and controls. However, we urge caution in the use and interpre-

tation of such phenotype scores. In particular, the practice assumes that the disease can be satisfactorily

modeled as the result of a single, unidimensional, continuous determinant of severity. One should therefore

investigate whether the clusters can be placed in a natural order of monotonically decreasing severity, as we

have done here. We suggest further research into the relative merits of using continuous phenotype scores

as opposed to thresholds.

In conclusion, different phenotyping methods have different properties; not knowing the true phenotypic

structure of the population, phenotyping methods can therefore only provide approximations to the trait. To

minimise the impact of phenotypic uncertainties, we suggest the following alternative approaches:

1. Phenotype IntegrationRun multiple phenotyping methods and integrate the resultsof different methods

to produce a single phenotype. Then perform linkage analysis on this integrated phenotype.

2. Eliminate ambiguous casesEliminate cases with phenotypes that differ for different phenotyping meth-

ods, thus limiting subsequent analysis to those individuals for which all methods produce essentially the

same classification.

3. Multiple linkage analysisRun multiple linkage analysis on the phenotypic classifications derived from

different models, using different clustering techniques and different numbers of classes. Then combine the

results of these multiple analyses with a voting mechanism.

Such approaches may facilitate more stable estimation of genetic linkage for diseases with complex etiology.

We recommend further research into the relative success of such approaches.
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Chapter Summary

Similar to the previous chapter, the aim of this chapter is tounderstand how different phenotyping methods

affect the results of the subsequent genetic analysis. However, in contrast to the previous chapter, models

included here are two very different latent variable models.

The two models included here are latent class analysis (LCA)and item response theory (IRT). LCA is a

mixture of Bernoulli distributions, and IRT, which is also known as latent trait analysis, assumes the under-

lying latent value measures an individual’s propensity, which associates with symptom responses by fitting

logistic curves. Another major difference in this chapter is that these models are proposed and compared in

a Bayesian context, which allows common ground for comparing the two models.

From a statistical perspective, the main contribution of this chapter is introducing the use of Bayesian LCA

and IRT for phenotyping, as well as comparing models using a recently proposed deviance information

criteria that is suited for comparing latent models. Because models are proposed in a Bayesian context, it

provides a common framework for model comparison.

Chapter Conclusion

Again the same migraine data as used in Chapter 3 is used here as the baseline of comparison. Even though

BLCA and BIRT have a very different underlying structure, the phenotypes derived from these two models

are highly correlated. Subsequently, the estimated heritability and the loci identified by the linkage analysis

are nearly identical under both approaches. The estimated heritability for migraine is around 36%, which

matches previous published results.

Unlike the previous chapter, even though BIRT model is structurally more complicated than BLCA, due to

the use of deviance information criteria (DIC), BIRT is not heavily penalized and thus comparable to its

counterpart.
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4.1 Abstract

Definition of disease phenotype is a necessary preliminary to research into genetic causes of a complex dis-

ease. Clinical diagnosis of migraine is currently based on diagnostic criteria developed by the International

Headache Society. Previously, we examined the natural clustering of these diagnostic symptoms using latent

class analysis (LCA) and found that a four-class model was preferred. However, the classes can be ordered

such that all symptoms progressively intensify, suggesting that a single continuous variable representing

disease severity may provide a better model. Here, we compare two models: item response theory and latent

class analysis (LCA), each constructed within a Bayesian context. A deviance information criterion (DIC)

is used to assess model fit. We phenotyped our population sample using these models, estimated heritability

and conducted genome-wide linkage analysis using Merlin-qtl. LCA with four classes was again preferred.

After transformation, phenotypic trait values derived from both models are highly correlated (correlation=

0.99) and consequently results from subsequent genetic analyses were similar. Heritability was estimated at

0.37, while multipoint linkage analysis produced genome-wide significant linkage to chromosome 7q31-q33

and suggestive linkage to chromosomes 1 and 2. We argue that such continuous measures are a powerful

tool for identifying genes contributing to migraine susceptibility.

4.2 Introduction

Research into the genetics of complex diseases often involves the identification of genes associated with

groups of patients that exhibit different combinations of disease symptoms or phenotypes. Thisanalysis

depends crucially on the careful classification of patients. Commonly, the clustering of patients depends on

the criteria established by medical societies, such as the International Headache Society [213, 251, 115] for

migraine. Without doubt, these criteria are valuable for the diagnosis of diseases, but their effectiveness for

genetic research is debatable [109, 287] as discussed below.

Migraine is a hereditary disorder with estimated heritability between 34% and 57% [306, 202, 264, 265,
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211, 212]. The two most common forms of migraine are migrainewithout aura (MO) and migraine with

aura (MA), where aura typically concerns a visual disturbance. The genetic research of migraine is mainly

focused on these two subgroups. To date, except for CACNA1A,ATP1A2 and SCN1A - genes that con-

tribute to a rare mendelian form of MA, familial hemiplegic migraine (FHM), no gene has been convincingly

implicated in migraine (Table 4.1). This may be due to clinical and genetic heterogeneity of the disease. The

phenotype defined by IHS criteria may oversimplify the complex variability among sufferers of this complex

disease [10, 287]. Furthermore, there is overlap in the symptoms of MO and MA. Clinically, the symptoms

of MA are a superset of the symptoms of MO. The work of [211] and[164] provides further support for

the argument that MA and MO are not separate entities. Therefore, the development of an endophenotype

or an alternative phenotype may give better insight into thegenetics of common migraine.

Table 4.1: The chromosome regions associated with the common forms of migraine.

Phenotype Cohort Chromosome Reference
MO Icelandic 4q21 [28]
MO Italian 14q21.2-q22.3 [257]
MA Canadian 11q24 [37]
MA Finnish 4q24 [286]
MA North American Caucasians 19q13 [136]
TCA and LCA Finnish and Australian 10q22-10q23 [11]

There are currently two main types of method for investigating the phenotypic structure of symptom survey

results, one based on the use of statistical methodologies to convert the symptoms to a unidimensional value

and the other based on trait component analysis (TCA), whichtreats each individual symptom as a response

variable for the purpose of linkage analyses. [211] pioneered the use of latent class analysis (LCA) of

the phenotype for migraine. The authors applied LCA to migraine symptomatic data in an Australian twin

population sample and found that the best fit to the data was obtained using a model with three symptomatic

latent classes; these correspond to a mild form of recurrentnon-migrainous headaches, a moderately severe

form of migraine and a severe form. Moreover, the estimated heritability using LCA was found to be

slightly higher than the heritability estimated using IHS criteria. [212] then applied this method for genome

wide linkage analysis and identified linkage to chromosome 5q21. They also replicated previously reported

susceptibility loci on chromosomes 6p12.2-p21.1 and 1q21-q23.

Since migraine is a suite of symptoms and the subphenotype analysis in [212] found that individual symp-
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toms are associated with specific linkage peaks in their data, there have been several attempts to identify

gene loci linked to individual symptoms [10, 11]. This method is referred to as trait component analysis

(TCA). [10] applied TCA to dissect the genetic susceptibility of migraine in a Finnish cohort. They found

strong evidence that various migraine symptoms are linked to chromosome 4q24, including photophobia,

phonophobia, intensity, unilaterality, nausea, vomitingand attack length. They also found that pulsation is

linked to chromosome 17p3 and reported some suggestive linkage of the phonophobia trait to chromosome

10q22 and the “aggravation by physical exercise” trait to chromosome 12q21, 15q14 and Xp21.

Besides LCA, other clustering methods have been applied to genetic research of diseases with complex

aetiology. These include grade of membership (GoM), used toanalyse schizophrenia [109], mania [42] and

Alzheimer’s [85, 53]; model-based clustering, used to analyse anorexia nervosa [61]; and fuzzy clustering,

used to analyse anxiety disorder [141]. All these algorithms aim to identify homogenous classes/components

in the data, based on specified traits of interest, and estimate the parameters associated with each class.

For some diseases composed of many individual symptoms, thedata may be better modeled using a con-

tinuous representation. Indeed, in earlier analyses of multi-symptom migraine data using LCA and GoM

[47, 211, 212, 164, 165], the classes could be ordered in sucha way that there was a gradual reduction

in all symptoms, suggesting that there is a single latent continuous trait underlying the observed pattern of

symptoms. It is therefore reasonable to hypothesize that the data may be modeled using a single continuous

variable representing severity of the disease instead of classes.

Item Response Theory (IRT), which is also known as latent trait analysis, is a popular statistical method

for modeling psychological and educational survey responses. It assumes an underlying continuous latent

value which has direct influence on the responses to items. Indeed, items are designed to capture this latent

value. In this thesis, the item variables are equivalent to the symptom variables. IRT has been found to be

useful in behavioural genetics and genetic epidemiology, where the phenotype is often determined by the

questionnaire or interview data. This method has been used for exploring the genetic and environmental

influence on the timing of pubertal change [75] and the analysis of multi-symptom genetic data [74, 290].

In this thesis, we test the hypothesis proposed above by firstly introducing IRT for analysing multi-symptom
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migraine data, then comparing this non-clustering method to latent class analysis (LCA). Both models are

introduced in a Bayesian framework and compared using statistical measures that take into account goodness

of fit and model complexity. The models are then compared further by assessing the utility of their resulting

trait measures in genetic heritability and linkage analysis.

4.3 Methods

4.3.1 Data

Phenotype data Data were collected by the Queensland Institute of Medical Research (QIMR) during the

course of extensive and semi-structured telephone interview studies 1993-2000. The surveys were primarily

designed to assess physical, psychological, and social manifestations of alcoholism and related disorders.

The sample was unselected with regard to personal or family history of alcoholism or other psychiatric

or medical disorders. The data were collected over two periods, 1993-1995 and 1996-2000. The earlier

interview was administered to Australian twins listed withthe volunteer-based Australian Twin Registry

who were born between 1902 and 1964 while the second interview was focused on twins born between

1964 and 1971. Participants of both cohorts were first asked the screening question:“Do you have recurrent

attacks of headaches?” If the participant screened positive, then he/she was asked a number of questions

which were developed by an experienced migraine researcherbased on the IHS diagnosis criteria (Table

4.2). Although the wording of the questions is identical forboth periods, the older cohort was not asked

questions related to having at least 5 episodes of headaches, the duration of headaches (4-72 hours) and the

severity of the pain associated with headache (“moderate tosevere”).

There are 13062 individuals from 6764 families participating in this analysis, with 2716 MZ twin pairs

(63.6% females and 36.4% males), 3399 DZ twin pairs (34.5% female twin pairs, 22.4% male twin pairs

and 43.1% opposite sex twin pairs), 12 twins with unknown zygosity and 817 non-twin siblings. The mean

age of participants was 37.5 years and ages ranged from 23 to 90 years at the time of survey. Details of the

collection of the migraine data are provided by [211, 212].
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Although it may be argued post-survey that it would have beenmore complete for all members of the

cohort to be asked all symptom questions, this was considered to be an unacceptable impost by the survey

designers. Possible ascertainment bias was considered anddiscounted since analysis showed little difference

in prediction of LCA and IRT by including and excluding the “no” cohort.

Table 4.2: The survey questions based on IHS criteria.

Notation Abbreviation Descriptions
a ≥ 5 episode Have at least 5 episode of headaches in your life

time.
b 4-72 hr Average headache last between 4 to 72 hours
c1 Unilateral Headache often occurs at one side of head
c2 Pulsating Headache pain can be described as throbbing, pul-

sating or pounding
c3a Moderate/severe Headache pain can be described between moder-

ate and severe
c3b Prohibitive Headache pain prohibits daily activities
d1 Nausea/vomitingHeadache associated with vomiting or feeling

nausea
d2a Photophobia Enhance sensitivity to light
d2b Phonophobia Enhance sensitivity to sounds
Aura Aura Have visual problems such as light shower, blur-

ring, blind spot or double vision

Genotype data The genotypic data are composed of four smaller genome-widelinkage scans performed

for other studies at the Queensland Institute of Medical Research (QIMR). Genotyping for the four studies

was conducted at Gemini Genomics with 426 satellite markers, Sequana Therapeutics with 519 markers, the

Center for Mammalian Genetics at Marshfield Clinic ResearchFoundation with 776 markers and the Uni-

versity of Leiden with 435 markers. The details of DNA collection, genotyping methods and data cleaning

are discussed in other literature [305, 54].

Graphic Representation of Relationships (GRR) [2] and RELPAIR [78, 71] were applied for the examination

of the pedigree structure and identification of inconsistencies between the genotypic data and self-reported

pedigree relationships. The potential misspecification, incorrect zygosity labelling of twins and sample

mix-ups were identified and corrected. A small number of cases with errors could not be corrected, so were

excluded in further analysis. The SIB-PAIR version 0.99.9 program by [70] was then implemented for

identifying and cleaning the Mendelian inconsistencies inthe genotype data.

Markers from four sources were included separately on the genetic map for the combined scan, separated
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by a small distance of 0.001cM. Markers with genotypic data inconsistent between different genome scans

were excluded and unlikely genotypes were identified by MERLIN [1] and omitted from further analysis.

Potential map errors were identified by GENEHUNTER [155] andMENDEL [159]. Map positions were

in Kosambi cM, which is estimated using locally weighted linear regression from the National Center for

Biotechnology Information (NCBI) Build 34.3 physical map positions, as well as published deCODE and

Marshfield genetic map positions [150]. Where the results suggested inconsistencies between genetic map

distance and recombination fraction, the primer sequencesfor all markers in the region were BLASTed

against the entire human genome sequence (http://www.ensembl.org, NCBI build 34.3). The genetic map

was then revised to include the updated physical positions of all markers in the problematic regions. The

revised map and the original genotype data were cleaned of unlikely genotypes using MERLIN and map

errors were resolved using GENEHUNTER. More details on the collapsing of markers is in [54]. There are

a total of 1770 unique markers and the combined genome scan included 4148 individuals from 919 families

(143 MZ and 776 DZ twin pairs and some parent genotype).

4.3.2 Model

Latent Class analysis Suppose that there aren individuals andJ observed (manifest) item response vari-

ables (i = 1, . . . , n; j = 1, 2 . . . , J). Let yi j denote the binary response of theith individual to symptom

question j such thatyi j = 1 when the symptomj is present in personi, elseyi j = 0 . Yi is then the vector

of the ith subject’s responses to all symptoms. Assume that there are K latent classes embedded in the data.

Let λk j be the probability of a positive response on variable j for a person in latent classk (k = 1, . . . ,K).

Then

P(Yi |λ, p) =
K

∑

k=1

pk

J
∏

j

(λk j)
yi j (1− λk j)

1−yi j
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wherepk denotes the probability that a randomly chosen individual belongs to latent classk. We used the

following noninformative priors:

pk ∼ Dirichlet(1, ...1)k

λk j ∼ Beta(1, 1)

representing equal probability of membership to any of thek classes and equal probabilities of a 0 or 1

response for thejth variable in thekth class. The posterior probability that subjecti belongs to classk is

given by:

pik =
pk

∏

j f (Yi |λk j)
∑

l pl
∏

j f (Yi |λl j )

whereλk is the expected probability of membership of thekth class andf (Yi |λk) represents the probability

distribution forYi given this probability, that is,

f (Yi |λk) =
∏

j

(λk j)
yi j (1− λk j)

1−yi j .

The parameter vectors p andλ are estimated by Markov Chain Monte Carlo (MCMC) simulations using

WinBUGS1.4 [259]. Then the latent trait value for theith subject is given by

Phenotypic Traiti =
K

∑

k=1

∑J
j=1 λk j

J
× pik. (4.1)

Item response Theory (IRT) As before, letyi j denote the binary response of personi to variable j,

yi j = {0, 1}, i = 1, 2, . . . , n and j = 1, 2, . . . , J. Let θi denote the latent trait value of subjecti, θi ∈ R and

P j(θi) be the probability of observing a response score of 1 (symptom present) given the latent trait value

P j(θi) = P j(yi j = 1|θi), which is called the item response function (IRF). Different types of IRF constitute the
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subtypes of IRT. Variations of the IRT model include the Rasch model, 2-parameter logistic model (2-PL),

3-PL model and the Birnbaum model.

In this thesis, we adopt the 2-PL model, which is commonly implemented for phenotyping. The IRF for the

2-PL model is

P j(θi |a j , b j) =
eaj (θi−bj )

1+ eaj (θi−bj )
(4.2)

where variablesa j and b j are described in the education/psychology literature as the item discriminant

parameter and item difficulty parameter. Higher values ofa j indicate that itemj has higher correlation with

the latent trait value. The item difficulty parameter represents the point on the latent trait scale at which the

probability of having the symptom is 0.5. The likelihood is thus

P(Y|θ) =
n

∏

i

J
∏

j=1

(p j(θi))
yi j (1− p j(θi))

1−yi j

As in the LCA model, noninformative priors are used for parametersθi , a j andb j :

θi ∼ N(0, 1), θi ∈ R

a j ∼ N(0, 10000)

b j ∼ N(0, 10000).

As for Bayesian LCA, estimation was carried out by Markov Chain Monte Carlo (MCMC) using Win-

BUGS1.4 [259].

For both LCA and IRT models, MCMC chains were generated with 10000 iterations. The initial 5000

iterations were considered as burn-in and every fifth case ofthe remaining 5000 (total of 1000 cases) was

extracted to build the marginal posterior distribution of the parameters. For the LCA model, a chain was

generated for each value ofK, K = 2, . . . , 7.
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4.3.3 Model Comparison

The Deviance Information Criterion (DIC) is a popular and useful method for assessing model fit and com-

plexity for the purpose of comparing Bayesian models. The early DIC proposed by [260] is only suitable

when the competing likelihood models have a closed form. It is not ideal for comparing models with missing

values or mixture models [43]. [43] suggested various alternative forms of DIC for these models and com-

pared the performance of these criteria. Here we employ the third DIC (DIC3) of their work to determine

the optimum number of classes for the Bayesian LCA and compare Bayesian LCA and IRT models. DIC3

is defined as

DIC = −4Eθ[log f (y|η)|y] + 2 log f̂ (y) (4.3)

wherey is observed data,η is a vector of model parameters andf̂ (y) is the posterior expectation of model

parameters. Further details on the calculation of DIC for Bayesian LCA and IRT can be found in Appendix

A.2.

4.3.4 Genetic analysis

Heritability of the quantitative phenotype values was estimated with the ACE model, which is well suited

for twin studies.The ACE model assumes that phenotypic variation is due to additive genetic effect (A),

shared environmental effect (C) and random (non-shared) environmental effect (E). The heritability is then

the proportion of the total variance which is due to the additive genetic effect. The analysis was carried out

using Mx [206]. Mx applies a maximum likelihood method to estimate the variances and the corresponding

heritability. The goodness of fit criterion used in Mx for assessing the ACE model is the Bayesian Informa-

tion Criteria (BIC) [243].

Non-parametric quantitative trait linkage analysis was carried out using Merlin-qtl. Merlin-qtl was devel-
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oped under the general framework of [149] and [288]. Thepik of LCA and the latent traitθi of IRT are

treated as phenotypic traits for the genetic analysis.

4.4 Results

Bayesian LCA Table 4.3 contains the DIC values for different values ofK, (K = 2, . . . , 7). The DIC

changes most dramatically whenK changes from 2 to 3 but there is little improvement afterK = 4. There-

fore, the four class model is preferred.

Table 4.3: DIC and deviance values forK = 2, . . . , 7 and Bayesian IRT model.

Model K DIC value Deviance

LCA

2 60801.19 60721.39
3 51390.08 51097.95
4 49442.02 49062.91
5 48531.12 47577.47
6 47236.32 45910.07
7 46687.76 45120.79

IRT - 51718.36 51370.00

With K equal to 4, the deviance stabilized after 5000 iterations with an approximately normal distribution, a

mean of 49062.91 and standard deviation of 126.315. The posterior marginal distributions for the majority of

parameters were also approximately normal, with the exceptions of the conditional probabilities of classes

1 and 4, which are bounded by the values 0 and 1, respectively.Table 4.4 lists the posterior means and

the credible intervals (analogous to frequentist confidence intervals) of all parameters of Bayesian LCA for

K = 4.

We observed a gradual increase in the probability of each symptom across the four classes. Class 1 is com-

posed of participants with limited symptoms (Figure 4.1). In contrast, class 4 is a collection of participants

with all symptoms. Except for symptoms related to the location of the pain (unilateral, C3 of Table 4.2,

74%), more than 84% of individuals in this class have all other symptoms. Nearly all members in this class

described their headache pain as moderate to severe, experienced sensitivity to light as the headache occurred

and described the headache attacks as inhibiting their daily activities (c1: moderate/severe,λ4,5 = 0.997;

d2a: photophobia,λ4,8 = 0.996; c3b: prohibitive,λ4,6 = 0.983, Table 4.4).
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Table 4.4: The posterior statistics of LCA model parameters and their credible intervals.

K 1 (CI) 2 (CI) 3 (CI) 4 (CI)
Pk 0.55 ( 0.55 - 0.56 ) 0.10 ( 0.09 - 0.12 ) 0.20 ( 0.19 - 0.22 ) 0.14 ( 0.12 - 0.2)
λk,1 0.00 ( 0.00 - 0.01 ) 0.76 ( 0.73 - 0.81 ) 0.72 ( 0.69 - 0.75 ) 0.94 ( 0.92 - 1.0 )
λk,2 0.00 ( 0.00 - 0.00 ) 0.43 ( 0.39 - 0.48 ) 0.70 ( 0.67 - 0.74 ) 0.90 ( 0.88 - 0.9 )
λk,3 0.00 ( 0.00 - 0.00 ) 0.34 ( 0.30 - 0.37 ) 0.43 ( 0.41 - 0.46 ) 0.71 ( 0.68 - 0.7 )
λk,4 0.00 ( 0.00 - 0.00 ) 0.65 ( 0.62 - 0.69 ) 0.78 ( 0.76 - 0.80 ) 0.92 ( 0.90 - 0.9 )
λk,5 0.00 ( 0.00 - 0.00 ) 0.56 ( 0.50 - 0.62 ) 0.93 ( 0.90 - 0.95 ) 1.00 ( 0.99 - 1.0 )
λk,6 0.00 ( 0.00 - 0.00 ) 0.20 ( 0.15 - 0.26 ) 0.76 ( 0.72 - 0.80 ) 0.98 ( 0.97 - 1.0 )
λk,7 0.00 ( 0.00 - 0.00 ) 0.18 ( 0.14 - 0.22 ) 0.51 ( 0.47 - 0.54 ) 0.93 ( 0.90 - 1.0 )
λk,8 0.00 ( 0.00 - 0.00 ) 0.16 ( 0.12 - 0.20 ) 0.70 ( 0.66 - 0.75 ) 1.00 ( 0.99 - 1.0 )
λk,9 0.00 ( 0.00 - 0.00 ) 0.30 ( 0.26 - 0.34 ) 0.70 ( 0.66 - 0.74 ) 0.96 ( 0.94 - 1.0 )
λk,10 0.00 ( 0.00 - 0.00 ) 0.19 ( 0.16 - 0.23 ) 0.48 ( 0.45 - 0.52 ) 0.84 ( 0.81 - 0.9 )

The main difference between the two intermediate classes 2 and 3 lies in five symptoms: duration of

headache, severity of pain associated with headache, ability to carry out daily activities and the physical

reactions associated with headache such as nausea/vomiting, sensitivity to light and sound and visual prob-

lems (b, c3a, c3b, d1, d2a, d2b, aura of Table 4.2). Members inclass 3 showed higher probability of

these symptoms than members in class 2. The only item experienced by more individuals in class 2 is

‘>5 headaches occurring in your lifetime’. Individuals in class 2 exhibited a higher frequency of headache

episodes. Class 1 is the largest class with more than 55% of the total 13062 participants. The second largest

class is class 3 which contained 20% of participants followed by class 4 (14%) and class 3 (10%) (Table

4.4).

Bayesian IRT Because of the very large number of parameters sin this model, the MCMC analysis re-

quired a large amount of computational memory and a long computational time. The marginal distributions

of the item discriminant parameters and item response parameters (parametersa andb of Equation 4.2) were

approximately normal, with posterior means and credible intervals as listed in Table 4.5.

Figure 4.2 displays results for each symptom, using the 2-PLmodel. The x-axis is the latent trait value; the

y-axis is the probability of having the symptom and each linerepresents one symptom. Given a trait value,

symptoms on the right side of Figure 4.2 are less likely to be described by subjects than the symptoms on the

left. For instance, nearly all subjects with latent value of1 described the headache as moderate to severe but

only 60% described the headache as unilateral (Figure 4.2).Overall, the results indicate that the symptom
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Figure 4.1: Barplot showing the symptomatic characteristics of each class under the 4 class model.

“unilateral” is the least prevalent, followed by aura and nausea/vomiting. The other symptoms have similar

values of item response probability (6, Table 4.5) ranging from 0.43 to 0.65.
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Table 4.5: The posterior statistics of item response probability and item discrimination parameters.

Item Mean SD 2.5% 25% Median 75% 97.5%
a-a 4.074 0.12 3.844 3.992 4.073 4.154 4.311
a-b 4.245 0.135 3.983 4.152 4.244 4.336 4.518
a-c1 2.874 0.073 2.73 2.824 2.874 2.922 3.021
a-c2 4.454 0.109 4.24 4.38 4.453 4.525 4.672
a-c3a 8.368 0.361 7.688 8.117 8.36 8.598 9.095
a-c3b 6.562 0.217 6.164 6.415 6.553 6.702 7.003
a-d1 4.646 0.136 4.392 4.551 4.644 4.739 4.919
a-d2a 6.608 0.219 6.194 6.46 6.601 6.755 7.047
a-d2b 5.263 0.148 4.981 5.164 5.258 5.359 5.567
a-Aura 3.732 0.104 3.54 3.659 3.728 3.799 3.943
b-a 0.493 0.015 0.464 0.482 0.492 0.502 0.524
b-b 0.618 0.015 0.59 0.608 0.618 0.627 0.647
b-c1 0.936 0.016 0.907 0.925 0.936 0.947 0.969
b-c2 0.49 0.013 0.466 0.48 0.489 0.499 0.516
b-c3a 0.427 0.014 0.401 0.418 0.427 0.436 0.454
b-c3b 0.61 0.013 0.585 0.601 0.609 0.618 0.635
b-d1 0.781 0.014 0.756 0.771 0.781 0.79 0.807
b-d2a 0.648 0.012 0.625 0.64 0.648 0.656 0.673
b-d2b 0.623 0.013 0.6 0.615 0.623 0.632 0.648
b-Aura 0.845 0.014 0.818 0.835 0.845 0.854 0.872

A lower value of the item discrimination parametera indicates a weaker correlation between the symptom

and underlying latent trait. Of all ten symptoms, the estimated latent value correlates most strongly with the

severity of pain during the headache, followed by the symptoms ‘prohibitive of daily activities’, photophobia

and phonophobia (indicated by the posterior mean discrimination parameters of 8.368, 6.608, 6.562 and

5.263 respectively; Table 4.5). Location of pain (‘unilateral’) and aura correlated least strongly with the

latent value.

Model Comparison The DIC estimated for the Bayesian IRT model of the migraine symptomatic data is

51718.36 (Table 4.3). This value is slightly higher than theequivalent value of 49442.02 for the best LCA

model (K = 4). This suggests that, by this criterion, Bayesian LCA withK = 4 classes provides a slightly

better model for these data than the Bayesian IRT model.

The models were also compared using deviance, which is -2*log-likelihood and measures the fit of a model

but not its complexity. Although the difference in the deviance values between LCA withK = 4 and IRT
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Figure 4.2: Plot showing the relationship between the latent trait and each symptom for IRT model.

is less than for DIC, lower deviance is still observed for LCAwith K = 4 (Table 4.3). This supports the

observation that LCA withK = 4 is a slightly better model for these data.

Figure 4.3 is a scatter plot showing the relationship between the phenotype trait values estimated using

Bayesian LCA and Bayesian IRT. There is a strong correlationbetween phenotype values estimated with

the two models (correlation= 0.99).
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Figure 4.3: Scatter plot showing the relationship between predicted continuous phenotypic values by Bayesian
LCA and Bayesian IRT model. The continuous phenotypic traitis bounded between 0 and 1, where 1 represented
a severe type of common migraine and 0 indicated no evidence of common migraine. The straight line is the
predicted linear relationship between these two phenotypes. The correlation between the phenotypic traits is
0.99

Genetic analysis The ACE model was fitted to the latent trait valueθ of the Bayesian IRT model and

the converted continuous estimate derived from Bayesian LCA (Equation 4.1), to estimate the heritability

of common migrainous headache. Although the trait values derived from the Bayesian LCA model are

preferable (as indicated by the smaller BIC value in Table 4.6), there is little difference in the heritability

between the traits (component A of Table 4.6) due to the high correlation in the phenotypic trait values

of the two models. The estimated heritability for both models is 0.37 (CI: 0.34-0.40). The non-shared

environmental factor is the main contributor to the variation in the twin migraine status (62%, componentE

of Table 4.6). Interestingly, the common shared environment in twins has negligible effect on the variation
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of migraine “severity” (as measures by our latent trait measures) between twin pairs.

Table 4.6: The parameters of ACE model estimated using Mx, where A is thevariation due to genetic variation
and C is the variability due to environmental effect. In this analysis, sex is included as a covariate.

model BIC Component Mean Lower CI Upper CI

Bayesian
LCA

-48290.53
A 0.3719 0.3413 0.4017
C 0.0000 0.0000 0.0000
E 0.6281 0.5983 0.6587

Bayesian
IRT

-39159.34
A 0.3760 0.3475 0.4037
C 0.0000 0.0000 0.0000
E 0.6240 0.5963 0.6525

Figure 4.4 summarizes the results of linkage analysis usingthe phenotypic measures derived from Bayesian

LCA with four classes using MERLIN-qtl. The black solid lineof Figure 4.4 shows the LOD score of

the trait derived from the posterior mean of the model parameters using Equation 4.1. Strong evidence for

linkage was observed at 7q31-q33 where LOD scores are between 2.37 and 3.54. The highest LOD score

(3.54) was observed for marker D7S640 on Chromosome 7, followed by a nearby marker, GATA43C11

(LOD=3.33). Besides chromosome 7, there is some suggestive evidence of linkage on chromosomes 1 and

2. The LOD scores for the area around marker ATA73A08 (153-157cM) on chromosome 1 are between

2.14 and 2.23. Marker GATA194A05 on chromosome 2 also has a LOD score above 2.0 (LOD=2.04).

The next highest peak is on chromosome 8 at 86.314cM, with a LOD score of 1.85. Figure 4.5 presents

similar results for trait values derived from Bayesian IRT;the black solid line shows the LOD score for the

posterior mean trait. Linkage to the posterior means of Bayesian IRT indicates a maximum LOD score on

chromosome 7 at 136cM. This coincides with the maximum LOD score linking to the trait estimated using

the Bayesian LCA model. Similarly, the loci with the second and third highest LOD scores in the Bayesian

LCA are also identified under the Bayesian IRT analysis [marker ATA73A08 (LOD=2.2) and GATA194A05

(LOD=1.99)].
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Figure 4.4: Linkage plot of phenotype derived using Bayesian LCA.
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Figure 4.5: Linkage plot of phenotype derived using Bayesian IRT.
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4.5 Discussion

This chapter aimed to compare two latent variable models in describing the phenotype of migraine and in-

vestigate the impact of model choice on the subsequent genetic analysis. Whereas the LCA model assumes

that the subject population comprises multiple distinct subgroups or subtypes of migraine, the IRT model

assumes a single continuous latent value for each subject. Both models were fitted within the Bayesian

framework. Based on DIC, the LCA model with four classes provides a better fit to the data than the IRT

model, but the classes could be ordered in such a way that there was a clear progression from minimum

symptoms (‘non-affected’) in the first class through to nearly all symptoms (themost severe type of mi-

grainous headache) in the last class. Members of the non-affected class in the Bayesian LCA model also

had the lowest latent trait values under the Bayesian IRT model, compared with other classes. The two

intermediate classes differ in the last five symptoms, which may be related to individual reaction during the

headache episodes. An exception to the increasing progression of symptoms was the frequency of headache,

which was larger in class 2 than class 3. The importance of this symptom as an indicator of the severity of

migraine has been questioned by [164] in a Dutch cohort.

The characteristics of the classes identified using Bayesian LCA in this analysis are very similar to those

reported by [211], but quite different from those found by [164] . The latter authors observedthat except for

the items related to the severity of pain and sensitivity to light and sound, the prevalence of other symptoms

was much lower in their least severe class compared with the finding here. Moreover, the differences we

observed here for classes 2 and 3 were not present in their cohort, with their classes 1 and 2 (corresponding

to our classes 2 and 3) both composed of individuals with low physical reaction during the headaches.

A potential problem with the LCA model is that the classes identified via this method may be influenced

by the composition of the population or the method of sampling–factors which have nothing to do with the

aetiology of the disease. For instance, when the data are dominated by individuals with moderate migrainous

headache and only a small proportion of subjects have the severe type of headache, classes derived from LCA

may not represent “affected” and “non-affected” disease status. Therefore, as for all clustering approaches,

the results of LCA need to be interpreted with a degree of caution and ideally with reference to clinical
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criteria.

Although the IRT model fit less well with respect to the DIC andis less parsimonious than its LCA coun-

terpart in terms of the number of parameters, it provides a valuable insight into the relationship between

individual symptoms and the underlying latent value which is not directly available in the LCA model. The

analysis of the Bayesian IRT revealed that the symptom ‘unilateral’ is less important in prediction of mi-

graine status. This finding is supported by the Bayesian LCA with low prevalence of this symptom in all

classes. This may be due to the participants’ understandingof this item, or difficulty in remembering the

location of the pain during the time of the survey. Surprisingly, the symptom ‘aura’ was reported to be the

second least correlated variable to the latent trait of the Bayesian IRT model, yet this is the major symptom

used in the IHS criteria in separating subjects into two subtypes, migraine with aura (MA) and migraine

without aura (MO). As much as LCA and IRT are different methods, these two models complement each

other and together provide a better investigation, interpretation and explanation of these data than either can

provide by itself.

In our previous work [47], we found that the results of genetic analysis using traits derived from grade of

membership (GoM, [289]) are very different from those obtained using traits derived from LCA and fuzzy

clustering (Fanny, [143]). Based on information criteria,LCA out-performed the GoM model for these

migraine symptom data. The current study demonstrates thata fourth model, IRT, produces similar results

to LCA and therefore Fanny, leaving GoM as the odd method out.Further research is suggested to confirm

whether the GoM model is suitable for data analyses such as those reported here.

Currently, linkage analysis is designed for either dichotomous or continuous traits and multinomial traits

can only be analysed by introducing a threshold value or by conversion. As an example of the former, [212]

fitted migraine symptom data using LCA with four classes, then separated the subjects into “affected” and

“non-affected” based on the predicted allocation to the first two and last two classes, respectively.

Here we employed a simple conversion function to convert themultinomial trait to a continuous measure.

This simple conversion included the clustering feature of LCA, as well as the uncertainty of belonging to

multiple classes. Without any other manipulation, this continuous measure has a high correlation with the
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latent trait of the IRT model; therefore, with some confidence, this converted value is representative of

migraine “severity”.

Indeed, more advanced methods could be considered for the conversion of the clustering output of LCA

to a continuous phenotypic trait. Factor mixture analyses [189] which provides a general framework for

combining LCA and factor analysis, is one such method.

As expected, the high correlation in the trait values of the two models resulted in minimal differences in the

results from genetic analyses. Interestingly, the heritability of both traits is 0.37, which is comparable to the

heritability estimated in an Australian cohort when the status is determined by the IHS criteria [h2 = 0.34

[202]; h2 = 0.36 [211]], despite these values being derived from substantially different data.

Analogous to the heritability results, linkage to the latent trait values from the IRT model is also nearly

identical to that of the LCA continuous trait. There is strong evidence for linkage to chromosome 7q31-q33,

which has not been previously identified by other studies. Inaddition, marker ATA73A08 and GATA194A

on chromosomes 1 and 2 respectively are reported in other studies. Marker ATA73A08 is close to the famil-

ial hemiplegic migraine (FHM)-implicated ATP1A2 gene [59,280] and GATA194A on chromosome 2 is

close to the SCN1A FHM3 gene [62]. The other interesting locus identified here is on chromosome 10q22.3.

Recent work by [11] applied both LCA and TCA to Australian andFinnish cohorts and successfully iden-

tified this locus linked to migraine.

Building upon our earlier work on the empirical clustering of migraine symptomatology, the results from

our Bayesian latent trait modeling indicate that migraine symptom data may be modeled using a single

continuous variable representing severity of the disease.The purpose of such quantitative measures is not

to diagnose migraine but to provide new research tools for geneticists. For example, as in other complex

diseases, the use of quantitative traits such as lipid values in hyperlipidaemia or allergy-related phenotypes

in asthma provides an option for refined analysis. We therefore propose that the use of such continuous

measures, which directly reflect migraine severity, provides a powerful and useful approach to identifying

genes contributing to migraine susceptibility.
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Chapter Summary

In the previous two chapters, the results show that different methods of phenotyping can result in either

similar or else very different findings in the subsequent analysis. To address the first object of this thesis,

the next step is to develop methods for reconciling the phenotype estimated from different models. In this

chapter, we propose two new methods for achieving this goal.

The conventional approach when more than two models are usedfor phenotyping is to select a single model

using goodness of fit measures. From the previous two chapters, we noted that even when models are

comparable in likelihood; some models are less preferred due to their complexity. Given the true phenotype

is unobservable, and thus validating the estimations is difficult, it is unwise to choose one model. Moreover,

the choice of goodness of fit measure can be arbitrary and debatable. Therefore, instead of selecting a

model, we propose a method to average models. Furthermore, one of the methods proposed here can reflect

the model uncertainty in the subsequent analysis.

In addition, we propose a method to combine the model evaluation criteria by introducing an additional

parameter to capture the uncertainty associated with the approximation to the marginal likelihood.

Chapter Conclusion

Using Bayesian model averaging as the foundation, we introduce two new methods for reconciling the phe-

notype estimated by the different models. LCA and GoM are again selected here for demonstration. Because

the marginal distributions of the models are intractable, we tested two different methods of approximating

the marginal likelihood within each proposed method. The methods are then validated using simulated data,

and again using the migraine data.

Both methods show promising ability in integrating the phenotypes of different models by consolidating the

cores of the clusters commonly identified by models, as well as reflecting model uncertainty for individuals

at the borders of the clusters. We also noted that the proposal for combining the model evaluation criteria has

shown promising results in overcoming the disputes associated with the weighting of the models. Therefore,

the results to date indicate the value of the proposed methods.
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5.1 Abstract

Genetic research of diseases with complex etiology is hindered by a lack of clear biomakers for pheno-

type ascertainment. The phenotypes for these diseases are often identified on the basis of clinically defined

criteria; however such criteria may not be suitable for understanding the genetic composition of the dis-

eases. Different statistical approaches have been proposed for phenotype definition; however the results

of our previous studies have shown that differences in the phenotypes estimated by different approaches

have substantial impact on the subsequent linkage analysis. Instead of obtaining results based upon a single

model, we proposed two new methods, using Bayesian model averaging as the foundation, to overcome the

problems associated with defining phenotype classes. Both methods reconcile phenotypes obtained from

multiple models both within and across phenotype classification approaches. We illustrate the methods us-

ing latent class analysis and grade of membership, and demonstrate their application using simulated data

and real data on migraine. Our methods have shown promising ability to consolidate the cores of clusters

and reflect model uncertainty by increasing the fuzziness atthe boundaries of clusters. Thus, in subsequent

linkage analysis, loci which are strongly differentiated at the cluster cores may have stronger LOD scores

under the combined model than under an individual model.

5.2 Introduction

An important goal of genetic research is to understand the composition and genetic architecture of a heritable

phenotype. Springboarding from the rapid reduction in the cost of genotyping and increases in computa-

tional ability, many studies have been published on the identification of different classes or subgroups of

individuals based on phenotype data. In humans alone, phenotypic classes have been identified for diverse

problems ranging across food acceptance [e.g. 68], social behaviour [e.g. nicotine dependence, 26], psy-

chological disorders [e.g schizophrenia, 109] and a wide variety of diseases [e.g. 211, 53, 129]. The results

of these analyses are often then subjected to genetic analyses, typically based on linkage methods, in order

to identify genes that are associated with, or can differentiate between, the phenotype classes.
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For many diseases without clear biomarkers, phenotypes areidentified on the basis of clinically defined

criteria. While these criteria assist in clinical diagnostics, they may not be suitable for understanding the

genetic architecture of the disorder [287]. Thus different statistical methods for phenotype definition have

been proposed, including latent class analysis [186], grade of membership [179], item response theory [75],

factor analysis [see 268], discriminant analysis [see 113]and factor mixture analysis [188]. However, dif-

ferent approaches can result in the identification of slightly, or sometimes substantially, different phenotype

classes, which can in turn result in different linkage analysis results [47].

This problem can be addressed by either model selection or model averaging. In model selection, one

chooses a single approach and, within this approach, a single model, based on a criterion such as the Likeli-

hood Ratio (LR), Akaike Information Criterion (AIC), Bayesian information criterion (BIC), Bayes Factor

(BF) or posterior predictive probabilities (PPP). However, a number of researchers have recognised that this

practice ignores model uncertainty [121, 142, 67, 65, 44, 241], which can result in underestimation of the

uncertainty in the quantities of interest [175]. Furthermore, the choice of criterion for model selection is

often arbitrary and sometimes debatable; see, for example,the discussion on the validity of the DIC for

different models by [260].

Bayesian model averaging (BMA) provides a coherent mechanism for accounting for model uncertainty

[121]. The idea of BMA is to average the posterior distributions of different models, where the weight

for each model depends on the posterior model probability. [175] and [223] have noted that the use of

BMA can improve predictive performance. Various works havebeen published on the methods of BMA

[142, 175, 222, 223, 121]. [121] provides a thorough overview of the history, implementation, challenges

and solutions for BMA. [120] also provides a summary of BMA methodologies and lists corresponding

software for carrying out the analyses.

Although the use of BMA in genetic research is not as common compared with other areas of science,

some published papers have incorporated these ideas in analysis. For instance, [295] applied BMA for

gene selection and classification of microarray data. [9] extended earlier research by incorporating iterative

BMA for survival analysis. The use of BMA has also been implemented in the study of phylogenetics [215]

and genome-wide association studies for identifying subsets of SNPs [90].
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We propose here two new methods to overcome the problems associated with defining phenotype classes.

Both methods allow for the integration of estimated phenotypes obtained from multiple models both within

and across phenotype classification approaches. The two approaches used for illustration in this chapter are

latent class analysis (LCA) and grade of membership (GOM). Both of these are commonly implemented in

genetic research for deriving phenotypic traits prior to linkage or association studies, as described below.

This approach to integration is similar to the “M -open perspective” discussed in [24] and [121]. Moreover,

the focus of the methods is not on prediction, but on parameter estimation. The methods are demonstrated

using a real dataset on migraine and a simulated dataset obtained from the Genetic Analysis Workshop 14

[105].

5.3 Methods

Let ∆ denote a quantity of interest; in the area of genetic studies, this is typically a phenotypic trait of

interest. Given a data setD, the posterior distribution of∆ is

p(∆|D) =
S

∑

s=1

p(∆|Ms,D)p(Ms|D) (5.1)

whereMs is the models of all models considered,s = 1, . . . ,S. Using Bayes theorem, the probability of

Ms given data setD becomes

p(Ms|D) =
p(D|Ms)p(Ms)

∑

l p(D|Ml)p(Ml)
(5.2)

where

p(D|Ms) =
∫

p(D|θs,Ms)p(θs|Ms)dθs (5.3)

which is the marginal likelihood of modelMs, θs denotes the model parameters of models andp(D|Ms) is

the marginal likelihood. In the context of this chapter, as described in Section 5.4.2,S = 2, M1 is the LCA
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model andM2 is the GOM model. Various methods have been proposed for stochastic search of the model

space [96, 222, 99] and alternatives have been discussed forapproximating the marginal likelihood where

this is intractable [99, 142, 83, 94].

Let φis denote the phenotype of individuali predicted by modelsand letφi be the ‘model averaged’ pheno-

type for individuali, averaged over models 1, . . . ,S. In the first method considered here (Method 1),φi is

estimated as a weighted average of the posterior means ofφis is estimated as

p(φi |D) =
S

∑

s=1

p(φis|Ms,D)p(Ms|D) (5.4)

which is then applied to the linkage analysis as the phenotype. In contrast, the second method (Method

2) utilises all post burn-in samples, estimatesφi at each iteration and takes a weighted average of these

estimates. At each iteration, the weighted average,φi , is applied to the linkage analysis as the phenotype of

individual i. Let φt
is be the predicted phenotype of individuali by modelsat thetth iteration. The posterior

probability ofφt
is is

p(φt
i |D) =

∑

s

p(φt
is|Ms,D)p(Ms|D) (5.5)

where the posterior model probability is given by Equation 5.2. However the marginal likelihood of model

sbecomes

P(D|Ms) =
∫

P(D|θts,Ms)P(θts|Ms)dθ
t
s. (5.6)

Given that the nature of genetic study of complex disease is hierarchical, the use of Method 2 propagates

the uncertainties acquired from the first stage of model fitting into the subsequent genetic analysis.

We selected two approximations to the marginal likelihood based on the Laplace-Metropolis algorithm [163]

and the BF [142]. Acknowledging the uncertainty of these approximations, we extend the algorithm further
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to allow for the inclusion ofQ such approximations in the analysis by introducing an extravariablecq,

q = 1, ..,Q. The marginal likelihood is then

p(D|Ms) ∝
∑

q

p(D|Ms, cq)p(cq) (5.7)

and the posterior distribution becomes

p(Ms|D) ∝
∑

q p(D|Ms, cq)p(Ms)p(cq)
∑

l
∑

q p(D|Ml , cq)p(Ml)p(cq)
(5.8)

The Laplace-Metropolis algorithm is based on Laplace’s asymptotic approximation

∫

elog(p(D|θ,Ms)p(θ|Ms)) ≈ (2π)
d
2 |H ∗ |

1
2 p(D|θ∗,Ms)p(θ∗|Ms) (5.9)

whered is the dimension of the parameter vectorθ, θ∗ is the MAP value of theta and H* is minus the inverse

of the Hessian matrix which is evaluated atθ∗. Due to the difficulties in analytical estimation ofθ∗, [221]

suggests the use of the posterior simulation outputs to estimate the quantities required for Equation 5.9, and

called it a Laplace-Metropolis algorithm. [163] provide four methods for estimatingθ∗, which are simple

to implement.

The BIC also uses the Taylor series expansion and the Laplacemethod for integrals to approximate the

marginal likelihood, but is a simplified version of the approximation by [220]. The main difference between

the Laplace approximation and BIC is in the error of approximation. This is discussed in details in [142].

The log marginal is approximated as the log likelihood minusa correction,

log p(D|Ms) = log p(D|θs,Ms) −
d
2

logn (5.10)

wheren is the sample size. In our examples, the first term on the righthand side is estimated using the

posterior mode asθs.
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5.4 Examples

5.4.1 Data

Data 1: Genetic Analysis Workshop 14

The first study is a simulated dataset proposed for the Genetic Analysis Workshop 14 [105]. The aim of

the simulation was to reflect uncertainty difficulties and controversy associated with defining a phenotype

for a hypothetical psychiatric condition, Kofendred Personality Disorder (KPD; see Table 4 of [105]).

A complicated underlying genetic structure was constructed for KPD, with the involvement of four loci,

denoted as D1, D2, D3 and D4. These loci interact in complex ways to produce three different phenotypes

(P1, P2, P3) in which the symptoms of each sub phenotype overlap (Figure 5.1). The causal loci for each

phenotype strongly overlap. The interaction of D1 and D2 results in P1; the combination of D2+D3 and

D3+D4 results in P2, and the combination of D1+D4 and D2+D3 results in P3. The disease related loci are

located on different parts of the genome: D1, D2, D3 and D4 are located on Chromosomes 1, 4, 5 and 9

respectively. Further details of the exact location and other genetic parameters are shown in Tables 1, 2 and

3 of [105].

The traits (symptoms) of each phenotype are also highly interchangeable. P3 has all the traits (symptoms)

of P1 and P2; and P2 has nearly all the symptoms of P1. A full description of each symptom is given in

Appendix A.2.2.

Four populations were generated in the original simulationstudy in order to test the effect of different

ascertainment schemes. One of the populations is included here, namely Aipotu. The Aipotu families

are selected in the analysis when at least two of the offspring have any of the true phenotypes. There

are 100 replicates and each replicate contains 100 families(approximately 700 individuals). To avoid the

complications associated with small sample size, 20 replicates were randomly selected to form a larger
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Figure 5.1: The overlapping of the traits for each of the true phenotypes. Letters b, c, d, e, f, g and h correspond
to the symptoms listed in Table 4 of [105] (also in Appendix A.2.2).

dataset.

The simulation contained other interesting elements, suchas single nucleotide polymorphism data and link-

age equilibrium. For the purpose of reflecting the real life data (Dataset 2: migraine), only the microsatellite

data are considered here. On average, the microsatellite markers are 7.5 cM apart and there are 400 markers

available without missing data.

Data 2: Migraine

Migraine is a common, painful and debilitating disorder with various researchers showing a strong genetic

component to the risk of this disorder [306, 202, 264, 265, 212, 211]. The diagnosis of migraine is chal-

lenging due to a lack of biomarkers and overlapping symptomswith other neurological disorders. To date,

diagnosis of the disorder relies on classifying the self-reported headache characteristics using International

Headache Society (IHS) criteria. According to IHS, there are two major subtypes of migraine, migraine
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without aura (MO) and migraine with aura (MA); symptoms of each class are listed in Tables A.1 and A.2

in Appendix A.2.1. The early genetic research on migraine isconcentrated on either MA or MO, but no

genes have been convincingly replicated in follow-up studies. As a consequence, various researchers have

questioned the adequacy of defining the phenotype using suchcriteria [10, 11, 211, 287] and have advocated

instead the use of statistical methods for the identification of clusters and classes based on the symptomatic

data for genetic research of this disorder [211, 212, 165].

However, our recent work has shown that when different statistical methods are used for identification of

phenotype classes, the results of the subsequent linkage analysis designed to identify genes that differentiate

between these classes can be surprisingly different [47].

Migraine data were obtained from an extensive semi-structured telephone interview as part of a study de-

signed to assess physical, psychological and social manifestations of alcoholism and related disorders [116]

at QIMR. The sample was unselected with regard to personal orfamily history of alcoholism or other psy-

chiatric or medical disorders [202]. The interview was conducted during two periods of time, 1993-1995

and 1996-2000. The earlier interview was administered to Australian twins listed with the volunteer-based

Australian Twin Registry who were born between 1902 and 1964while the second interview was focused

on twins born between 1964 and 1975.

Participants of both cohorts were first asked the screening question: “Do you have recurrent attacks of

headaches?” If the participant screened positive, he/she was then asked ten questions which were developed

by an experienced migraine researcher based on the IHS diagnosis criteria. A total of 13062 individuals

from 6764 families participated in this study, with 2716 MZ twin pairs (63.6% females and 36.4% males),

3399 DZ twin pairs (34.52% female twins, 22.36% male twins and 43.13% mixed sex twins), 15 twins with

unknown zygosity and 817 first degree family members, including both siblings and parents. Within the

total of 13062 samples, 60 samples were devoid of responses,so were excluded from the analysis.

The genotypic data were obtained from four smaller genome-wide linkage studies performed at QIMR and

are available for 4148 individuals from 919 families. Genotyping for the four studies was carried out at four

different centers: Gemini Genomics, with 426 satellite markers; Sequana Therapeutics, with 519 markers;
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the Center for Mammalian Genetics at Marshfield Clinic Research Foundation, with 776 markers; and the

University of Leiden, with 435 markers. Detailed description on the DNA collection, genotyping methods

and data sorting are published in [305] and [54].

Graphic Representation of Relationships (GRR) [2] and RELPAIR [78, 71] were applied for the examination

of the pedigree structure and identification of inconsistencies between the genotypic data and self-reported

pedigree relationships. Potential misspecification, incorrect zygosity labelling of twins and sample mix-ups

were identified and corrected. A small number of cases with errors could not be corrected, so were excluded

in further analysis. The SIB-PAIR version 0.99.9 program by[70] was then implemented for identifying

and cleaning Mendelian inconsistencies in the genotype data.

Markers from four sources were included on the genetic map for the combined scan, separated by a small

distance of 0.001cM. Markers with genotypic data inconsistent between different genome scans were ex-

cluded and unlikely genotypes were identified by MERLIN [1] and omitted from further analysis. Potential

map errors were identified by GENEHUNTER [155] and MENDEL [159]. Map positions were in Kosambi

cM, which is estimated using locally weighted linear regression from the National Center for Biotechnol-

ogy Information (NCBI) Build 34.3 physical map positions, as well as published deCODE and Marshfield

genetic map positions [150]. Where the results suggested inconsistencies between genetic map distance and

recombination fraction, the primer sequences for all markers in the region were BLASTed against the entire

human genome sequence (http://www.ensembl.org, NCBI build 34.3). The genetic map was thenrevised to

include the updated physical positions of all markers in theproblematic regions. The revised map and the

original genotype data were cleaned of unlikely genotypes using MERLIN and map errors were resolved us-

ing GENEHUNTER. More details on the collapsing of markers isin [54]. The final genotypic data contains

information on 1770 unique markers.

5.4.2 Models and Settings

As discussed in Section 5.2, in this study, we choose two common statistical methods used in genetic re-

search for deriving phenotype classes, namely latent classanalysis and grade of membership. Both of these
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models are considered in a Bayesian framework.

For LCA, following [186], suppose that there aren individuals andJ symptoms (i = 1, . . . , n; j = 1, . . . , J).

Let yi j denote a binary response of individuali to symptom j, such thatyi j = 1 indicates that symptom

j is present in personi. Let K denote the total number of clusters. Then LCA is a mixture of Bernoulli

distributions,

p(Yi |λ, p) =
K

∑

k=1

pk f (Yi |θ) =
K

∑

k=1

pk

J
∏

j

(λk j)
yi j (1− λk j)

1−yi j (5.11)

wherepk is the weight of each component,Yi is a vector of responses of individuali andλk j is the probability

of a positive response on variablej for a subject in clusterk. Non-informative priors were adopted, namely

pk ∼ Dirichlet(1, ...1)K ; λk j ∼ Beta(1, 1) (5.12)

Introducing an auxiliary (latent) variablezi = {zi1, . . . , ziK } as an unobservable cluster indicator foryi , and

using an MCMC approach [183], the conditional posterior distributions ofp andλ are

pk ∼ Dirichlet(
∑

i

zi1 + 1, ..
∑

i

ziK + 1)

λk j ∼ Beta(
∑

i

(zikyi j ) + 1,
∑

i

(zik − zikyi j ) + 1)
(5.13)

where

zi ∼ multinomial(δi1, ...δiK ); δik =
pk

∏J
j (λk j)yi j (1− λk j)1−yi j

∑

l pl
∏J

j (λl j )yi j (1− λl j )1−yi j

For GoM, following [80], letgik be a latent variable of membership score, representing the probability that
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individual i belongs to clusterk. Constraining the number of levels of responses in symptomj to 2, GoM is

similar to a mixture of Bernoulli distributions,

Pr(Y|γ, g) =
N

∏

i=1

J
∏

j=1















∑

k

g
yi j

ik γ
yi j

k j (1− γk j)
(1−yi j )















(5.14)

whereγ jk is similar toλk j of the LCA model, and is the probability of having symptomj for an individual

in clusterk. Similarly, the non-informative priors are used here,

gik ∼ Dirichleti (1, ...1)K ; γk j ∼ Beta(1, 1) (5.15)

We introduceJ categorical variablesω = (ω1, . . . , ωJ) in which eachω j can take onK values from

{1, . . . ,K}. The latent class is then defined asω ∈ Ω = {1, 2, . . . ,K}J.

A Gibbs sampler is again used to estimate the model parameters based on the conditional posterior distribu-

tions,

gik ∼ Dirichlet(
∑

j

ωi j1 + 1, ..
∑

j

ωi jK + 1)

γk j ∼ Beta(
∑

i

(ωi jkyi j ) + 1,
∑

i

(ωi jk − ωi jkyi j ) + 1)

(5.16)

where

ωi j ∼ multinomial(κi j1, . . . , κi jK ); κi jk =

{

g
yi j

ik γ
yi j

k j (1− γk j)(1−yi j )
}

∏J
j=1

{

∑

l g
yi j

il γ
yi j

l j (1− γl j )(1−yi j )
}

In light of the computational burden imposed by the large number of parameters in the GoM model, and in

order to maintain comparability of the two approaches, the number of phenotype clusters was restricted to
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two. The results of the pilot analysis showed that under thisregime both models tended to identify clusters

with extreme characteristics, that is a cluster of individuals with all symptoms and a cluster of individuals

with limited to no symptoms. The cluster of individuals withall symptoms is then described as the “affected”

cluster.

Depending on individual research, the quantity of interestcan be either a binary variable indicating the status

of a patient, i.e. affected/not affected, or a continuous variable representing the probability of an individual

having the disorder, considering all symptoms. From our past experience with migraine data, the choice of

representation has no effect on the outcome of the linkage analysis, so here we choose the latter measure

as the quantity of interest. These are theδik andgik, wherek is the affected cluster, of the LCA and GoM

models respectively. Thus, the aim is to average these values across models.

The Laplace-Gibbs approximation to the marginal likelihood and the DIC were used as model weights for

Method 1 and the BIC and posterior probability were used for Model 2. Given that the aim of the exam-

ples is to demonstrate the implementation of the proposed models, and given no information to support

an alternative decision, we gave equal prior probability toeach model and each weighting measure. The

Laplace-Gibbs method is similar to the Laplace-Metropolisapproach described in Section 5.3, but esti-

mates are derived from Gibbs rather than Metropolis-Hastings samples. The Hessian matrices required for

both models are analytically derived (Appendix A.2.3); since these are almost singular, the Moore-Penrose

pseudo-inverse was applied to both matrices [97]. Since both models have the form of a mixture, the DIC3

algorithm suggested by [43] was employed for estimation of the DIC.

These model evaluation approaches differ in their assumptions and approximations, their sensitivity to sam-

ple size and number of parameters, and their treatment of model complexity. For example, the DIC and BIC

impose (different) penalties for increased model complexity; whereas the DIC uses the effective number

of parameters, the BIC uses the observed number of parameters. In contrast, the marginal likelihood and

posterior probability approaches make no such adjustment,but the marginal likelihood can exhibit much

more extreme values for models when the sample size or numberof parameters are large.

Given the familial pedigree and microsatellite data in the case study, QTL linkage was used to identify
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important markers [112]. This identifies the linkage between the markers and disease loci by regressing the

squared trait differences of sib-pairs on identity-by-descent allele-sharing. A sib-pair that shares more alleles

is expected to show a similar phenotype, that is, a smaller difference in trait value. The linkage analysis was

carried out using MERLIN-qtl [1].

The algorithms were implemented using the C++ programming language. Three MCMC chains were gen-

erated for each method with 20,000 iterations. The first 10,000 iterations were treated as burn-in samples

and were removed from analysis.

5.4.3 Results

Simulated data- KPD

Considering that the KPD data was simulated with epistasis effects, and given that QTL linkage analysis

aims to identify the dominance rather than epistasis effects, it is important to firstly evaluate the capability

of MERLIN to identify the actual loci. Figure 5.2 shows the LOD scores of actual phenotypes for each of

the microsatellite markers across ten chromosomes. The dotted, dashed and solid lines represent the LOD

scores of Phenotypes 1, 2 and 3, respectively. Except for P3,MERLIN is able to clearly reveal the disease

loci of P1 and P2 with strong LOD scores. For P3, MERLIN is ableto identify three of the four major loci.

When Phenotypes 1, 2 and 3 are pooled to form an affected class, MERLIN-qtl is able to clearly identify the

four actual major loci linking to KPD, as shown by the LOD scores in Figure 5.3. Therefore, this result is

used for evaluating the effectiveness of the proposed methods.

Figure 5.4 shows the ability of LCA and GoM to identify true phenotype classes. Based on two clusters, both

models show promise in identifying the affected-like cluster using the important symptoms: the prevalence

of KPD-related symptoms (symptomsb to h) is much higher in the affected cluster than the unaffected

clusters. Moreover, both models are also able to identify the non-KPD related symptoms (those with minimal

difference between two clusters). Although there is a moderate difference between the clusters for symptom

k in LCA and GoM, this is mainly due to data simulation inducingthis difference in the dataset (plot c of
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Figure 5.2: LOD scores of the actual phenotypes for each of the microsatellite markers across ten chromosomes.
P1, P2 and P3 indicate the actual Phenotype 1, 2 and 3 described in Section 5.4.1. The dotted line is the
LOD score of actual Phenotype 1 estimated using MERLIN-qtl;the dashed-line is the LOD score of the actual
Phenotype 2 and the solid line is the LOD score of the Phenotype 3.

Figure 5.4). Although the clusters identified by GoM are morehomogeneous compared with LCA when

K = 2, the characteristics of LCA clusters actually reflect those of the true clusters.

Table 5.1: Estimated weights for each of the models using different approximations or different model selection
criterion. Depending on the criterion, very different weights are given to each model.

Method Weight LCA (%) GoM (%)

Method 1
Laplace-Gibbs ≅ 100 ≅ 0

DIC ≅ 0 ≅ 100

Method 2
BIC ≅ 100 ≅ 0

Posterior Probability ≅ 47 ≅ 53

As forecast in Section 5.4.2, the choice of model evaluationmethod results in very different weights for each

of the models. This is clearly exhibited in Table 5.1. According to Laplace-Gibbs and BIC, LCA completely
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Figure 5.3: LOD scores of pooled phenotype. Four major loci are clearly identified by MERLIN; hence this is
used as a benchmark for comparing the results of proposed methods.

outperforms GoM. Conversely, when models are weighted using DIC, GoM is much more preferable than

its counterpart. The use of posterior probability on the other hand, gives nearly equal weight to the two

models.

Under Method 1, the kernel density of the phenotype average across models using DIC and Laplace-Gibbs

weights has both the features of the kernel density of LCA andGoM predictions (Figure 5.5, the solid

line). As indicated in this figure, the density of the LCA prediction peaks at 0 and 1 with small variances

at each peak. This reflects the more diffuse density of predictions under GoM compared with those under

LCA. Moreover, the peaks of the average phenotype are shifted to the right, which is resulted from the

discordance in the locations of spikes of different models.
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c) Pooled Phenotype

Figure 5.4: The characteristics of clusters derived from different statistical models. Figuresa and b show
the prevalence of symptoms in the clusters estimated by LCA and GoM; and Figurec shows the symptoms
prevalence of true pooled phenotypes. The grey bars are the characteristics of the “affected” cluster and the
black bars are the characteristics of the “unaffected” cluster.

When the input phenotype is the prediction averaged across models, the pattern of the LOD score across

the chromosome is similar to those obtained with the “pooled” phenotype (Figure 5.6 vs Figure 5.3). Com-

paring these linkage results to those of LCA and GoM alone, the patterns of the LOD scores are also fairly

consistent with the peaks located on chr 1, 3, 4 and 9. The onlydiscordance is in the magnitude of the LOD

score of peaks of chromosome 1 and 4.

Under Method 2, the phenotype of an individual is not a point estimate, but a distribution. Because it is

impossible to show the densities of all individuals, we present here the results for individuals with (i) all

symptoms, ii) True Phenotype 1, iii) True Phenotype 2, iv) True Phenotype 3, v) with 50% of KPD related

and non-KPD symptoms, vi) 1 KPD and 1 non-KPD symptom, vii) non-KPD symptom and viii) with no

symptoms (Figure 5.7 and 5.8). As indicated in these figures,at the individual level, the predicted pheno-
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Figure 5.5: Kernel density of the estimated phenotypes. The black solidline represents the averaged phenotype
weighted according to Laplace-Gibbs and DIC; dashed and dotted lines are the posterior mean of the phenotype
predicted by LCA and GoM.

types under LCA are concentrated at 0 or 1 with very little variance, even when an individual has a half

of KPD and a half of non-KPD related symptoms (second figure ofrow 1 of Figure 5.8). Conversely, pre-

diction under GoM is more diffuse at the individual level. Therefore, averaging the predicted phenotypes

across models reflects the same features, with the mode at 0 or1 and increased variance associated with the

modes.

Figure 5.9 shows the distribution of LOD score derived from Method 2 at the four major loci identified in

Figure 5.6. The LOD scores at these four loci on chromosomes 1, 3, 5 and 9 are all normally distributed and

the mean and credible intervals for each locus are 22.95 (CI:21.44-24.54), 44.26 (CI:42.23-46.39), 21.79
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Figure 5.6: LOD scores of each satellite marker for different phenotypes. The solid line shows the LOD scores
when the predictions are averaged among models; the dashed and dotted lines show the LOD score of the
phenotype predicted by LCA and GoM. The LOD score pattern of the averaged phenotype is similar to the LOD
score of the pooled phenotype in Figure 5.3.

(CI:20.27-23.38) and 18.95 (CI:17.53-20.39). Thus, the results show clearly strong linkage at these four

loci.

Real Data-Migraine

Table 5.2 lists the weights of each model for the migraine data set. When weighting the models using the

Laplace-Gibbs methods and DIC, the prediction of GoM is muchbetter than that of LCA, with nearly 100%

of weighting placed on the former model. However, when the weighting is based on BIC, all weight is

placed on the prediction of LCA. The use of posterior probability, on the other hand, gives equal weight to
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Figure 5.7: Histograms showing the phenotype distribution of cases 1 to4, which are for individuals with i)
all symptoms, ii) True Phenotype 1, iii) True Phenotype 2, iv) True Phenotype 3. The first column contains
the histograms of the averaged predicted phenotype; the second and the third columns contain histograms of
phenotypes predicted by LCA and GoM, respectively.

the predictions of both models.

As shown in Figure 5.10, under Method 1 the kernel density of the averaged phenotype clearly reflects a

merger of the features of both LCA and GoM phenotypes. Figure5.11 depicts the results of MERLIN-qtl

genomewide linkage analysis using the phenotype of Method 1, LCA and GoM. Although these are not

large in absolute magnitude (less than 3), the LOD scores of all phenotypes have peaks at chromosomes

1, 2, 7, 8 and 10. Apart from these loci, the results of LCA and GoM are quite different. The LOD score

based on the LCA phenotype shows a potential linkage on chromosome 3, but the LOD score based on

the GoM phenotype at the same location is below 1. Conversely, the LOD scores of the GoM phenotype
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Figure 5.8: Histograms showing the phenotype distribution of cases 5 to8, which are individuals with v) 50%
of KPD symptoms, vi) 1 KPD and 1 non-KPD related symptom, vii)non-KPD related symptoms only and viii)
No symptoms. The first column shows the density for averaged phenotype; the second and the third columns are
the histograms of phenotypes of the predictions of LCA and GoM, respectively.

show potential linkage at chromosome 5, but this is not supported by LCA. Generally, the LOD score of the

averaged phenotype is more closely allied with the LOD scoreof LCA than GoM. It is also interesting to

note that the LOD score of the averaged phenotype is much higher than LCA or GoM alone on chromosomes

3, 7 and 8.
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Figure 5.9: Histograms of the LOD scores for the four major peaks of Figure 5.6, located on chromosomes 1,
3, 5 (on the border) and 9.

Table 5.2: The estimated weights for each of the models using different model selection criteria for the migraine
data set.

Method Weight LCA (%) GoM (%)

Method 1
Laplace-Gibbs ≅ 0 ≅ 100

DIC ≅ 0 ≅ 100
BIC ≅ 100 ≅ 0

Method 2
BIC ≅ 100 ≅ 0

Posterior Probability ≅ 44 ≅ 56

Given the sample size is over 13,000, it is impossible to showthe histograms of phenotypes derived from

Method 2 for all individuals. Therefore, we selected the phenotype distribution of individuals with i) all

symptoms, ii) 50% of symptoms, including unilateral, nausea and aura iii) only unilateral, nausea and aura,

iv) only having more than 5 headache episodes, each headachelasted more than 4 hours and describe the
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Figure 5.10: Kernel density of the estimated phenotypes of the migraine data using Method 1. The solid line is
the phenotype derived from Method 1; the dashed line is the phenotype predicted only by LCA and the dotted
line represents the kernel density of predicted phenotype under the GoM model.

headache as severe v) only having more than 5 headache episodes and each headache lasted more than 4

hours and vi) no symptoms (Figure 5.12). This figure reflects very similar findings as for Method 1. The

phenotype estimated by LCA is more concentrated than that obtained under GoM. Except for individuals

with two symptoms, which have had more than 5 headache episodes and each headache lasted more than 4

hours, the prediction of LCA is often 0 or 1. In contrast, the phenotype of GoM is more diffuse with some

uncertainty in the mode. Hence, under Method 2, the distribution of the averaged phenotype has a mode

near those of LCA and also incorporates the uncertainty of the GoM results.

Under Method 2, the result of the linkage analysis is no longer a point estimator, but a distribution of the

LOD scores at markers accounting for the variance of the phenotype, Figure 5.13 shows the distribution of
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Figure 5.11: Results of MERLIN-qtl genomewide linkage analysis using the phenotype from Method 1, LCA
and GoM. The solid line is the LOD score of the phenotype derived from Method 1; the dashed line is the LOD
score of the LCA phenotype and the dotted line is the LOD scoreof the GoM phenotype. The dotted vertical
lines show the boundary of each chromosome.

the LOD scores at six major peaks (LOD≥ 1.5) of Figure 5.11. Although the LOD scores of these loci are

not large (LOD≤ 3), they are still suggestive compared with the rest of the scores. The loci with the highest

LOD score of 2.04 under Method 1 is at 86.314cM of chromosome 8. Under Method 2, this is in the upper

end of the distribution (plotf of Figure 5.13); the mode of this loci is around 1.8. The otherinteresting locus

is at chromosome 5 position 122.698cM. The results of Method1 and LCA show little evidence of linkage

at this locus (LOD≈ 1), but the results of GoM show some suggestive linkage at thesame locus. The LOD

score of 1.6 is well above the credible interval of this locus(plot d of Figure 5.13), therefore, the results of

Method 2 do not support potential linkage at this locus.
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Figure 5.12: Phenotype distributions for individual with i) all symptoms, ii) 50% of symptoms, including
unilateral, nausea and aura iii) only unilateral, nausea and aura, iv) only having more than 5 headache episodes,
each headache lasted more than 4 hours and describe the headache as severe v) only having more than 5 headache
episodes and each headache lasted more than 4 hours and vi) nosymptoms. The first column contains the
phenotype derived under Method 2, and the second and third columns are the phenotype distributions under
LCA and GoM.

5.5 Discussion

The study of diseases with complex etiology demands a clear,statistically relevant definition of the pheno-

type prior to genetic analysis. Here we proposed two multi-model approaches and provided algorithms for

integrating phenotypes using Bayesian model averaging as afoundation. In the examples, we selected two

models which have in common a latent class framework, but arevery different in terms of parameter spaces

and identification of class membership (probability of belonging to phenotype clusters). Because of the sub-

stantial differences in the number of parameters between the two models, care must be taken with the choice

of model selection criteria. This is reflected in the weighting of the model predictions observed in both the
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Figure 5.13: Histograms of LOD scores of the six major peaks of Figure 5.11, which are position 156.364 on
chr 1, 188.703 on chr 2, 116.772 on chr 3, 122.698 on chr 5, 127.401 on chr 7 and 86.341 on chr 8.

simulated data and the real case study considered here. Although the GoM model had a larger likelihood,

the model was penalized heavily by the BIC criterion due to the large number of parameters. Conversely,

when using DIC for model selection, GoM strongly outperformed LCA. By proposing averaging over model

selection criteria as well as over models, the methods proposed in this chapter may potentially overcome

such conundrums, yielding moderate phenotypes that have the qualities of phenotypes derived from different

models weighted by the posterior probability of the models.

A further advantage of model averaging is the consolidationof the cores of the clusters commonly identified

under the different models and clearer reflection of the model uncertaintyby increasing the fuzziness at the

boundaries of the clusters. Consequently, individuals tend to be more clearly well allocated if they are in the

core of a model-averaged cluster or more clearly poorly allocated if they are at a cluster periphery. Thus, in

the subsequent linkage analysis, loci which are strongly differentiated at the cluster cores may have stronger
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LOD scores under the combined model than under an individualmodel. Method 2 has the same advantages

as Method 1, with the additional appeal of more completely incorporating parameter uncertainty (as well as

model and model choice uncertainty) into the analysis. Consequently, false-positives arising from variation

in the input phenotype may be reduced.

Of course, other approaches to combining the results of phenotype and linkage analyses may be considered.

An example is running the linkage analyses for each of the separate phenotype models and combining the

linkage results. In the case study, where the two models havenearly equal weight, this would result in a

simple averaging of the LOD scores at each loci. Under this method, however, the LOD score of each locus

will necessarily lie within the range of the LOD scores obtained under the individual models. While this

may be appealing in one sense, it can be argued that the combination of methods should allow for increased

inferential capability. As demonstrated here, this is possible by model averaging prior to linkage analysis.

In our examples, the maximum number of clusters was fixed to two. This is often an ideal practice because

it ignores potential subclusters in the data. In the simulation dataset, the definite number of clusters is

four (three subtypes of KPD and an unaffected subtype), and from our previous work and other published

literature [47, 45, 211, 165], the optimum number of clusters for the migraine data is also four. However, as

the dataset and models increase in complexity, LCA and GoM may not be able to identify “real” clusters.

Although the results are not shown here, we analysed the KPD data with K = 4 using the LCA model.

Three clusters were identified (P1, P3, unaffected) but P2 did not correspond to the remaining cluster. Itis

also interesting to note that even when the true clusters areidentifiable, the linkage analysis may not always

identify the important genes for each subtype (Figure 5.2).Generally, if the phenotype is monotonic in

nature and if the linkage signal is genuine and strong, although the results may not pin-point the relationship

between the loci and the subtypes, the loci involved in the expression of all subtypes are identifiable even

whenK is set to two. Thereafter, an additional analysis may be required to identify the relationship between

genes and subtype. A further challenge of implementing model averaging methods for three or more clusters

is the compatibility of clusters found by different models. More research is needed to develop a sound

method for K greater than 2.

Further research is also warranted into the impact of different model evaluation strategies when the mod-
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els are strongly contrasting with respect to number of parameters. In this chapter, a number of common

approaches were considered. Other approaches may be more applicable, and other approximations to the

marginal likelihoods [142, 208, 40, 93] may be investigated. The methods proposed in this chapter may be

more applicable when the number of parameters in the two models are more comparable, for example, item

response theory [168] and GoM or mixture models with different distributions.

There are other open questions about the methods proposed inthis chapter, such as the choice of priors. The

Bayes factor has been shown to be sensitive to the choice of priors [142]; thus it is important to validate

the prior distribution with sensitivity analysis. Moreover, in the examples of this chapter, the subsequent

analysis is restricted to genome-wide linkage analysis implemented in MERLIN-qtl. The linkage analysis

by [112] assumed that the markers are independent, so lack ability to detect an interaction effect. Although

linkage analysis shows great success in mapping the genes for Mendelian disorders, to detect the finer

resolution of the putative risk susceptibility loci through linkage analysis is only feasible with the availability

of large recombination events from large pedigrees. Therefore, the feasibility of detecting variants with low

penetrance using linkage methods is questionable [274]. Furthermore, the methods may also be suitable for

genetic association studies.
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Chapter Summary

The following three chapters attempt to address the second main objective of this thesis, which is to de-

velop and review methodologies for identifying the SNPs and/or SNP interactions associated with a disease

or phenotype. In these chapters, we develop both model-based and non-model based approaches for the

identification of potentially causal SNPs and/or SNP interactions.

In this chapter, the aim is to explore the potential of using aBayesian logistic model with variable selection

(SSVS) to identify associated SNPs or SNP interactions. We develop two models based on logistic regres-

sion and used SSVS as the method of dimension reduction. The first model includes only the SNPs joint

effect, while the second model includes both SNPs joint and multiplicative effects. We also explore use of

slice sampler to sample the posterior conditional distribution for parameter estimation. The approach de-

scribed in this chapter is able to analyse a larger number of SNPs at once than various previously published

methods.

Chapter Conclusion

The model for identifying the SNPs joint effect was tested using chromosome 6 of the diabetes data obtained

from the WTCCC. We also tested the including both joint and multiplicative effects with smaller-scale data

obtained from GENICA.

Setting aside the drawbacks concerning its computational inefficiency, the Bayesian logistic model with

SSVS proposed in this chapter demonstrate the capability ofidentifying a group of SNPs that contribute to

the genetic causes of disease status through joint and multiplicative effects. In the WTCCC data, only less

than 25 SNPs are found to be informative and the majority of these SNPs are within the major histocompat-

ibility complex (MHC) region, which has been previously identified for its association with Type I diabetes.

The model also identified some novel SNPs with very strong signals of association. Although these SNPs

have not previously been found, there is a possibility that the effect of these SNPs can only be highlighted

by the presence of the SNPs of the MHC region.

The second model also demonstrated the potential for identifying the SNP interaction effects for a candidate
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gene study. The same SNP interaction is also identified by other published studies.

The advantage of the logistic model is that the effect of SNPs genotype or a SNP genotype combinations can

be quantified, hence tone can potentially quantify the risk of having the disease in a given genotype and/or

genotype combination.
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6.1 Abstract

Genome-wide association studies are rapidly becoming the leading technique for understanding the genetic

architecture of complex diseases. One of the challenges faced by these studies is the identification of disease-

related loci in data containing a large number of SNP genotypes for a relatively small number of individuals.

The most predominant approach is to fit SNP-by-SNP logistic regression models, but this approach lacks

the ability to detect epistatic effects, which are often present in complex genetic diseases. Apotentially

superior approach is to simultaneously estimate the main and interaction effects associated with a disease,

for all markers. Within this paradigm, the problem becomes one of regression with variable selection, which

is well handled using established Bayesian techniques. In this chapter, we apply such an approach to this

problem. We demonstrate the main effect model with WTCCC data for Type 1 Diabetes and the two-way

gene interaction model using a dataset on sporadic breast cancer data (GENICA).

6.2 Introduction

Genome-wide association studies (GWAs) aim to identify, from among a large number of marker loci drawn

from across the genome, those markers that are in linkage disequilibrium with a locus associated with

some disease or phenotype. Due to increasing knowledge of common variations in the human genome,

advancements in genotyping technologies and in particularthe reduction in the cost of gene chips, GWAs

have become more prevalent. The current challenge faced in GWAs is to find an adequate and efficient

statistical method for analyzing large Single Nucleotide Polymorphism (SNP) datasets.

The first and still most common approach for the analysis of GWAs data is to test markers individually using

2-by-2 contingency tables withχ2-statistics or simple regression [248], for dichotomous and continuous

traits respectively, then adjust for multiple hypothesis testing using Bonferroni correction or False Discovery

Rate (FDR) (Crohn’s disease, [69]; Type 2 diabetes, [255]).Recent work by [273] also adopted the SNP-by-

SNP framework, but instead fitted a logistic model for each marker and applied Bayes Factors as a variable

selection tool. [279] adopted a similar model, but implemented forward variable selection for the Type
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I Diabetes data set. Furthermore, [276] fitted a classical linear regression model for individual markers

to find the associations between SNPs and obesity. Questionshave been raised about these single maker

allelic tests. One difficulty with the analysis of individual SNPs is the problem of multiple testing. Although

adjustments such as those described above may be adopted to address this problem, it has been argued [273]

that multiple testing is not strictly relevant in this context anyway [273], it is nevertheless difficult to find an

optimal balance between the probabilities of type I and typeII error. Another criticism of SNP-by-SNP tests

is their inability to detect epistatic effects, that is, gene-gene interaction effects, which can be manifested in

multiple ways [50].

Consequently, several groups have proposed approaches forfinding epistatic effects in whole genome data.

[124] proposed using a two-stage analysis scheme. This involves selecting a subset of SNPs from the whole

genome, then modeling the interactions among these markersand between marker and trait. [98] employed

the same configuration to analyze markers associated with rheumatoid arthritis. Computationally, these two-

stage approaches are relatively efficient, but they can easily miss epistatic interactions between genes which

have no main effect. In other words, for the genes to be tested for the interaction, they have to be selected at

the first stage of analysis [56].

Recent developments in GWA analysis methodologies have focused on non-parametric approaches, such as

the combinatorial partitioning method (CPM, Triglyceridelevels [207]), multifactorial dimension reduction

(MDR, sporadic breast cancer [231]; type 2 diabetes mellitus [48]; multiple sclerosis [31]) and random

forests (RF, HDL and triglycerides glucose [36] and asthma [35]). These methods have proved to be rela-

tively efficient at finding the genes associated with the trait from the whole genome.

An alternative potentially superior approach is to regressthe trait or disease status against all SNPs simulta-

neously with an effective variable selection algorithm. Excellent methods for the variable selection problem

have been developed within a Bayesian context. The issue of multiple comparisons is also handled sim-

ply and effectively in a Bayesian context [25]. [195] introduced modelselection via an assignment of prior

probabilities to the various models, and subsequent updating of those probabilities in accordance with Bayes

rule.
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The model proposed in this chapter is able to detect both the additive and the multiplicative effects. The

variable selection adopted in our model is more allied with [95], which introduced the use of a latent variable

for the identification of promising subsets of variables. [96] give a detailed overview and comparison of

different approaches of Bayesian variable selection.

The use of a Bayesian regression for identifying important loci is not novel. The recent paper by [122]

identified subsets of important SNPs using Bayesian inspired penalized maximum likelihood. They assigned

a sharp prior mode at zero to the regression coefficients and SNPs with non-zero coefficients estimates were

said to have some signal of association. Apart from this, most studies to date is focused on the analysis

of QTL data [292, 293, 294, 300, 297, 299]. The model by [292] was initially developed for detecting

single locus effects simultaneously, and is later developed for detecting epistasis effects [293]. In [293],

the empirical Bayes approach is implemented to estimate genetic epistasis effects without using variable

selection, and the relative importance of effects is based on the ratio of variances.

In contrast, our model is more closed allied to [299], but ourmethod differs in a number of aspects. Firstly,

[299] partition the genome into fixed number of loci and assume that the QTL occurs at one of these sites.

This partitioning is required to be specified prior to the analysis. In contrast, the SNPs data can be directly

utilized in our model and the number of potential causal lociis estimated directly from the dataset without

boundaries. Second, because the model by [299] is for a QTL study, a design matrix can be employed;

although this is an ideal approach, it is not feasible for population studies.

In this chapter, we introduce two Bayesian models, the first for continuous traits and the second for di-

chotomous traits. These models are initially described in the context of main effects only and then further

extended for the detection of gene-gene interaction effects.
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6.3 Methods

6.3.1 Main effect models

Continuous trait model Let yi be the observed value or realization of the dependent variable (continuous

trait) for individual i, i = 1, . . . , n. We modelyi as in Equation 6.1 below: dependent on a constant termµi, on

nc continuous-valued covariates,nd discrete-valued covariates, and up tons SNPs. Let thejth continuous-

valued covariate for individuali be x ji . For each continuous-valued covariate, we introduce a regression

parameterβ j. For the jth discrete-valued covariate, letL j be the number of levels and leth jki be 1 if the

covariate has levelk for individual i and 0 otherwise, fork = 1, . . . , L j. For each discrete-valued covariate

and each level of that covariate we introduce a regression parameterω jk. Let zs be an indicator variable

for SNP s, taking the value 1 or 0 depending on whether SNPs is included in the model or not. Letgsli

be an indicator variable taking the value 1 or 0 depending on whether individuali has genotypel (where

l = 0, 1, 2) at SNPsor not. Letνsl be the contribution to the dependent variable made by genotype l at SNP

s. Let εi be a random error.

yi = µi +

nc
∑

j=1

β j xi j +

nd
∑

j=1

L j
∑

k=1

ω jkh jki +

ns
∑

s=1

zs

2
∑

l=0

νslgsli + εi (6.1)

Because the SNPs are categorical variable, we arbitrarily assign the valueνs2 = 0 for all SNPss.

Case-Control Model (Logistic Model) For case-control data,yi is the presence/absence of the phenotypic

trait, and takes the value 1 when the phenotype is present, else 0. The model proposed in Equation 6.1 can be

simply modified by introducing a logit link function, thislog( qi
1−qi

) whereqi is the probability that individual

i has the trait of interest. Then Equation 6.1 follows with thesame notation for the model parameters.

Prior Distributions As part of the Bayesian approach, a prior distribution is required for each of the model

parameters. In our two-case studies, no prior information is available, therefore noninformative priors are
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considered here. Moreover, because the indicator variableZ,Z = (z1, . . . , znS) is not directly observed, we

adopted a hierarchical approach. Details on the priors usedin our case studies are described in the examples.

Parameter Estimation Model parameters are estimated using Markov Chain Monte Carlo. The Gibbs

Sampler involves sampling from one-dimensional conditional distributions given other parameters and this

is used for the estimation of all variables with one exception which we discuss below. Except forzs, all

other parameters possess non-standard conditional distributions; thus we used the slice sampler [205] to

draw from these.

Instead of sampling from the distribution function, the slice sampler samples from the area under the density

function. Despite the complexity of using the slice samplerfor multivariate distributions, it is relatively

simple to implement for updating a single variable. Letx denote a model parameter andx0 and x1 be the

current and new values ofx, respectively. The procedure for updatingx involves three steps. First, draw

a real valuey uniformly from (0, f (x)), where f (x) is some function which the density ofx is proportional

to, and consider the horizonal “slice”S = {x : y < f (x)}. Next, establish an interval,I = (L,R), aroundx0

which contains this slice. A new value is then drawn uniformly from the interval, and becomesx1 if it is

within S, else it is iteratively redrawn.

For simplicity, we used an initial interval of (−1000, 1000) and used the shrinkage procedure [205] for

sampling from the interval.

The estimation procedure forzs is described in the following.

Variable Selection Variable selection is an important element of the new models, which utilize the variable

inclusion indicator (zs) to determine the importance of SNPs. At each MCMC iteration, the value of

zs depends on the ratio of the conditional posterior probabilities of including and excluding SNPs. At

the first iteration, start with a randomly generated vector of length nS, comprising 0’s and 1’s, denoted

z0 = (z0
1, . . . , z

0
nS

). Let t denote the MCMC iteration,t = 1, . . . ,T, whereT is the total number of iterations.

LetΘt be a vector containing all parameters other thanzat iterationt. At eacht, SNPs is randomly selected

from all SNPs andzs is updated as follows
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1. Estimate the conditional posterior probability withzs = zt−1

s , P(zt−1
s |Θt,Y, z−s).

2. Estimate the conditional posterior probability with thecomplementary value,

P(z
′
s|Θt,Y, z−s), z

′
s = 1− zt−1

s .

3. Determine the ratio of the values computed in Step 2 and 1.

4. Accept the proposedz
′
s if the value of Step 2 is greater than a value randomly generated from a uniform

distribution with minimum 0 and maximum 1; else retainzt−1
s .

After SNP s is updated, the procedure is repeated for another SNP drawn randomly from the remaining

SNPs. This continues until all SNPs are updated. The probability that SNPs is associated with the trait of

interest is then estimated as the number of times SNPs is included in the model over the total number of

iterations after burn-in.

Example 1: Case-Control of Type I diabetes We tested the performance of the proposed model using a

Type I diabetes (TID) data set. The data were obtained from the Wellcome Trust Case Control consortium

(WTCCC, http://www.wtccc.org.uk). In their study, the WTCCC collected 14000 cases and 3000 shared

controls for 7 different familial diseases. Here we focus on Type I diabetes.

Individuals involved in this study are self-identified white Europeans who live in Great Britain. The controls

are recruited from two sources: 1500 are from the 1958 British Birth Cohort and the remaining are blood

donors recruited for the WTCCC project.

TID cases are recruited from three sources. The first is from approximately 8000 individuals who attend

the paediatric and adult diabetes clinics of 150 National Health Service Hospitals across mainland UK.

The second source of cases is voluntary members of the British Society for Paediatric Endocrinology and

Diabetes. The rest are from the peripatetic nurses employedby the JDRF/WT GRID project (http://www-

gene.cimr.cam.ac.uk/todd/).

Diagnosis of the TID cases is based on the participants’ age of diagnosis and their insulin dependency. The

cases of the TID study are required to be diagnosed with TID atage less than 17 and have been insulin
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dependent for more than six months. Individuals with other forms of diabetes, such as maturity onset

diabetes of the young, are excluded from the data set.

Both cases and controls were genotyped with the GeneChip 500K Mapping array (Affymetrix Chip) with

500,568 SNPs. After filtration, there was a total of 469,557 SNPs. Details on the WTCCC experimental

design, data collection, data filtration and more are in [273].

The previously published results of single locus analysis indicated strong signal association of Chromosome

6 [273], in light of this, we used only the SNPs data on Chromosome 6 for this study.

In addition to the filtration methods and exclusion genotypes recommended by [273], we set CHIAMO calls

with a score less than 0.9 to missing and removed all SNPs withone or more missing values to speed up the

computation time. This leads to a total of 26,291 SNPs in the TID data.

As only the genotype information is presented in the data setthus obtained, the logistic regression model is

simply:

log(
qi

1− qi
) = µ +

ns
∑

s=1

zs

2
∑

l=0

νslgsli + εi (6.2)

wherei = 1, . . . , 4857 ands= 1, . . . , 26291 and we arbitrarily assignedνs2 = 0.

Non-informative priors are used for this model as follows. The prior probability distributions for both overall

mean (µ) and the contribution of levell of SNPs are assumed to be normally distributed with mean 0 and

precision 1. The prior distribution for the residual,ε, is assumed to be a normal distribution with mean

0 and precisionτ, and the prior forτ is assumed to be a gamma distribution, with parameters set to0.05

(α = β = 0.05). Forzs, we adopted a hierarchical approach, and let the probability thatzs = 1 bepz, where

pz is a hyperparameter. We assumed the prior probability ofzs follows a Bernoulli distribution.

Five independent MCMC chains were generated with 100,000 iterations each. The first 50,000 iterations

of each were considered as burn-in and the remaining were extracted for building the posterior marginal

distributions. The algorithm was implemented in C.
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6.3.2 Main effects and interactions

The model introduced in Equation 6.1 includes the main effects only. This can be extended for detecting

SNP interaction effects as follows. Using the same notation as before, letη jk be the indicator parameter,

η jk = 1 if the interaction of SNPsj andk is included in the model, else 0 and letγ jl j klk be the coefficient of

the interaction between the genotypel j of SNP j and the genotypelk of SNPk (l j = 0, 1, 2; lk = 0, 1, 2 and

j , k). Then the model with two-way interactions is as follows:

yi = µ +

nc
∑

j=1

β j xi j +

nd
∑

j=1

L j
∑

k=1

ω jkh jki+

ns
∑

s=1

zs

2
∑

l=0

νslgsli +

ns
∑

j=1

ns
∑

k=1, j,k

η jk

n1
∑

l j=0

n2
∑

lk=0

γ jl j klkg jl j klki + εi

(6.3)

This model can be extended in an obvious manner to include multi-way interactions. By introducing a logit

link function, this model can be implemented for the case-control study.

Typically, when an interaction effect and the two corresponding main effects are included in a model, then

the number of levels for the interaction is (n1 − 1)(n2 − 1), wheren1 andn2 are the number of levels for

each of the main effects (the maximum number of level is nine). However, here we have chosen to include

n1 × n2 − 1 levels for the interaction, because one or both of the main effects may not be included in the

model (that isz1 = 0 and/or z2 = 0).

Parameters of this model are estimated following the same procedure as described earlier. The combination

of Gibbs and Slice samplers was implemented for sampling from the conditional posterior distributions.

Likewise, variableη jk was updated following the same procedure as forzs.
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Example 1: GENICA

We illustrate this expanded model using the GENICA data set.Although factors such as smoking history,

family history of breast cancer and menopausal status were collected in the GENICA study, these variables

were not available at the time of our study.

GENICA is an interdisciplinary study group on Gene ENvironmental Interaction and breast CAncer in

Germany, with its main focus on the identification of both genetic and environmental effects on sporadic

breast cancer. The data were collected between August 2000 and October 2002 on incident breast cancer

cases and population-based controls in the Bonn region in Germany. Among the cases, 688 were first-

time diagnoses of primary breast cancer, and were later histologically confirmed. There were 724 controls,

matched within 5-year age classes. Samples contain only Caucasian females younger than 80 years old.

Each SNP genotype can take one of three forms: homozygous reference genotype, heterozygous variant

genotype and homozygous variant genotype. The homozygous reference genotype is taken to be the geno-

type which has both alleles being the most frequent variant.The heterozygous variant genotype occurs

when one of the base pairs is more frequent while the other base is less frequent, and the homozygous

variant genotype is when both members of the pair are less frequent.

Not all genotype data are used in this study. The subset of SNPs which are related to estrogen, DNA repair or

control of cell cycle pathway are tested here, with a total of39 SNPs. From a total of 1234 females, including

609 cases and 625 controls, individuals with more than 3 genotypes missing were excluded from the analysis.

The final data therefore included 1199 women and was composedof 592 cases and 607 controls. Other

missing genotypes were imputed using thek-nearest neighbor method [246]. Details of data collectionand

genotyping procedure are in [139].

Let θ denote the parameter space. The parameters for the GENICA data are thus

θ = {zs, νsl, jl jklk , τ}

wheres, j, k = 1, ...39, l, l j , lk = 1, 2, 3 andzs andη jk are independent. The priors for model parameters were
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similar to the ones used in Example 1, as follows

ε ∼ N(0, τ); µ ∼ N(0, 1); τ ∼ Ga(0.01, 0.01);

νsl,γ jl jklk ∼ N(0, 10); zs ∼ Bern(pz); η jk ∼ Bern(pη)

Ten MCMC chains were generated with 300,000 iterations each. Of these, the first 250,000 iterations were

considered burn-in, and the remaining 50,000 cases were extracted for the construction of the marginal

posterior distribution ofθ. The computational algorithm was implemented in C.

6.4 Results

6.4.1 WTCCC-Type I diabetes

The results of the MCMC runs for the WTCCC Type I diabetes dataindicated multiple modes in the posterior

distribution. No prominent model was identified across all five chains. At each MCMC run, there are at

least 13000 unique models were tested, with the most common models occupying only 1.25% to 4.5% of

the post burn-in iterations. These models identified 17 to 24SNPs of the total 26291 SNPs, with some SNPs

commonly found among all models (Table 6.1).These include SNPs 1576 (rs10901001), 4073 (rs874448),

4887 (rs950877) and 6222 (rs9272723). Five additional chains were generated using SNPs listed in Table

6.1. The posterior log-likelihood was well-mixed after 150000 iterations and with log-likelihood value

between -2012 and -2052.

Although all SNPs on chromosome 6 had the opportunity to enter the model at each of the MCMC iterations

in the analysis, more than half (51%) of the SNPs were not selected in any of the 250,000 iterations (50,000

iterations, 5 chains). In contrast, 4% of SNPs (1143 SNPs) were included at least once in the iterations of

all five chains. Of these 1143 SNPs, all five chains selected SNP 1576 (rs10901001) and 4073 (rs874448)

in nearly all iterations (̃97%), followed by SNP 4887 (rs950877, 76%), which is also included in the five

optimal models.
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The results of the MCMC runs also identified a group of SNPs with highly variant probability of inclusion

across the chains. For instance, SNP 6051(rs3131631) had high probability of inclusion for chains 1, 3 and

4, but was selected in less than 1% of iterations in chains 2 and 5. This indicated the inclusion of a SNP

from this group depends on other SNPs already present in the model during the variable selection procedure.

This was also observed for SNPs 6232 (rs9275418) and 6233(rs9275523). SNP 6232 was selected in nearly

100% of iterations for chains 1, 2 and 4, but was not selected for chains 3 and 5; in contrast, SNP 6232 was

included nearly in all iterations for chains 3 and 5, but was never included for chains 1, 2 and 4. Since these

two SNPs are physically nearby, they may be in linkage disequilibrium.
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Figure 6.1: The contribution of individual SNPs on chromosome 6 to TID across five chains

Figure 6.1 shows the ranking of SNPs across Chromosome 6 for the five chains. The first two peaks cor-

respond to SNPs 1576 and 4073. This figure also shows a strong association with TID on a region of the

shorter arm of Chromosome 6 which is the major histocompatibility complexity (MHC) region (SNP 5802
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to SNP 6358).
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Figure 6.2: The quantified genotype type effect at SNPs selected by model 4. The x-axis shows the SNP ID and
its genotype, where L1 is homozygosity reference and L2 is heterozygosity.

Another advantage of the model proposed here is the identification of the effect of genotype on the phe-

notype. For instance, Figure 6.2 shows the marginal distribution of the contribution to TID made by the

genotype at each SNP in the model identified by chain 4 (Table 6.1); here, the homozygous variant genotype

is set to zero. The figure shows that individuals with homozygous reference genotype at SNPs 1576 and

4073 are likely to have a higher chance of being TID positive than individuals with homozygous variant

or heterozygous genotypes at the same SNPs. In contrast, a higher chance of being TID is observed for

individuals with heterozygous variants at SNP 4887 than individuals with homozygous variants (both ho-

mozygous reference and homozygous variants). This patternof genotype contribution is observed among

all the models identified by all chains.
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Table 6.1: SNPs included in the most common models from each of the five chains

Chain No SNPs SNPs ID
1 20 1576, 4073, 4887, 5587, 5638, 5663,5919, 5969, 6051, 6110,

6122, 6158, 6195, 6205, 6211, 6217, 6221, 6222, 6232, 8390
2 18 1112,1576, 4073, 4887, 5545, 5661,5957, 6025, 6073, 6087,

6156, 6157, 6180, 6217, 6221, 6222, 6228, 6232
3 24 1112,1576, 4073, 4887,5447, 5577, 5587, 5588,5802, 5947,

6051, 6110, 6156, 6160, 6172, 6174, 6177, 6180, 6217, 6221,
6222, 6233, 8169, 21883

4 17 1576, 4073, 4887, 5566,5919, 5969, 6051, 6117, 6179, 6189,
6214, 6222, 6225, 6232, 6382, 6385, 26289

5 23 1576, 3302,4073, 4887,5553, 5571,5932, 6025, 6043, 6121,
6149, 6154, 6173, 6180, 6191, 6205, 6219, 6227, 6233, 12097,

17510, 22015, 24454
∗ The reference of the SNP id is supplied in Appendix A.3
∗ SNPs inBold are the common SNPs identified across chains
∗ SNPs inItalic are the SNPs from the major histocompatibility complex region

6.4.2 Genica

As in the previous case study, the results of the MCMC runs forthe GENICA breast cancer data indicated

that the posterior distribution has multiple modes. Table 6.2 lists the most frequently selected model in each

of the ten MCMC chains. These models were selected in each chain for at least 61% of the 50,000 post

burn-in iterations. Of the ten chains, six converged to the same model (chains 2, 4, 5, 8, 9 and 10), which

contains only two SNPs - SNP 20 and 21 - and both are fitted as main effects. In contrast, the remaining

four models indicated the presence of interaction effects.

SNP 20 is the most prominent main effect and is observed in all models (Table 6.2). In contrast, SNP 21

is included in a model as either a main or an interaction effect. When SNP 21 is selected as an interaction

effect, it interacts with a different SNP in different models. For instance, SNP 21 interacts with only SNP 23

in model 1. Besides these two SNPs, other possible SNPs and interactions are also identified as indicated in

Table 6.2.

The estimated coefficient of SNP 20 is fairly consistent across models and rangesbetween -1.17 and -1.12

for the homozygous reference variants (level 0) and between-0.57 and -0.52 for the heterozygous genotype

variants (level 1). This indicates that individuals with a homozygous variant genotype (level 2) at SNP 20

associated with a higher chance of having breast cancer, followed by individuals having a heterozygous
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variant genotype (level 1) and homozygous reference variants (level 0) at SNP20. In two of the models

(model 2 and 5), SNP 21 is included as a main effect and the posterior estimates of the coefficient for

genotype variants are also consistent for both models. The coefficients indicate that having homozygous

reference variants at SNP 21 is associated with a higher probability of breast cancer than the other two

genotype variants. However, these two SNPs needed to be considered conjointly to estimate the probability

of sporadic breast cancer (Model 2).

Considering SNPs 20 and 21 as additive effects, the highest chance of a sporadic breast cancer occurs when

individuals have homozygous genotype variant (level 2) at SNP 20 and homozygous reference genotype

variant (level 0) at SNP21, with an odds ratio of 4.17 (CI: 2.63-6.67) compared to individuals with homozy-

gous genotype variants (level 2) at both SNP 20 and 21. The next highest probability occurs for individuals

with heterozygous genotype variants (level 1) and homozygous reference variant (level 0) at SNPs 20 and

21 respectively; these individuals have an odds ratio of 2.37 (CI: 1.01-5.58). The lowest chance of sporadic

breast cancer is for subjects with homozygous reference variants at SNP 20 and homozygous variants (level

2) at SNP 21.

In other models, where SNP 21 is selected as a part of an interaction effect, the effect of genotype variants

at this SNP becomes more complicated. Figure 6.3 shows the posterior mean and credible intervals of

the interaction terms of models 1, 3 and 4, which all involve SNP 21. In model 1, SNP 21 contributed

to the probability of breast cancer by associating with SNP 23 and the genotype variants of SNP 21 in

this combination are quite different from the genotype variants of SNP 21 combinations in models 3 and 4

(SNP21×SNP6, SNP21×SNP14, respectively), but some similarities are found in models 3 and 4.

Table 6.2: Unique models of ten chains

Model Parameters Chains Frequency(%)
1 µ, SNP20, SNP 21×SNP 23, 1 61.4

SNP 3×SNP28, SNP4×SNP28
2 µ, SNP20, SNP 21 2, 4, 5, 8, 9, 10 88.6-93.1
3 µ, SNP20, SNP 6×SNP 21 3 90.5
4 µ, SNP20, SNP 14×SNP 21, 6 89.5

SNP2×SNP14, SNP3×SNP14
5 µ, SNP20, SNP 21, 7 68.6

SNP 2×SNP 37, SNP3×SNP37, SNP4×SNP37
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Figure 6.3: Coefficients of interaction terms with SNP 21 with credible intervals

6.5 Discussion

The aim of this chapter is to introduce a simple approach to GWA analysis which is an alternative to the

current single locus analysis. This is achieved by considering a regression model with multiple SNPs, and

interactions, attaching to each SNP an indicator variable representing inclusion in or exclusion from the

model and performing variable selection by estimating these indicator variables. Estimation was undertaken

using a novel algorithm. The model is capable of identifyinga group of SNPs that contributed to the genetic

causes of the diseases status through additive or interaction effects. The approach is demonstrated and

evaluated using two substantive, real SNP datasets.

The results of the WTCCC analysis illustrated the ability ofour model to search for main additive effects
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in a relatively large data set. The model indicated that morethan 50% of SNPs on Chromosome 6 do

not contribute substantively to the determination of the phenotype and only less than 4% of SNPs on this

chromosome are strongly informative. Of these, 17 to 24 SNPswere selected to best describe the genetic

association with Type I diabetes. All four MCMC chains identified the three SNPs, rs10901001, rs874448

and rs950877, which are outside the major histocompatibility complex (MHC) region, and 12 to 13 SNPs

from the MHC region. The three SNPs that are outside the MHC region all show a strong signal of associa-

tion with TID. These are novel SNPs which have not been identified by other studies. In contrast, the MHC

region is known to associated with a large number of infectious and autoimmune diseases [58]. The asso-

ciation between this region and TID has also been previouslypublished [273] and is successfully replicated

in our study.

We repeated the analysis of WTCCC data using the common SNP bySNP search algorithm. As we expected

that the SNP by SNP search algorithm identified strong association signal at the MHC region, however, three

novel SNPs identified by our models (rs10901001, rs874448 and rs950877) have little association to TID

when tested in this manner. The unadjusted p-values for these three SNPs are 10 the power of -6, -12 and

-5, respectively. It is possible that these SNPs can not be detected in isolations, but interact with SNPs on

the MHC region. Further investigation on this may yield interesting information.

The aim of the analysis of the GENICA data is to exemplify the ability to detect the combination of the main

and interaction effects by the described model. This study is designed for targeted gene search studies rather

then running GWAs. Ten MCMC runs revealed five different models, with the most frequently identified

model composed of SNP 20 and 21 as main effects. Among the models, SNP 20 is consistently selected

as a main effect, but SNP 21 appears to be associated with sporadic breastcancer as either a main or an

interaction effect. Analysis of the same dataset using two different types of logic regression [246] also

revealed the importance of these two SNPs.

In general, according to the results from both WTCCC and GENICA analyses, SNPs identified by the

models can be separated into two major categories: those present in all models and those implicated in

only some of the models. The second category may be the results of correlation between SNPs entering

a model and those SNPs that are already in the model during an iteration (LD between SNPs). In the
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WTCCC case study, the SNPs that fall into the second categoryare mainly from the MHC region of Chr

6. Given that the LD structure of this region of the genome is longer and more complicated than other

regions of the genome [285, 58], the SNPs of the MHC region identified by one MCMC run are potentially

in linkage disequilibrium with the same region SNPs identified by other runs. However, a more complete

understanding of the effect of SNPs in LD on the model requires further research.

An advantage of using the regression type of models is that the effects of genotype variants are quantified

in the model. The results of the analysis of the WTCCC TID datashow that individuals with homozygous

genotype variants at both rs10901001 and rs874448 are more strongly associated with TID than individuals

with a heterozygous genotype at the same SNPs. However, the probability of TID reduces when a heterozy-

gous genotype is at rs950877. When a SNP is included in the model as an interaction effect, the effect of the

associated variants can be quite different compared to when the SNP is included as a main effect. The results

of analysis of the sporadic cancer data show that when SNP 21 is included as main effect, the homozygous

reference has a strong association with the phenotype. However, when the same SNP contributes to the

model by interacting with other SNPs, the homozygous reference variant is no longer the dominant effect

in association with the phenotype. This finding reveals added complexity to the genetic make-up of the

phenotypic trait. Although the model is able to quantify theeffect of the genotype at a particular SNP, the

authors are aware that the interpretation of this quantity needs to be treated with caution. The quantification

of the genotype effect therefore may be more valuable for fine mapping studies.

Another advantage of the regression model is it can be easilymodified for different types of phenotypic traits

via using different link functions. Here, the model was developed for a binary trait, but this can be expanded

in an obvious manner for more complicated phenotypes, including those with multiple subtypes.

Apart from the advantages described above, the use of a Bayesian framework overcomes the problem raised

by [166]. [166] listed three drawbacks of using the logisticmodel in conjunction with variable selection (ie

AIC, SC) under the frequentist framework. Firstly, the empty cell effect, which occurs when there is a low

frequency of some genotype or genotype combination, can make the interpretation of the logistic regression

result invalid. In our model, these empty cells are filtered out during the updating procedures. Although

the effect of these empty cells is inconclusive, the results are notaffected by these empty cells. The second
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and third concerns raised by [166] are that the frequentist logistic regression demonstrated weak power for

variable selection due to the correlation between variables and the problem due to the genetic heterogeneity.

Although this may be true when explaining the genetic make-up with only the most prominent model, these

two problems can be simply overcome by allowing multiple chains or incorporating the technique of model

averaging [300].

Although it is not illustrated here with the case studies, our model has the ability to accommodate missing

data by introducing extra parameters. When there are missing genotypes, the model is modified as follows.

We treat the values ofgsli at each SNPs as unknown parameters of the model and introduce the observed

genotypesgo
sli. Herel can take one of four values: 0, 1, 2 or missing. For each SNP, and each of the three

possible true genotypes, we let the probability that the data is missing beφ, a real value in the interval (0,1).

The value ofφ is then estimated as a model parameter via the hierarchial approach.

Although the model proposed in this chapter is relatively simple, conceptually, there are some drawbacks.

The first is the indecisive nature of the variable selection in each chain, indicated by the moderate contribu-

tion by various SNPs. The challenge that is admittedly only partially addressed here is how the optimally

combine this information.

The second drawback is the computational burden. This problem may be overcome by adopting different

MCMC algorithms, such as Reversible Jump Monte Carlo MarkovChain [104], simulated tempering [184],

variational approaches [137] or population MCMC [38].

Despite the above drawbacks, the proposed model is able to detect the relevant SNPs for both TID and

sporadic breast cancer. It is hoped that such investigations of alternative ways of exploring and describing

the role of SNPs and their interaction in GWA studies can facilitate a better understanding of the genetics of

complex disease.
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Chapter Summary

This chapter also aims to address the second main objective of the thesis. In contrast to a model based

approach, here we propose a non-model based approach for detecting SNPs and/or SNP interactions. The

method proposed here is a machine learning algorithm.

The method is based on logic regression, which is modified in order to speed up computation. We introduce

using the gene expression programming algorithm as the searching algorithm. The method is capable of

analysing a large dataset within a reasonable time frame. The model also has the flexibility to detect higher

order interactions.

Chapter Conclusion

The proposed method is tested with two simulated datasets, one with 50 SNPs and the other containing

10,000 SNPs. For the smaller dataset, the methods proposed in this chapter demonstrate reasonable ability

to identify the simulated SNPs and interactions. However, for the larger dataset, the results are less clear. In

this chapter, we identified four areas of improvement to increase the accuracy of this method.
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7.1 Abstract

With the commercial availability of high throughput laboratory procedures for the identification of sin-

gle nucleotide polymorphisms (SNPs), it comes the challenge of identifying genes and gene-gene interac-

tions associated with disease in high dimensional space. Inthis chapter we demonstrate MLR-GEP, a non-

parametric approach for identifying potentially interesting gene interactions, using a combination of Logic

Regression, an adaptive classification and regression methodology that constructs predictors as Boolean

combinations of the binary SNP covariates, with Gene Expression Programming, a variant of genetic pro-

gramming, as the stochastic search algorithm. The performance of MLR-GEP in discovering interactions

between SNPs in simulated 50 SNP and 10,000 SNP datasets is demonstrated.

7.2 Introduction

With the recent mapping of the human genome [269] and subsequent mapping of many agricultural species

(e.g. The Bovine HapMap Project,http://bfgl.anri.barc.usda.gov/) has come the commercial

availability of high throughput laboratory procedures forthe identification of single nucleotide polymor-

phisms (SNPs) in both humans and animal species. This has produced a convergence of the focus of quan-

titative and qualitative geneticists in the pursuit to identify interactions between genes, which are vital in

the understanding of common diseases such as diabetes, asthma and cardiovascular diseases, as well as

production traits, such as growth and meat quality in livestock species.

The challenge of genome wide association studies (GWAs) is three pronged: firstly, in the development of

powerful statistical and computational methods to model the relationship between combinations of SNPs and

common disease and production traits; secondly, in the selection of the genetic variables to be included in

the analysis, and thirdly, in the interpretation of gene-gene interaction models [198]. This chapter addresses

the first and second challenges, leaving the last to the bio-sciences.

The most prominent algorithm in searching for important SNPs is SNP-by-SNP searching in which each

http://bfgl.anri.barc.usda.gov/
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putative SNP is evaluated individually with respect to the strength of its association with the outcome of

interest. A wide range of outcomes have been investigated using this approach, including obesity [248],

Crohn’s disease [69] and Type 2 Diabetes [255]. Although this is a fast algorithm and able to accommodate

the analysis of large dimensional data, e.g. Affymetrix Genome-Wide Human SNP Array 6.0 with 1.8

million markers (including SNPs and the copy number variation), it is subject to the problem of multiple

testing and therefore requires adjustment, such as via the Bonferroni correction or false discovery rate.

Moreover, its limited focus on single SNP associations may not be suitable for complex trait, which might

occur only if a particular combination of genotypes is present at different susceptible loci [123].

Various statistical methods for detecting gene-gene interactions have been recently developed. Depending

on the embedded algorithm, these methods can generally be categorized into model based and non-model

based approaches. The former category, including methods such as regression, often requires the estimation

of model parameters; in contrast, the non-model based approaches, such as random forests [33] and neural

networks [200, 201], which are sometimes also referred to asdata mining approaches, are designed for

detecting non-linear relationships between phenotypes and genetic markers, and may be more desirable for

detecting higher order interactions. [187] reviewed different machine learning algorithms for detecting

gene-gene interactions. A more comprehensive recent studyreviewed both model based and non-model

based approaches for detecting interactions and the computer packages available for these methods [51].

Among the different methodologies referenced by [51], logic regression (LR) is an intriguing approach. It

is an admixture approach, which has a structure of the regression model, but instead of directly regressing

against the predictors, the response is regressed against acombination of “logic trees” which are identified

via the machine learning algorithm. A logic tree is a tree-like structure comprising Boolean expressions,

such as AND, OR and NOT, and predictor variables. This methodis described in Section 7.3.1. Because

the method is based on the combination of the regression model and the tree structure, LR is more versatile

in detecting different types of interaction, epistasis effects. This includes two different types of the epistasis

effects defined by [19] and [86].

The identification of an optimal logic tree involves the use of a search algorithm. The algorithm used in

the original logic regression is simulated annealing [235]. However, two limitations of the use of simulated
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annealing have been noted [153]. Firstly, it aims to identify a single best model, which neglects potential

competing models which fit the data almost as well. Secondly,when a SNP is included in the model, the

LD SNPs of this SNP are highly likely not be selected in the model. Therefore, different searching methods

have been applied for the improvement of logic regression.

Monte Carlo logic regression [MCLR, 153], which is an exploratory tool that combines a Markov Chain

Monte Carlo algorithm and logic regression. MCLR has been demonstrated to be more useful than logic re-

gression when there is a large number of LD SNPs [153]. The code for MCLR is available in the ‘LogicReg’

package of R [219].

Although MCLR uses MCMC methods and priors on some parameters, the coefficients of the logic trees,

are estimated using maximum likelihood approach, so it is not a fully Bayes approach. Additionally, in the

examples of MCLR, two parameters need to be set in advance. These pertain to the hyperparameter of the

geometric prior on model size which acts as a penalty to favour parsimony and the maximum number of

trees. It has been noted [91] that setting of these two parameters can have a large influence in the results.

Therefore, a Full Bayesian Logic regression algorithm (FBLR) has been proposed as an alternative [91]. The

reported advantages of FBLR include a prior on the coefficients, which overcomes the problem of presetting

these; restricting of the Boolean parameters in the logic tree to “AND” only, which gives equal weight to all

models within the same size under the uniform prior setting;and more interpretable result of FBLR [91].

Note that, by de Morgan’s rule, the use of the complement can account for an “OR” operator.

Extensions of regression have also been proposed in literature. For example, a logicFS algorithm uses the

simulated annealing algorithm, to perform subset selection in regression [245]. The main aim of logicFS is

the identification of important SNP interactions. The method incorporates the use of bootstrapped samples

and disjunctive normal form (DNF). Instead of searching forthe “optimal” model over all possible model

spaces, the simulated annealing algorithm is independently applied to a large number of bootstrapped sam-

ples drawn from the complete data space. Also, like FBLR, to make the results easier to interpret and the

interaction more identifiable, logicFS uses only “AND” and “OR” operators in logic tree. Because of the

use of bootstrapped samples, out-of-bag samples are used for the validation of variable importance [245].
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All of the above methods are no doubt a great improvement on the original logic regression method. How-

ever, it is of interest to consider other potential searching algorithms which may be implemented in the logic

regression setting. Therefore, the aim of this study is to introduce a different searching algorithm, namely

gene expression programming (GEP) in this context.

GEP [84] is a hybrid of genetic programming (GP, [154]) and genetic algorithm (GA, [125]). It is an

evolutionary algorithm based on artificial intelligence ormachine learning inspired by biological evaluation,

with the aim of automatically solving a problem without specifying the form of the solution. GEP, GA

and GP are encompassed within a wider class of “genetic algorithm”, which all generate a population of

individuals, select individuals based on theirfitness, then modify individuals using one of many genetic

variants.

Because GEP is a combination of GA and GP, it also combines theadvantages of both GA and GP, in such

a way that the GEP eases the manipulation of the GA and has the functional complexity possible with GP.

The main difference between these three algorithms is in the “individual” of the population. In GA, the

individual is a symbolic string of fixed length; in GP, the individuals are nonlinear entities with different

sizes and shapes and in GEP, the individuals are linear strings of fixed length which are later expressed as a

nonlinear entity of different shapes and sizes.

Although specific references to using GEP are limited, therehave been frequent references to GA. GA is

noted as a suitable tool for the optimization of large dimensional problems [250] and has been used in a

range of application including detecting outliers in linear regression models [55] and optimizing a statistical

quality control problem [114].

This chapter is organized as follows. The chapter starts with an overview of logic regression (Section

7.3.1). The logic regression is then modified in order to speed up the computation and a proposed method,

namedModified Logic regression-gene expression programming (MLR-GEP)is introduced in Section 7.3.2.

The performance, specificity and sensitivity of this methodis then evaluated with two simulated data sets

described in Sections 7.4. Results of the evaluation are given in Section 7.6. A discussion follows in Section

7.7.
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7.3 Methods

7.3.1 Logic Regression (LR)

Letting Y be a phenotypic trait, the logic regression model [235] is written as:

g(y) = β0 +

K
∑

i=1

βiLi (7.1)

whereLi denotes theith logic expression,i = 1, . . . ,K; K is total number of trees in the model, andβ0 is a

constant. A logic expression is a notation of a logic tree, which is a tree-like structure comprising Boolean

operators, ‘AND’, ‘OR’ AND ‘NOT’, and leaves, which represent the SNPs. Figure 7.1 is an example of

logic tree with a logic expression given by

LFigure7.1 = (S1 ∧ Sc
2) ∨ [(S3 ∨ S4) ∧ Sc

5]

Like the generalized linear model,g(.) is a link function which links the random and systematic components.

The choice ofg(.) depends on the type of trait of interest; for example, for a case-control study, the logit link

function is often used. The model parameters,β0 andβi are usually estimated using maximum likelihood.

As mentioned in the Introduction, the search algorithm usedin the logic regression is typically simulated

annealing. Simulated annealing is defined on a state space,S, which is a collection of states. The states

are related by a neighbourhood system, where a set of neighbour pairs inS defines a substructure,M. The

elements ofM are called moves. When the states are adjacent, they can be reached by a move; otherwise

the states can be connected by any number of moves. There are four possible moves in the logic tree, which

are 1) alternating a leaf, 2) changing operator, 3) growing and pruning and 4) splitting and deleting. Not

all moves, however, are permissible at a states. For instance, when the maximum size of tree is reached,

the moves which result in adding leaf/leaves are prohibited. A move from one state to another depends on

the acceptance probability which in turn depends on the ratio of two state spaces and thetemperatureof the
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Figure 7.1: Logic tree of MLR representing the logic expression Y, whereY = L1 OR L2, and L1=(S1 AND
NOT(S2)), L2=((S3 ORS4) AND NOT(S5)).

position of the chain. When the temperature is high, there islarger chance of accepting the move than at a

cooler temperature. The temperature is not constant over iterations in the logic regression. At the beginning,

the temperature is set to be high so nearly all possible movesare accepted. As the iteration proceeds, the

temperature reduces.

7.3.2 Modified Logic Regression with gene expression programming (MLR-GEP)

The aim of our proposed method is to identify a set of SNP interactions, that are potentially associated with

the expression of a trait. Thus the model coefficients,βi , i ∈ 0, . . .K are less relevant in the modified logic

regression (MLR). The method proposed here is therefore similar to the ensembles approach described in

[64], and less related to model fitting. Giving each tree an equal weight can substantially speed up the

computational time, thereforeβi is fixed to one. Thus using the same notation as earlier, the MLR model

becomes:
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g(y) =
K

∑

i=1

Li (7.2)

Gene expression programming (GEP) is an iterative procedure which utilizes the concept of gene, population

and evolution. The changes of individual from one iteration(also called ‘generation’) to the next is called

an evolution and the evolution repeats until a maximum number of evolutions is reached or until a desired

fitness is achieved.

The linear strings of fixed length in GEP are called ‘genes’. Genes are composed of ‘nodes’ representing

either functions (i.e. Boolean- AND, OR and NOT) or ‘terminals’ (i.e SNPs). A number of genes can be

linked by functions to form a ‘chromosome’. Genetic operations such as mutation and transposition take

place on genes and chromosomes, after which the latter are expressed as non-linear entities of different

shapes and sizes, called ‘expression trees’ (ETs), which isequivalent to the logic tree of logic regression.

The GEP gene comprises a ‘head’ and a ‘tail’. The head contains both functions and terminals, whereas

the tail contains only terminals. The first head node of each gene, or ‘root’ node, must be a function.

The tail length is a fixed function of the head length and the maximum function arity (number of function

arguments). The structure of the GEP gene and the translation system from fixed length string to expression

tree guarantee that all modifications arising from evolution of the individuals result in syntactically correct

ETs. Despite the fixed length of GEP genes, they have the potential to code for ETs of widely differing

shapes and sizes. The number and length of GEP genes are peculiar to the problem at hand.

GEP individuals are subjected to genetic operators (genetic variation) that can substantially modify their

structure. The genetic operators in GEP include mutation, transposition, insertion sequence, root insertion

sequence and recombination. Mutation is a change occurringin a single node of a gene. A mutation can

occur at both the head and tail of a gene. When it occurs in the gene head, it may produce either a function or

terminal, whereas a tail mutation must result in a terminal.Transposable elements of GEP are fragments of

the genome that can relocate to another place in the chromosome. Insertion Sequence (IS) elements are short

fragments with a function or terminal in the first position that may transpose to the head of genes except

the root. Root Insertion Sequence (RIS) elements are short fragments with a function in the first position,



7.3. Methods 185
and which transpose to the root of genes. In addition, an entire gene may transpose to the beginning of

the chromosome (gene transposition). Recombination in GEPmay take one of three forms. In all cases,

two parent chromosomes are randomly chosen and paired to exchange ‘genetic’ material. During one-

point recombination, two parent chromosomes cross over at arandomly chosen point to form two daughter

chromosomes. During two-point recombination, two parent chromosomes exchange the fragment contained

between two randomly chosen points to form two daughter chromosomes. In gene recombination, an entire

gene is exchanged during crossover. ‘Elitism’, or the survival and cloning of the best individual chromosome

in each generation into the next generation, is practised.

GEP individuals (or solutions) are selected according to their fitness, where fitness is defined as the ability

of the solution to predict the trait. In the problem at hand, the dependent variable is the case or control status

of each datum, being a binary trait represented as 1 or 0, respectively. Selection for reproduction, mutation

and crossover is based on the fitness proportionate selection roulette-wheel scheme [100], so that the chance

of a potential solution participating in any of these operations is proportional to the fitness of that solution

as a fraction of the total fitness.

In the current application of finding SNP interactions, the functions represented in the nodes of MLR-GEP

genes are Boolean operators, and the terminals are single SNP identifiers. Boolean operators link a number

of such genes to form the chromosome. The root node of the genehead must contain a Boolean operator.

Otherwise, the head of a gene may contain both Boolean operators and SNPs, whereas the tail contains only

SNPs. Figure 7.2 is an example of the translation of a fixed length MLR-GEP string into an expression tree

and its associated logic expression.

That the tail length is a fixed function of the head length and the maximum function arity guarantees that

the tail always contains enough terminals to fully satisfy any possible head arrangement. However, this also

means that certain terminals in the head and the tail may not be used in the expression tree and its associated

logic expression, as seen in Figure 7.2 where the last value 7is not included in the expression tree. The

extreme case occurs when the head of the gene contains the Boolean NOT operator having an arity of one,

and the next node contains a SNP, giving a single NOT(S..) expression regardless of the head (and therefore

tail) length. As highlighted above, it follows that a singlepoint mutation in the gene head can lead to a
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Figure 7.2: An example of the fixed length string of an MLR-GEP ‘gene’ and its translation to an MLR-GEP
expression tree and associated logic expression. The ‘head’ of the gene is composed of the sequence of nodes
OAA6N, representing the Boolean operators AND (A), OR (O) and NOT (N), and the SNP identifier 6. The
‘tail’ of the gene is composed of the sequence of nodes 893767, all representing SNP identifiers. Note that three
SNP identifiers at the end of the tail, 7, 6 and 7 are not used in the ET. The ET of GEP is equivalent to the logic
tree of logic regression (see Figure 7.1)

dramatic change in the associated expression tree. Figure 7.3 illustrates point mutation in MLR-GEP.

In this application, fitness is defined as the ability of the solution to predict the case/control status of each

datum, which is the same as correct classification. For any GEP individuali, the fitness is

fitnessi =
C

∑

j=1

(ci j == T j) (7.3)

whereC is the number of subjects in the data set,T j is the case/control status for subjectj, andci j is the

predicted case/control status under GEP individuali for subject j.

In the current setting of the MLR-GEP, a number of parametersare required to be set in advance. These

include the maximum number of iterations, the head length ofthe gene, the number of genes for each
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Figure 7.3: An example of point mutation of MLR-GEP ‘gene’ and the resultant change in the expression
tree and associated logic expression. The ‘head’ of the geneis composed of the sequence of nodes OAA1N,
representing the Boolean operators OR (O), AND (A) and NOT (N) OR (O) and the SNP identifier 1. Point
mutation occurs in the third node of the gene head of the parent gene, with a change from the operator AND to
the SNP identifier 6. Note that three SNP identifiers at the beginning of the tail of the parent gene, 8, 9 and 3 are
used in the logic expression associated with the parent gene, whilst in the daughter gene, only the initial SNP
identifier 8 in the tail is used.

chromosome, and the parameters associated with the geneticvariants, including mutation rate, one and two

point recombination rate, gene recombination rate, and IS,RIS and Gene transposition rate.

7.3.3 SNP Coding

SNPs can be coded as covariates in a number of ways, dependingon the problem. [235] suggest coding

of the ith SNP as two binary predictors,Xi,1 andXi,2. Here the subscripti of X refers to the SNP number,

whilst the subscripts 1 and 2 refer to the minimum number of variant (recessive or ‘a’) alleles at the SNP

site. ThusXi,1 andXi,2 respectively code the dominant and recessive effects of SNPi. In contrast to the

separate coding system, in our approach the SNPs are coded asa single integer and represent the genotype.

Table 7.1 shows the difference between the two methods. Note that in this chapter, the terms homozygous

variant and homozygous reference indicate the genotypes ‘aa’ and ‘AA’ respectively, and this is in line with

Ruczinski’s SNP nomenclature.
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The coding method implemented here halves the number of SNPsand thus halves the solution space. How-

ever, this results in running the searching algorithm twicewith two different searching rules to achieve the

same search results. This is advantageous given the availability of parallel computing. The first search re-

quires searching for only the homozygous variant (genotype3 in Table 7.1) and the second requires searching

for the homozygous variant or the heterozygote (genotypes 2or 3 in Table 7.1).

Table 7.1:Genotype coding of SNPs using a single covariateXi , compared with Dominant and Recessive coding
using two binary covariatesXi,1 andXi,2 demonstrated by [235].

SNP Coding Method
Logic Regression [235] MLR-GEP

Genotype Dominant Recessive Genotype Code
(Xi,1) (Xi,2) (Xi)

Homozygous Reference(AA) 0 0 1
Heterozygote(Aa, aA) 0 1 2

Homozygous Variant (aa) 1 1 3

Table 7.2 demonstrates the use of the logical NOT operator and the two different search goals for the two

runs of the MLR-GEP taken in this study. It is noted that the genotype coding approach allows any genotype

or combination of genotypes to be set as the goal of the MLR-GEP search. The SNP nomenclature used

in this study to describe the interactions is also given in Table 7.2, and follows that of [245], where the

subscripti of Si refers to the SNP number, whilst the subscripts 1 and 2 refer to the minimum number of

variant (recessive, ‘a’) alleles at the SNP site. Thus,Si,1 refers to SNPi being either the homozygous variant

or the heterozygote genotype (aa, Aa, or aA), whilstSi,2 refers to SNPi being the homozygous variant

genotype (aa).

Table 7.2: Search types used with genotype coding compared with dominant/recessive coding. The two search
types and possible results of genotype searching using the logical NOT operator, compared with the equivalent
coding of [235] requiring only a single search.

Search Goal NOT(Search Goal)
Search Type SNP Genotype SNP Genotype Ruczinski Coding

1 Si,2 aa NOT(Si,2) AA,Aa,aA Recessive,Xi,2

2 Si,1 aa,Aa,aA NOT(Si,1) AA Dominant,Xi,1

The MLR-GEP code was implemented in Fortran and compiled using an IntelrFortran Compiler Version

10.1. The code was run on a SGI Altix XE1200 Cluster 120x E534564 bit Intel Xeons at 2.33 GHz.
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7.4 Data Description

In this chapter, MLR-GEP is tested using two datasets, whichare simulated from the same settings with 50

and 10,000 SNPs respectively. The simulations are based on the allele frequency and assume full penetrance

of disease in a given combination of genes. The strategies used for data simulation are the same as those

described in [235], [245], [91] and [209].

7.4.1 Simulation Set 1

Fifty datasets of 1000 observations each (500 cases and 500 controls) and 50 SNPs were simulated with

allele frequencies for each SNP randomly generated within the range of 0.2 to 0.4. The case/control status

of each observation was based on the rules described in Experiment 1 of [245], where an observation is

classified as a ‘case’ if one of four logic rules is true. The four logic rules, the number of cases simulated

for each, and the number of controls are given in Table 7.3.

Table 7.3: The four logic rules L1 to L4 describing the simulated datasets, the number of cases simulated for
each rule, the proportion of the data described by each rule,and the number of controls simulated per dataset.
Each rule describes SNP combinations using Boolean AND and NOT operators for each SNPi for a minimum
of one or two variant alleles (a) occurring at the SNP site, coded asSi,1 andSi,2 respectively

Rule Simulated Interaction Number of Cases Proportion of Data
L1 S1,2 100 10%
L2 NOT(S2,1) AND S3,2 150 15%
L3 S4,2 AND S5,2 AND S6,2 100 10%
L4 S7,2 AND S8,2 150 15%

No Rule None 500 (Controls) 50%

The datasets can be fully described by further combining thefour rules with Boolean OR operators to form

a single logic ruleY, whereY = L1 OR L2 OR L3 OR L4. However, to achieve ‘clean’ data (setting of

full penetrance), simulation was controlled so that each ‘case’ datum contained only one of the four rules

possible (i.e. using exclusive OR (XOR)), givingY = L1 XOR L2 XOR L3 XOR L4. Additionally ten of

the fifty datasets were eliminated, since one of SNP4, SNP5 orSNP6 in the three-way interaction of Rule

L3 was not needed to explain all the cases and controls correctly, leaving forty datasets in Simulation Set 1.
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Initial statistical screening of Simulation Set 1 was undertaken using the ‘direct method’ of simple analysis

of variance (ANOVA) testing association of each individualSNP genotype with the case/control status of

the observation, using [219].

7.4.2 Simulation Set 2

Forty datasets of 1000 observations of 9950 SNPs each were simulated with allele frequencies for each

SNP again generated randomly within the range of 0.2 to 0.4. These 40 datasets were then combined with

Simulation Set 1 to create 40 datasets each containing 10,000 SNPs, plus the corresponding case/control

status of each observation taken from Simulation Set 1. Thus, the datasets in Simulation Set 2 contained

the same interactions as Simulation Set 1, the same case/control status of each observation, and the same

numbers of cases and controls, as described in Table 7.3.

7.5 Settings

Table 7.4 shows the parameter settings in the analysis of Simulation Set 1. We generated 20 populations

and evolved each population over 50,000 generations. The heads and tails were preset to 3 and 4. For the

settings on the evolutionary rate, we used the most neutral settings that required a very limited optimization,

that is 0.3 [84].

Similar settings were also used for the analysis of Simulation Set 2; however, given that the number of

SNPs is much larger, the number of populations and the numberof generations per population was also

increased. The final settings for these two parameters were 200 populations and 150,000 generations for

each population.
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Table 7.4: MLR-GEP settings used in Experiment 1, and (with exceptions) for Experiment 2 and GAW14 data.
Exceptions for the latter are for the number of generations per run (150,000), the population size (200), and the
number of SNPs in the terminal set are SNPs 1 to 10,000 and SNPs1 to 9,187 respectively.

Parameter Setting
Number of runs for each dataset 20
Number of generations per run 50,000

Population size 20
Number of fitness cases 1000

Boolean function set AND, OR, NOT
SNP Terminal set SNPs 1 to 50

Head length 3
Number of genes 4

Boolean linking function OR
Mutation rate 0.3

One-point recombination rate 0.3
Two-point recombination rate 0.3

Gene recombination rate 0.3
IS transposition rate 0.3

RIS transposition rate 0.3
Gene transposition rate 0.3

7.6 Results

Simulation 1Table 7.5 shows the average percentage of times each of the four significant interactions was

discovered over the 20 runs of the MLR-GEP for each of the datasets in Simulation Set 1. Table 7.5 also

shows the number of times the sub-rule of L2, NOT(S2,1), was found, and the number of times variations of

the Rule L3, either rules (S4,2 AND S5,2) or (S4,2 AND S6,2) or (S5,2 AND S6,2), were found. The average

fitness of the runs is given as a percentage of times out of a total of 1000 fitness cases the correct case/control

status was predicted from the MLR-GEP rule based solution.

Although SNP 1 was simulated to be associated with the case/control status, it was not involved in any

interactions with other SNPs (Rule L1; Table 3). When the search goal was set to the homozygous variant

(aa) (Search Goal 1; Table 7.2), SNP 1 was correctly found in 100%of rules in an OR association with other

SNPs, consistent with Rule L1. In contrast, when the search goal was set to the homozygous or heterozygous

variants (aa,Aa,aA) (Search Goal 2; Table 7.2), then although SNP 1 was found in over 50% of the solutions,

it was invariably associated in interactions with other SNPs.

The results in Table 7.5 show that the average fitness of the outcomes of Search Goal 1 was substantially
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higher than that of Search Goal 2 (95% cf. 67%). However, thissuperior fitness can be attributed to finding

Rule L1 in 100% of runs, and finding all the other SNPs participating in the interactions, although not always

the correct interactions in the case of SNP 7 and SNP 8, or the full interactions in the case of SNPs 4, 5 and

6. In the latter case, the incomplete rules of (S4,2 AND S5,2), (S4,2 AND S6,2) and (S5,2 AND S6,2) were

found in over 60% of rules for Search Goal 1. From Table 7.2 it can be seen that (S2,1) cannot be found

using Search Goal 1; this is consistent with the results in Table 7.5 for Rule and sub-rule L2.

Table 7.5: MLR-GEP Results for Experiment 1. The mean (and range) for percentage of times each of the
Rules 1 to 4, plus subsets of Rules 2 and 3, describing the simulated datasets in Simulation Set 1 (50 SNPs; see
Table 7.3) were found for Search Goals 1 (homozygous variant: aa) and 2 (homozygous variant or heterozygous;
aa,Aa, or aA), plus the mean (and range) of the fitnesses found.

Mean(Range)
Rule Interaction SearchGoal 1 SearchGoal 2

(aa) (aa,Aa,aA)
L1 S1,2 100 (100-100) 0 (0-0)
L2 NOT(S2,1) AND S3,2 0 (0-0) 34 (0-95)
L3 S4,2 AND S5,2 AND S6,2 3 (0-20) 50 (0-95)
L4 S7,2 AND S8,2 69 (10-100) 79 (5-100)

Sub(L2) NOT(S2,1) 0 (0-0) 67 (0-95)

Sub(L3)
(S4,2 AND S5,2) OR (S4,2 61 (10-100) 69 (0-100)

AND S6,2) OR (S5,2 AND S6,2)
Fitness % 95 (93-98) 67 (65-70)

For Rules L2 and L3, Search Goal 2 was greatly superior. Although in some cases the algorithm does

not find these rules, the average number of times these rules were found over the 20 runs for each dataset

marks these rules as significant findings. In contrast, incorrect interactions containing SNPs other than those

simulated to be significant were never repeated, although insome datasets certain SNPs would reappear in

other interactions in up to 20% of the runs.

Simulation Data 2Table 7.6 shows the average percentage of times each of the four significant interactions

was discovered over the 20 runs of the MLR-GEP for each of the datasets in Simulation Set 2. Table 7.6 also

shows the number of times the sub-rule of L2, NOT(S2,1), was found, and the number of times variations of

the Rule L3, either rules (S4,2 AND S5,2), (S4,2 AND S6,2) or (S5,2 AND S6,2), were found. The average

fitness of the runs is also shown.

The results in Table 7.6 show that, as for Simulation Set 1, with Search Goal 1(aa) SNP 1 was correctly

found in 100% of rules in an OR association with other SNPs, consistent with Rule L1. In contrast to
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Simulation Set 1, when the search goal was set to the homozygous or heterozygous variants (aa, Aa, or

aA) (Search Goal 2; Table 7.2), SNP 1 was never found in any rule.However, all other significant SNPs

were found in either OR associations with other SNPs, or incorrect associations with other SNPs. This

latter observation explains the relatively good fitness rates (average 61%; see Table 7.6) for Search Goal

2 on Simulation Set 2, in that although in most cases the ruleswere not found, the significant SNPs were

identified (except for SNP 1, as explained above).

Table 7.6:MLR-GEP Results for Experiment 2. The mean (and range) for percentage of times each of the Rules
1 to 4, plus subsets of Rules 2 and 3, describing the simulateddatasets in Simulation Set 2 (10,000 SNPs, see
Table 7.3) were found for Search Goals 1 (homozygous variant: aa) and 2 (homozygous variant or heterozygote;
aa, Aa, or aA), plus the mean (and range) of the fitnesses found

Mean(Range)
Rule Interaction SearchGoal 1 SearchGoal 2

(aa) (aa,Aa,aA)
L1 S1,2 100 (100-100) 0 (0-0)
L2 NOT(S2,1) AND S3,2 0 (0-0) 0 (0-0)
L3 S4,2 AND S5,2 AND S6,2 0 (0-0) 0 (0-0)
L4 S7,2 AND S8,2 31 (5-65) 7 (0-41)

Sub(L2) NOT(S2,1) 0 (0-0) 25 (0-100)

Sub(L3)
(S4,2 AND S5,2) OR (S4,2 42 (6-70) 0 (0-6)

AND S6,2) OR (S5,2 AND S6,2)
Fitness % 93 (90-95) 61 (59-64)

As for Simulation Set 1, the average fitness of the outcomes ofSearch Goal 1 was significantly higher than

that of Search Goal 2 (93% cf. 61%). Again, this superior fitness can be attributed to finding Rule L1 in

100% of runs, and finding all the other SNPs participating in the interactions, although not necessarily in the

correct interactions in the case of SNP 7 and SNP 8, or the fullinteractions in the case of SNPs 4, 5 and 6.

In the latter case, the incomplete rules of (S4,2 AND S5,2), (S4,2 AND S6,2) and (S5,2 AND S6,2) were found

in 42% of rules for Search Goal 1, but rarely for Search Goal 2.As discussed for Experiment 1, Rule L2

cannot be found using Search Goal 1, and the results in Table 7.6 are again consistent with this. Although

Rule L2 was not found using Search Goal 2, the significance of SNP 2 in the homozygous reference form

(AA) was found on average in 25% of searches.

Computer Running Time. Using the hardware and software specified in Section 7.3.3,the speed of the MLR-

GEP was 20 generations per second for the 10,000 SNP datasetsin Experiment 2. Thus the time taken for

a single run of MLR-GEP over 150,000 generations was approximately 8.5 hours. However, using Goal
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Search 1, average population fitness levels of over 90% were always achieved after only 1000 generations.

On average, convergence had occurred by generation 50,000 or a runtime of less than 3 hours.

7.7 Discussion

In this study, we presented the use of an alternative searching algorithm for finding the logic tree under the

framework of logic regression. The MLR-GEP, as anticipated, benefits from the computational efficiency of

gene expression programming. A similar advantage is also found when applying genetic programming for

identifying higher order SNP interactions [209].

The overall fitness measure of MLR-GEP is comparable to some of existing methods. For instance, Nunkesser

et al [209] applied genetic programming (GPAS) to identify higher order SNP interactions. Under the same

methods of data simulation, the reported misclassificationrate of their study is around 33% which is similar

to the fitness level of MLR-GEP. Nunkesser et al [209] also compared the misclassification rate of GPAS

with the standard logic regression, CART, Bagging and random forests using the same simulation dataset,

and found the misclassification rates of these methods were between 34 to 38% which is also comparable

with our method.

For the single locus effect, such as SNP 1, Search Goal 1(aa) was 100% accurate in finding the true single-

locus state of this SNP. Although the significance of SNP 1 canbe demonstrated through simple ANOVA

with adjustment for false discovery rates, the findings for Search Goal 1 positively attest to its performance

for the single-locus case. However, for identifying SNP interactions in the smaller dataset, Search Goal 2

identified most of interactions compared with Search Goal 1,despite the lower average fitness levels. The

differences between these two search goal is less obvious when the dataset is substantially large.

Even though the overall fitness is within a reasonable range,one major drawback of the MLR-GEP is that the

algorithm is potentially unstable in its current state. When the dataset was small (i.e candidate gene search),

the performance of the MLR-GEP in finding pre-specified interactions was just above 50% and ranged from

0 to 100%. However, when the dataset became substantially large and noisy, even though the fitness of the
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model was above average, the probability of finding the ‘real’ interaction was less than 50% with some SNP

interactions not identified. This is a concern, consideringthat there is possibility that expression of the trait

can be the result of the interaction of many genes, each with small effect [123]. However, the drawback

is not restricted to this algorithm; indeed detecting of complex interaction is an ongoing “ holy grail” of

current research.

MLR-GEP can potentially be improved by changing various settings. Firstly, in this study, in order to

achieve computational efficiency in the algorithm, we avoided parameter estimation byassigning equal

weighting to each logic tree, and predicted individual phenotypes based upon the combination of these

trees. This can potentially contribute to a poor discovery rate. An improvement is thus possible by retaining

the original formulation of LR and estimating the model parameters (β) of Equation 7.1. Furthermore, the

model parameter, can then be utilized for establishing variable importance ranking.

A second possible contributor to the poor discovery rate relates to the tuning parameters. For the evolution-

ary process, various parameters are required to be set in advance, including the settings of the MLR-GEP

‘chromosomes’ such as head length, number of genes and Boolean linking function. Various studies have

noted strong dependency between the tuning parameters of genetic algorithms (including GA, GP and GEP)

[89, 254], and observed that inaccurate setting of these parameters can result in premature convergence to

local optima [301]. For a complicated genetic system, an optimal parameter setting is obviously difficult to

achieve. Moreover, some researchers have found even after adjust the tuning parameters according to the

problem in hand, genetic algorithms can still perform belowexpectation. For example, [89] found surpris-

ingly unsatisfactory results when they used a genetic algorithm ( [125]) to find the maximum a posterior

(MAP) estimate of a binary variable in Bayesian image analysis. Similarly, [134] found that GA performs

badly in some simple optimization problems. Thus the theoretical and empirical basis of GA has been

questioned [134].

To overcome the problems associated with GAs, researchers have suggested the use of hybrid algorithms

[89, 301, 254]. Although the method of hybridization is different, [89] and [301] both propose to com-

bine GA with simulated annealing to achieve effectiveness and efficiency in the optimization. Similarly,

[254] suggest to combine GEP with simulated annealing to reduce the dependency of GEP on the tuning
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parameters and improve the performance of GEP.

A more sophisticated fitness measure can potentially yield better results in identifying SNP interaction.

In this study, MLR-GEP adopted correct classification as themeasure of purity, which may potentially

oversimplify the problem. For other tree like methods, suchas classification and regression trees (CART,

[34]) and random forests (RF, [33]), different criteria have been proposed as measures of impurity, including

misclassification rate, Gini index [34], cross-entropy [113], Gain ratio [218], DKM [63] and minimum

description length (MDL). Although these impurity measures are based upon the misclassification rate,

some are more sensitive than others [113, 232, 233]. Moreover, MDL has been successfully applied to

genetic programming as the fitness function for pattern recognition problems [128]. An alternative criterion

is to use the multi-objective function. For example, [209] used multidimensional fitness value for GPAS

which aims to balance the misclassification rate with the complexity of logic expression.

Although the results are not presented here and the current state of MLR-GEP has potential for further

improvement, the method has been applied to a real SNP data onsporadic breast cancer [46], and yielded

similar findings in SNP interaction as MClogic, logicFS, GPAS, random forests and a Bayesian regression

model. This suggests that the current state of MLR-GEP is able to analyse small datasets, but for larger

dimension data, it still requires some further development.

In this chapter, we introduced the use of gene expression programming as an alternative searching algorithm

for modified logic regression to perform genetic data analysis, with a focus on identifying SNP interactions.

Like all other machine learning algorithms, the use of GEP successfully reduced the computation time

required for logic regression, but the overall ability of MLR-GEP in identifying SNP interactions falls short

of expectation. In this study, we identified a few areas of development, which can potentially improve the

performance of the proposed method.
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Chapter Summary

Although the purpose of this chapter is still to address the second main objective of the thesis, the focus

is on the strengths and weaknesses of the machine learning algorithm and model based approaches. In

the previous two chapters we introduced model-based and a non-model based approaches for identifying

associated SNPs and/or SNP interactions. Although the advantages and disadvantages of each method are

documented independently in the previous two chapters, theaim here is to investigate how these methods

differ when compared with each other. Moreover, during the literature review of Chapter 5 we noted there

are several variants of logic regression, therefore we compare our methods also with a few of these. These

variants include logic regression with feature selection (logicFS), Monte Carlo logic regression (MCLR),

genetic programming for association study (GPAS) and modified logic regression with gene expression

programming (MLR-GEP). Because logic regression has a tree-like feature, we further included another

tree-like algorithm, random forest, in this analysis.

Chapter Conclusion

The methods included in this chapter all have their advantages and limitations. Therefore none of the

methods is innately superior to the others. However, we observed some common characteristics among

the similar methods. For instance, the non-model approaches, namely GPAS and MLRGEP, are the only

methods that are capable of dealing with large volumes of SNPdata; however, the main drawback of these

methods is lack of accuracy and specificity. Among the methods included here, these two have the highest

false positive rate. In contrast, the model based approaches all display high accuracy but are limited in the

number of SNPs that can be efficiently analysed. However, all these methods are better at identifying SNP

interactions than the SNP by SNP approach.
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8.1 Abstract

Due to advancements in computational ability, enhanced technology and a reduction in the price of geno-

typing, more data are being generated for understanding genetic associations with diseases and disorders.

However, with the availability of large data sets comes the inherent challenges of new methods of statistical

analysis and modelling. Considering a complex phenotype may be the effect of a combination of multiple

loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these

methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various meth-

ods have built on the original LR to improve different aspects of the model. In this study, we review four

variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming

for Association Studies and Modified Logic Regression-GeneExpression Programming, and investigate the

performance of each method using simulated and real genotype data. We contrast these with another tree-

like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable

selection.

8.2 Introduction

Single nucleotide polymorphism (SNP) is the most common genetic variation among individuals and it was

estimated that the human genome has approximately 10 million SNPs [158]. With the recent mapping of the

human genome [269] came the availability of high throughputlaboratory procedures for the identification

of SNPs. Strong correlation among blocked SNPs, i.e. linkage disequilibrium, allows scientists to study the

association between genetic and phenotypic variation using a subset of SNPs. Genome Wide Association

Studies (GWAs) attempt the mapping of SNPs to phenotypic variation among individuals. Such procedures

require a sound statistical methodology and associated computational capability to cope with the analysis

of a large data set. Most studies are focused on single locus analysis, which directly tests the association

between individual SNP and phenotypic variant. The most commonly implemented statistical approach for

these studies is a SNP-by-SNP testing algorithm. This procedure requires an additional statistical correction
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for the Type 1 error associated with multiple testings. [227] provide summaries of commonly used cor-

rection methods, including Bonferroni correction, permutation test and false discovery rate and discuss the

benefits and drawbacks of each of these.

Although the SNP-by-SNP approaches are relatively fast andcapable of incorporating covariates [e.g. 303],

the major limitation of such approaches is the difficulty of detecting possible gene epistasis effects [124],

which is often suggested as the reason for lack of success in genetic studies of complex diseases [51].

Although “epistasis” is commonly defined as the interactionof different genes, there is some confusion on

the definition of epistasis in the literature owing to the existence of different types of interaction [51]. [50]

and [214] provide thorough reviews on different types of epistasis. In this study, we are focused on using

statistical methods to identify gene interaction, this is the “statistical epistasis” according to [214].

Various statistical methods that have been developed for searching for epistasis effects in complex diseases

include Bayesian epistasis association mapping (BEAM, [302]), multifactor dimensionality reduction [231],

Polymorphism Interaction Analysis [191], logic regression [235], Bayesian model selection [90] and a two

stage approach that firstly selects SNPs with strong marginal effects, then identifies interactions among the

SNPs [192]. [118] provide an overview and evaluation of the performance of five widely applied methods

in detecting interaction effects. One of these, logic regression [LR, 235], is a hybrid method that has the

structure of a generalized regression method but with a Boolean combination of variables as predictors. LR

is motivated and developed for a plausible but difficult association pattern between SNPs and phenotype,

which often involves using words like “AND”,“OR” and “NOT”.For example, an individual may have

a higher chance of having a specific trait when“the homozygous variant genotype is at SNP S1 AND

the homozygous reference genotype is at SNP S2 OR both SNP S3 AND S4 are NOT of the homozygous

reference genotype”

LR has been widely applied in the analysis of SNP data for various phenotypes including sporadic breast

cancer [91, 245], trachoma [14], bladder cancer [8], renin-angiotensin [151] and myocardial infarction [151].

[244] indicates that LR is more preferred when compared withother tree-based approaches, such as Random

Forests [RF, 33] and Classification and Regression Trees [CART, 34].
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Although LR was initially developed for prediction, its capability has been extended through algorithms such

as logic Feature Selection [logicFS, 245], Monte Carlo Logic regression [MCLR, 153] and Full Bayesian

logic regression [FBLR, 91].

Another extension to the original LR involves variations inthe searching algorithm. [153] pointed out

two drawbacks with the simulated annealing algorithm implemented in original LR. Firstly, it identifies

a single best model which potentially neglects competing models. Secondly, simulated annealing is not

geared for the identification of SNPs in linkage disequilibrium (LD). Although the latter limitation has not

yet been resolved, the former limitation can potentially beresolved by using different searching algorithms.

Methods such as Reversible Jump MCMC [104], Genetic Programming for Association Studies [GPAS,

209] and Gene Expression Programming [MLR-GEP, 174] have a framework similar to logic regression but

implement different searching algorithms.

The aim of this paper is to summarise these variations of LR for a case-control study and compare the

performance of the methods using simple simulated examples. Due to the fact that LR is a tree-based

algorithm, we also consider Random Forests [33] in this paper. Furthermore, we compare the methods with

a Bayesian logistic model. Therefore, the methods includedin this study include logicFS, MCLR, GPAS,

MLR-GEP, RF and Bayesian logistic regression.

8.3 Methods

Logic regression Before introducing LR, it is important to note how SNPs may becoded in LR. Let allele

‘A’ be a disease allele; that is, having allele ‘A’ increasesthe probability of expressing a certain phenotype.

Typically the SNP is coded as 0, 1, 2 which corresponds to genotypes ‘aa’, ‘aA’ and ‘AA’. Alternatively, the

SNPs may be coded as a binary variable, which represents the dominant and recessive effect, for instance,

genotype ‘Aa’ or ‘AA’ at SNPS may be coded asSi,1 and genotype ‘AA’ asSi,2.

LR was initially developed for classification and regression, which aims to find Boolean combinations that

enhance the prediction of the model. The LR thus comprises Boolean combinators such as AND- and OR-,
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and variables, i.e SNPs, in a logic expression,L. Using the same example as in the Introduction,L is then

L = (S1,2 ∧ SC
2,1) ∨ (S3,1 ∧ S4,1) (8.1)

where∧ and∨ denote the AND and the OR operator, respectively, andC denotes the complement of a

boolean variable.

Logic expressions can be structured into a tree representation which is referred to as a logic tree. The

terminology of the logic tree is very similar to that used in CART, although the trees of LR and CART are

different structurally, as discussed later in this paper. A nodeis a point on the tree structure where a split

occurs. In LR, a node represents one of the Boolean operators(AND-) and (OR-), and each leaf corresponds

to one of the variables (SNPs). Figure 8.1 is an example of a logic tree of LR, and with a logic expression

given by

L = (S1,2 ∧ Sc
48,1) ∨ (S18,1 ∨ (S37,2 ∧ S25,2)). (8.2)

Here, the leaves include the dominant effect of SNP 18; and the recessive effect of SNP 1, 37 and 25. SNP

48 is highlighted in dark shade, representing the complement of SNP 48 (i.e NOT (SNP48,1)).

When the number of SNPs increases, searching among all possible logic trees/expressions becomes unman-

ageable. This motivates the implementation of a stochasticsearching algorithm. The simulated annealing

algorithm proposed by [235] and [146] starts with a logic tree, L1, consisting of randomly selected vari-

ables. At each iterations, a new logic expression,Lnew is proposed by randomly selecting one of six possible

moves: alternate a leaf, alternate an operator, grow a branch, prune a branch, split a leaf or delete a leaf.

Each move is assigned with a pre-specified probability, and not all moves are permissible at an iteration.

For instance, when the maximum size of the tree is reached, moves which result in adding a leaf/leaves are

prohibited. The acceptance ofLnew depends upon the acceptance probability, given by
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Figure 8.1: An example of a logic tree of LR.

a(MCRs,MCRnew,T) = min

{

1,
exp(MCRs − MCRnew)

T

}

(8.3)

whereMCRs is the misclassification rate of the treesandT denotes the ‘temperature’, which decreases with

the duration of the annealing process. Thus, the acceptancerate of a new logic tree is much higher at the

beginning of the process (whenT is large) and eventually becomes almost zero at the end of thesearch.

For more complicated problems, multiple trees can be combined using a generalized linear model

g(y) = β0 +

Q
∑

q=1

βqLq (8.4)

whereg(.) is a link function,β0 is the intercept,βq, q = 1, . . . ,Q, is the coefficient of the treeLq, andQ is

the maximum number of trees allowed. Using such a format increases the versatility of LR for the analysis

of different types of phenotypes [235] and can be easily modified formore complicated models such as the

Cox proportional hazards model.
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Monte Carlo Logic Regression [153] proposed that instead of selecting a single optimal model, it is

preferable to identify various competing models and combinations of covariates that are potentially asso-

ciated with the phenotype. Their method incorporates Bayesian model selection techniques using Markov

Chain Monte Carlo to explore a large number of models. Therefore, the model is called Monte Carlo Logic

Regression (MCLR).

The main difference between MCLR and LR is in the use of priors and the searching algorithm. MCLR

requires specification of a prior on the model size. The modelsize is defined as
∑Q

q=1 |Lq|, where|Lq| is

number of terminal nodes of the treeq. Because the model parameters of Equation 8.4 are not essential for

detecting the SNP interaction, [153] adapted the maximum likelihood approaches for parameter estimation

instead of using a fully Bayesian approach.

Compared with LR, the searching algorithm of MCLR is more complicated as it uses Reversible Jump

MCMC [RJMCMC, 104]. At each iteration, a logic tree is selected at random and modified using the same

moves as the LR. Once a new model is selected, the acceptance of the new model will depend upon the

prior, posterior and likelihood ratio as described in [104].

Like other MCMC methods, a large number of iterations is required to ensure the convergence of a MCMC

chain. The importance of SNPs and SNP interactions is determined from the post burn-in samples, i.e.

samples after the chain has converged. For instance, the importance of a two-way SNP interaction is defined

as the frequency of the pair of SNPs found in the same logic tree over all post burn-in models. The same

paradigm is used for finding the interactions of three variables.

Logic Feature Selection (logicFS) LogicFS is more closely related to LR in that it follows the same

paradigm as the LR and uses simulated annealing as the searching algorithm. However, instead of seeing

them as two separate methods, logicFS improves the variableselection of LR by repetitively fitting logic

regression models to different bootstrap samples. This is achieved by employing bagging [32] with the base

learner LR.

LogicFS draws a bootstrap sample from the original samples,i.e. n samples are randomly drawn with
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replacement from the original samples, and then applies logic regression to the bootstrap sample. This

process is repeated several times (typically 50-100 times). LogicFS also improves the interpretation of the

logic expression by transforming the expression into a disjunctive normal form (DNF). This makes the SNP

interactions directly identifiable. For example, assume a standard logic expression

L = (S1,1 ∧ Sc
2,1) ∨ (S3,2 ∨ S4,2) ∧ Sc

5,1, (8.5)

of an original LR.L is then transformed into a DNF, which becomes

L = (S1,1 ∧ Sc
2,1) ∨ (S3,2 ∧ Sc

5,1) ∨ (S4,2 ∧ Sc
5,1), (8.6)

Compared with Equation 8.5, the identification of interactions is much easier in Equation 8.6. The two

way SNP interactions are SNPs connected by ‘AND’ operators,which areS1,1 AND Sc
2,1, S3,2 AND Sc

5,1,

andS4,2 AND Sc
5,1. This representation can then be used to estimate the importance of any interactions

based on its predictability, which is essential for distinguishing a ‘real’ influential interaction from noise.

Moreover, transforming the logic expression into a DNF pools the AND-combination and makes some

variables redundant. For example, if bothS1,1∧S2,1∧S3,1 andS1,1∧S2,1∧Sc
3,1 are in the logic expression,

logicFS shortens the logic expression by removingS3,1 and the expression becomesS1,1 ∧ S2,1.

The importance of each interaction is estimated using the out-of-bag (OOB) approach, which is similar to

that used in Random Forests. During each iteration, about 60-65% of the subjects are drawn to become the

bootstrap samples for the construction of a logic tree. The remaining subjects which are not included in the

construction are called out-of-bag (OOB) samples. In the case-control study, the importance of an interaction

P is estimated as the value of the variable importance measure(VIM) which is the average difference in the

misclassification rate of OOB samples with and without the interactionP in the logic regression model over

all iterations of logicFS, i.e.
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VIM single=
1
b
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(Nb − N−b ) +
∑
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(N+b − N−b )

















(8.7)

whereIb is a set of all interactions identified in thebth iteration,b = 1, . . . , B, Nb is the number of OOB

samples that are correctly classified withP in the model andN−b is the number of OOB samples that are

correctly classified withoutP in the logic expression. Similarly,N+b is the number of OOB samples that

are correctly classified whenP is added to the logic expression whenP was not originally included in the

expression.

Genetic Programming for Association Studies (GPAS) Genetic Programming for Association Studies

[GPAS, 209] is, as the name suggests, a genetic programming [GP, 154] approach for genome-wide asso-

ciation studies. Unlike all methods discussed so far, GPAS does not require the fitting of Equation 8.4, but

directly searches for logic expressions in DNF using the GP method.

Figure 8.2 is an example of an individual (tree) in GPAS. Although there are some similarities between

Figures 8.1 and 8.2, these are essentially quite different. Firstly, in contrast to other methods, variables in

GPAS can be polytomous. Thus SNPs can be coded as 0, 1 and 2, andconsequently, when applied to GWAs,

it is not necessary to recode the genotypes.

Because GPAS is based on the concept of genetic programming,the terminology used in this approach is

more aligned with biological evolutionary terminology than that of LR. For example, the logic tree of the LR

is referred to as an “individual” in GPAS and the combinationof many individuals becomes a “population”.

Moreover, the “literal” of GPAS is the same as a leaf of a tree in LR, and a “monomial” refers to a case

where two or more literals are connected with an AND-operator, which is similar to the interaction of two

SNPs. For example, there are five literals and two monomials in Figure 8.2. For the consistency of this

paper, we converted the GPAS terminology into comparable terms of the LR.

Like other searching methods, GPAS is also an iterative approach. The algorithm starts with a random

population of two individuals, each consisting of randomlyselected SNPs. A new set of individuals is

generated as candidates for the next iteration (or so-called generation). These candidates are generated in
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Figure 8.2: An example of an individual in the GPAS algorithm. There are 5literals and two monomials.
S1 = 2 indicated SNP 1 is AA (or aa, depending on user’s preference), and it is called a literal. An example of a
monomial isS1 = 2 AND S48 = 0.

three different ways. Firstly, all individuals of the current generation automatically become candidates for

the next generation. Secondly, two individuals are randomly selected from the population and a ‘crossover’

is performed by randomly selecting a part of an individual (namly monomial) and attaching the selected

part to the other individual to form a new individual. Thirdly, five different moves (mutation or alteration)

are applied to randomly selected individuals. The moves (mutation) in GPAS include inserting a literal

(adding a SNP), deleting a literal (removing a SNP), replacing a literal with another literal, inserting a new

monomial (adding a new “AND” combination) and deleting a monomial (deleting aS NPx AND S NPy).

These additions and deletions are performed at random, meaning that the locations of deletion/insertion are

chosen at random and items to be inserted are also chosen at random.

After having generated a pool of candidates, a set of individuals is then selected from the pool to form the

next generation. The selection criterion used in GPAS is called ‘fitness’, which aims to balance the number

of correct classifications (NCR) of both cases and controls and to also penalize the size of the classifier,s.

The fitness of the GPAS tree in theith iteration of GPAS is expressed as a set of objectives
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fitnessi = (NCRCases
i ,NCRControls

i , si). (8.8)

An individual is said to bedominantto others if at least one of the objectives is superior and none of the

objectives is inferior. Only the dominant individuals are then selected for the next generation. This selection

process is calleddomination selection[209]. The iteration repeats until either the number of generations

reaches the predetermined number of generations, or the desired fitness level is achieved.

The size of an individual is restricted in GPAS, although it is possible to have more monomials in an indi-

vidual. [209] limited the individual to only one monomial.

Modified Logic Regression - Gene Expression Programming (MLR-GEP) Although MLR-GEP [174]

is based on LR, it is actually more closely aligned with GPAS.Since MLR-GEP has the aim of identifying

SNP interactions, the model parameters of Equation 8.4 are considered to be less relevant and are thus

ignored. The advantage of this approach is it increases the computational efficiency, thereby making it more

capable of accommodating the computational burden of GWAs.Using the same notation as earlier, the MLR

model becomes:

g(y) =
K

∑

i=1

Li (8.9)

whereg(.) is a link function. For a case-control study, the most commonly used link is logit. The stochastic

searching algorithm used in MLR-GEP is the Gene Expression Programming [GEP, 84], which is a hybrid

of genetic algorithms [GA, 125] and genetic programming [GP, 154].

The terminologies of GPAS and MLR-GEP are interchangeable with a key difference in the definition of

an “individual”. In GA, individuals are linear strings withfixed length, whereas in GP, individuals are non-

linear objects with different sizes and shapes. GEP combines the features of individuals of GP and GA,

leading to individuals of GEP encoded as strings with fixed length, which can be later expressed as non-

linear objects with different shapes and sizes. Therefore, GEP has the advantages ofboth GA and GP, with
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Figure 8.3: An example of an individual in MLR-GEP, showing the translation of single string to an object of
shape and size. The length of the gene is fixed, therefore node767 at the end of the gene tail is redundant.

the ease of manipulation of GA and the functional complexityof GP.

The linear string in GEP is referred to as a ‘gene’, and a gene is composed of ‘nodes’ representing either

functions (i.e. Boolean- AND, OR and NOT) or ‘terminals’ (i.e SNPs). A number of genes can be linked

by functions to form a ‘chromosome’. The structure of the GEPgene is divided into a ‘head’ and a ‘tail’

(Figure 8.3). The head contains both functions and terminals, whereas the tail contains only terminals. The

first head node of each gene, or ‘root’ node, must be a function. The tail length is a fixed function of the

head length and the maximum function arity (number of function arguments). The structure of the GEP gene

and the translation system from a fixed length string to an expression tree guarantees that all modifications

arising from evolution of the individuals result in syntactically correct expression trees (ETs). Despite the

fixed length of the GEP genes, they have the potential to code for ETs of widely differing shapes and sizes.

The number and length of GEP genes is peculiar to the problem at hand.

The moves (also called mutations or genetic operations) of MLR-GEP can take place at genes and chromo-

somes, and include mutation, transposition, insertion of sequence, root insertion of sequence and recombi-
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nation. Mutation is a change occurring in a single node of a gene and can occur at both the head and tail

of a gene. When it occurs in the gene head (other than at the root node) it may produce either a function or

terminal, whereas tail mutation must result in a terminal. Transposable elements of GEP are fragments of

the genome that can relocate to another place in the chromosome. Insertion Sequence (IS) elements are short

fragments with a function or terminal in the first position that may transpose to the head of genes except

the root. Root Insertion Sequence (RIS) elements are short fragments with a function in the first position,

and which transpose to the root of genes. In addition, an entire gene may transpose to the beginning of the

chromosome (gene transposition). Recombination in GEP is similar to crossover in GPAS. It may take one

of three forms. In all cases, two parent chromosomes are randomly chosen and paired to exchange ‘genetic’

material. During one-point recombination, two parent chromosomes cross over at a randomly chosen point

to form two daughter chromosomes. During two-point recombination, two parent chromosomes exchange

the fragment contained between two randomly chosen points to form two daughter chromosomes. In gene

recombination, an entire gene is exchanged during crossover. ‘Elitism’, or the survival and cloning of the

best individual chromosome in each generation into the nextgeneration, is practised.

Like GPAS, GEP individuals are selected according to their fitness. In contrast to GPAS, the fitness here is

defined as the ability of the solution to predict the case/control status of each datum. This is the same as the

correct classification. For any GEP individuali, the fitness is

fitnessi =
J

∑

j=1

(ci j = T j) (8.10)

whereJ is the number of subjectsj in the data set,T j is the case/control status for the subjectj, andci j is

the predicted case/control status under GEP individuali for subject j.

Like GPAS, MLR-GEP starts with randomly generated individuals (not limited to two), then evaluates the

fitness of all individuals. Each individual is altered with one of the moves described earlier. The fitness

of altered individuals is evaluated. Individuals with reasonable fitness then evolve into the next generation.

Like GPAS, the process continues until a pre-determined number of generations is achieved, or until a

desired fitness is achieved. Finally, the interactions of SNPs are identified from the surviving expressions
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where SNPs are connected by Boolean operator ‘AND’.

Random Forests Random Forests [RF, 33] is a method which involves a collection of numerous classifica-

tion or regression trees [CART, 34]. CART is a simple statistical tool applying recursive binary partitioning

of the feature space. CART is well known for its efficiency in coping with large data sets. However, as

the data become noisier, and less information is contained in each variable, the predictive ability of CART

diminishes. RF overcomes this problem by introducing random elements into the model by which subsets

of variables are chosen at random and bootstrap samples are selected with replacement for tree growing.

Although the Boolean operators are not physically present in the actual CART structure, the CART tree can

be translated into a combination of SNPs, AND- and OR- operators. For example. Figure 8.4 is an example

of a classification tree. Following the far right path of thisfigure, it is equivalent to “when an individual has

genotype AA at SNP 7 and genotype AA at SNP 8, this individual is more likely to have the phenotype”.

Moreover, in contrast to LR, CART trees aim to predict both affected and non-affected individuals. Because

variables of RF can have more than two levels, the coding of SNP can remain in the original genotype forms,

i.e. ‘aa’, ‘aA’ and ‘AA’.

A binary split is denoted as a node, and is defined as a parent ora child. For instance, in Figure 8.4,

SNPs 1 and 8 are the children nodes of SNP7. A leaf is where the splitting terminates (also called terminal

nodes). The training dataset is first split into two subsets using the criteria which resulted in the lowest

misclassification rate, i.e. genotype ‘aa’ at SNP7 in the example tree shown in Figure 8.4. The binary

splitting continues until the child nodes have a reasonablelevel of homogeneity, or the sample sizes (n) of

the child nodes are smaller than a prespecified value. In the standard CART, the trees are required to be

pruned/shrunk to avoid overfitting; however, this is not required inRF.

The error rate of RF depends on the correlation between any two trees in the forest and the strength of

individual trees. Higher correlation between trees in the forest results in a higher error rate, and greater

strength of trees reduces the error rate. These two indicators are affected by the size of the subset of variables

used in tree building. Reducing the size of the subset also reduces both correlation and strength. The optimal

size of the subset is not directly estimated from the data, but determined by users [33].
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Figure 8.4: An example of a classification tree in RF, where 1 and 2 are the disease status. This tree contains 10
terminal nodes and 9 binary splits. Codea, b andc represent genotypeaa, aAandAA.

The prediction error of RF is estimated using out-of-bag (OOB) samples, which are the same as described in

LogidFS. At each bootstrap iteration, the prediction of OOBsamples is estimated from the tree grown in that

iteration. The OOB error is the average of the ratio of the number of times that OOB cases are misclassified

to the number of times the respective case is an OOB sample, across the entire forest.

RF provides a variable importance ranking via the variable predictive importance, which is estimated also

using the OOB cases. The importance of variablej is estimated as the average difference between the

correct classification rate of OOB cases, and the correct classification rate of OOB cases with the value of

the variable of interest (j, in our example) replaced with a randomly permuted value over all trees.

Variables, j andk, say, are defined here as interacting if, when one variable isused for a split, the other
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variable is systematically more or less likely to be used foranother split. The measurement used for the

interaction importance ranking is the gini index. The gini value is calculated and ranked for each tree and

each pair of variables within the tree. The absolute difference between the rank of the tree and the rank of a

pair of variables is the gini measure for that pair of variables, which is then averaged across the forest.

Bayesian logistic regression with stochastic search variable selection (BV) The last method included

in this paper is different from methods described so far. This model does not havea tree-like structure, but

is instead based on logistic regression of a dichotomous phenotype [185] in conjunction with a stochastic

search algorithm for variable selection. Stochastic search variable selection (SSVS) using MCMC [95, 96]

is a commonly used model for variable selection in the Bayesian framework. The earliest implementation

of this model for genetic research was for the identificationof multiple quantitative trait loci for complex

traits [297]. Similar methods have also been applied to SNP data [49, 90]. BV is different from the Bayesian

epistasis association mapping (BEAM) proposed by Zhang andLiu (2007), which detects epistasis effects by

applying a Bayesian method to partition the markers into three groups: markers unlinked to the disease risk,

markers contributing independently to the disease risk andmarkers jointly influencing the disease risk, and

then confirms the association using a frequentist approach.In contrast, BV assumes both independent and

epistasis SNP effects can be modeled in a linear framework. LettingYi denote the phenotype of individuali

andqi be the probability of individuali having the phenotype, the typical logistic model is

log

(

qi

1− qi

)

= µ +

ns
∑

s=1

νsxis + εi (8.11)

whereµ is the population mean,xis is the genotype of SNPs for individual i, νs is the coefficient of xis and

ns is the total number of SNPs. Instead of using SSVS proposed in[95], we implement a variation of SSVS,

which is more closely aligned with the one discussed in [49].Let zs be a latent indicator variable, where

zs = 0 indicates that SNPs is not in the model, conversely,zs = 1 indicates that SNPs is included in the

model. Assuming that genotypes are diallelic,xs ∈ {0, 1, 2}, the model then becomes

log(
qi

1− qi
) = µ +

ns
∑

s=1

zs

l=2
∑

l=0

νsl gisl + εi (8.12)
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wheregisl is an indicator variable taking the value of 0 or 1 depending on whether individuali has genotype

l at SNPs. The parameterνsl is the contribution of genotypel at SNPs to the expression of the phenotype

andεi is the residual. This single model can be easily built upon toincorporate two-way interaction effects,

so that

log(
qi

1− qi
) = µ +

ns
∑

s=1

zs

2
∑

l=0

νsl gisl (8.13)

+

ns
∑

j=1

ns
∑

k=1, j,k

η jk

2
∑

l j=0

2
∑

lk=0

γ jl jklkgi jl j klk + εi

whereη jk is an indicator variable, withη jk = 1 if the SNP j × k is included in the model, else 0. The

parameterγ jl jklk is the contribution due to the interaction between genotypel of SNP j and genotypel of

SNPk. Similarly, gi jl j klk is an indicator variable taking the value of 0 or 1 depending on whether individual

i has genotypel at SNPl j and genotypelk at SNPk.

The importance of SNPs is measured as the number of times that SNPs is included in the iterations after

burn-in over the total number of post burn-in iterations. The importance measure is thus confined between

0 and 1. The importance of SNP interactions is also estimatedfollowing the same paradigm.

In the following examples, we used non-informative priors for all parameters, as follows:

ε ∼ Normal(0, τ−1); τ ∼ InverseGamma(0.05, 0.05);

z ∼ Bernuolli(pz); µ, ν, γ ∼ Normal(0, 1);

η ∼ Bernuolli(pη); pz, pη ∼ Uniform(0, 1)

(8.14)
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Model parameters were estimated using a Gibbs sampling algorithm. With the exception ofz andη, all

parameters have non-standard conditional distributions,so a slice sampler [204] was used. The estimation

of z andη was based on a combination of Gibbs and Metropolis-Hasting algorithms [46]. At each MCMC

iteration, the value ofz and η depend on the ratio of the conditional posterior probability of the model

including and excluding a SNP. For example, if the conditionposterior probability of the model with SNPi

is larger than the model without SNPi if the ratio exceeds a random value drawn uniformly between 0and

1, thenzi is assigned with value 1, else 0.

Ten independent chains were generated with 100,000 iterations each. The first half of the iterations of each

of the chains were treated as the burn-in and the variable importance measures were derived from the last

50,000 samples, that is the number of times the SNP or the SNP interaction is included in the model at

each of the remaining 50,000 iterations. The convergence ofMCMC chains was assessed by comparing the

model likelihoods of different simulation sequences, all of which started from different points.

Data

We use two data sets to evaluate the performance of the six methods described in the previous sections.

These comprised a simulated dataset and a real data set obtained from the GENICA study [139]..

Simulated Data

For each of these fifty data sets, 500 cases and 500 controls are generated so that for each case exactly one

of the conjunctionsP1, . . . ,P4, summarized in Table 8.1, is true, and none of these conjunctions is true for

any of the controls. Thus, employing the logic expression

L = P1 ∨ P2 ∨ P3 ∨ P4

as classification rule leads to a correct classification of all 500 cases and 500 controls in each of the 50 data

sets. Apart from the values of the informative SNPs, i.e. theSNPs formingP1, . . . ,P4, the genotypes of
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Table 8.1: The four conjunctionsP1, . . . ,P4 used in the first simulation. These represent SNP interactions
responsible for the presence of the phenotype. The number ofcases simulated for each conjunction and the
proportion of the observations described by each of these conjunctions are summarized in the third and fourth
column. The last row indicates the number of controls included in the data set, which made up half of the total
population.

Conjunction Interaction Number of Cases (Controls) Proportion of Data

P1 S1,2 100(0) 10%

P2 Sc
2,1 andS3,2 150(0) 15%

P3 S4,2 andS5,2 andS6,2 100 (0) 10%

P4 S7,2 andS8,2 150(0) 15%

No None 0 (500) 50%

the non-informative SNPs are randomly drawn with a minor allele frequency randomly selected in the range

from 0.2 to 0.4.

Similar methods of simulation were also implemented by [246] and [209].

Real Data: GENICA

The GENICA study is an age-matched and population based case-control study that has been carried out by

the Interdisciplinary Study Group on Gene ENvironment Interaction and Breast CAncer in Germany, a joint

initiative of researchers dedicated to the identification of genetic and environmental factors associated with

sporadic breast cancer. Further details on the GENICA study, such as data collection and cleaning, are in

[139].

In this paper, we focus on a subset of the genotype data from the GENICA study. More precisely, data of

1,234 women (609 cases and 625 controls) and 39 SNPs belonging to the estrogen, the DNA repair, or the

control of cell cycle pathways are considered in the analyses.

Because a few of the women show a large number of missing genotypes, all observations with more than

three missing values are removed from the analysis leading to a total of 1,199 women (including 592 cases

and 607 controls). The remaining missing genotypes are imputed by a weightedk nearest neighbours ap-

proach described in [246] and implemented in the R packagescrime.
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8.4 Results

Table 8.2 provides a parallel comparison of features of all the methods included in this study. The com-

parison is mainly focused on the difference in structure of the methods, genetic implementation, alterations

allowed from one state to another and tree structures. Amongall methods, even though the structure of

RF and BV does not directly utilize boolean operators, the tree of RF can potentially be interpreted as a

combination of ‘OR’, ‘AND’ and SNPs, while the addition (+) of BV is similar to ‘AND’.

To prevent a local maximum, all methods required adaptationof some form. For logicFS, GPA and MLR-

GEP, this is achieved by repeating the analysis a number of times. For methods utilising a form of MCMC

(MCLR and BV), this is done by using multiple chains. RF avoids a local maximum by generating multiple

trees in the forest and basing inferences on the results of the forest. We present here the results after these

types of repetition, i.e. after applying each of the approaches once to each of the fifty simulated data sets,

and fifty times to the GENICA data sets with different starting points of the search.

In the simulated dataset, although the methods compared here are somewhat different, except for the RF, all

other methods are able to identify at least some of the pre-specified SNPs. Among six methods compared

in this paper, only logicFS, MCLR, RF and BV provide rankingsfor the variable importance. Of all these

methods, logicFS most successfully identifies all four SNP interactions in each of the fifty data sets with

relatively large importance (usually, shown in the Top 4 rankings). For MCLR, only one of the four inter-

actions is always detected, namelyP2. The other interactions,P1, P3 andP4, are identified in 90%, 50%

and 80% of the fifty samples respectively. RF, on the other hand, did not identify any of these conjunctions

in its interaction rankings. However, when considering individual SNPs separately, SNPs involved in the

interactions all appeared with high rankings.

After 50,000 iterations, BV is able to identify two-way interactions, namelyP2 andP4, in all fifty data sets.

Because the BV model we used here is designed for detecting only the main and/or two-way interaction

effects, it is not possible to identify the three-way interaction (P3 of Table 8.1). However, the effects of the

three-way interaction can be identified by BV as subsets of three-way interactions, i.e.S4 AND S5, S4 AND
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S6 andS5 AND S6. The conjunction,P1 on the other hand, is often identified as a part of an interaction

effect rather than a solitary effect.

Similar to the results of logicFS, GPAS detects all four SNP interactions explaining the cases in each of the

fifty data sets. However many non-related SNPs are also identified.

MLR-GEP is limited in identifying many conjunctions. Of allinteractions listed in Table 8.1, the only

conjunction consistently identified is when the SNP is a maineffect, namelyP1. The conjunction with the

second highest chance of detection isP4 with an average of over 50%; however, the chance of detectingthis

interaction varies from 10% to 100%. The other two conjunctions,P2 andP3, on the other hand were not

found under the MLR-GEP approach.

When applying the methods to the GENICA data, except for RF, all other methods identify a probable asso-

ciation of the interaction of ERCC218880 and ERCC26465 with sporadic breast cancer. These two SNPs

are from the Excision Repairs Cross-Complementing group 2 region (ERCC2, formerly XPD). LogicFS,

MCLR, GPAS and MLR-GEP all indicate that having the homozygous reference genotype at ERCC26465

and either heterozygous or homozygous genotype at ERCC218880 is likely to increase the chance of breast

cancer. This result is also supported by BV with more detail.According to the results of BV, the high-

est chance of developing sporadic breast cancer is when individuals show the homozygous genotype at

ERCC218880 and homozygous reference genotype at ERCC26465 with an odds ratio of 4.17 (CI: 2.63-

6.67), followed by individuals with heterozygous genotypeat ERCC218880 and homozygous reference

genotype at ERCC26465 with an odds ratio of 2.37(CI: 1.01-5.58).

Another interesting finding which is identified only by the BVapproach is the functionality of ERCC26465.

The results of BV show that ERCC26465 is potentially associated with the sporadic breast cancer in two

different ways, by acting as a solitary additive effect or by interacting with SNPs other than ERCC218880.
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8.5 Discussion

In this study, we review different variations of logic regression, Random Forest and Bayesian logistic regres-

sion with stochastic search variable selection, for their ability to identify SNP interactions. The methods are

then discussed and compared using simulated and real datasets.

In the simulated evaluation, because the data are simulatedwith the conditions closely aligned with logic

regression, i.e. using Boolean expression,“AND”, “OR”, “NOT”, it is not surprising that the overall results

are better for logic tree-based approaches. GPAS and logicFS both identified all expected SNPs interaction

of the simulation data. In contrast, BV is a regression type approach which does not use Boolean operators

and the level of interactions between variables is requiredto be specified prior to analysis (i.e. the current

coding of BV was only designed to detect up to two-way interactions). However, considering all these

potential constraints, BV showed better results in detecting the conjunctions compared with RF and MLR-

GEP.

Among the different methods, the results of the RF analysis of the simulation data are the most unexpected.

Although the RF is a tree-based method, it did not identify any conjunctions listed in Table 8.1. However,

when considering SNPs at an individual level, these SNPs involved in the interactions were all successfully

identified by RF with relatively high importance measures. The same pattern was also found in the results

of the analysis of the GENICA data: even though RF did not find the interaction of ERCC218880 and

ERCC26465 to be important, these two SNPs were the top two ranking SNPs when SNPs were considered

individually.

These findings reflect the problem with the definition/measurement of interaction importance that is cur-

rently implemented in the RF code. The program we used for carrying out the analysis is not therandom-

Forestpackage of R, but the Fortran code available from the author’s website∗. In this version of RF, the

importance of a pair of variables is defined as the absolute difference between the ranking of the pair and

the ranking of the tree which is averaged across the forest. Although developers of this code stated that

“caution” is required for the interpretation of the interaction effects, the results confirm the problem of us-

∗http://www.stat.berkeley.edu/˜breiman/RandomForests/

http://www.stat.berkeley.edu/~breiman/RandomForests/
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ing such criteria. This criterion is only useful for detecting the interaction of a pair of SNPs, say A and

B, when these two SNPs are often selected jointly in the random selection of the potential predictors used

for tree growing. Furthermore, this criterion is easily obscured due to the nature of recursive partitioning

embedded in CART. For example, using the dummy example of Figure 8.4, at the root node, the training

samples are split into two subgroups, one group with genotype aa andaA at SNP 7, while the other group

has the complement genotype at the same SNP. The further splitting of these two subgroups depends only

on the structure embedded within each subgroup, i.e. the splitting which resulted in the most reduction of

the impurity measure within that subgroup. Therefore, unless the interaction of SNP A and B is prominent

in the subsets, the importance of these two SNP interactionsis likely to be overlooked using current criteria.

Although the interaction cannot be identified directly under current settings, the interaction effects are cap-

tured by the solitary variable importance measured using the permutation methods and OOB samples. The

assertion is confirmed in [169]. Therefore, with some improvements, RF can be a useful tool for identify-

ing SNP interactions. For instance, [135] suggest the use ofa sliding window sequential forward feature

selection in conjunction with statistical testing to find epistasis effects.

The detection of false informative SNPs is commonly observed across all methods; however, it is difficult

to compare the false positive and false negative rates of these methods. GPAS and MLR-GEP identify a set

of SNPs showing possible association without giving a quantitative measure, such as variable importance

ranking, to show the degree of association between a SNP and disease. In this study, the set of possible

models according to GPAS is exponentially large, and without the variable importance ranking, it is more

difficult to identify the false informative SNPs in the real data.Despite the fact that the ranking of variable

(interaction) importance is available in other methods, anappropriate threshold point for these measures is

still not well understood. This is because a threshold pointmay potentially depend on the underlying genetic

model and the ratio of the causal and noise SNPs, which is often impossible to know prior to the analysis

(Lunetta et al., 2004). Therefore, instead of basing conclusions on the results of a single method, a more

sensible approach is to analyse data with different methods and to compare the results. Further investigation

on how to integrate the results of different methods would be beneficial.

Methods incorporating tree-based structures are more robust in identifying the higher order interactions (e.g
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3 or more way interactions). In the tree-based methods, higher order interactions are directly identified from

a tree or a collection of trees. In contrast, to find higher order interactions using regression models, the order

of interactions needs to be specified a priori. Moreover, as the number of terms increases in a regression

model, the parameter space increases exponentially and consequently reduces the computational feasibility

which is especially difficult in a genome-wide association study.

BV, on the other hand, gives better results for understanding the allele effects on the expression of the

phenotype. This information is available from the magnitude of the coefficients of the different terms. For

example, the coefficient ofgsl gives the relative measure of the effect of the genotypel of the SNPs. BV

also provides a quantified measure of the risk of having the phenotype for different genotype combinations

at causal loci.

Among all methods, GPAS and MLR-GEP are the only methods capable of coping with the intensity and

computational power required for the analysis of large datasets. This is because these algorithms are based

on a machine learning algorithm (i.e. GP and GEP). LogicFS and MCLR, on the other hand, are limited to

a maximum of 1000 SNPs in the written code. It is noted that BV has been used for finding individual SNP

additive effects (but not for two-way or higher interactions) for up to 23,000 SNPs. Unless more effective

programming or a fast searching algorithm is adopted, most of the methods described here are only suitable

for candidate gene search or fine mapping.

The major drawbacks of GPAS and MLR-GEP are in the accuracy and specificity of the identification of

important interactions. Both of these methods implementeda machine learning algorithm, and although

fast, the results are less reliable. This problem is especially noticeable in MLR-GEP. The performance of

MLR-GEP can be improved in various ways, such as paying greater attention to the parameter setting in the

evolutionary process, incorporating model parameters anduse of more sophisticated fitness measures [174].

The most relevant genetic questions for such models concerntheir ability to detect genetic heterogeneity

and linkage disequilibrium (LD) SNPs, and the effect of LD SNPs on the model. Of all methods, logicFS is

expected to be less capable of identifying any of these effects given that it is highly related to logic regression

and has therefore inherited the same shortcomings identified in [153]. However, this problem can arguably
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be solved by applying logicFS for several repetitions to several subsets of the data sets thereby identifying a

large number of different models.

All other methods potentially have strategies for detecting genetic heterogeneity. Bayesian methods (MCLR

and BV) identify heterogeneity from a collection of multiple models [153] and/or the use of various Markov

chains [46]. In GPAS and MLR-GEP, by repeating the analysis with different starting populations, the

heterogeneities are potentially identifiable from a collection of tree structures. In these two methods, trees

are connected by the “OR” operator and the sub-tree therefore represents different possible genetic pathways.

Similarly, in RF, genetic heterogeneity can be determined from trees nested within the full tree.

When LD SNPs are in the data sets, Bayesian approaches again have the advantage of multiple chains.

When two SNPs are highly correlated, if one SNP is selected inthe model, although the chance of the other

SNP being selected is very small, it does have an equal chanceof being selected in the model. When the

number of chains (or models) is large enough, the LD SNPs are identified. In RF, LD SNPs are identified

as surrogate variables. However, as noted by [169], correlated SNPs can diminish the variable importance

ranking.

Although some of the methods included in this study have the same foundations, they are manifestly dif-

ferent in various facets. Each method has its advantages, and conversely some limitations. Even so, the

methods included in this study, in general, are superior in identifying SNPs in which the effect of the SNP is

highlighted by the presence of other SNPs. For instance, although the results of the analysis are not included

here, we tested the SNP effect of the GENICA data using SNP-by-SNP Fisher’s exact test and found the

p-value of ERCC218880 is far from significant (p-value=0.106, prior to power adjustment).

None of the methods included in this study, exhibits distinct superiority over another. In conclusion, the

GPAS and MLR-GEP may be preferred for searching through large dimensional spaces; logicFS, MCLR,

RF and BV may be preferred for candidate gene/region searches, and BV may be preferred for providing

detail on the allele effects.
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Table 8.2: Parallel comparisons of features, genetic implementation, alteration (move) and tree structures of LR, logicFS, MCLR, GPAS, MLR-GEP,
RF and BV.

Methods LR logicFS MCLR GPAS MLR-GEP RF BV
Features

Model based y y y n n∗ n y
Iterative searching Algorithm

Require (y/n) y y y y y n y
Algorithm Simulated Simulated RJMCMC Genetic Gene Expression NA MCMC

Annealing Annealing Programming Programming (Gibbs+MH)
Iterative/Evoluationary† I I I E E I

Quantify Interactions n y y n n y y
Use Boolean y y y y y n‡ n‡

Boolean Operators AND, OR AND,OR AND, OR AND, OR AND, OR OR, AND‡ AND‡

Genetic Implementation

SNP Coding R/D§ R/D R/D A/F A/F A/F A/F
LD y¶ y¶ y y¶ y¶ y y
Max SNPs 1000 1000 1000 GWAs‖ at least 23,000 * at least 23,000∗∗

1Although it is based on LR, the parameters are ignored
2Iterative (I) indicates a state depends immediate previousstate only, Evolutionary (E) indicates a state depends previous states.
3Strictly, RF and BV do not have Boolean operators, however, the trees of RF can be interpreted as combination of OR and AND.Similarly, the additive of BV model is like AND operator
4RD: Recessive/Dominance; A/F: Allele Frequency
5Although LD is not directly considered in the method, LD can be detected via runs with different starting points.
6 [209] stated that GPAS is able to analyse the GWA data, however it is yet to be verified
7Considering the additive effect only
*Unclear
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Table 8.2: Parallel comparisons of features, genetic implementation, alteration (move) and tree structures of LR, logicFS, MCLR, GPAS, MLR-GEP,
RF and BV.

Methods LR logicFS MCLR GPAS MLR-GEP RF BV
Tree Structure

Have Tree Structure y y y y y y n
Boolean∗ y y y y y n
Operators y y y y y n
Node B B B B B S
Terminal Node S S S S S P
Binary/Mutiple Split Binary Binary Binary Multiple Binary Binary
Fitness Measure MCR MCR MCR Multiple NCR OOB MCR

NCR
Moving between States Acceptance Prob Acceptance Prob RJMCMC Fitness Fitness NA

Alteration

Allow Alteration† y y y y y n n‡‡

No. Alterations 6 6 6 7 5 2
Method of Alteration

Change SNP‡
√ √ √ √ √

Change Boolean§
√ √ √ √

Grow Branch¶
√ √ √ √ √ √

Prune Branch‖
√ √ √ √ √

Split leaf
√ √ √ √ √ √

Delete leaf
√ √ √ √

Crossover∗∗
√ √

Insert new split at Root node
√

Require Pre-setting††
√ √ √ √

1 Tree structure
2Changes made to the tree of current state
3Change SNP with another SNP
4 Change Boolean with another Boolean
5 Adding a part to existing tree
6 Deleting a part of existing tree
7 Exchange parts between two trees
8 Strictly, the model does not have these alterations. However, some alterations are equivalent to the addition and deletion embedded in BV.
9 Need to assign the probability to each alterations prior to analysis
B-Boolean operators, S-SNPs, P-Prediction (case or controls)
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Conclusions and Future Work

Dissecting the genetics of complex diseases in the human genome is a challenging and somewhat daunting

task. In this thesis, we have investigated the problem from astatistical perspective and focused on two main

areas of challenge, defining phenotypes and detecting epistasis effects from large scale SNP data.

In the first part of this thesis, we illustrated the effect of phenotyping on subsequent genetic analysis, and

demonstrated the effects using four different models, three of which are latent models. Although theresults

were not overly surprising, they illustrate the sensitivity of genetic analysis to phenotype estimation. This

process, however, is often ignored in the current practice of genetic research of complex diseases. It is diffi-

cult to determine whether the phenotype derived from a statistical method is accurate, given that the “true”

227
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phenotype is unobservable, and thus can not be easily validated. Therefore, the models were compared using

a parsimonious measure. In Chapter 3, three frequentist models were compared using a common parsimo-

nious measure, namely BIC. Under this criterion, GoM is heavily disadvantaged due to the large number of

parameters in the model. However, phenotypes estimated using GoM had the highest heritability compared

with the two other methods.

In Chapter 4, we compared two different latent models, with the subsequent linkage results being nearly

identical. The models are introduced in the Bayesian context and were therefore compared using DIC3, pro-

posed in [43]. DIC3 is well suited for latent models. BecauseDIC uses the number of effective parameters

instead of the number of stated parameters, IRT is not as heavily penalised and had a comparable value of

DIC.

In light of the variety of model selection criteria, and difficulties in validating the estimated phenotype, in

Chapter 5 we developed two methods for consolidating estimates of different models using Bayesian model

averaging as the foundation. These methods show promise in enhancing individuals at the cores of clusters

(individuals with/without all symptoms), as well as increasing the fuzziness (ambiguity) of individuals at the

borders of the clusters. Consequently, loci with ‘true’ signals are amplified and the signals of the ‘false’ loci

are reduced. Furthermore, due to the use of Bayesian methods, the uncertainty occurring at the phenotyping

level is easily incorporated into the subsequent analysis.This provides some measure of confidence in the

findings.

These methods have so far been tested on two models, namely LCA and GoM. The next step is to test

on other models and assess the stability and validity of the methods. If uncensored phenotypic data is

available, a further stage would be to compare the phenotypes derived using the models developed in chapter

5 with the phenotypes derived using the IHS criteria, then investigate any subsequent variations. In Chapter

2, we noted the limitations of genome-wide linkage analysisin identifying the loci linking to a complex

disease. Therefore, for better understanding of the genetics of complex diseases, it may be more beneficial

to substitute the linkage analysis with an association study. This, however, cannot be achieved at the current

point of time for this particular cohort because the SNP datais unavailable, but the methods developed in

Chapter 5 can be used for other types of complex traits, such as schizophrenia and Parkinson’s disease,
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where the data is freely available.

Although migraine is often considered to be a dichotomous phenotype (affected/not affected), in this the-

sis, we have decided to treat it as a continuous measure for various reasons. Firstly, when the symptom

data was analyzed using LCA and GoM, various goodness-of-fitmeasures indicated there are more than

two clusters in the data. This suggested treating the migraine as dichotomous data may underestimate the

true underlying structure of migraine. Secondly, even whenanalyzing the data using different models and

assessing the models with different goodness-of-fit criteria, the results all suggested the optimum number

of clusters for the migraine data is four. Because no linkageanalysis to date is capable of analyzing data

with tetrachotomous phenotypes, the predicted phenotype will require some forms of adjustment before the

mapping can be carried out. Here, there are two options, one is to aggregate the number of clusters into two

or three clusters and the other is to convert the multinomialphenotype into a continuous measure.

[210] found similar results in their migraine study and theychoose the former approach by combing two

lower clusters (clusters with lesser prevalence in symptoms) and two higher clusters (clusters with higher

prevalence in symptoms) and assigning them the value of 0 and1 respectively. In the same study, they also

compared the effect of collapsing the clusters to two and collapsing the clusters to three, and found little

difference in the LOD scores between the two approaches.

From the results of model fitting, we also observed a trend in the symptom prevalence of the four clusters.

The individuals in the intermediate clusters have either more or less symptoms than individuals in two

extreme clusters and the symptom prevalence for two extremeclusters is zero and nearly 100%. However,

there is no dramatic reduction in symptom prevalence between the two intermediate clusters or two higher

clusters. Furthermore, because the symptoms of migraine often overlap with other forms of headaches [115],

it is possible that migraine is a severe form of headache. Therefore, using a continuous measure to represent

the degree of severity in migrainous headache is plausible.We also show that the use of the continuous

estimates for migraine does not have a large effect on the subsequent linkage results, which was affirmed by

replicating the results of [212].

The major challenge for the multilocus approach in identifying epistasis effects in GWAs is that the possi-
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ble SNP combinations are excessively large, and therefore computationally demanding. In Chapter 7, we

proposed a machine learning algorithm, namely gene expression programming, to overcome this inherent

difficulty. This method has shown some promising ability in improving computational efficiency. We believe

that the accuracy of the method can benefit from further development and improvement in the evolutionary

and optimization processes. In contrast, Bayesian logistic regression with stochastic search variable selec-

tion, as covered in Chapter 6, has demonstrated better accuracy in identifying subsets of important SNPs.

The model has been tested on approximately 26,000 SNPs of chromosome 6 for SNP additive effects. The

next logical step is to test the approach in a whole genome scale study, i.e. at least 500,000 SNPs.

Detecting epistasis effects using the model described in Chapter 6 is still problematic, at least in its current

form. However, such problems may be overcome by improving various aspects of algorithm such as

• parameter estimation

In the current algorithm, parameters are estimated using MCMC. To improve the speed of parameter

estimation, other algorithms such as Approximate BayesianComputation [21, ABC] and Variational

Bayes [137] could be considered. Moreover, instead of a fully Bayesian approach, an empirical Bayes

approach has demonstrated efficiency in parameter estimations [293]. [122] suggested a Bayesian

inspired penalised maximum likelihood approach to overcome the computational burden; that is, in-

stead of using the MCMC approach, the EM algorithm is used foroptimisation. Similar methods are

also proposed by [293] and [296] for estimating epistasis effects of Quantitative Trait Loci (QTL).

• sampling distribution of the SNP coefficient

When a SNP is not included in the model, the coefficient of the SNP is currently sampled from the

prior distributions. Alternatively, it could be directly assigned a value of zero, which may potentially

reduce the computation time. This has been implemented by [49] for QTL analysis.

In Chapter 8, we compared various subtypes of logic regression (LR) with random forests (RF) and Bayesian

logistic regression with the stochastic search variable selection algorithm. Even though there are different

subtypes of logic trees, these methods nevertheless show similar ability in identifying subsets of SNPs and

SNP interactions, but with LR being more versatile and better suited for higher order interactions. When
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comparing different trees, RF has a similar ability to identify the subset of SNPs; however, in the current

setting of the Fortran Code, the ability to detect interaction effects is less effective. Two other machine

learning algorithms, namely GPAS and MLE-GEP, are the only algorithms capable of coping with large

scale GWAs. However, the reduced accuracy of these algorithms makes them less preferable.

Although the data simulation procedure implemented in Chapter 7 is the same as the procedure implemented

in [245], it does not reflect the reality of the complexity in the genetic data. For example, the simulation

assumes a full penetrance of the disease and it does not take into account factors such as disease prevalence,

LD structure and recombination fraction between genes. However, when comparing MLR-GEP with other

types of logic tree, RF and Bayesian logistic regression with stochastic search algorithm on a common small

scale dataset (GENICA), it is able to identify the same set ofinteractions as other methods (as shown in

Chapter 8). However, this is only limited to a small scale study. The performance of MLR-GEP is less than

satisfactory, and requires substantial improvement in itsaccuracy and requires testing on a more realistically

simulated data.

At present the methods introduced and discussed in the second part of this thesis are not satisfactory in

detecting the epistasis effects of large scale GWAs and other genetic aspects such as detecting genetic het-

erogeneity, the effect of linkage disequilibrium (LD) and imputation of missing genotypes. Future work

should focus on incorporating these factors into the model and improving the computational efficiency of

the model without losing the accuracy of prediction and estimation. This may involve developing a hybrid

algorithm that merges the accuracy of the model-based approaches with the efficiency of machine learning

algorithms. Moreover, the algorithm may be guided with available knowledge in molecular genetics.

One advantage of the Bayesian framework is the use of priors.When priori knowledge about the parameters

is available, it can be easily incorporated in a Bayesian model. For genetic research this can be especially

useful because the advancement in molecular genetics can have substantial input into quantitative genetics.

For instance, although the gene network for human genome is still far from completion, the knowledge of the

interlocking network can help in identifying the epistasisfor complex traits. For example, if two genes are

known to exhibit functional epistasis from the gene network, this information can be included in the models

developed in Chapter 6 by adjusting the prior weights on these genes, so when one gene is selected for
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model fitting, the other gene will have a higher probability to be included in the model. This can potentially

reduce the computational time required for GWA.

Due to the near completion of the 1000 Genome project, higherquality and more detailed information

about the human genome will become available. Thus the need for sound statistical methods with which to

examine this information shall remain an integral part of genetic research.



A
Appendix

A.1 Chapter 4

A.1.1 Deviance information criteria for LCA and GoM

Deviance information criteria is the difference between twice the posterior mean deviance and the deviance

of estimatedη

DIC = 2D(η) − D(η̃) (A.1)
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In the third DIC proposed by [43] (DIC3) when the likelihood has a closed form, the first term can be

approximated usingM simulated values,η(1), ..., η(M), whereη(m) = (pm, λm) from an MCMC chain.

D(η) = Eη[−2 log f (y|η)|y]

≈ −
2
M

M
∑

m=1

log f (y|η(m)) (A.2)

The second term of equation 4.3 we used here is the posterior expectation,E[ f (y|η)|y] which is also approx-

imated using the parameters of an MCMC chain.

D(η̃) = −2 log f̂ (y) = −2 logEθ[ f (y|η)|y]

≈ −2 log
1
M

M
∑

m=1

f (y|η(m)) (A.3)

From equation A.2 and A.3, equation 4.3 is the expanded form of equation A.1. In the Bayesian LCA model,

f (y|η(m)) is

f (y|λ(m), p(m)) =
K

∑

k=1

p(m)
k

n
∏

i

J
∏

j

(λ(m)
k j )yi j (1− λ(m)

k j )1−yi j

and the posterior mean deviance is

D(p, λ) = −
2
M

M
∑

m=1

log
K

∑

k=1

p(m)
k

n
∏

i

J
∏

j

(λ(m)
k j )yi j (1− λ(m)

k j )1−yi j

andD(η̂) is
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D(p̂, λ̂) = −2 log{ 1
M

M
∑

m=1

K
∑

k=1

p(m)
k

n
∏

i

J
∏

j

(λ(m)
k j )yi j (1− λ(m)

k j )1−yi j }.

For the Bayesian IRT model, the likelihood is

f (y|θ, a, b) =
n

∏

i

J
∏

j=1

[
eaj (θi−bj )

1+ eaj (θi−bj )
]yi j [1 −

eaj (θi−bj )

1+ eaj (θi−bj )
]1−yi j

thereforeD(η) is

D(θ, a, b) = −
2
M

M
∑

m=1

log
n

∏

i

J
∏

j=1

[
ea(m)

j (θ(m)
i −b(m)

j )

1+ ea(m)
j (θ(m)

i −b(m)
j )

]yi j [1 −
ea(m)

j (θ(m)
i −b(m)

j )

1+ ea(m)
j (θ(m)

i −b(m)
j )

]1−yi j

andD(η̂) is

D(θ̂, â, b̂) = −2 log{
1
M

M
∑

m=1

n
∏

i

J
∏

j=1

[
ea(m)

j (θ(m)
i −b(m)

j )

1+ ea(m)
j (θ(m)

i −b(m)
j )

]yi j [1 −
ea(m)

j (θ(m)
i −b(m)

j )

1+ ea(m)
j (θ(m)

i −b(m)
j )

]1−yi j }.

A.2 Chapter 5

A.2.1 Symptom description of Migraine data

Table A.1: The IHS diagnostic criteria for migraine without aura (MO).

Item Description
A At least five attacks fulfilling B-D
B Headache attacks lasting 4-72 hours
C Headache has at least two of the following characteristics:

Unilateral Locations
Pulsating quality
Moderate or severe intensity(inhibits or prohibits daily activities)
Aggravation by walking stairs or similar routine physical activity

D During headaches at lease one of the following:
Nausea and (or) vomiting
Photophobia and phonophobia
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Table A.2: The IHS diagnostic criteria for migraine with aura (MA).

Item Description
A Headache fulfilling criteria B-D list in Table A.1
B At least five attacks fulfilling B-D
C Aura consisting of at least one of the following but no motorsickness

Fully reversible visual symptoms including positive features
(ie flicking of lights) and (or) negative features (ie loss of vision)
Fully reversible sensory symptoms including positive (ie pins and needles)
and (or) negative features (ie numbness)
Fully reversible dysphasic speech disturbance

D At lease two of the following:
Homonymous visual symptoms and (or) unilateral sensory symptoms
At lease one of the aura symptom develops gradually over≥5 minutes
Each symptoms lasts≥5 minutes and≤60 minutes.

A.2.2 Full Symptom description of KPD data

Table A.3: Clinical characteristics of KPD. This is the Kofendred Research Assessment Protocol for testing
affected/unaffected status.

Indices Description
a Joining/founding cult
b Fear/discomfort with strangers
c Dislike of jokes told face to face
d Obsession with entertainers
e Humor impairment
f Fascination with automobiles
g Aversion to walking
h Uncommunicative, contentless speech pattern
i Fiscal irresponsibility
j Morbid anger/fear/terror concerning rain/snow
k Reluctance to wear clothing appropriate for subjective temperature
l Body-image concerns/mild body dysmorphic disorder

A.2.3 Hessian Matrix

LCA The Hessian matrices for both LCA and GoM are derived analytically. The posterior probability for

LCA is

h( f ) = P(Y|p,Λ)π(p,Λ) =
n

∑

i

J
∑

j

log(
K

∑

k

pkλ
yi j

k j (1− λk j)
1−yi j ). (A.4)
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The Hessian matrix is a square matrix of second-order partial derivatives ofh( f ), and for LCA the Hessian

Matrix is
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The computation of the second order partial derivatives canbe grouped into eight different combinations as

shown in Table A.5. With the eight possible combinations, becausej are assumed to be independent, the

covariance for cases wherejs are not equal is zero.

Table A.4: Table showing 8 parameter combinations in Hessian matrix

θ1 θ1 Combination Equation

pk1 pk2

k1 = k2 A.5
k1 , k2 A.6

pk1 λk2 j
k1 = k2 A.7
k1 , k2 A.8

λk1 j1 λk2 j2

k1 = k2, j1 = j2 A.9
k1 , k2, j1 = j2 A.10
k1 = k2, j1 , j2 **
k1 , k2, j1 , j2 **

** indicates the second-order partial derivative for such combination is zero.

When differentiating Equation A.4 w.r.t.pk1 andpk2, andk1 = k2, let l denotek1, then

∂2h( f )
∂pl

2
= −

∑

i

∑

j

[
λ

yi j

l j (1− λl j )(1−yi j )

∑

k pkλ
yi j

k j .(1− λk j)(1−yi j )
]2 (A.5)

.

Similarly, whenk1 , k2 then

∂2h( f )
∂pk2∂pk1

= −
∑

i

∑

j

[
λ

yi j

k1 j(1− λk1 j)(1−yi j )λ
yi j

k2 j (1− λk2 j )(1−yi j )

[
∑

k pkλ
yi j

k j (1− λk j)(1−yi j )]2

]

. (A.6)
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When differentiating the same equation w.r.t.pk1 andλk2 j , andk1 = k2, using similar notation as earlier, let

l andmdenotek1 and any symptom, then

∂2h( f )
∂pl∂λlm

=
∑

i

(yimλ
(yim−1)
lm − λyim

lm )[(1 − λlm)yim(
∑

k pkλ
yim
km(1− λkm)(1−yim)) − plλ

yim
lm (1− λlm)]

[

(1− λlm)yim[
∑

k pkλ
yim
km(1− λkm)(1−yim)]

]2
. (A.7)

.

On the other hand, whenk1 , k2 and,m= 1, . . . J, then

∂2h( f )
∂pk1∂λk2m

= −
∑

i

pk2λ
yim
k1m(1− λk1m)(1−yim)[yimλ

yim−1
k2m − λk2m]

(1− λk2m)yim(
∑

k pkλ
yim
km(1− λkm)(1−yim))2

. (A.8)

The last two combinations are the partial derivative w.r.t the λ parameters,λk1 j1 andλk2 j2. As indicated

earlier, due to the assumption of independence,j1 = j2 which is denoted bym. Whenk1 is the same ask2,

denote byl then the second order partial derivative w.r.t these parameters becomes,

∂2h( f )

∂λlm
2
= −

∑

i

[ pl(yimλ
yim−1
lm (yim − λlm)]

(1− λlm)yim
∑

k pkλ
yim
km(1− λkm)(1−yim)

]2

. (A.9)

Whenk1 andk2 are not equal, the second order partial derivative becomes,

∂2h( f )
∂λk1m∂λk2m

= −
∑

i

[ pk1 pk2(λk1mλk2m)(yim−1)(yim − λk1m)(yim − λk2m)

(1− λk1m)yim(1− λk2m)yim[
∑

k pkλ
yim
km(1− λkm)(1−yim)]2

]

. (A.10)

GoM The posterior probability of GoM has the form:

h( f ) = P(Y|g,Λ)π(g,Λ) =
n

∑

i

J
∑

j

log(
K

∑

k

gikλ
yi j

k j (1− λk j)
1−yi j ). (A.11)

Because of the large number of parameters in GoM, the Hessianmatrix is a (n ∗ k + k ∗ j) × (n ∗ k + k ∗ j)

square matrix,
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Using a similar approach to LCA, we observed ten possible combinations of model parameters. These are:

Table A.5: Table showing 10 parameter combinations in Hessian matrix of GoM

θ1 θ1 Combination Equation

gi1k1 gi2k2

i1 = i2 andk1 = k2 A.12
i1 = i2 andk1 , k2 A.13
i1 , i2 andk1 = k2 **
i1 , i2 andk1 , k2 **

gik1 λk2 j
k1 = k2 C
k1 , k2 D

λk1 j1 λk2 j2

k1 = k2, j1 = j2 E
k1 , k2, j1 = j2 F
k1 = k2, j1 , j2 **
k1 , k2, j1 , j2 **

** indicates the second-order partial derivative for such combination is zero.

Like LCA, the assumption of independence has resulted in thecovariance of some combinations; this in-

cludes the independence among the subjects and among the symptoms. When differentiation the posterior

probability w.r.tgik1 andgik2, if k1 = k2, let ℓ denotek1 andk2, andı denote any subject, the second order

partial derivative becomes

∂2h( f )

∂g2
ıℓ

= −
∑

j

















λ
yı j
ℓ j (1− λℓ j)(1−yı j )

∑

k gıkλ
yı j
k j (1− λk j)(1−yı j)

















2

. (A.12)

.

Whenk1 , k2, using similar notation as earlier, the second order secondorder partial derivative becomes
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. (A.13)

.

When differentiating the posterior probability w.r.tgik1 andλk2 j andk1 equalsk2. Let ℓ denote bothk1 and

k2, the second order partial derivative for any subjectı and symptom is as follows,

∂2h( f )
∂gıℓ∂λℓ 

=
(yı λ

(yı −1)
ℓ 

− λyı 
ℓ 

)[(1 − λℓ )yı (
∑

k gıkλ
yı 
k  (1− λk )(1−yı )) − λyı 

ℓ 
(1− λℓ )pℓ]

[

(
∑

k gıkλ
yı 
k  (1− λk )(1−yı ))(1− λℓ )yı 

]2
. (A.14)

.

Whenk1 andk2 are not equal, the second order partial derivative becomes

∂2h( f )
∂gık1∂λk2 

=
gık2(yı λ

(yı −1)
k2 

− λyı 
k2 

)[λ
yı 
k1 

(1− λk1)(1−yı )]

(1− λk1 )
yı (

∑

k gıkλ
yı 
k  (1− λk )(1−yı ))

. (A.15)

.

The last combinations are the variance and covariance ofλk1 j andλk2 j . Again lettingℓ denotek1 andk2

where these are equal, for any symptom, the second order partial derivative is

∂2h( f )

∂λℓ 
2
= −

∑

i

[ pℓ(yı λ
yı −1
ℓ 

(yı  − λℓ )]

(1− λℓ )yı 
∑

k pkλ
yı 
k  (1− λk )(1−yı )

]2

. (A.16)

Whenk1 is not equal tok2, the second order partial derivative becomes

∂2h( f )
∂λk1 ∂λk2 

= −
∑

i

[ gik1gik2(λk1 λk2 )
(yi −1)(yi  − λk1 )(yi  − λk2 )

(1− λk1 )
yi (1− λk2 )

yi  [
∑

k gikλ
yi 

k  (1− λk )(1−yi )]2

]

. (A.17)
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A.3 Chapter 6
Table A.6: The SNP ID referenced in this study

SNPID SNP names SNPID SNP names
1112 rs4959334 6157 rs9268403
1576 rs10901001 6158 rs12201454
3302 rs7749556 6160 rs12528797
4073 rs874448 6172 rs3806156
4887 rs950877 6173 rs3763307
5447 rs16894900 6174 rs3763308
5545 rs9258205 6177 rs2001097
5553 rs9258223 6179 rs3135378
5566 rs1633030 6180 rs3135377
5571 rs1632973 6189 rs9268560
5577 rs9258466 6191 rs3135342
5587 rs1233320 6195 rs9268645
5588 rs16896081 6205 rs9268858
5638 rs1150743 6211 rs9268877
5661 rs9261389 6214 rs9270986
5663 rs9261394 6217 rs4530903
5802 rs2394390 6219 rs9272219
5919 rs9263702 6221 rs9272723
5932 rs2073724 6222 rs9273363
5947 rs3095238 6225 rs7775228
5957 rs3130531 6227 rs6457617
5969 rs7382297 6228 rs6457620
6025 rs16899646 6232 rs9275418
6043 rs2523650 6233 rs9275523
6051 rs3131631 6382 rs3129207
6073 rs2242655 6385 rs7382464
6087 rs480092 8169 rs16872971
6110 rs408359 8390 rs2028542
6117 rs438475 12097 rs9343272
6121 SNPA.2064274 17510 rs6938123
6122 rs377763 21883 rs9497148
6149 rs9268302 22015 rs3763239
6154 rs9268402 24454 rs16891392
6156 rs9391858 26289 rs16901461
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[28] Ásgeir Björnsson, Grétar Gudmundsson, Einar Gudfinnsson, Mara Hrafnsdóttir, John Benedikz,
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