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AN IMPROVED MODEL OF TUMOUR-IMMUNE
SYSTEM INTERACTIONS

TRISILOWATI, SCOTT W. MCCUE, DANN MALLET

Abstract. The immune system plays an important role in defending the body against
tumours and other threats. Currently, mechanisms involved in immune system interac-
tions with tumour cells are not fully understood. Here we develop a mathematical tool
that can be used in aiding to address this shortfall in understanding. This paper de-
scribes a hybrid cellular automata model of the interaction between a growing tumour
and cells of the innate and specific immune system including the effects of chemokines
that builds on previous models of tumour-immune system interactions. In particular, the
model is focused on the response of immune cells to tumour cells and how the dynamics
of the tumour cells change due to the immune system of the host. We present results and
predictions of in silico experiments including simulations of Kaplan-Meier survival-like

curves.

Keywords and Phrases: hybrid cellular automata, tumour, chemokine, immune, dendritic cell,

cytotoxic T lymphocyte.

1. INTRODUCTION

Cancer is one of the leading causes of death worldwide, with 7.9 million
people dying as a result of cancer in 2007 alone. This is projected to rise to 12
million by 2030 (see http://www.who.int/cancer/en, [13]). A similar report (see
http://wuw.aihw.gov.au/, [1]) states that in Australia in 2007, cancer was the
second most common cause of death and that 108,368 new cases of cancer were
diagnosed. For those diagnosed, the relative survival between 1998 and 2004 for
all cancers combined was 61%. Clearly, cancer is a major concern for public health
officials around the world and a greater understanding of cancer has potential to
save many lives.
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There is strong evidence in the literature for the hypothesis that tumour
growth is directly influenced by the cellular immune system of the human host.
For example, Sandel et al. [12] discuss the influence of dendritic cells in controlling
prostate cancer. Furthermore, tumour infiltrating dendritic cells (DCs) are a key
factor at the interface between the innate and adaptive immune responses in ma-
lignant diseases. While the interactions of a tumour and the host immune system
have been modelled previously by, for example, Mallet and de Pillis [9] and de Pil-
lis et al. [4], here we present the first multidimensional, hybrid cellular automata
model of the process that incorporates important signalling molecules.

Hart [7] states that dendritic cells (DCs), found in many types of tumours,
are the dominant antigen presenting cells for initiating and maintaining the host
immune response. They are critical in activating, stimulating and recruiting T lym-
phocytes: cells with the ability to lyse tumour cells. DCs have numerous states of
activation, maturation and differentiation. Natural killer (NK) cells and cytotoxic
T lymphocyte (CTL) cells also play important roles in the response of the immune
system against the tumour as described in Kindt et al. [8].

The dynamics of tumour growth and the interactions of growing tumours
with the host immune system have been studied using mathematical models over
the past four decades. Most of these models are presented using ordinary differential
equations (ODEs) or partial differential equations (PDEs) that impose restrictions
on the modelled system’s time-scales, as described in Ribba et al. [11]. However,
a cellular automata (CA) model can describe more complex mechanisms in the
biological system without such restrictions by detailing phenomena at the individual
cell or particle level. The classic definition of a CA model holds that they involve
only local rules that depend on the configuration of the spatial neighbourhood of
each CA element. Hybrid cellular automata (HCA), on the other hand, extend the
CA to incorporate non-local effects, often via coupling the CA with PDEs.

The purpose of the model developed in the present research is to investigate
the growth of a small solid tumour, when the growth is affected by the immune
system. In this preliminary study, we present a hybrid cellular automata model of
the interaction between a growing tumour and cells of the innate and specific im-
mune system that also includes generic signalling molecules known as chemokines.
Chemokines are a family of small cytokines, or proteins secreted by many different
cell types, including tumour cells. They can affect cell-cell interactions and play a
fundamental role in the recruiting or attracting cells of the immune system to sites
of infection or tumour growth.

To include the effect of a chemokine in this model, we recognise the signifi-
cantly smaller size of such molecules compared with biological cells and introduce a
partial differential equation to describe the concentration of chemokine secreted by
the tumour. We combine the analytic solution of the partial differential equation
model with a number of biologically motivated automata rules to form the HCA
model. We use the hybrid cellular automata model to simulate the growth of a tu-
mour in a number of computational ‘cancer patients’. Each computational patient
is distinguished from others by altering model parameters. We define ‘death’ of a
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patient as the situation where the cells of the tumour reach the boundary of our
model domain; effectively this represents tumour metastasis.

In the sections to follow, we present the development of the HCA model before
analysing numerical simulations. We conclude with a discussion of the results and
conclusion.

2. MATHEMATICAL MODEL

We investigate the growth of a solid tumour and its interaction with the
host immune system and a tumour-secreted chemokine. The model is comprised of
a partial differential equation to describe the chemokine secreted by the tumour,
coupled with a discrete, stochastic cellular automata describing individual cells. We
employ a square-shaped computational domain of length L, which is partitioned into
a regular square grid. Each square element in the grid represents a location that
may contain a healthy cell, tumour cell or immune cell.

We consider a number of biological cell types including normal healthy cells,
tumour cells (necrotic, dividing and migrating), DCs (mature and immature), NK
cells and CTL cells. To build the CA model, we define ‘rules’ that draw upon the
biological literature to describe cell-cell interactions, cell effects on the environment,
and effects of the environment on cells.

Initially, non-cancerous healthy cells cover the whole of the model domain,
then the tumour mass is allowed to grow from one cancer cell placed at the centre
cell of the grid. Cells of the host immune system are spread randomly over the
domain throughout the other healthy cells. Three separate immune cell populations
are considered here — the CTL cells of the specific immune response and cells of
the innnate immune system, represented by the NK cells and DCs.

The model solutions are progressed via discrete time steps, at which each
spatial location is investigated to determine its contents and whether or not actions
will occur. This is summarised in Algorithm 1.

Algorithm 1 Brief pseudocode for the overall algorithm.

Draw parameters for current computational patient
Initialise domain
for each time step do
for each CA element do
Determine cell type in element
Characterise neighbourhood of element
Test whether event will occur and update state
end for
end for
Export data
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2.1. Cellular Automata Rules. Each particular cell-level action is associated
with a probability of success, Peyent, that is compared with a pseudo-random num-
ber, r, drawn from the uniform distribution on the interval [0,1] to determine
whether or not it is carried out. To describe the evolution of the cell population,
we introduce the general algorithm of cellular automata rules as presented below.

Algorithm 2 Pseudocode for testing occurrence of individual events.

Draw r ~ U[0, 1]
Calculate Peyep using current state of CA
if 7 < Pyyent then

update state (the event occurs)
end if

2.1.1. Host cells. As described in the work of Ferreira et al. [5] and of Mallet and de
Pillis [9], we assume that the healthy host cells are effectively passive bystanders in
the interaction. They do not hinder the growth of the tumour cells or the movement
of any cell type.

2.1.2. Tumour cells. In this model, we consider tumour growth to be influenced by
the immune system via NK cells, CTL cells and DCs. The tumour cells undergo
the processes of division, migration and lysis resulting from interaction with the
immune system. We assume that NK cells, CTL cells and mature dendritic cells
can directly kill the tumour cells. At each time step, the neighbourhood of each
tumour cell is surveyed to determine whether the cells of the immune system are
present or not. If they are, the tumour cell will be killed by the immune system
whereas if there are no immune system cells in the neighbourhood then the tumour
cell is marked for potential division or migration. Following this, a stochastic rule is
checked to determine whether or not the action will be carried out. The probability
of tumour division that depends on the density of tumour cells in the neighbourhood
of the dividing cell has the form as follows

chlrgr = exXp (_ (edistum)2);

where 64;, controls the shape of the curve allowing it to capture qualitative under-
standing of the biology and Ty, is the number of tumour cells in a one cell radius
of the cell of interest. From Figure 1(a), it can be seen that tumour cell division
is more likely when there is space in the neighbourhood for the resulting daughter
cell.

The probability of tumour lysis depends on the strength of the immune system
in the neighbourhood of the tumour cell (see Figure 1(b)), and is given by

Pltyr;rs =1—exp <_ (alysislsum)2>,
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FIGURE 1. The form of the curves used to determine the proba-
bility of (a) tumour cell division and (b) tumour cell lysis, given
different neighbourhood conditions.

where again 6y controls the shape of the curve allowing it to capture qualitative
understanding of the biology and Iy is the number of immune cells in a one cell
radius of the cell of interest.

2.1.3. Immune System. At each time step, the neighbourhood of each immune cell
is surveyed to determine whether the tumour cells are present. If tumour cells
are present, the immune system will kill the tumour cells in the manner described
above. If there are no tumour cells in the neighbourhood of the CTL cells, then
the CTL cells move towards areas of higher chemokine concentration.

To control the normal background level of CTL cells, at each time step there
is a chance that healthy cells are replaced (from outside the computational domain)
by new immune cells. This is carried out by imposing a probability of healthy cell
replacement with a CTL, given by

1
PCTL — CTL, — — Z CTL;, (1)

rep n2

domain
where CTLyg is the ‘normal’ density of CTL cells and n? is the total number of CA
elements.

NK cell and dendritic cell have similar rules to CTL cells, except that NK
cells and mature dendritic cells can lyse the tumour cell only once. When immature
dendritic cells come in contact with tumour cell it becomes a mature dendritic cell
that has the ability to kill the tumour cell.

2.2. Chemokine Equation. To include the effect of a chemokine in this model,
we use a partial differential equation to describe the evolution of the concentration
of chemokine throughout the model domain. We combine the analytic solution of
the partial differential equation with a number of biologically motivated automata
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rules as described above. The equation for the concentration of chemokine is given
by

oC 0’C  o9*C
= —Plazt52 ) (2)
ot or oy

where C(x,y,t) represents the chemokine concentration, D is the diffusion coeffi-

cient of the chemokine, x and y represent the spatial variables along the horizontal
and vertical axes, and t represents time. The initial condition is given by

C(z,y,0) = f(z,y), 0<z<b O0<y<ec,

where b = ¢ = 1 mm. For all four boundaries of the domain, we set C' = 0.

Using the boundary conditions as presented above along with an unspecified
initial condition, equation (2) is exactly solvable using separation of variables, with
a solution given by

m27r2 TL27T2 . mmnx . nmy
C('T7y7t) - Am,n exp <_-D <b2 + 02 ) t) S1n (T) S1n (7> s

where ,
4 [ . /mmwx\ . [nTY
Aman = %/0 /o f(x,y)sin (T) sin (T) dzdy.

For the present study, initially, a tumour cell placed in the middle of the
grid and is assumed to secrete a chemokine. The initial value of the chemokine
concentration is therefore a function of the form

f(a,y) = exp(=0.5((z = b/2)* + (y — ¢/2)*)). (3)
Chemokines then start to diffuse from the centre to the whole domain and at-
tract the immune system to the site of tumour. This represents the behaviour of
chemokines, such as is described by Allavena et al. [2] and Murooka et al. [10].
For the initial condition given in equation (3) we have numerically integrated using
MATLAB’s in-built adaptive Simpson quadrature to obtain A, .

3. RESULTS

We combine the solution of the PDE with the CA as described in Section
2 to simulate the evolution of the growing tumour. A two-dimensional regular
100 x 100 square domain is used with 100 cell cycles and a Moore neighbourhood is
considered for the cellular automata rules. In this simulation, an estimated value
of diffusion coefficient for chemokine, D, is 10~% um?s~!. The distribution of the
growing tumour after 50 and 100 cell cyces is shown in Figure 2(a), with results
qualitatively matching those of Mallet and de Pillis [9].

Figure 3(a) shows the evolution of the tumour cell and necrotic cell densities
over 100 cell cycles. This plot shows the characteristic exponential and linear growth
phases of solid, avascular tumours (see for example, Folkman and Hochberg [6]), as
well as a slower growing population of necrotic cells. In 3(b) we see that initially,
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FIGURE 2. The growing tumour and host immune system.

6,000 | | ]
4,000 | |
2,000 | | )
*"<’+—*777"<" :,,/”’ ‘ . |
k ” "0 50 100
— TC--- NEC | T GILMDC NK- - IDC

(a) Tumour and necrotic cells (b) Immature and mature DCs, NKs and CTLs

F1GURE 3. Total cell counts after 100 cell cycles.

the number of mature dendritic cell is zero until immature dendritic cells come in
contact with tumour cells, at which point the matured dendritic cells commence
killing the tumour cells. After around 80 cycles, all immature dendritic cells have
matured and the number of mature dendritic cells stabilises. As expected, due
to the nature of equation (1), the populations of NK cells and CTL cells remain
approximation steady over the extent of the tumour growth.

We also use the hybrid cellular automata model to investigate the growth
of a tumour in a number of computational ‘cancer patients’. Each computational
patient is distinguished from others by altering model parameters. We define ‘death’
of a patient as occurring when the tumour is able to metastasise. Effectively, this is
when the cells of the tumour reach the boundary of our model domain. We present
the results of these simulations using a simulated Kaplan-Meier survival curve,
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FIGURE 4. Simulated Kaplan-Meier curve.

shown in Figure 4. The figure shows that metastasis sets in for the first patients
after 80 cycles. Metastasis of the simulated tumours occurred in approximately
60% of simulated patients after 250 cycles after which time most surviving patients
exhibited dormant tumours being controlled by the immune system.

4. CONCLUSION

Duchting and Vogelsaenger [3] pioneered the use of discrete cellular automata
for modelling cancer, investigating the effects of radio-therapy. Ferreira et al. [5]
modelled avascular cancer growth with a CA model based on the fundamental
biological process of proliferation, motility, and death, including competition for
diffusing nutrients among normal and cancer cells. Mallet and de Pillis [9] con-
structed a hybrid cellular automata cancer model that built on the work of Ferreira
et al. to include NK cells as the innate immune system and CTL cells as the spe-
cific immune system. The Mallet and de Pillis model lacked sufficient detail of the
immune system and in this present research, we attempt to improve on their work
by explicitly describing more of the host immune system. While direct comparison
of the models is difficult, the results as described in Figure 3(a) qualitatively reflect
the findings of Mallet and de Pillis and of Ferreira et al..

While models based on differential equations allow for analytical investiga-
tions such as stability and parameter sensitivity analyses, and ease of fitting the
model to experimental data, these types of models cannot capture the detailed
cellular and sub-cellular level complexity of the biological system. On the other
hand, HCA models can describe greater complexity of the biological process such
as the interaction between every single cell. In current work complementary to the
present research of this paper, we have included greater realism in the modelling
of tumour-secreted chemokines by allowing secretion due to cell-cell interaction.
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Currently, chemokines and their receptors in the tumour microenvironment are be-
ing extensively investigated to produce therapeutic interventions to combat cancer,
(see for example, Allavena et al. [2] and Murooka et al. [10]). Our models currently
under development will allow for simulation-based and theoretical investigations of
such interventions.

We have developed a useful model that can be employed as a preliminary
investigative tool for experimentalists who conduct expensive in vitro and in vivo
experiments to test and refine hypotheses prior to entering the lab. With further
cross disciplinary collaboration, this type of model can be refined to provide a
more accurate description of the underlying cancer biology and hence yield more
relevant predictions and tests of hypotheses. Future developments based upon this
model will be related to the specific context of colorectal cancer, and the effect of
chemokines on the cell-cell interactions will be deeply investigated. More complex
partial differential equations related to chemokines secretion resulting from cell-cell
interactions will be introduced in future work.
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