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Abstract Causative genetic variants have to date been

identified for only a small proportion of familial colorectal

cancer (CRC). While conditions such as Familial Ade-

nomatous Polyposis and Lynch syndrome have well

defined genetic causes, the search for variants underlying

the remainder of familial CRC is plagued by genetic het-

erogeneity. The recent identification of families with a

heritable predisposition to malignancies arising through the

serrated pathway (familial serrated neoplasia or Jass

syndrome) provides an opportunity to study a subset of

familial CRC in which heterogeneity may be greatly

reduced. A genome-wide linkage screen was performed on

a large family displaying a dominantly-inherited predis-

position to serrated neoplasia genotyped using the

Affymetrix GeneChip Human Mapping 10 K SNP Array.

Parametric and nonparametric analyses were performed

and resulting regions of interest, as well as previously

reported CRC susceptibility loci at 3q22, 7q31 and 9q22,
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were followed up by finemapping in 10 serrated neoplasia

families. Genome-wide linkage analysis revealed regions

of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-

q12.1. Finemapping linkage and haplotype analyses iden-

tified 2q32.2-q33.3 as the region most likely to harbour

linkage, with heterogeneity logarithm of the odds (HLOD)

2.09 and nonparametric linkage (NPL) score 2.36

(P = 0.004). Five primary candidate genes (CFLAR,

CASP10, CASP8, FZD7 and BMPR2) were sequenced and

no segregating variants identified. There was no evidence

of linkage to previously reported loci on chromosomes 3, 7

and 9.

Keywords Serrated neoplasia � Familial cancer � Linkage

Abbreviations

CRC Colorectal cancer

HLOD Heterogeneity logarithm of the odds

LOD Logarithm of the odds

MMR Mismatch repair

MSI Microsatellite instability

MSI-V Microsatellite instability-variable

NPL Nonparametric linkage

Introduction

The identification of a causative genetic variant in cancer-

prone families such as those with Lynch syndrome is an

important determinant of decreased mortality through more

focussed cancer surveillance [1]. In addition, colorectal

cancers (CRC) arising in Lynch syndrome show molecular

and pathology features, such as immunohistochemical loss

of DNA mismatch repair (MMR) gene expression and

increased tumour infiltrating lymphocytes, which allow

them to be distinguished from among unselected series.

However, less than 3% of all CRC is accounted for by this

well-characterised condition, in which the cancers develop

from adenomatous polyps [2, 3].

Several studies examining linkage in non-syndromic

CRC families have reported statistically significant asso-

ciations at 3q22 [4–7] and 9q22 [8–11]. A more recent

study found linkage to 7q31 in colorectal neoplasia fami-

lies, and confirmed the region at 3q22 as a susceptibility

locus for CRC [12]. To date no confirmed causative vari-

ants have been identified from these regions, though the

reported associations remain robust.

The balance of families with CRC predisposition are

likely to show genetic heterogeneity and variable pene-

trance, thereby limiting the power of genome-wide linkage

approaches to define critical regions in the absence of

stratification. The description of families with multiple

cases of neoplasia in which serrated polyps are prominent

has facilitated the exploration of a proportion of the

remaining unexplained familial aggregation. Such families

were initially reported from New Zealand by the late

Professor Jass and colleagues in the mid-nineties [13, 14],

and a further publication demonstrated the familial

involvement of hyperplastic polyposis [15], associated with

LOH at chromosome 1p. Families fulfilling the Amsterdam

I criteria with mixed epithelial polyps and variable levels

of microsatellite instability (MSI) in which Lynch syn-

drome could be excluded, and which showed some overlap

with hyperplastic polyposis, were reported in 2005 [16].

Such families are characterised by a mixture of serrated

and adenomatous polyps, and, in contrast to Lynch syn-

drome, somatic BRAF mutation is commonly observed in

CRC. Only a minority of cancers demonstrate MMR defi-

ciency, attributable to methylation of the MLH1 gene

promoter. We refer to this condition of serrated neoplasia

and adenomas clustering in families as Jass syndrome, after

the pathologist who first described it [13, 14].

Studies on unselected series of CRCs have shown that

molecular features of the serrated pathway, such as wide-

spread CpG island methylation and somatic BRAF muta-

tion, as well as the presence of serrated lesions with atypical

histology (sessile serrated adenomas), are associated with a

family history of CRC [17–19], lending further support to
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the idea that the observed familial aggregation of lesions

arising through the serrated pathway is the result of an

inherited predisposition. In addition, the presence of a ses-

sile serrated adenoma is associated with polyp multiplicity

[19, 20], and with conventional adenomas in patients who

do not meet the criteria for hyperplastic polyposis [21]. In

patients with hyperplastic polyposis, polyps with ade-

nomatous elements increase the risk of CRC [22–24], and

are the likely lesions of origin for at least some of the

cancers occurring in this condition [25].

We have investigated genomic regions associated with

Jass syndrome by performing a genome-wide linkage

screen in a single large family, followed by finemapping in

a further 10 families, and present evidence for linkage to

chromosome 2q32.2-q33.3. Through further finemapping

analysis, we also provide evidence that previously reported

CRC susceptibility loci at 3q22, 7q31 and 9q22 are unli-

kely to contribute to Jass syndrome.

Materials and methods

Families

The 11 families in this study, five of which have been

described previously [16], were enrolled from high-risk

genetics clinics in Australia as part of the Colon Cancer

Family Registry, an international collaborative registry for

the study of genetics and epidemiology of colorectal cancer

[26]. All participants gave written informed consent to take

part in research, and the project was performed under

QIMR Human Research Ethics Committee Approval P912

(Genetics of Serrated Neoplasia).

Polyps were reviewed by a specialist gastro-intestinal

pathologist (JRJ). MSI status of tumours was determined

using a panel of 10 microsatellite markers (BAT-25, BAT-

26, BAT-34C4, BAT-40, D5S346, D10S197, D17S250,

D18S55, ACTC and MYCL) and standard techniques [16,

27]. BRAF V600E mutation status of tumours was analysed

as previously described [28]. Lynch syndrome was exclu-

ded in all families as determined by: (1) proficient

expression of the MMR proteins in tumours; (2) absence of

pathogenic mutations or variants of uncertain clinical sig-

nificance in the MMR genes after sequencing of the coding

and splice site regions and MLPA analysis for large dele-

tions or duplications; and (3) methylation analysis of the

MLH1 gene promoter. No mutations were found in any

patients. Three cancers showed loss of MLH1 protein

expression, of which two had sufficient DNA available for

methylation analysis and tested positive for methylation of

the MLH1 promoter in their tumour tissue [29].

Criteria for inclusion of families were: at least 2 indi-

viduals with CRC, with one aged under 60 years; AND at

least 2 individuals with polyps, with one aged under

60 years; AND at least two of the following characteristics

associated with serrated neoplasia:

1. a mixture of hyperplastic and adenomatous polyps;

2. variable levels of MSI in cancers and/or polyps

3. the presence of BRAF V600E somatic mutation in one

or more cancers; and

4. at least one individual with multiple hyperplastic

polyps under age 60.

Characteristics of each family are listed in Table 1.

Genome-wide linkage screen

The 10 K Xba 142 GeneChip Human Mapping Array (Af-

fymetrix Inc., Santa Clara, CA, USA) was used to genotype

seven affected individuals and one unaffected spouse from

Family 1 (Fig. 1), a multi-case CRC family with multiple

young-onset, BRAF-mutated, MSI-variable (MSI-V) CRCs,

and multiple individuals with multiple serrated polyps or

those with atypical histology including sessile serrated

adenomas, serrated adenomas, and mixed polyps [16, 25].

Sample call rates were all greater than 98.5%, with a total of

990 no calls, and 1280 SNPs (1.3%) were uninformative in

the pedigree. Sex was verified by observing heterozygosity

rates of X-linked markers. PedCheck [30] was used to

detect Mendelian errors, which were manually corrected via

the removal of inconsistent genotypes.

Both parametric and nonparametric (NPL) linkage

analyses were performed using GeneHunter version 2.1

[31] via a stepwise 900 SNP sliding window, implemented

in the Alohomora GUI interface [32]. For parametric

analysis, an autosomal dominant mode of inheritance was

specified, with 60% penetrance, 10% phenocopy rate and a

disease allele frequency of 0.001. Families segregating

serrated neoplasia show clustering of CRC, including those

with somatic BRAF mutation, and polyps of adenomatous,

serrated and mixed histology. Individuals with CRC and/or

large, multiple or atypical serrated polyps, or any serrated

or adenomatous polyp diagnosed before age 60, were

classed as affected. As the prevalence of adenomas in the

population increases with age [33], a conservative

approach was taken to the classification of affected indi-

viduals in the over 60 age group, requiring adenomas to be

5 mm or greater in size, or have villous components, and

excluding individuals with diminutive rectal-only lesions.

Haplotypes were constructed in GeneHunter and viewed

graphically using HaploPainter version 029.5 [34].

Finemapping

Twelve microsatellite markers on chromosome 2p, 22

markers on 2q, 18 markers on chromosome 3, 10 markers
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on chromosome 7, 12 markers on chromosome 8 and 13

markers on chromosome 9 were typed in the 11 families.

Markers and primer sequences are listed in Supplementary

Table 1. Markers were amplified using True Allele PCR

Premix (Applied Biosystems, Foster City, CA, USA) or

GoTaq Colorless Master Mix (Promega, Madison, WI,

USA) according to the manufacturer’s instructions. PCR

products were labelled with FAM, HEX or NED fluoro-

phores, either by labelling one primer in each pair or via an

M13 tag and labelled M13 primer, and separated using an

ABI 3100 Genetic Analyzer (Applied Biosystems, Foster

City, CA, USA). Data were analysed using GeneMarker

version 1.70 or 1.75 (SoftGenetics, PA, USA). Mendelian

error checking was performed using Progeny Lab 6

(Progeny Software, South Bend, IN, USA). Non-Mendelian

error checking and parametric and nonparametric linkage

analyses on full pedigrees were performed using SimWalk

2.91 [35], implemented under the easyLINKAGE Plus

Table 1 Phenotypic characteristics of families

Family Individuals

with CRC

CRC ages Polyp ages

(and numbers)

MSI-V BRAF

CRC

Hyperplastic

and adenomatous

polyps

Individuals with

multiple hyperplastic

polyps under

60 (ages)

Evidence

of linkage

to Region 1

1 3 45, 53, 74 63 (1), 53 (3), 51 (2), 57 (2),

46 (1)

Yes Yes Yes 1 (57) Yes

2aa 3 25a, 31a, 32 29 (1), 53 (1) No No Yes 0 Yes

2ba 8 25a, 31a, 54, 72,

53, 65, 63, 52

57 (10), 53 (2), 63 (1) No Yes Yes 1 (57) No

3 4 52, 65, 67, 70 71(1), 66 (1), 65 (7), 55 (11),

60 (2), 49 (1)

No No Yes 1 (55) No

4 4 37, 44, 58, 62 37 (2), 57 (11), 51 (4), 58 (5) No No Yes 3 (51, 57, 58) No

5 4 31, 47, 52, 59 49 (1), 38 (1), 45 (2), 50 (7),

28 (1)

Yes No Yes 1 (50) Yes

6 3 43, 53, 74 53 (6), 43 (4), 52 (4) Yes Yes Yes 2 (52, 53) Yes

7 4 31, 39, 50, 61 49 (2), 31 (2) No No Yes 1 (49) No

8 3 27, 57, 60 52 (1) Yes Yes Yes 0 Yes

9 3 54, 59, 76 54 (2), 75 (1), 50 (1) Yes No Yes 0 No

10 2 55, 62 58 (2), 65 (6) Yes No Yes 1 (58) Yes

11 4 48, 53, 74, 85 85 (2), 48 (5), 50 (3), 51 (17),

53 (6)

Yes Yes Yes 2 (48, 51) Yes

MSI-V variable levels of MSI between lesions
a Families 2a and 2b are branches of the same family which were analysed separately due to independent segregation of affected status. Two

individuals with CRC were included as part of both families

Fig. 1 Family 1. Solid symbols, individuals with colorectal cancer.

Dotted symbols, individuals with large or atypical serrated polyps.

Individuals marked with two asterisks were genotyped for the

genome-wide linkage scan and for finemapping; those with a single

asterisk were typed for finemapping only. Affected individuals are

marked as such. A single individual in generation 2 with CRC was

also considered as affected. Numbers indicate age at first onset of

cancer or polyps
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interface version 5.05 [36]. Parametric linkage analysis

was performed under a dominant model with 60% pene-

trance, 10% phenocopy rate and disease allele frequency of

0.001. Affected-only parametric analysis was performed

using GeneHunter version 2.1, also under the easyLINK-

AGE interface, under a dominant model with 99% pene-

trance, 10% phenocopy rate and disease allele frequency of

0.001. For affected-only analysis, all individuals with

unknown or unaffected status were classed as unknown.

Marker map locations were based on the deCODE map

[37]; positions for markers not on the deCODE map were

interpolated from the nearest adjacent deCODE markers

using the NCBI Map Viewer Build 36.3 (http://www.

ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=

9606). Haplotypes were constructed by SimWalk and vis-

ualised using HaploPainter.

Sequencing of exons and exon–intron boundaries of

candidate genes was performed using BigDye Terminator

chemistry on an ABI 3100 Genetic Analyzer (Applied

Biosystems, Foster City, CA, USA). Where possible,

variants were confirmed by sequencing in both forward and

reverse directions.

Results

Genome-wide linkage screen

As there is currently little information on Jass syndrome in

the literature, the parameters used for linkage analysis were

estimated from the 11 families involved in the study. The

pattern of affected individuals was consistent with a

dominant mode of inheritance with 60% penetrance, and

four affected spouses out of 37 resulted in an estimated

phenocopy rate of 10%. Using these parameters, genome-

wide linkage analysis on Family 1 revealed regions of

interest at 2p25.2-p25.1 (logarithm of the odds (LOD) 1.36,

nonparametric linkage (NPL) score 4.50 (nominal

P = 0.004)), 2q24.3-q37.1 (LOD 1.38, NPL 4.62 (nominal

P = 0.003)), and 8p21.2-q12.1 (LOD 1.36, NPL 4.28

(nominal P = 0.007)) (Fig. 2), although none of these

attained genome-wide statistical significance.

Finemapping

Finemapping using microsatellite markers spanning each

of the three regions of interest was carried out in Family 1

and a further 10 families (Supplementary Table 2). Family

2 showed independent segregation of affected status in two

branches, each of which met the criteria for inclusion, and

was therefore treated as two separate families for analysis,

2a and 2b. Five individuals overlapped between the two

branches and were therefore included in the analysis as part

of both Family 2a and Family 2b. In an effort to account for

some of the uncertainties inherent in a newly described

disease (such as penetrance, age at onset and the possibility

of a proportion of affected individuals being asymptom-

atic), three separate analyses were performed: parametric

analysis with full pedigrees, 10% phenocopy rate and 60%

penetrance; nonparametric analysis; and affected-only

Fig. 2 Genome-wide linkage screen on Family 1. a Parametric and b Nonparametric analysis

Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome) 249

123

http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606
http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606
http://www.ncbi.nlm.nih.gov/projects/mapview/map_search.cgi?taxid=9606


parametric analysis with 10% phenocopy rate and 99%

penetrance, in which unaffected individuals were retained

only if they were parents of affected individuals, or were

genotyped children of affected individuals for whom DNA

was unavailable; these individuals were assigned unknown

affected status.

LOD scores on chromosomes 2p and 8 were negative

throughout. Evidence for linkage to these regions was

limited, with no HLOD score greater than 0.6 and NPL

reaching significance at the 5% level at a single location

only (marker D2S262 at 30 cM on chromosome 2p, NPL

1.36 (P = 0.044)) (Table 2).

Parametric analysis on full pedigrees at 2q revealed

LOD scores of 0.48 at 197 cM between markers D2S117

and D2S309, and 0.79 at 224 cM between markers

D2S163 and D2S401, with corresponding HLOD scores of

0.48 and 0.96, respectively (Table 2). Nonparametric

analysis revealed a single peak at 199 cM at D2S309 with

NPL 2.36 (P = 0.004), while the strongest evidence for

linkage in the affected-only analysis was at 193 cM

between markers D2S118 and D2S115, with LOD 1.12

and HLOD 2.09, with a secondary peak at 225 cM

between markers D2S163 and D2S133, with LOD 0.82

and HLOD 1.73 (Table 2; Fig. 3). Taking all three anal-

yses into account, the strongest evidence for linkage was

between markers D2S118 and D2S2309, with limited

evidence for linkage between markers D2S163 and

D2S133; these loci are defined respectively as Region 1

and Region 2. Affected-only linkage analysis accounting

for heterogeneity gave estimates for the proportion of

linked families (a) as 0.54 for both Region 1 and Region 2

(Table 2). Results for individual families are summarised

in Supplementary Table 2.

Haplotype analysis at 2q and sequencing of candidate

genes

Eight families revealed a haplotype segregating with

affected status. Although there was no evidence of a

common haplotype shared between families, a consensus

region covering approximately 12 Mb, bordered at the

centromeric end by D2S117 and at the telomeric end by

D2S2358 and showing considerable overlap with Region 1,

segregated with affected status in 48/53 affected individ-

uals in seven families (Figs. 3, 4, Supplementary Table 2).

Of these, six families demonstrated variable MSI in cancers

and/or polyps (Table 1). In contrast, only one of the five

families not showing linkage to this region had variable

MSI. The consensus region contains 60 genes, from which

five (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were

selected based on previous evidence in the literature for a

role in CRC or other cancers for sequencing of exons and

exon–intron boundaries. At least two affected members of

each family were screened, and where a variant showed

possible segregation with affected status the rest of the

family was also sequenced. Several variants were found,

including two CASP8 polymorphisms, namely a 6-nucle-

otide promoter insertion/deletion (rs3834129) and the

D302H SNP (rs1045485), with previously reported asso-

ciations with colorectal and other cancers [38–40]. Neither

these nor any other identified variants segregated with

affected status.

Exclusion of reported CRC susceptibility loci

The contribution of recently reported CRC susceptibility

loci on chromosomes 3, 7 and 9 to Jass syndrome was

Table 2 Finemapping results

Chr cM Parametric (full pedigrees) Nonparametric Affected only

LOD HLOD a NPL P LOD HLOD a

Regions identified from genome-wide screen on Family 1

2q (Region 1) 193–199 0.48 0.48 0.95 2.36 0.004 1.12 2.09 0.54

2q (Region 2) 224–231 0.79 0.96 0.60 1.75 0.018 0.82 1.73 0.54

2p 2–34 -1.06 0.04 0.15 1.36 0.04 -1.23 0.60 0.38

8 39–89 -1.56 0.00 0.00 0.86 0.14 -1.73 0.41 0.17

Chr cM Parametric (full pedigrees) Nonparametric Affected only

LOD HLOD NPL P LOD HLOD

Previously published CRC susceptibility loci

3 126–190 -1.22 0.18 0.57 0.27 -5.47 0.09

7 111–129 -2.76 0.00 0.83 0.15 -3.32 0.05

9 66–121 -1.86 0.00 0.37 0.42 -5.16 0.00

a proportion of linked families
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tested using microsatellite markers selected to cover the

reported regions, and parametric, nonparametric and

affected-only analyses performed as above. No evidence

was found to support linkage (Table 2).

Discussion

Since the discoveries of the genes responsible for Familial

Adenomatous Polyposis, Lynch syndrome, and the ham-

artomatous polyposes, little progress has been made in the

identification of genetic causes for the remaining unex-

plained majority of familial CRC. One of the reasons for

this lack of success is likely to be extensive genetic het-

erogeneity, which has proved to be a difficult obstacle to

overcome for investigators undertaking linkage studies on

collections of CRC families. Other than exclusion of

known syndromes, approaches aimed at limiting the het-

erogeneity within a sample set have included enrichment

for families with young-onset cases [8, 41], exclusion of

multiple polyposis phenotypes [8], exclusion or inclusion

of adenomas and hyperplastic polyps [41, 42], and strati-

fication by occurrence of extracolonic cancers [41]. While

these approaches certainly limit phenotypic heterogeneity,

the extent to which they reduce genetic heterogeneity is

unknown.

The recent identification of a familial predisposition to

colonic malignancies arising through the serrated pathway

[13, 14, 16, 43] has presented an opportunity to study a

subset of familial CRC in which genetic heterogeneity is

more limited. Serrated neoplasia families show distinct

features, such as variable levels of MSI and frequent

somatic BRAF mutation in tumours and a mixture of ser-

rated and adenomatous polyps, that allow them to be dis-

tinguished from the remainder of familial CRC. Such

features characterised families with evidence of linkage to

2q. Incomplete penetrance, small family size, under-

reporting due to a proportion of individuals being asymp-

tomatic, and practical difficulties in obtaining tumour and

polyp samples for all patients, however, mean that all

features will not be observed in all families. In an effort to

account for this, a set of criteria was developed for this

study that allowed for some flexibility while still requiring

families to show a clustering of CRC and polyps in con-

junction with characteristics that define Jass syndrome. In

this attempt to include phenotypically homogeneous fam-

ilies, the possibility remains that a minority of these fam-

ilies may have a genetic predisposition different to that

Fig. 3 Finemapping at chromosome 2q in 11 Jass syndrome families.

Horizontal axis position along chromosome 2 in cM. a LOD score

from affected-only analysis; b HLOD from affected-only analysis

accounting for heterogeneity; c Nonparametric analysis. Shading

indicates location of haplotype sharing at Region 1
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responsible for the majority of Jass syndrome. While this

leaves open the possibility of some families being incor-

rectly included, these are likely to be a minority.

A linkage strategy was selected that would maximise

the possibility of identifying linkage, while minimising the

effects of any heterogeneity that may remain within the

selected families. To this end, the family considered the

most likely to allow the identification of a strong linkage

signal was subjected to a genome-wide linkage screen,

followed by finemapping of regions of interest in the

remaining 10 families. Loci at 2p25.2-p25.1, 2q24.3-q37.1

and 8p21.2-q12.1 were considered worthy of further

investigation, with 2q24.3-q37.1 showing the strongest

evidence of linkage. This region has also been identified in

three previous genome-wide linkage studies [4, 6, 12] and

one association study [40].

The consensus region at 2q32.2-q33.3 identified through

finemapping linkage and haplotype analyses contains five

genes that stand out as potential candidates and as a result

were prioritised for sequencing. CFLAR, CASP10 and

CASP8 are located in close proximity to each other at

2q33.1 and are all involved in the death receptor-induced

apoptotic pathway [44]. CASP8 somatic mutation has been

reported in CRC [45], and a CASP8 promoter polymor-

phism has been reported to be associated with

susceptibility to multiple cancers including CRC [40],

although the association has not been replicated in other

populations [46, 47]. CFLAR has attracted attention as a

therapeutic target as well as a potential oncogene due to its

role in the TRAIL pathway [48]. FZD7 is a member of the

Frizzled family which plays an important role in Wnt

signalling [49], central to the development and progression

of CRC [50], and has recently been shown to activate the

Wnt pathway in CRC cell lines [51]. BMPR2 inactivation

leads to epithelial cell proliferation and mixed polyp for-

mation in the mouse colon [52] and reduced protein

expression associated with somatic mutation is observed in

human CRC and cell lines [53]. Although sequencing of

these genes did not reveal any variants segregating with

disease, only coding regions and exon–intron boundaries

were sequenced, leaving noncoding regions, which may

harbour regulatory elements and potential splicing variants,

largely unexplored. With current re-sequencing technology

and exome capture, the investigation of the remaining

genes and regulatory regions becomes more feasible.

Several studies have reported evidence of linkage

among a proportion of non-syndromic CRC families, with

3q22, 7q31 and 9q22 prominent [4–6, 8–10, 12]. As well as

suggesting that they are unlikely to contribute to Jass

syndrome, the failure to find evidence of linkage to these

Fig. 4 Haplotype analysis at

2q. Vertical lines show

chromosomal segments

segregating with affected status

within each family. Dark and

light shading show areas of

segregation at Region 1 and

Region 2 respectively
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loci in the present study suggests that further character-

isation of the 3q22, 7q31 and 9q22 regions should aim to

exclude families demonstrating molecular and/or histo-

logical evidence of serrated neoplasia.

Approximately half of the families studied showed

evidence of linkage to 2q32.2-q33.3. The balance of the

families did not demonstrate linkage, suggesting that other

as yet unidentified loci may contribute to families with

serrated neoplasia. Continuing efforts to identify and

characterise serrated neoplasia families will serve the dual

purpose of allowing a greater understanding of the phe-

notypic presentation of the syndrome, and facilitating fur-

ther genetic studies which will allow confirmation and

refinement of the linked region, paving the way for more

comprehensive analysis of the locus, and potentially the

identification of the underlying genetic defect.
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